1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 #undef CREATE_TRACE_POINTS
59 #include <trace/hooks/debug.h>
60
61 #include "console_cmdline.h"
62 #include "braille.h"
63 #include "internal.h"
64
65 int console_printk[4] = {
66 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
67 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
68 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
69 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
70 };
71 EXPORT_SYMBOL_GPL(console_printk);
72
73 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
74 EXPORT_SYMBOL(ignore_console_lock_warning);
75
76 /*
77 * Low level drivers may need that to know if they can schedule in
78 * their unblank() callback or not. So let's export it.
79 */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82
83 /*
84 * console_sem protects the console_drivers list, and also
85 * provides serialisation for access to the entire console
86 * driver system.
87 */
88 static DEFINE_SEMAPHORE(console_sem);
89 struct console *console_drivers;
90 EXPORT_SYMBOL_GPL(console_drivers);
91
92 /*
93 * System may need to suppress printk message under certain
94 * circumstances, like after kernel panic happens.
95 */
96 int __read_mostly suppress_printk;
97
98 #ifdef CONFIG_LOCKDEP
99 static struct lockdep_map console_lock_dep_map = {
100 .name = "console_lock"
101 };
102 #endif
103
104 enum devkmsg_log_bits {
105 __DEVKMSG_LOG_BIT_ON = 0,
106 __DEVKMSG_LOG_BIT_OFF,
107 __DEVKMSG_LOG_BIT_LOCK,
108 };
109
110 enum devkmsg_log_masks {
111 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
112 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
113 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
114 };
115
116 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
117 #define DEVKMSG_LOG_MASK_DEFAULT 0
118
119 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
120
__control_devkmsg(char * str)121 static int __control_devkmsg(char *str)
122 {
123 size_t len;
124
125 if (!str)
126 return -EINVAL;
127
128 len = str_has_prefix(str, "on");
129 if (len) {
130 devkmsg_log = DEVKMSG_LOG_MASK_ON;
131 return len;
132 }
133
134 len = str_has_prefix(str, "off");
135 if (len) {
136 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
137 return len;
138 }
139
140 len = str_has_prefix(str, "ratelimit");
141 if (len) {
142 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
143 return len;
144 }
145
146 return -EINVAL;
147 }
148
control_devkmsg(char * str)149 static int __init control_devkmsg(char *str)
150 {
151 if (__control_devkmsg(str) < 0) {
152 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
153 return 1;
154 }
155
156 /*
157 * Set sysctl string accordingly:
158 */
159 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
160 strcpy(devkmsg_log_str, "on");
161 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
162 strcpy(devkmsg_log_str, "off");
163 /* else "ratelimit" which is set by default. */
164
165 /*
166 * Sysctl cannot change it anymore. The kernel command line setting of
167 * this parameter is to force the setting to be permanent throughout the
168 * runtime of the system. This is a precation measure against userspace
169 * trying to be a smarta** and attempting to change it up on us.
170 */
171 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
172
173 return 1;
174 }
175 __setup("printk.devkmsg=", control_devkmsg);
176
177 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
178
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)179 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
180 void __user *buffer, size_t *lenp, loff_t *ppos)
181 {
182 char old_str[DEVKMSG_STR_MAX_SIZE];
183 unsigned int old;
184 int err;
185
186 if (write) {
187 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
188 return -EINVAL;
189
190 old = devkmsg_log;
191 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
192 }
193
194 err = proc_dostring(table, write, buffer, lenp, ppos);
195 if (err)
196 return err;
197
198 if (write) {
199 err = __control_devkmsg(devkmsg_log_str);
200
201 /*
202 * Do not accept an unknown string OR a known string with
203 * trailing crap...
204 */
205 if (err < 0 || (err + 1 != *lenp)) {
206
207 /* ... and restore old setting. */
208 devkmsg_log = old;
209 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
210
211 return -EINVAL;
212 }
213 }
214
215 return 0;
216 }
217
218 /* Number of registered extended console drivers. */
219 static int nr_ext_console_drivers;
220
221 /*
222 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
223 * macros instead of functions so that _RET_IP_ contains useful information.
224 */
225 #define down_console_sem() do { \
226 down(&console_sem);\
227 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
228 } while (0)
229
__down_trylock_console_sem(unsigned long ip)230 static int __down_trylock_console_sem(unsigned long ip)
231 {
232 int lock_failed;
233 unsigned long flags;
234
235 /*
236 * Here and in __up_console_sem() we need to be in safe mode,
237 * because spindump/WARN/etc from under console ->lock will
238 * deadlock in printk()->down_trylock_console_sem() otherwise.
239 */
240 printk_safe_enter_irqsave(flags);
241 lock_failed = down_trylock(&console_sem);
242 printk_safe_exit_irqrestore(flags);
243
244 if (lock_failed)
245 return 1;
246 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
247 return 0;
248 }
249 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
250
__up_console_sem(unsigned long ip)251 static void __up_console_sem(unsigned long ip)
252 {
253 unsigned long flags;
254
255 mutex_release(&console_lock_dep_map, 1, ip);
256
257 printk_safe_enter_irqsave(flags);
258 up(&console_sem);
259 printk_safe_exit_irqrestore(flags);
260 }
261 #define up_console_sem() __up_console_sem(_RET_IP_)
262
263 /*
264 * This is used for debugging the mess that is the VT code by
265 * keeping track if we have the console semaphore held. It's
266 * definitely not the perfect debug tool (we don't know if _WE_
267 * hold it and are racing, but it helps tracking those weird code
268 * paths in the console code where we end up in places I want
269 * locked without the console sempahore held).
270 */
271 static int console_locked, console_suspended;
272
273 /*
274 * If exclusive_console is non-NULL then only this console is to be printed to.
275 */
276 static struct console *exclusive_console;
277
278 /*
279 * Array of consoles built from command line options (console=)
280 */
281
282 #define MAX_CMDLINECONSOLES 8
283
284 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
285
286 static int preferred_console = -1;
287 int console_set_on_cmdline;
288 EXPORT_SYMBOL(console_set_on_cmdline);
289
290 /* Flag: console code may call schedule() */
291 static int console_may_schedule;
292
293 enum con_msg_format_flags {
294 MSG_FORMAT_DEFAULT = 0,
295 MSG_FORMAT_SYSLOG = (1 << 0),
296 };
297
298 static int console_msg_format = MSG_FORMAT_DEFAULT;
299
300 /*
301 * The printk log buffer consists of a chain of concatenated variable
302 * length records. Every record starts with a record header, containing
303 * the overall length of the record.
304 *
305 * The heads to the first and last entry in the buffer, as well as the
306 * sequence numbers of these entries are maintained when messages are
307 * stored.
308 *
309 * If the heads indicate available messages, the length in the header
310 * tells the start next message. A length == 0 for the next message
311 * indicates a wrap-around to the beginning of the buffer.
312 *
313 * Every record carries the monotonic timestamp in microseconds, as well as
314 * the standard userspace syslog level and syslog facility. The usual
315 * kernel messages use LOG_KERN; userspace-injected messages always carry
316 * a matching syslog facility, by default LOG_USER. The origin of every
317 * message can be reliably determined that way.
318 *
319 * The human readable log message directly follows the message header. The
320 * length of the message text is stored in the header, the stored message
321 * is not terminated.
322 *
323 * Optionally, a message can carry a dictionary of properties (key/value pairs),
324 * to provide userspace with a machine-readable message context.
325 *
326 * Examples for well-defined, commonly used property names are:
327 * DEVICE=b12:8 device identifier
328 * b12:8 block dev_t
329 * c127:3 char dev_t
330 * n8 netdev ifindex
331 * +sound:card0 subsystem:devname
332 * SUBSYSTEM=pci driver-core subsystem name
333 *
334 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
335 * follows directly after a '=' character. Every property is terminated by
336 * a '\0' character. The last property is not terminated.
337 *
338 * Example of a message structure:
339 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
340 * 0008 34 00 record is 52 bytes long
341 * 000a 0b 00 text is 11 bytes long
342 * 000c 1f 00 dictionary is 23 bytes long
343 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
344 * 0010 69 74 27 73 20 61 20 6c "it's a l"
345 * 69 6e 65 "ine"
346 * 001b 44 45 56 49 43 "DEVIC"
347 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
348 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
349 * 67 "g"
350 * 0032 00 00 00 padding to next message header
351 *
352 * The 'struct printk_log' buffer header must never be directly exported to
353 * userspace, it is a kernel-private implementation detail that might
354 * need to be changed in the future, when the requirements change.
355 *
356 * /dev/kmsg exports the structured data in the following line format:
357 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
358 *
359 * Users of the export format should ignore possible additional values
360 * separated by ',', and find the message after the ';' character.
361 *
362 * The optional key/value pairs are attached as continuation lines starting
363 * with a space character and terminated by a newline. All possible
364 * non-prinatable characters are escaped in the "\xff" notation.
365 */
366
367 enum log_flags {
368 LOG_NEWLINE = 2, /* text ended with a newline */
369 LOG_CONT = 8, /* text is a fragment of a continuation line */
370 };
371
372 struct printk_log {
373 u64 ts_nsec; /* timestamp in nanoseconds */
374 u16 len; /* length of entire record */
375 u16 text_len; /* length of text buffer */
376 u16 dict_len; /* length of dictionary buffer */
377 u8 facility; /* syslog facility */
378 u8 flags:5; /* internal record flags */
379 u8 level:3; /* syslog level */
380 #ifdef CONFIG_PRINTK_CALLER
381 u32 caller_id; /* thread id or processor id */
382 #endif
383 }
384 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
385 __packed __aligned(4)
386 #endif
387 ;
388
389 /*
390 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
391 * within the scheduler's rq lock. It must be released before calling
392 * console_unlock() or anything else that might wake up a process.
393 */
394 DEFINE_RAW_SPINLOCK(logbuf_lock);
395
396 /*
397 * Helper macros to lock/unlock logbuf_lock and switch between
398 * printk-safe/unsafe modes.
399 */
400 #define logbuf_lock_irq() \
401 do { \
402 printk_safe_enter_irq(); \
403 raw_spin_lock(&logbuf_lock); \
404 } while (0)
405
406 #define logbuf_unlock_irq() \
407 do { \
408 raw_spin_unlock(&logbuf_lock); \
409 printk_safe_exit_irq(); \
410 } while (0)
411
412 #define logbuf_lock_irqsave(flags) \
413 do { \
414 printk_safe_enter_irqsave(flags); \
415 raw_spin_lock(&logbuf_lock); \
416 } while (0)
417
418 #define logbuf_unlock_irqrestore(flags) \
419 do { \
420 raw_spin_unlock(&logbuf_lock); \
421 printk_safe_exit_irqrestore(flags); \
422 } while (0)
423
424 #ifdef CONFIG_PRINTK
425 DECLARE_WAIT_QUEUE_HEAD(log_wait);
426 /* the next printk record to read by syslog(READ) or /proc/kmsg */
427 static u64 syslog_seq;
428 static u32 syslog_idx;
429 static size_t syslog_partial;
430 static bool syslog_time;
431
432 /* index and sequence number of the first record stored in the buffer */
433 static u64 log_first_seq;
434 static u32 log_first_idx;
435
436 /* index and sequence number of the next record to store in the buffer */
437 static u64 log_next_seq;
438 static u32 log_next_idx;
439
440 /* the next printk record to write to the console */
441 static u64 console_seq;
442 static u32 console_idx;
443 static u64 exclusive_console_stop_seq;
444
445 /* the next printk record to read after the last 'clear' command */
446 static u64 clear_seq;
447 static u32 clear_idx;
448
449 #ifdef CONFIG_PRINTK_CALLER
450 #define PREFIX_MAX 48
451 #else
452 #define PREFIX_MAX 32
453 #endif
454 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
455
456 #define LOG_LEVEL(v) ((v) & 0x07)
457 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
458
459 /* record buffer */
460 #define LOG_ALIGN __alignof__(struct printk_log)
461 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
462 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
463 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
464 static char *log_buf = __log_buf;
465 static u32 log_buf_len = __LOG_BUF_LEN;
466
467 /*
468 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
469 * per_cpu_areas are initialised. This variable is set to true when
470 * it's safe to access per-CPU data.
471 */
472 static bool __printk_percpu_data_ready __read_mostly;
473
printk_percpu_data_ready(void)474 bool printk_percpu_data_ready(void)
475 {
476 return __printk_percpu_data_ready;
477 }
478
479 /* Return log buffer address */
log_buf_addr_get(void)480 char *log_buf_addr_get(void)
481 {
482 return log_buf;
483 }
484
485 /* Return log buffer size */
log_buf_len_get(void)486 u32 log_buf_len_get(void)
487 {
488 return log_buf_len;
489 }
490
491 /* human readable text of the record */
log_text(const struct printk_log * msg)492 static char *log_text(const struct printk_log *msg)
493 {
494 return (char *)msg + sizeof(struct printk_log);
495 }
496
497 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)498 static char *log_dict(const struct printk_log *msg)
499 {
500 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
501 }
502
503 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)504 static struct printk_log *log_from_idx(u32 idx)
505 {
506 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
507
508 /*
509 * A length == 0 record is the end of buffer marker. Wrap around and
510 * read the message at the start of the buffer.
511 */
512 if (!msg->len)
513 return (struct printk_log *)log_buf;
514 return msg;
515 }
516
517 /* get next record; idx must point to valid msg */
log_next(u32 idx)518 static u32 log_next(u32 idx)
519 {
520 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
521
522 /* length == 0 indicates the end of the buffer; wrap */
523 /*
524 * A length == 0 record is the end of buffer marker. Wrap around and
525 * read the message at the start of the buffer as *this* one, and
526 * return the one after that.
527 */
528 if (!msg->len) {
529 msg = (struct printk_log *)log_buf;
530 return msg->len;
531 }
532 return idx + msg->len;
533 }
534
535 /*
536 * Check whether there is enough free space for the given message.
537 *
538 * The same values of first_idx and next_idx mean that the buffer
539 * is either empty or full.
540 *
541 * If the buffer is empty, we must respect the position of the indexes.
542 * They cannot be reset to the beginning of the buffer.
543 */
logbuf_has_space(u32 msg_size,bool empty)544 static int logbuf_has_space(u32 msg_size, bool empty)
545 {
546 u32 free;
547
548 if (log_next_idx > log_first_idx || empty)
549 free = max(log_buf_len - log_next_idx, log_first_idx);
550 else
551 free = log_first_idx - log_next_idx;
552
553 /*
554 * We need space also for an empty header that signalizes wrapping
555 * of the buffer.
556 */
557 return free >= msg_size + sizeof(struct printk_log);
558 }
559
log_make_free_space(u32 msg_size)560 static int log_make_free_space(u32 msg_size)
561 {
562 while (log_first_seq < log_next_seq &&
563 !logbuf_has_space(msg_size, false)) {
564 /* drop old messages until we have enough contiguous space */
565 log_first_idx = log_next(log_first_idx);
566 log_first_seq++;
567 }
568
569 if (clear_seq < log_first_seq) {
570 clear_seq = log_first_seq;
571 clear_idx = log_first_idx;
572 }
573
574 /* sequence numbers are equal, so the log buffer is empty */
575 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
576 return 0;
577
578 return -ENOMEM;
579 }
580
581 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)582 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
583 {
584 u32 size;
585
586 size = sizeof(struct printk_log) + text_len + dict_len;
587 *pad_len = (-size) & (LOG_ALIGN - 1);
588 size += *pad_len;
589
590 return size;
591 }
592
593 /*
594 * Define how much of the log buffer we could take at maximum. The value
595 * must be greater than two. Note that only half of the buffer is available
596 * when the index points to the middle.
597 */
598 #define MAX_LOG_TAKE_PART 4
599 static const char trunc_msg[] = "<truncated>";
600
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)601 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
602 u16 *dict_len, u32 *pad_len)
603 {
604 /*
605 * The message should not take the whole buffer. Otherwise, it might
606 * get removed too soon.
607 */
608 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
609 if (*text_len > max_text_len)
610 *text_len = max_text_len;
611 /* enable the warning message */
612 *trunc_msg_len = strlen(trunc_msg);
613 /* disable the "dict" completely */
614 *dict_len = 0;
615 /* compute the size again, count also the warning message */
616 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
617 }
618
619 /* insert record into the buffer, discard old ones, update heads */
log_store(u32 caller_id,int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)620 static int log_store(u32 caller_id, int facility, int level,
621 enum log_flags flags, u64 ts_nsec,
622 const char *dict, u16 dict_len,
623 const char *text, u16 text_len)
624 {
625 struct printk_log *msg;
626 u32 size, pad_len;
627 u16 trunc_msg_len = 0;
628
629 /* number of '\0' padding bytes to next message */
630 size = msg_used_size(text_len, dict_len, &pad_len);
631
632 if (log_make_free_space(size)) {
633 /* truncate the message if it is too long for empty buffer */
634 size = truncate_msg(&text_len, &trunc_msg_len,
635 &dict_len, &pad_len);
636 /* survive when the log buffer is too small for trunc_msg */
637 if (log_make_free_space(size))
638 return 0;
639 }
640
641 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
642 /*
643 * This message + an additional empty header does not fit
644 * at the end of the buffer. Add an empty header with len == 0
645 * to signify a wrap around.
646 */
647 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
648 log_next_idx = 0;
649 }
650
651 /* fill message */
652 msg = (struct printk_log *)(log_buf + log_next_idx);
653 memcpy(log_text(msg), text, text_len);
654 msg->text_len = text_len;
655 if (trunc_msg_len) {
656 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
657 msg->text_len += trunc_msg_len;
658 }
659 memcpy(log_dict(msg), dict, dict_len);
660 msg->dict_len = dict_len;
661 msg->facility = facility;
662 msg->level = level & 7;
663 msg->flags = flags & 0x1f;
664 if (ts_nsec > 0)
665 msg->ts_nsec = ts_nsec;
666 else
667 msg->ts_nsec = local_clock();
668 #ifdef CONFIG_PRINTK_CALLER
669 msg->caller_id = caller_id;
670 #endif
671 memset(log_dict(msg) + dict_len, 0, pad_len);
672 msg->len = size;
673
674 /* insert message */
675 log_next_idx += msg->len;
676 log_next_seq++;
677
678 return msg->text_len;
679 }
680
681 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
682
syslog_action_restricted(int type)683 static int syslog_action_restricted(int type)
684 {
685 if (dmesg_restrict)
686 return 1;
687 /*
688 * Unless restricted, we allow "read all" and "get buffer size"
689 * for everybody.
690 */
691 return type != SYSLOG_ACTION_READ_ALL &&
692 type != SYSLOG_ACTION_SIZE_BUFFER;
693 }
694
check_syslog_permissions(int type,int source)695 static int check_syslog_permissions(int type, int source)
696 {
697 /*
698 * If this is from /proc/kmsg and we've already opened it, then we've
699 * already done the capabilities checks at open time.
700 */
701 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
702 goto ok;
703
704 if (syslog_action_restricted(type)) {
705 if (capable(CAP_SYSLOG))
706 goto ok;
707 /*
708 * For historical reasons, accept CAP_SYS_ADMIN too, with
709 * a warning.
710 */
711 if (capable(CAP_SYS_ADMIN)) {
712 pr_warn_once("%s (%d): Attempt to access syslog with "
713 "CAP_SYS_ADMIN but no CAP_SYSLOG "
714 "(deprecated).\n",
715 current->comm, task_pid_nr(current));
716 goto ok;
717 }
718 return -EPERM;
719 }
720 ok:
721 return security_syslog(type);
722 }
723
append_char(char ** pp,char * e,char c)724 static void append_char(char **pp, char *e, char c)
725 {
726 if (*pp < e)
727 *(*pp)++ = c;
728 }
729
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)730 static ssize_t msg_print_ext_header(char *buf, size_t size,
731 struct printk_log *msg, u64 seq)
732 {
733 u64 ts_usec = msg->ts_nsec;
734 char caller[20];
735 #ifdef CONFIG_PRINTK_CALLER
736 u32 id = msg->caller_id;
737
738 snprintf(caller, sizeof(caller), ",caller=%c%u",
739 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
740 #else
741 caller[0] = '\0';
742 #endif
743
744 do_div(ts_usec, 1000);
745
746 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
747 (msg->facility << 3) | msg->level, seq, ts_usec,
748 msg->flags & LOG_CONT ? 'c' : '-', caller);
749 }
750
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)751 static ssize_t msg_print_ext_body(char *buf, size_t size,
752 char *dict, size_t dict_len,
753 char *text, size_t text_len)
754 {
755 char *p = buf, *e = buf + size;
756 size_t i;
757
758 /* escape non-printable characters */
759 for (i = 0; i < text_len; i++) {
760 unsigned char c = text[i];
761
762 if (c < ' ' || c >= 127 || c == '\\')
763 p += scnprintf(p, e - p, "\\x%02x", c);
764 else
765 append_char(&p, e, c);
766 }
767 append_char(&p, e, '\n');
768
769 if (dict_len) {
770 bool line = true;
771
772 for (i = 0; i < dict_len; i++) {
773 unsigned char c = dict[i];
774
775 if (line) {
776 append_char(&p, e, ' ');
777 line = false;
778 }
779
780 if (c == '\0') {
781 append_char(&p, e, '\n');
782 line = true;
783 continue;
784 }
785
786 if (c < ' ' || c >= 127 || c == '\\') {
787 p += scnprintf(p, e - p, "\\x%02x", c);
788 continue;
789 }
790
791 append_char(&p, e, c);
792 }
793 append_char(&p, e, '\n');
794 }
795
796 return p - buf;
797 }
798
799 /* /dev/kmsg - userspace message inject/listen interface */
800 struct devkmsg_user {
801 u64 seq;
802 u32 idx;
803 struct ratelimit_state rs;
804 struct mutex lock;
805 char buf[CONSOLE_EXT_LOG_MAX];
806 };
807
808 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)809 int devkmsg_emit(int facility, int level, const char *fmt, ...)
810 {
811 va_list args;
812 int r;
813
814 va_start(args, fmt);
815 r = vprintk_emit(facility, level, NULL, 0, fmt, args);
816 va_end(args);
817
818 return r;
819 }
820
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)821 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
822 {
823 char *buf, *line;
824 int level = default_message_loglevel;
825 int facility = 1; /* LOG_USER */
826 struct file *file = iocb->ki_filp;
827 struct devkmsg_user *user = file->private_data;
828 size_t len = iov_iter_count(from);
829 ssize_t ret = len;
830
831 if (!user || len > LOG_LINE_MAX)
832 return -EINVAL;
833
834 /* Ignore when user logging is disabled. */
835 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
836 return len;
837
838 /* Ratelimit when not explicitly enabled. */
839 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
840 if (!___ratelimit(&user->rs, current->comm))
841 return ret;
842 }
843
844 buf = kmalloc(len+1, GFP_KERNEL);
845 if (buf == NULL)
846 return -ENOMEM;
847
848 buf[len] = '\0';
849 if (!copy_from_iter_full(buf, len, from)) {
850 kfree(buf);
851 return -EFAULT;
852 }
853
854 /*
855 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
856 * the decimal value represents 32bit, the lower 3 bit are the log
857 * level, the rest are the log facility.
858 *
859 * If no prefix or no userspace facility is specified, we
860 * enforce LOG_USER, to be able to reliably distinguish
861 * kernel-generated messages from userspace-injected ones.
862 */
863 line = buf;
864 if (line[0] == '<') {
865 char *endp = NULL;
866 unsigned int u;
867
868 u = simple_strtoul(line + 1, &endp, 10);
869 if (endp && endp[0] == '>') {
870 level = LOG_LEVEL(u);
871 if (LOG_FACILITY(u) != 0)
872 facility = LOG_FACILITY(u);
873 endp++;
874 len -= endp - line;
875 line = endp;
876 }
877 }
878
879 devkmsg_emit(facility, level, "%s", line);
880 kfree(buf);
881 return ret;
882 }
883
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)884 static ssize_t devkmsg_read(struct file *file, char __user *buf,
885 size_t count, loff_t *ppos)
886 {
887 struct devkmsg_user *user = file->private_data;
888 struct printk_log *msg;
889 size_t len;
890 ssize_t ret;
891
892 if (!user)
893 return -EBADF;
894
895 ret = mutex_lock_interruptible(&user->lock);
896 if (ret)
897 return ret;
898
899 logbuf_lock_irq();
900 while (user->seq == log_next_seq) {
901 if (file->f_flags & O_NONBLOCK) {
902 ret = -EAGAIN;
903 logbuf_unlock_irq();
904 goto out;
905 }
906
907 logbuf_unlock_irq();
908 ret = wait_event_interruptible(log_wait,
909 user->seq != log_next_seq);
910 if (ret)
911 goto out;
912 logbuf_lock_irq();
913 }
914
915 if (user->seq < log_first_seq) {
916 /* our last seen message is gone, return error and reset */
917 user->idx = log_first_idx;
918 user->seq = log_first_seq;
919 ret = -EPIPE;
920 logbuf_unlock_irq();
921 goto out;
922 }
923
924 msg = log_from_idx(user->idx);
925 len = msg_print_ext_header(user->buf, sizeof(user->buf),
926 msg, user->seq);
927 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
928 log_dict(msg), msg->dict_len,
929 log_text(msg), msg->text_len);
930
931 user->idx = log_next(user->idx);
932 user->seq++;
933 logbuf_unlock_irq();
934
935 if (len > count) {
936 ret = -EINVAL;
937 goto out;
938 }
939
940 if (copy_to_user(buf, user->buf, len)) {
941 ret = -EFAULT;
942 goto out;
943 }
944 ret = len;
945 out:
946 mutex_unlock(&user->lock);
947 return ret;
948 }
949
devkmsg_llseek(struct file * file,loff_t offset,int whence)950 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
951 {
952 struct devkmsg_user *user = file->private_data;
953 loff_t ret = 0;
954
955 if (!user)
956 return -EBADF;
957 if (offset)
958 return -ESPIPE;
959
960 logbuf_lock_irq();
961 switch (whence) {
962 case SEEK_SET:
963 /* the first record */
964 user->idx = log_first_idx;
965 user->seq = log_first_seq;
966 break;
967 case SEEK_DATA:
968 /*
969 * The first record after the last SYSLOG_ACTION_CLEAR,
970 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
971 * changes no global state, and does not clear anything.
972 */
973 user->idx = clear_idx;
974 user->seq = clear_seq;
975 break;
976 case SEEK_END:
977 /* after the last record */
978 user->idx = log_next_idx;
979 user->seq = log_next_seq;
980 break;
981 default:
982 ret = -EINVAL;
983 }
984 logbuf_unlock_irq();
985 return ret;
986 }
987
devkmsg_poll(struct file * file,poll_table * wait)988 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
989 {
990 struct devkmsg_user *user = file->private_data;
991 __poll_t ret = 0;
992
993 if (!user)
994 return EPOLLERR|EPOLLNVAL;
995
996 poll_wait(file, &log_wait, wait);
997
998 logbuf_lock_irq();
999 if (user->seq < log_next_seq) {
1000 /* return error when data has vanished underneath us */
1001 if (user->seq < log_first_seq)
1002 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1003 else
1004 ret = EPOLLIN|EPOLLRDNORM;
1005 }
1006 logbuf_unlock_irq();
1007
1008 return ret;
1009 }
1010
devkmsg_open(struct inode * inode,struct file * file)1011 static int devkmsg_open(struct inode *inode, struct file *file)
1012 {
1013 struct devkmsg_user *user;
1014 int err;
1015
1016 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1017 return -EPERM;
1018
1019 /* write-only does not need any file context */
1020 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1021 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1022 SYSLOG_FROM_READER);
1023 if (err)
1024 return err;
1025 }
1026
1027 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1028 if (!user)
1029 return -ENOMEM;
1030
1031 ratelimit_default_init(&user->rs);
1032 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1033
1034 mutex_init(&user->lock);
1035
1036 logbuf_lock_irq();
1037 user->idx = log_first_idx;
1038 user->seq = log_first_seq;
1039 logbuf_unlock_irq();
1040
1041 file->private_data = user;
1042 return 0;
1043 }
1044
devkmsg_release(struct inode * inode,struct file * file)1045 static int devkmsg_release(struct inode *inode, struct file *file)
1046 {
1047 struct devkmsg_user *user = file->private_data;
1048
1049 if (!user)
1050 return 0;
1051
1052 ratelimit_state_exit(&user->rs);
1053
1054 mutex_destroy(&user->lock);
1055 kfree(user);
1056 return 0;
1057 }
1058
1059 const struct file_operations kmsg_fops = {
1060 .open = devkmsg_open,
1061 .read = devkmsg_read,
1062 .write_iter = devkmsg_write,
1063 .llseek = devkmsg_llseek,
1064 .poll = devkmsg_poll,
1065 .release = devkmsg_release,
1066 };
1067
1068 #ifdef CONFIG_CRASH_CORE
1069 /*
1070 * This appends the listed symbols to /proc/vmcore
1071 *
1072 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1073 * obtain access to symbols that are otherwise very difficult to locate. These
1074 * symbols are specifically used so that utilities can access and extract the
1075 * dmesg log from a vmcore file after a crash.
1076 */
log_buf_vmcoreinfo_setup(void)1077 void log_buf_vmcoreinfo_setup(void)
1078 {
1079 VMCOREINFO_SYMBOL(log_buf);
1080 VMCOREINFO_SYMBOL(log_buf_len);
1081 VMCOREINFO_SYMBOL(log_first_idx);
1082 VMCOREINFO_SYMBOL(clear_idx);
1083 VMCOREINFO_SYMBOL(log_next_idx);
1084 /*
1085 * Export struct printk_log size and field offsets. User space tools can
1086 * parse it and detect any changes to structure down the line.
1087 */
1088 VMCOREINFO_STRUCT_SIZE(printk_log);
1089 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1090 VMCOREINFO_OFFSET(printk_log, len);
1091 VMCOREINFO_OFFSET(printk_log, text_len);
1092 VMCOREINFO_OFFSET(printk_log, dict_len);
1093 #ifdef CONFIG_PRINTK_CALLER
1094 VMCOREINFO_OFFSET(printk_log, caller_id);
1095 #endif
1096 }
1097 #endif
1098
1099 /* requested log_buf_len from kernel cmdline */
1100 static unsigned long __initdata new_log_buf_len;
1101
1102 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1103 static void __init log_buf_len_update(u64 size)
1104 {
1105 if (size > (u64)LOG_BUF_LEN_MAX) {
1106 size = (u64)LOG_BUF_LEN_MAX;
1107 pr_err("log_buf over 2G is not supported.\n");
1108 }
1109
1110 if (size)
1111 size = roundup_pow_of_two(size);
1112 if (size > log_buf_len)
1113 new_log_buf_len = (unsigned long)size;
1114 }
1115
1116 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1117 static int __init log_buf_len_setup(char *str)
1118 {
1119 u64 size;
1120
1121 if (!str)
1122 return -EINVAL;
1123
1124 size = memparse(str, &str);
1125
1126 log_buf_len_update(size);
1127
1128 return 0;
1129 }
1130 early_param("log_buf_len", log_buf_len_setup);
1131
1132 #ifdef CONFIG_SMP
1133 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1134
log_buf_add_cpu(void)1135 static void __init log_buf_add_cpu(void)
1136 {
1137 unsigned int cpu_extra;
1138
1139 /*
1140 * archs should set up cpu_possible_bits properly with
1141 * set_cpu_possible() after setup_arch() but just in
1142 * case lets ensure this is valid.
1143 */
1144 if (num_possible_cpus() == 1)
1145 return;
1146
1147 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1148
1149 /* by default this will only continue through for large > 64 CPUs */
1150 if (cpu_extra <= __LOG_BUF_LEN / 2)
1151 return;
1152
1153 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1154 __LOG_CPU_MAX_BUF_LEN);
1155 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1156 cpu_extra);
1157 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1158
1159 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1160 }
1161 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1162 static inline void log_buf_add_cpu(void) {}
1163 #endif /* CONFIG_SMP */
1164
set_percpu_data_ready(void)1165 static void __init set_percpu_data_ready(void)
1166 {
1167 printk_safe_init();
1168 /* Make sure we set this flag only after printk_safe() init is done */
1169 barrier();
1170 __printk_percpu_data_ready = true;
1171 }
1172
setup_log_buf(int early)1173 void __init setup_log_buf(int early)
1174 {
1175 unsigned long flags;
1176 char *new_log_buf;
1177 unsigned int free;
1178
1179 /*
1180 * Some archs call setup_log_buf() multiple times - first is very
1181 * early, e.g. from setup_arch(), and second - when percpu_areas
1182 * are initialised.
1183 */
1184 if (!early)
1185 set_percpu_data_ready();
1186
1187 if (log_buf != __log_buf)
1188 return;
1189
1190 if (!early && !new_log_buf_len)
1191 log_buf_add_cpu();
1192
1193 if (!new_log_buf_len)
1194 return;
1195
1196 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1197 if (unlikely(!new_log_buf)) {
1198 pr_err("log_buf_len: %lu bytes not available\n",
1199 new_log_buf_len);
1200 return;
1201 }
1202
1203 logbuf_lock_irqsave(flags);
1204 log_buf_len = new_log_buf_len;
1205 log_buf = new_log_buf;
1206 new_log_buf_len = 0;
1207 free = __LOG_BUF_LEN - log_next_idx;
1208 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1209 logbuf_unlock_irqrestore(flags);
1210
1211 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1212 pr_info("early log buf free: %u(%u%%)\n",
1213 free, (free * 100) / __LOG_BUF_LEN);
1214 }
1215
1216 static bool __read_mostly ignore_loglevel;
1217
ignore_loglevel_setup(char * str)1218 static int __init ignore_loglevel_setup(char *str)
1219 {
1220 ignore_loglevel = true;
1221 pr_info("debug: ignoring loglevel setting.\n");
1222
1223 return 0;
1224 }
1225
1226 early_param("ignore_loglevel", ignore_loglevel_setup);
1227 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1228 MODULE_PARM_DESC(ignore_loglevel,
1229 "ignore loglevel setting (prints all kernel messages to the console)");
1230
suppress_message_printing(int level)1231 static bool suppress_message_printing(int level)
1232 {
1233 return (level >= console_loglevel && !ignore_loglevel);
1234 }
1235
1236 #ifdef CONFIG_BOOT_PRINTK_DELAY
1237
1238 static int boot_delay; /* msecs delay after each printk during bootup */
1239 static unsigned long long loops_per_msec; /* based on boot_delay */
1240
boot_delay_setup(char * str)1241 static int __init boot_delay_setup(char *str)
1242 {
1243 unsigned long lpj;
1244
1245 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1246 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1247
1248 get_option(&str, &boot_delay);
1249 if (boot_delay > 10 * 1000)
1250 boot_delay = 0;
1251
1252 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1253 "HZ: %d, loops_per_msec: %llu\n",
1254 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1255 return 0;
1256 }
1257 early_param("boot_delay", boot_delay_setup);
1258
boot_delay_msec(int level)1259 static void boot_delay_msec(int level)
1260 {
1261 unsigned long long k;
1262 unsigned long timeout;
1263
1264 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1265 || suppress_message_printing(level)) {
1266 return;
1267 }
1268
1269 k = (unsigned long long)loops_per_msec * boot_delay;
1270
1271 timeout = jiffies + msecs_to_jiffies(boot_delay);
1272 while (k) {
1273 k--;
1274 cpu_relax();
1275 /*
1276 * use (volatile) jiffies to prevent
1277 * compiler reduction; loop termination via jiffies
1278 * is secondary and may or may not happen.
1279 */
1280 if (time_after(jiffies, timeout))
1281 break;
1282 touch_nmi_watchdog();
1283 }
1284 }
1285 #else
boot_delay_msec(int level)1286 static inline void boot_delay_msec(int level)
1287 {
1288 }
1289 #endif
1290
1291 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1292 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1293
print_syslog(unsigned int level,char * buf)1294 static size_t print_syslog(unsigned int level, char *buf)
1295 {
1296 return sprintf(buf, "<%u>", level);
1297 }
1298
print_time(u64 ts,char * buf)1299 static size_t print_time(u64 ts, char *buf)
1300 {
1301 unsigned long rem_nsec = do_div(ts, 1000000000);
1302
1303 return sprintf(buf, "[%5lu.%06lu]",
1304 (unsigned long)ts, rem_nsec / 1000);
1305 }
1306
1307 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1308 static size_t print_caller(u32 id, char *buf)
1309 {
1310 char caller[12];
1311
1312 snprintf(caller, sizeof(caller), "%c%u",
1313 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1314 return sprintf(buf, "[%6s]", caller);
1315 }
1316 #else
1317 #define print_caller(id, buf) 0
1318 #endif
1319
print_prefix(const struct printk_log * msg,bool syslog,bool time,char * buf)1320 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1321 bool time, char *buf)
1322 {
1323 size_t len = 0;
1324
1325 if (syslog)
1326 len = print_syslog((msg->facility << 3) | msg->level, buf);
1327
1328 if (time)
1329 len += print_time(msg->ts_nsec, buf + len);
1330
1331 len += print_caller(msg->caller_id, buf + len);
1332
1333 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1334 buf[len++] = ' ';
1335 buf[len] = '\0';
1336 }
1337
1338 return len;
1339 }
1340
msg_print_text(const struct printk_log * msg,bool syslog,bool time,char * buf,size_t size)1341 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1342 bool time, char *buf, size_t size)
1343 {
1344 const char *text = log_text(msg);
1345 size_t text_size = msg->text_len;
1346 size_t len = 0;
1347 char prefix[PREFIX_MAX];
1348 const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1349
1350 do {
1351 const char *next = memchr(text, '\n', text_size);
1352 size_t text_len;
1353
1354 if (next) {
1355 text_len = next - text;
1356 next++;
1357 text_size -= next - text;
1358 } else {
1359 text_len = text_size;
1360 }
1361
1362 if (buf) {
1363 if (prefix_len + text_len + 1 >= size - len)
1364 break;
1365
1366 memcpy(buf + len, prefix, prefix_len);
1367 len += prefix_len;
1368 memcpy(buf + len, text, text_len);
1369 len += text_len;
1370 buf[len++] = '\n';
1371 } else {
1372 /* SYSLOG_ACTION_* buffer size only calculation */
1373 len += prefix_len + text_len + 1;
1374 }
1375
1376 text = next;
1377 } while (text);
1378
1379 return len;
1380 }
1381
syslog_print(char __user * buf,int size)1382 static int syslog_print(char __user *buf, int size)
1383 {
1384 char *text;
1385 struct printk_log *msg;
1386 int len = 0;
1387
1388 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1389 if (!text)
1390 return -ENOMEM;
1391
1392 while (size > 0) {
1393 size_t n;
1394 size_t skip;
1395
1396 logbuf_lock_irq();
1397 if (syslog_seq < log_first_seq) {
1398 /* messages are gone, move to first one */
1399 syslog_seq = log_first_seq;
1400 syslog_idx = log_first_idx;
1401 syslog_partial = 0;
1402 }
1403 if (syslog_seq == log_next_seq) {
1404 logbuf_unlock_irq();
1405 break;
1406 }
1407
1408 /*
1409 * To keep reading/counting partial line consistent,
1410 * use printk_time value as of the beginning of a line.
1411 */
1412 if (!syslog_partial)
1413 syslog_time = printk_time;
1414
1415 skip = syslog_partial;
1416 msg = log_from_idx(syslog_idx);
1417 n = msg_print_text(msg, true, syslog_time, text,
1418 LOG_LINE_MAX + PREFIX_MAX);
1419 if (n - syslog_partial <= size) {
1420 /* message fits into buffer, move forward */
1421 syslog_idx = log_next(syslog_idx);
1422 syslog_seq++;
1423 n -= syslog_partial;
1424 syslog_partial = 0;
1425 } else if (!len){
1426 /* partial read(), remember position */
1427 n = size;
1428 syslog_partial += n;
1429 } else
1430 n = 0;
1431 logbuf_unlock_irq();
1432
1433 if (!n)
1434 break;
1435
1436 if (copy_to_user(buf, text + skip, n)) {
1437 if (!len)
1438 len = -EFAULT;
1439 break;
1440 }
1441
1442 len += n;
1443 size -= n;
1444 buf += n;
1445 }
1446
1447 kfree(text);
1448 return len;
1449 }
1450
syslog_print_all(char __user * buf,int size,bool clear)1451 static int syslog_print_all(char __user *buf, int size, bool clear)
1452 {
1453 char *text;
1454 int len = 0;
1455 u64 next_seq;
1456 u64 seq;
1457 u32 idx;
1458 bool time;
1459
1460 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1461 if (!text)
1462 return -ENOMEM;
1463
1464 time = printk_time;
1465 logbuf_lock_irq();
1466 /*
1467 * Find first record that fits, including all following records,
1468 * into the user-provided buffer for this dump.
1469 */
1470 seq = clear_seq;
1471 idx = clear_idx;
1472 while (seq < log_next_seq) {
1473 struct printk_log *msg = log_from_idx(idx);
1474
1475 len += msg_print_text(msg, true, time, NULL, 0);
1476 idx = log_next(idx);
1477 seq++;
1478 }
1479
1480 /* move first record forward until length fits into the buffer */
1481 seq = clear_seq;
1482 idx = clear_idx;
1483 while (len > size && seq < log_next_seq) {
1484 struct printk_log *msg = log_from_idx(idx);
1485
1486 len -= msg_print_text(msg, true, time, NULL, 0);
1487 idx = log_next(idx);
1488 seq++;
1489 }
1490
1491 /* last message fitting into this dump */
1492 next_seq = log_next_seq;
1493
1494 len = 0;
1495 while (len >= 0 && seq < next_seq) {
1496 struct printk_log *msg = log_from_idx(idx);
1497 int textlen = msg_print_text(msg, true, time, text,
1498 LOG_LINE_MAX + PREFIX_MAX);
1499
1500 idx = log_next(idx);
1501 seq++;
1502
1503 logbuf_unlock_irq();
1504 if (copy_to_user(buf + len, text, textlen))
1505 len = -EFAULT;
1506 else
1507 len += textlen;
1508 logbuf_lock_irq();
1509
1510 if (seq < log_first_seq) {
1511 /* messages are gone, move to next one */
1512 seq = log_first_seq;
1513 idx = log_first_idx;
1514 }
1515 }
1516
1517 if (clear) {
1518 clear_seq = log_next_seq;
1519 clear_idx = log_next_idx;
1520 }
1521 logbuf_unlock_irq();
1522
1523 kfree(text);
1524 return len;
1525 }
1526
syslog_clear(void)1527 static void syslog_clear(void)
1528 {
1529 logbuf_lock_irq();
1530 clear_seq = log_next_seq;
1531 clear_idx = log_next_idx;
1532 logbuf_unlock_irq();
1533 }
1534
do_syslog(int type,char __user * buf,int len,int source)1535 int do_syslog(int type, char __user *buf, int len, int source)
1536 {
1537 bool clear = false;
1538 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1539 int error;
1540
1541 error = check_syslog_permissions(type, source);
1542 if (error)
1543 return error;
1544
1545 switch (type) {
1546 case SYSLOG_ACTION_CLOSE: /* Close log */
1547 break;
1548 case SYSLOG_ACTION_OPEN: /* Open log */
1549 break;
1550 case SYSLOG_ACTION_READ: /* Read from log */
1551 if (!buf || len < 0)
1552 return -EINVAL;
1553 if (!len)
1554 return 0;
1555 if (!access_ok(buf, len))
1556 return -EFAULT;
1557 error = wait_event_interruptible(log_wait,
1558 syslog_seq != log_next_seq);
1559 if (error)
1560 return error;
1561 error = syslog_print(buf, len);
1562 break;
1563 /* Read/clear last kernel messages */
1564 case SYSLOG_ACTION_READ_CLEAR:
1565 clear = true;
1566 /* FALL THRU */
1567 /* Read last kernel messages */
1568 case SYSLOG_ACTION_READ_ALL:
1569 if (!buf || len < 0)
1570 return -EINVAL;
1571 if (!len)
1572 return 0;
1573 if (!access_ok(buf, len))
1574 return -EFAULT;
1575 error = syslog_print_all(buf, len, clear);
1576 break;
1577 /* Clear ring buffer */
1578 case SYSLOG_ACTION_CLEAR:
1579 syslog_clear();
1580 break;
1581 /* Disable logging to console */
1582 case SYSLOG_ACTION_CONSOLE_OFF:
1583 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1584 saved_console_loglevel = console_loglevel;
1585 console_loglevel = minimum_console_loglevel;
1586 break;
1587 /* Enable logging to console */
1588 case SYSLOG_ACTION_CONSOLE_ON:
1589 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1590 console_loglevel = saved_console_loglevel;
1591 saved_console_loglevel = LOGLEVEL_DEFAULT;
1592 }
1593 break;
1594 /* Set level of messages printed to console */
1595 case SYSLOG_ACTION_CONSOLE_LEVEL:
1596 if (len < 1 || len > 8)
1597 return -EINVAL;
1598 if (len < minimum_console_loglevel)
1599 len = minimum_console_loglevel;
1600 console_loglevel = len;
1601 /* Implicitly re-enable logging to console */
1602 saved_console_loglevel = LOGLEVEL_DEFAULT;
1603 break;
1604 /* Number of chars in the log buffer */
1605 case SYSLOG_ACTION_SIZE_UNREAD:
1606 logbuf_lock_irq();
1607 if (syslog_seq < log_first_seq) {
1608 /* messages are gone, move to first one */
1609 syslog_seq = log_first_seq;
1610 syslog_idx = log_first_idx;
1611 syslog_partial = 0;
1612 }
1613 if (source == SYSLOG_FROM_PROC) {
1614 /*
1615 * Short-cut for poll(/"proc/kmsg") which simply checks
1616 * for pending data, not the size; return the count of
1617 * records, not the length.
1618 */
1619 error = log_next_seq - syslog_seq;
1620 } else {
1621 u64 seq = syslog_seq;
1622 u32 idx = syslog_idx;
1623 bool time = syslog_partial ? syslog_time : printk_time;
1624
1625 while (seq < log_next_seq) {
1626 struct printk_log *msg = log_from_idx(idx);
1627
1628 error += msg_print_text(msg, true, time, NULL,
1629 0);
1630 time = printk_time;
1631 idx = log_next(idx);
1632 seq++;
1633 }
1634 error -= syslog_partial;
1635 }
1636 logbuf_unlock_irq();
1637 break;
1638 /* Size of the log buffer */
1639 case SYSLOG_ACTION_SIZE_BUFFER:
1640 error = log_buf_len;
1641 break;
1642 default:
1643 error = -EINVAL;
1644 break;
1645 }
1646
1647 return error;
1648 }
1649
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1650 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1651 {
1652 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1653 }
1654
1655 /*
1656 * Special console_lock variants that help to reduce the risk of soft-lockups.
1657 * They allow to pass console_lock to another printk() call using a busy wait.
1658 */
1659
1660 #ifdef CONFIG_LOCKDEP
1661 static struct lockdep_map console_owner_dep_map = {
1662 .name = "console_owner"
1663 };
1664 #endif
1665
1666 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1667 static struct task_struct *console_owner;
1668 static bool console_waiter;
1669
1670 /**
1671 * console_lock_spinning_enable - mark beginning of code where another
1672 * thread might safely busy wait
1673 *
1674 * This basically converts console_lock into a spinlock. This marks
1675 * the section where the console_lock owner can not sleep, because
1676 * there may be a waiter spinning (like a spinlock). Also it must be
1677 * ready to hand over the lock at the end of the section.
1678 */
console_lock_spinning_enable(void)1679 static void console_lock_spinning_enable(void)
1680 {
1681 raw_spin_lock(&console_owner_lock);
1682 console_owner = current;
1683 raw_spin_unlock(&console_owner_lock);
1684
1685 /* The waiter may spin on us after setting console_owner */
1686 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1687 }
1688
1689 /**
1690 * console_lock_spinning_disable_and_check - mark end of code where another
1691 * thread was able to busy wait and check if there is a waiter
1692 *
1693 * This is called at the end of the section where spinning is allowed.
1694 * It has two functions. First, it is a signal that it is no longer
1695 * safe to start busy waiting for the lock. Second, it checks if
1696 * there is a busy waiter and passes the lock rights to her.
1697 *
1698 * Important: Callers lose the lock if there was a busy waiter.
1699 * They must not touch items synchronized by console_lock
1700 * in this case.
1701 *
1702 * Return: 1 if the lock rights were passed, 0 otherwise.
1703 */
console_lock_spinning_disable_and_check(void)1704 static int console_lock_spinning_disable_and_check(void)
1705 {
1706 int waiter;
1707
1708 raw_spin_lock(&console_owner_lock);
1709 waiter = READ_ONCE(console_waiter);
1710 console_owner = NULL;
1711 raw_spin_unlock(&console_owner_lock);
1712
1713 if (!waiter) {
1714 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1715 return 0;
1716 }
1717
1718 /* The waiter is now free to continue */
1719 WRITE_ONCE(console_waiter, false);
1720
1721 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1722
1723 /*
1724 * Hand off console_lock to waiter. The waiter will perform
1725 * the up(). After this, the waiter is the console_lock owner.
1726 */
1727 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1728 return 1;
1729 }
1730
1731 /**
1732 * console_trylock_spinning - try to get console_lock by busy waiting
1733 *
1734 * This allows to busy wait for the console_lock when the current
1735 * owner is running in specially marked sections. It means that
1736 * the current owner is running and cannot reschedule until it
1737 * is ready to lose the lock.
1738 *
1739 * Return: 1 if we got the lock, 0 othrewise
1740 */
console_trylock_spinning(void)1741 static int console_trylock_spinning(void)
1742 {
1743 struct task_struct *owner = NULL;
1744 bool waiter;
1745 bool spin = false;
1746 unsigned long flags;
1747
1748 if (console_trylock())
1749 return 1;
1750
1751 printk_safe_enter_irqsave(flags);
1752
1753 raw_spin_lock(&console_owner_lock);
1754 owner = READ_ONCE(console_owner);
1755 waiter = READ_ONCE(console_waiter);
1756 if (!waiter && owner && owner != current) {
1757 WRITE_ONCE(console_waiter, true);
1758 spin = true;
1759 }
1760 raw_spin_unlock(&console_owner_lock);
1761
1762 /*
1763 * If there is an active printk() writing to the
1764 * consoles, instead of having it write our data too,
1765 * see if we can offload that load from the active
1766 * printer, and do some printing ourselves.
1767 * Go into a spin only if there isn't already a waiter
1768 * spinning, and there is an active printer, and
1769 * that active printer isn't us (recursive printk?).
1770 */
1771 if (!spin) {
1772 printk_safe_exit_irqrestore(flags);
1773 return 0;
1774 }
1775
1776 /* We spin waiting for the owner to release us */
1777 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1778 /* Owner will clear console_waiter on hand off */
1779 while (READ_ONCE(console_waiter))
1780 cpu_relax();
1781 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1782
1783 printk_safe_exit_irqrestore(flags);
1784 /*
1785 * The owner passed the console lock to us.
1786 * Since we did not spin on console lock, annotate
1787 * this as a trylock. Otherwise lockdep will
1788 * complain.
1789 */
1790 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1791
1792 /*
1793 * Update @console_may_schedule for trylock because the previous
1794 * owner may have been schedulable.
1795 */
1796 console_may_schedule = 0;
1797
1798 return 1;
1799 }
1800
1801 /*
1802 * Call the console drivers, asking them to write out
1803 * log_buf[start] to log_buf[end - 1].
1804 * The console_lock must be held.
1805 */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1806 static void call_console_drivers(const char *ext_text, size_t ext_len,
1807 const char *text, size_t len)
1808 {
1809 struct console *con;
1810
1811 trace_console_rcuidle(text, len);
1812
1813 if (!console_drivers)
1814 return;
1815
1816 for_each_console(con) {
1817 if (exclusive_console && con != exclusive_console)
1818 continue;
1819 if (!(con->flags & CON_ENABLED))
1820 continue;
1821 if (!con->write)
1822 continue;
1823 if (!cpu_online(smp_processor_id()) &&
1824 !(con->flags & CON_ANYTIME))
1825 continue;
1826 if (con->flags & CON_EXTENDED)
1827 con->write(con, ext_text, ext_len);
1828 else
1829 con->write(con, text, len);
1830 }
1831 }
1832
1833 int printk_delay_msec __read_mostly;
1834
printk_delay(void)1835 static inline void printk_delay(void)
1836 {
1837 if (unlikely(printk_delay_msec)) {
1838 int m = printk_delay_msec;
1839
1840 while (m--) {
1841 mdelay(1);
1842 touch_nmi_watchdog();
1843 }
1844 }
1845 }
1846
printk_caller_id(void)1847 static inline u32 printk_caller_id(void)
1848 {
1849 return in_task() ? task_pid_nr(current) :
1850 0x80000000 + raw_smp_processor_id();
1851 }
1852
1853 /*
1854 * Continuation lines are buffered, and not committed to the record buffer
1855 * until the line is complete, or a race forces it. The line fragments
1856 * though, are printed immediately to the consoles to ensure everything has
1857 * reached the console in case of a kernel crash.
1858 */
1859 static struct cont {
1860 char buf[LOG_LINE_MAX];
1861 size_t len; /* length == 0 means unused buffer */
1862 u32 caller_id; /* printk_caller_id() of first print */
1863 u64 ts_nsec; /* time of first print */
1864 u8 level; /* log level of first message */
1865 u8 facility; /* log facility of first message */
1866 enum log_flags flags; /* prefix, newline flags */
1867 } cont;
1868
cont_flush(void)1869 static void cont_flush(void)
1870 {
1871 if (cont.len == 0)
1872 return;
1873
1874 log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1875 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1876 cont.len = 0;
1877 }
1878
cont_add(u32 caller_id,int facility,int level,enum log_flags flags,const char * text,size_t len)1879 static bool cont_add(u32 caller_id, int facility, int level,
1880 enum log_flags flags, const char *text, size_t len)
1881 {
1882 /* If the line gets too long, split it up in separate records. */
1883 if (cont.len + len > sizeof(cont.buf)) {
1884 cont_flush();
1885 return false;
1886 }
1887
1888 if (!cont.len) {
1889 cont.facility = facility;
1890 cont.level = level;
1891 cont.caller_id = caller_id;
1892 cont.ts_nsec = local_clock();
1893 cont.flags = flags;
1894 }
1895
1896 memcpy(cont.buf + cont.len, text, len);
1897 cont.len += len;
1898
1899 // The original flags come from the first line,
1900 // but later continuations can add a newline.
1901 if (flags & LOG_NEWLINE) {
1902 cont.flags |= LOG_NEWLINE;
1903 cont_flush();
1904 }
1905
1906 return true;
1907 }
1908
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1909 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1910 {
1911 const u32 caller_id = printk_caller_id();
1912
1913 /*
1914 * If an earlier line was buffered, and we're a continuation
1915 * write from the same context, try to add it to the buffer.
1916 */
1917 if (cont.len) {
1918 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1919 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1920 return text_len;
1921 }
1922 /* Otherwise, make sure it's flushed */
1923 cont_flush();
1924 }
1925
1926 /* Skip empty continuation lines that couldn't be added - they just flush */
1927 if (!text_len && (lflags & LOG_CONT))
1928 return 0;
1929
1930 /* If it doesn't end in a newline, try to buffer the current line */
1931 if (!(lflags & LOG_NEWLINE)) {
1932 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1933 return text_len;
1934 }
1935
1936 /* Store it in the record log */
1937 return log_store(caller_id, facility, level, lflags, 0,
1938 dict, dictlen, text, text_len);
1939 }
1940
1941 /* Must be called under logbuf_lock. */
vprintk_store(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1942 int vprintk_store(int facility, int level,
1943 const char *dict, size_t dictlen,
1944 const char *fmt, va_list args)
1945 {
1946 static char textbuf[LOG_LINE_MAX];
1947 char *text = textbuf;
1948 size_t text_len;
1949 enum log_flags lflags = 0;
1950
1951 /*
1952 * The printf needs to come first; we need the syslog
1953 * prefix which might be passed-in as a parameter.
1954 */
1955 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1956
1957 /* mark and strip a trailing newline */
1958 if (text_len && text[text_len-1] == '\n') {
1959 text_len--;
1960 lflags |= LOG_NEWLINE;
1961 }
1962
1963 /* strip kernel syslog prefix and extract log level or control flags */
1964 if (facility == 0) {
1965 int kern_level;
1966
1967 while ((kern_level = printk_get_level(text)) != 0) {
1968 switch (kern_level) {
1969 case '0' ... '7':
1970 if (level == LOGLEVEL_DEFAULT)
1971 level = kern_level - '0';
1972 break;
1973 case 'c': /* KERN_CONT */
1974 lflags |= LOG_CONT;
1975 }
1976
1977 text_len -= 2;
1978 text += 2;
1979 }
1980 }
1981
1982 if (level == LOGLEVEL_DEFAULT)
1983 level = default_message_loglevel;
1984
1985 if (dict)
1986 lflags |= LOG_NEWLINE;
1987
1988 return log_output(facility, level, lflags,
1989 dict, dictlen, text, text_len);
1990 }
1991
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1992 asmlinkage int vprintk_emit(int facility, int level,
1993 const char *dict, size_t dictlen,
1994 const char *fmt, va_list args)
1995 {
1996 int printed_len;
1997 bool in_sched = false, pending_output;
1998 unsigned long flags;
1999 u64 curr_log_seq;
2000
2001 /* Suppress unimportant messages after panic happens */
2002 if (unlikely(suppress_printk))
2003 return 0;
2004
2005 if (level == LOGLEVEL_SCHED) {
2006 level = LOGLEVEL_DEFAULT;
2007 in_sched = true;
2008 }
2009
2010 boot_delay_msec(level);
2011 printk_delay();
2012
2013 /* This stops the holder of console_sem just where we want him */
2014 logbuf_lock_irqsave(flags);
2015 curr_log_seq = log_next_seq;
2016 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2017 pending_output = (curr_log_seq != log_next_seq);
2018 logbuf_unlock_irqrestore(flags);
2019
2020 trace_android_vh_printk_store(facility, level);
2021 /* If called from the scheduler, we can not call up(). */
2022 if (!in_sched && pending_output) {
2023 /*
2024 * Disable preemption to avoid being preempted while holding
2025 * console_sem which would prevent anyone from printing to
2026 * console
2027 */
2028 preempt_disable();
2029 /*
2030 * Try to acquire and then immediately release the console
2031 * semaphore. The release will print out buffers and wake up
2032 * /dev/kmsg and syslog() users.
2033 */
2034 if (console_trylock_spinning())
2035 console_unlock();
2036 preempt_enable();
2037 }
2038
2039 if (pending_output)
2040 wake_up_klogd();
2041 return printed_len;
2042 }
2043 EXPORT_SYMBOL(vprintk_emit);
2044
vprintk(const char * fmt,va_list args)2045 asmlinkage int vprintk(const char *fmt, va_list args)
2046 {
2047 return vprintk_func(fmt, args);
2048 }
2049 EXPORT_SYMBOL(vprintk);
2050
vprintk_default(const char * fmt,va_list args)2051 int vprintk_default(const char *fmt, va_list args)
2052 {
2053 int r;
2054
2055 #ifdef CONFIG_KGDB_KDB
2056 /* Allow to pass printk() to kdb but avoid a recursion. */
2057 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2058 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2059 return r;
2060 }
2061 #endif
2062 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2063
2064 return r;
2065 }
2066 EXPORT_SYMBOL_GPL(vprintk_default);
2067
2068 /**
2069 * printk - print a kernel message
2070 * @fmt: format string
2071 *
2072 * This is printk(). It can be called from any context. We want it to work.
2073 *
2074 * We try to grab the console_lock. If we succeed, it's easy - we log the
2075 * output and call the console drivers. If we fail to get the semaphore, we
2076 * place the output into the log buffer and return. The current holder of
2077 * the console_sem will notice the new output in console_unlock(); and will
2078 * send it to the consoles before releasing the lock.
2079 *
2080 * One effect of this deferred printing is that code which calls printk() and
2081 * then changes console_loglevel may break. This is because console_loglevel
2082 * is inspected when the actual printing occurs.
2083 *
2084 * See also:
2085 * printf(3)
2086 *
2087 * See the vsnprintf() documentation for format string extensions over C99.
2088 */
printk(const char * fmt,...)2089 asmlinkage __visible int printk(const char *fmt, ...)
2090 {
2091 va_list args;
2092 int r;
2093
2094 va_start(args, fmt);
2095 r = vprintk_func(fmt, args);
2096 va_end(args);
2097
2098 return r;
2099 }
2100 EXPORT_SYMBOL(printk);
2101
2102 #else /* CONFIG_PRINTK */
2103
2104 #define LOG_LINE_MAX 0
2105 #define PREFIX_MAX 0
2106 #define printk_time false
2107
2108 static u64 syslog_seq;
2109 static u32 syslog_idx;
2110 static u64 console_seq;
2111 static u32 console_idx;
2112 static u64 exclusive_console_stop_seq;
2113 static u64 log_first_seq;
2114 static u32 log_first_idx;
2115 static u64 log_next_seq;
log_text(const struct printk_log * msg)2116 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2117 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2118 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2119 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)2120 static ssize_t msg_print_ext_header(char *buf, size_t size,
2121 struct printk_log *msg,
2122 u64 seq) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2123 static ssize_t msg_print_ext_body(char *buf, size_t size,
2124 char *dict, size_t dict_len,
2125 char *text, size_t text_len) { return 0; }
console_lock_spinning_enable(void)2126 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2127 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2128 static void call_console_drivers(const char *ext_text, size_t ext_len,
2129 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,bool syslog,bool time,char * buf,size_t size)2130 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2131 bool time, char *buf, size_t size) { return 0; }
suppress_message_printing(int level)2132 static bool suppress_message_printing(int level) { return false; }
2133
2134 #endif /* CONFIG_PRINTK */
2135
2136 #ifdef CONFIG_EARLY_PRINTK
2137 struct console *early_console;
2138
early_printk(const char * fmt,...)2139 asmlinkage __visible void early_printk(const char *fmt, ...)
2140 {
2141 va_list ap;
2142 char buf[512];
2143 int n;
2144
2145 if (!early_console)
2146 return;
2147
2148 va_start(ap, fmt);
2149 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2150 va_end(ap);
2151
2152 early_console->write(early_console, buf, n);
2153 }
2154 #endif
2155
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2156 static int __add_preferred_console(char *name, int idx, char *options,
2157 char *brl_options)
2158 {
2159 struct console_cmdline *c;
2160 int i;
2161
2162 /*
2163 * See if this tty is not yet registered, and
2164 * if we have a slot free.
2165 */
2166 for (i = 0, c = console_cmdline;
2167 i < MAX_CMDLINECONSOLES && c->name[0];
2168 i++, c++) {
2169 if (strcmp(c->name, name) == 0 && c->index == idx) {
2170 if (!brl_options)
2171 preferred_console = i;
2172 return 0;
2173 }
2174 }
2175 if (i == MAX_CMDLINECONSOLES)
2176 return -E2BIG;
2177 if (!brl_options)
2178 preferred_console = i;
2179 strlcpy(c->name, name, sizeof(c->name));
2180 c->options = options;
2181 braille_set_options(c, brl_options);
2182
2183 c->index = idx;
2184 return 0;
2185 }
2186
console_msg_format_setup(char * str)2187 static int __init console_msg_format_setup(char *str)
2188 {
2189 if (!strcmp(str, "syslog"))
2190 console_msg_format = MSG_FORMAT_SYSLOG;
2191 if (!strcmp(str, "default"))
2192 console_msg_format = MSG_FORMAT_DEFAULT;
2193 return 1;
2194 }
2195 __setup("console_msg_format=", console_msg_format_setup);
2196
2197 /*
2198 * Set up a console. Called via do_early_param() in init/main.c
2199 * for each "console=" parameter in the boot command line.
2200 */
console_setup(char * str)2201 static int __init console_setup(char *str)
2202 {
2203 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2204 char *s, *options, *brl_options = NULL;
2205 int idx;
2206
2207 /*
2208 * console="" or console=null have been suggested as a way to
2209 * disable console output. Use ttynull that has been created
2210 * for exacly this purpose.
2211 */
2212 if (str[0] == 0 || strcmp(str, "null") == 0) {
2213 __add_preferred_console("ttynull", 0, NULL, NULL);
2214 return 1;
2215 }
2216
2217 if (_braille_console_setup(&str, &brl_options))
2218 return 1;
2219
2220 /*
2221 * Decode str into name, index, options.
2222 */
2223 if (str[0] >= '0' && str[0] <= '9') {
2224 strcpy(buf, "ttyS");
2225 strncpy(buf + 4, str, sizeof(buf) - 5);
2226 } else {
2227 strncpy(buf, str, sizeof(buf) - 1);
2228 }
2229 buf[sizeof(buf) - 1] = 0;
2230 options = strchr(str, ',');
2231 if (options)
2232 *(options++) = 0;
2233 #ifdef __sparc__
2234 if (!strcmp(str, "ttya"))
2235 strcpy(buf, "ttyS0");
2236 if (!strcmp(str, "ttyb"))
2237 strcpy(buf, "ttyS1");
2238 #endif
2239 for (s = buf; *s; s++)
2240 if (isdigit(*s) || *s == ',')
2241 break;
2242 idx = simple_strtoul(s, NULL, 10);
2243 *s = 0;
2244
2245 __add_preferred_console(buf, idx, options, brl_options);
2246 console_set_on_cmdline = 1;
2247 return 1;
2248 }
2249 __setup("console=", console_setup);
2250
2251 /**
2252 * add_preferred_console - add a device to the list of preferred consoles.
2253 * @name: device name
2254 * @idx: device index
2255 * @options: options for this console
2256 *
2257 * The last preferred console added will be used for kernel messages
2258 * and stdin/out/err for init. Normally this is used by console_setup
2259 * above to handle user-supplied console arguments; however it can also
2260 * be used by arch-specific code either to override the user or more
2261 * commonly to provide a default console (ie from PROM variables) when
2262 * the user has not supplied one.
2263 */
add_preferred_console(char * name,int idx,char * options)2264 int add_preferred_console(char *name, int idx, char *options)
2265 {
2266 return __add_preferred_console(name, idx, options, NULL);
2267 }
2268
2269 bool console_suspend_enabled = true;
2270 EXPORT_SYMBOL(console_suspend_enabled);
2271
console_suspend_disable(char * str)2272 static int __init console_suspend_disable(char *str)
2273 {
2274 console_suspend_enabled = false;
2275 return 1;
2276 }
2277 __setup("no_console_suspend", console_suspend_disable);
2278 module_param_named(console_suspend, console_suspend_enabled,
2279 bool, S_IRUGO | S_IWUSR);
2280 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2281 " and hibernate operations");
2282
2283 /**
2284 * suspend_console - suspend the console subsystem
2285 *
2286 * This disables printk() while we go into suspend states
2287 */
suspend_console(void)2288 void suspend_console(void)
2289 {
2290 if (!console_suspend_enabled)
2291 return;
2292 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2293 console_lock();
2294 console_suspended = 1;
2295 up_console_sem();
2296 }
2297
resume_console(void)2298 void resume_console(void)
2299 {
2300 if (!console_suspend_enabled)
2301 return;
2302 down_console_sem();
2303 console_suspended = 0;
2304 console_unlock();
2305 }
2306
2307 /**
2308 * console_cpu_notify - print deferred console messages after CPU hotplug
2309 * @cpu: unused
2310 *
2311 * If printk() is called from a CPU that is not online yet, the messages
2312 * will be printed on the console only if there are CON_ANYTIME consoles.
2313 * This function is called when a new CPU comes online (or fails to come
2314 * up) or goes offline.
2315 */
console_cpu_notify(unsigned int cpu)2316 static int console_cpu_notify(unsigned int cpu)
2317 {
2318 if (!cpuhp_tasks_frozen) {
2319 /* If trylock fails, someone else is doing the printing */
2320 if (console_trylock())
2321 console_unlock();
2322 }
2323 return 0;
2324 }
2325
2326 /**
2327 * console_lock - lock the console system for exclusive use.
2328 *
2329 * Acquires a lock which guarantees that the caller has
2330 * exclusive access to the console system and the console_drivers list.
2331 *
2332 * Can sleep, returns nothing.
2333 */
console_lock(void)2334 void console_lock(void)
2335 {
2336 might_sleep();
2337
2338 down_console_sem();
2339 if (console_suspended)
2340 return;
2341 console_locked = 1;
2342 console_may_schedule = 1;
2343 }
2344 EXPORT_SYMBOL(console_lock);
2345
2346 /**
2347 * console_trylock - try to lock the console system for exclusive use.
2348 *
2349 * Try to acquire a lock which guarantees that the caller has exclusive
2350 * access to the console system and the console_drivers list.
2351 *
2352 * returns 1 on success, and 0 on failure to acquire the lock.
2353 */
console_trylock(void)2354 int console_trylock(void)
2355 {
2356 if (down_trylock_console_sem())
2357 return 0;
2358 if (console_suspended) {
2359 up_console_sem();
2360 return 0;
2361 }
2362 console_locked = 1;
2363 console_may_schedule = 0;
2364 return 1;
2365 }
2366 EXPORT_SYMBOL(console_trylock);
2367
is_console_locked(void)2368 int is_console_locked(void)
2369 {
2370 return console_locked;
2371 }
2372 EXPORT_SYMBOL(is_console_locked);
2373
2374 /*
2375 * Check if we have any console that is capable of printing while cpu is
2376 * booting or shutting down. Requires console_sem.
2377 */
have_callable_console(void)2378 static int have_callable_console(void)
2379 {
2380 struct console *con;
2381
2382 for_each_console(con)
2383 if ((con->flags & CON_ENABLED) &&
2384 (con->flags & CON_ANYTIME))
2385 return 1;
2386
2387 return 0;
2388 }
2389
2390 /*
2391 * Can we actually use the console at this time on this cpu?
2392 *
2393 * Console drivers may assume that per-cpu resources have been allocated. So
2394 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2395 * call them until this CPU is officially up.
2396 */
can_use_console(void)2397 static inline int can_use_console(void)
2398 {
2399 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2400 }
2401
2402 /**
2403 * console_unlock - unlock the console system
2404 *
2405 * Releases the console_lock which the caller holds on the console system
2406 * and the console driver list.
2407 *
2408 * While the console_lock was held, console output may have been buffered
2409 * by printk(). If this is the case, console_unlock(); emits
2410 * the output prior to releasing the lock.
2411 *
2412 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2413 *
2414 * console_unlock(); may be called from any context.
2415 */
console_unlock(void)2416 void console_unlock(void)
2417 {
2418 static char ext_text[CONSOLE_EXT_LOG_MAX];
2419 static char text[LOG_LINE_MAX + PREFIX_MAX];
2420 unsigned long flags;
2421 bool do_cond_resched, retry;
2422
2423 if (console_suspended) {
2424 up_console_sem();
2425 return;
2426 }
2427
2428 /*
2429 * Console drivers are called with interrupts disabled, so
2430 * @console_may_schedule should be cleared before; however, we may
2431 * end up dumping a lot of lines, for example, if called from
2432 * console registration path, and should invoke cond_resched()
2433 * between lines if allowable. Not doing so can cause a very long
2434 * scheduling stall on a slow console leading to RCU stall and
2435 * softlockup warnings which exacerbate the issue with more
2436 * messages practically incapacitating the system.
2437 *
2438 * console_trylock() is not able to detect the preemptive
2439 * context reliably. Therefore the value must be stored before
2440 * and cleared after the the "again" goto label.
2441 */
2442 do_cond_resched = console_may_schedule;
2443 again:
2444 console_may_schedule = 0;
2445
2446 /*
2447 * We released the console_sem lock, so we need to recheck if
2448 * cpu is online and (if not) is there at least one CON_ANYTIME
2449 * console.
2450 */
2451 if (!can_use_console()) {
2452 console_locked = 0;
2453 up_console_sem();
2454 return;
2455 }
2456
2457 for (;;) {
2458 struct printk_log *msg;
2459 size_t ext_len = 0;
2460 size_t len;
2461
2462 printk_safe_enter_irqsave(flags);
2463 raw_spin_lock(&logbuf_lock);
2464 if (console_seq < log_first_seq) {
2465 len = sprintf(text,
2466 "** %llu printk messages dropped **\n",
2467 log_first_seq - console_seq);
2468
2469 /* messages are gone, move to first one */
2470 console_seq = log_first_seq;
2471 console_idx = log_first_idx;
2472 } else {
2473 len = 0;
2474 }
2475 skip:
2476 if (console_seq == log_next_seq)
2477 break;
2478
2479 msg = log_from_idx(console_idx);
2480 if (suppress_message_printing(msg->level)) {
2481 /*
2482 * Skip record we have buffered and already printed
2483 * directly to the console when we received it, and
2484 * record that has level above the console loglevel.
2485 */
2486 console_idx = log_next(console_idx);
2487 console_seq++;
2488 goto skip;
2489 }
2490
2491 /* Output to all consoles once old messages replayed. */
2492 if (unlikely(exclusive_console &&
2493 console_seq >= exclusive_console_stop_seq)) {
2494 exclusive_console = NULL;
2495 }
2496
2497 len += msg_print_text(msg,
2498 console_msg_format & MSG_FORMAT_SYSLOG,
2499 printk_time, text + len, sizeof(text) - len);
2500 if (nr_ext_console_drivers) {
2501 ext_len = msg_print_ext_header(ext_text,
2502 sizeof(ext_text),
2503 msg, console_seq);
2504 ext_len += msg_print_ext_body(ext_text + ext_len,
2505 sizeof(ext_text) - ext_len,
2506 log_dict(msg), msg->dict_len,
2507 log_text(msg), msg->text_len);
2508 }
2509 console_idx = log_next(console_idx);
2510 console_seq++;
2511 raw_spin_unlock(&logbuf_lock);
2512
2513 /*
2514 * While actively printing out messages, if another printk()
2515 * were to occur on another CPU, it may wait for this one to
2516 * finish. This task can not be preempted if there is a
2517 * waiter waiting to take over.
2518 */
2519 console_lock_spinning_enable();
2520
2521 stop_critical_timings(); /* don't trace print latency */
2522 call_console_drivers(ext_text, ext_len, text, len);
2523 start_critical_timings();
2524
2525 if (console_lock_spinning_disable_and_check()) {
2526 printk_safe_exit_irqrestore(flags);
2527 return;
2528 }
2529
2530 printk_safe_exit_irqrestore(flags);
2531
2532 if (do_cond_resched)
2533 cond_resched();
2534 }
2535
2536 console_locked = 0;
2537
2538 raw_spin_unlock(&logbuf_lock);
2539
2540 up_console_sem();
2541
2542 /*
2543 * Someone could have filled up the buffer again, so re-check if there's
2544 * something to flush. In case we cannot trylock the console_sem again,
2545 * there's a new owner and the console_unlock() from them will do the
2546 * flush, no worries.
2547 */
2548 raw_spin_lock(&logbuf_lock);
2549 retry = console_seq != log_next_seq;
2550 raw_spin_unlock(&logbuf_lock);
2551 printk_safe_exit_irqrestore(flags);
2552
2553 if (retry && console_trylock())
2554 goto again;
2555 }
2556 EXPORT_SYMBOL(console_unlock);
2557
2558 /**
2559 * console_conditional_schedule - yield the CPU if required
2560 *
2561 * If the console code is currently allowed to sleep, and
2562 * if this CPU should yield the CPU to another task, do
2563 * so here.
2564 *
2565 * Must be called within console_lock();.
2566 */
console_conditional_schedule(void)2567 void __sched console_conditional_schedule(void)
2568 {
2569 if (console_may_schedule)
2570 cond_resched();
2571 }
2572 EXPORT_SYMBOL(console_conditional_schedule);
2573
console_unblank(void)2574 void console_unblank(void)
2575 {
2576 struct console *c;
2577
2578 /*
2579 * console_unblank can no longer be called in interrupt context unless
2580 * oops_in_progress is set to 1..
2581 */
2582 if (oops_in_progress) {
2583 if (down_trylock_console_sem() != 0)
2584 return;
2585 } else
2586 console_lock();
2587
2588 console_locked = 1;
2589 console_may_schedule = 0;
2590 for_each_console(c)
2591 if ((c->flags & CON_ENABLED) && c->unblank)
2592 c->unblank();
2593 console_unlock();
2594 }
2595
2596 /**
2597 * console_flush_on_panic - flush console content on panic
2598 * @mode: flush all messages in buffer or just the pending ones
2599 *
2600 * Immediately output all pending messages no matter what.
2601 */
console_flush_on_panic(enum con_flush_mode mode)2602 void console_flush_on_panic(enum con_flush_mode mode)
2603 {
2604 /*
2605 * If someone else is holding the console lock, trylock will fail
2606 * and may_schedule may be set. Ignore and proceed to unlock so
2607 * that messages are flushed out. As this can be called from any
2608 * context and we don't want to get preempted while flushing,
2609 * ensure may_schedule is cleared.
2610 */
2611 console_trylock();
2612 console_may_schedule = 0;
2613
2614 if (mode == CONSOLE_REPLAY_ALL) {
2615 unsigned long flags;
2616
2617 logbuf_lock_irqsave(flags);
2618 console_seq = log_first_seq;
2619 console_idx = log_first_idx;
2620 logbuf_unlock_irqrestore(flags);
2621 }
2622 console_unlock();
2623 }
2624
2625 /*
2626 * Return the console tty driver structure and its associated index
2627 */
console_device(int * index)2628 struct tty_driver *console_device(int *index)
2629 {
2630 struct console *c;
2631 struct tty_driver *driver = NULL;
2632
2633 console_lock();
2634 for_each_console(c) {
2635 if (!c->device)
2636 continue;
2637 driver = c->device(c, index);
2638 if (driver)
2639 break;
2640 }
2641 console_unlock();
2642 return driver;
2643 }
2644
2645 /*
2646 * Prevent further output on the passed console device so that (for example)
2647 * serial drivers can disable console output before suspending a port, and can
2648 * re-enable output afterwards.
2649 */
console_stop(struct console * console)2650 void console_stop(struct console *console)
2651 {
2652 console_lock();
2653 console->flags &= ~CON_ENABLED;
2654 console_unlock();
2655 }
2656 EXPORT_SYMBOL(console_stop);
2657
console_start(struct console * console)2658 void console_start(struct console *console)
2659 {
2660 console_lock();
2661 console->flags |= CON_ENABLED;
2662 console_unlock();
2663 }
2664 EXPORT_SYMBOL(console_start);
2665
2666 static int __read_mostly keep_bootcon;
2667
keep_bootcon_setup(char * str)2668 static int __init keep_bootcon_setup(char *str)
2669 {
2670 keep_bootcon = 1;
2671 pr_info("debug: skip boot console de-registration.\n");
2672
2673 return 0;
2674 }
2675
2676 early_param("keep_bootcon", keep_bootcon_setup);
2677
2678 /*
2679 * The console driver calls this routine during kernel initialization
2680 * to register the console printing procedure with printk() and to
2681 * print any messages that were printed by the kernel before the
2682 * console driver was initialized.
2683 *
2684 * This can happen pretty early during the boot process (because of
2685 * early_printk) - sometimes before setup_arch() completes - be careful
2686 * of what kernel features are used - they may not be initialised yet.
2687 *
2688 * There are two types of consoles - bootconsoles (early_printk) and
2689 * "real" consoles (everything which is not a bootconsole) which are
2690 * handled differently.
2691 * - Any number of bootconsoles can be registered at any time.
2692 * - As soon as a "real" console is registered, all bootconsoles
2693 * will be unregistered automatically.
2694 * - Once a "real" console is registered, any attempt to register a
2695 * bootconsoles will be rejected
2696 */
register_console(struct console * newcon)2697 void register_console(struct console *newcon)
2698 {
2699 int i;
2700 unsigned long flags;
2701 struct console *bcon = NULL;
2702 struct console_cmdline *c;
2703 static bool has_preferred;
2704
2705 if (console_drivers)
2706 for_each_console(bcon)
2707 if (WARN(bcon == newcon,
2708 "console '%s%d' already registered\n",
2709 bcon->name, bcon->index))
2710 return;
2711
2712 /*
2713 * before we register a new CON_BOOT console, make sure we don't
2714 * already have a valid console
2715 */
2716 if (console_drivers && newcon->flags & CON_BOOT) {
2717 /* find the last or real console */
2718 for_each_console(bcon) {
2719 if (!(bcon->flags & CON_BOOT)) {
2720 pr_info("Too late to register bootconsole %s%d\n",
2721 newcon->name, newcon->index);
2722 return;
2723 }
2724 }
2725 }
2726
2727 if (console_drivers && console_drivers->flags & CON_BOOT)
2728 bcon = console_drivers;
2729
2730 if (!has_preferred || bcon || !console_drivers)
2731 has_preferred = preferred_console >= 0;
2732
2733 /*
2734 * See if we want to use this console driver. If we
2735 * didn't select a console we take the first one
2736 * that registers here.
2737 */
2738 if (!has_preferred) {
2739 if (newcon->index < 0)
2740 newcon->index = 0;
2741 if (newcon->setup == NULL ||
2742 newcon->setup(newcon, NULL) == 0) {
2743 newcon->flags |= CON_ENABLED;
2744 if (newcon->device) {
2745 newcon->flags |= CON_CONSDEV;
2746 has_preferred = true;
2747 }
2748 }
2749 }
2750
2751 /*
2752 * See if this console matches one we selected on
2753 * the command line.
2754 */
2755 for (i = 0, c = console_cmdline;
2756 i < MAX_CMDLINECONSOLES && c->name[0];
2757 i++, c++) {
2758 if (!newcon->match ||
2759 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2760 /* default matching */
2761 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2762 if (strcmp(c->name, newcon->name) != 0)
2763 continue;
2764 if (newcon->index >= 0 &&
2765 newcon->index != c->index)
2766 continue;
2767 if (newcon->index < 0)
2768 newcon->index = c->index;
2769
2770 if (_braille_register_console(newcon, c))
2771 return;
2772
2773 if (newcon->setup &&
2774 newcon->setup(newcon, c->options) != 0)
2775 break;
2776 }
2777
2778 newcon->flags |= CON_ENABLED;
2779 if (i == preferred_console) {
2780 newcon->flags |= CON_CONSDEV;
2781 has_preferred = true;
2782 }
2783 break;
2784 }
2785
2786 if (!(newcon->flags & CON_ENABLED))
2787 return;
2788
2789 /*
2790 * If we have a bootconsole, and are switching to a real console,
2791 * don't print everything out again, since when the boot console, and
2792 * the real console are the same physical device, it's annoying to
2793 * see the beginning boot messages twice
2794 */
2795 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2796 newcon->flags &= ~CON_PRINTBUFFER;
2797
2798 /*
2799 * Put this console in the list - keep the
2800 * preferred driver at the head of the list.
2801 */
2802 console_lock();
2803 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2804 newcon->next = console_drivers;
2805 console_drivers = newcon;
2806 if (newcon->next)
2807 newcon->next->flags &= ~CON_CONSDEV;
2808 } else {
2809 newcon->next = console_drivers->next;
2810 console_drivers->next = newcon;
2811 }
2812
2813 if (newcon->flags & CON_EXTENDED)
2814 nr_ext_console_drivers++;
2815
2816 if (newcon->flags & CON_PRINTBUFFER) {
2817 /*
2818 * console_unlock(); will print out the buffered messages
2819 * for us.
2820 */
2821 logbuf_lock_irqsave(flags);
2822 /*
2823 * We're about to replay the log buffer. Only do this to the
2824 * just-registered console to avoid excessive message spam to
2825 * the already-registered consoles.
2826 *
2827 * Set exclusive_console with disabled interrupts to reduce
2828 * race window with eventual console_flush_on_panic() that
2829 * ignores console_lock.
2830 */
2831 exclusive_console = newcon;
2832 exclusive_console_stop_seq = console_seq;
2833 console_seq = syslog_seq;
2834 console_idx = syslog_idx;
2835 logbuf_unlock_irqrestore(flags);
2836 }
2837 console_unlock();
2838 console_sysfs_notify();
2839
2840 /*
2841 * By unregistering the bootconsoles after we enable the real console
2842 * we get the "console xxx enabled" message on all the consoles -
2843 * boot consoles, real consoles, etc - this is to ensure that end
2844 * users know there might be something in the kernel's log buffer that
2845 * went to the bootconsole (that they do not see on the real console)
2846 */
2847 pr_info("%sconsole [%s%d] enabled\n",
2848 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2849 newcon->name, newcon->index);
2850 if (bcon &&
2851 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2852 !keep_bootcon) {
2853 /* We need to iterate through all boot consoles, to make
2854 * sure we print everything out, before we unregister them.
2855 */
2856 for_each_console(bcon)
2857 if (bcon->flags & CON_BOOT)
2858 unregister_console(bcon);
2859 }
2860 }
2861 EXPORT_SYMBOL(register_console);
2862
unregister_console(struct console * console)2863 int unregister_console(struct console *console)
2864 {
2865 struct console *a, *b;
2866 int res;
2867
2868 pr_info("%sconsole [%s%d] disabled\n",
2869 (console->flags & CON_BOOT) ? "boot" : "" ,
2870 console->name, console->index);
2871
2872 res = _braille_unregister_console(console);
2873 if (res)
2874 return res;
2875
2876 res = 1;
2877 console_lock();
2878 if (console_drivers == console) {
2879 console_drivers=console->next;
2880 res = 0;
2881 } else if (console_drivers) {
2882 for (a=console_drivers->next, b=console_drivers ;
2883 a; b=a, a=b->next) {
2884 if (a == console) {
2885 b->next = a->next;
2886 res = 0;
2887 break;
2888 }
2889 }
2890 }
2891
2892 if (!res && (console->flags & CON_EXTENDED))
2893 nr_ext_console_drivers--;
2894
2895 /*
2896 * If this isn't the last console and it has CON_CONSDEV set, we
2897 * need to set it on the next preferred console.
2898 */
2899 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2900 console_drivers->flags |= CON_CONSDEV;
2901
2902 console->flags &= ~CON_ENABLED;
2903 console_unlock();
2904 console_sysfs_notify();
2905 return res;
2906 }
2907 EXPORT_SYMBOL(unregister_console);
2908
2909 /*
2910 * Initialize the console device. This is called *early*, so
2911 * we can't necessarily depend on lots of kernel help here.
2912 * Just do some early initializations, and do the complex setup
2913 * later.
2914 */
console_init(void)2915 void __init console_init(void)
2916 {
2917 int ret;
2918 initcall_t call;
2919 initcall_entry_t *ce;
2920
2921 /* Setup the default TTY line discipline. */
2922 n_tty_init();
2923
2924 /*
2925 * set up the console device so that later boot sequences can
2926 * inform about problems etc..
2927 */
2928 ce = __con_initcall_start;
2929 trace_initcall_level("console");
2930 while (ce < __con_initcall_end) {
2931 call = initcall_from_entry(ce);
2932 trace_initcall_start(call);
2933 ret = call();
2934 trace_initcall_finish(call, ret);
2935 ce++;
2936 }
2937 }
2938
2939 /*
2940 * Some boot consoles access data that is in the init section and which will
2941 * be discarded after the initcalls have been run. To make sure that no code
2942 * will access this data, unregister the boot consoles in a late initcall.
2943 *
2944 * If for some reason, such as deferred probe or the driver being a loadable
2945 * module, the real console hasn't registered yet at this point, there will
2946 * be a brief interval in which no messages are logged to the console, which
2947 * makes it difficult to diagnose problems that occur during this time.
2948 *
2949 * To mitigate this problem somewhat, only unregister consoles whose memory
2950 * intersects with the init section. Note that all other boot consoles will
2951 * get unregistred when the real preferred console is registered.
2952 */
printk_late_init(void)2953 static int __init printk_late_init(void)
2954 {
2955 struct console *con;
2956 int ret;
2957
2958 for_each_console(con) {
2959 if (!(con->flags & CON_BOOT))
2960 continue;
2961
2962 /* Check addresses that might be used for enabled consoles. */
2963 if (init_section_intersects(con, sizeof(*con)) ||
2964 init_section_contains(con->write, 0) ||
2965 init_section_contains(con->read, 0) ||
2966 init_section_contains(con->device, 0) ||
2967 init_section_contains(con->unblank, 0) ||
2968 init_section_contains(con->data, 0)) {
2969 /*
2970 * Please, consider moving the reported consoles out
2971 * of the init section.
2972 */
2973 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2974 con->name, con->index);
2975 unregister_console(con);
2976 }
2977 }
2978 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2979 console_cpu_notify);
2980 WARN_ON(ret < 0);
2981 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2982 console_cpu_notify, NULL);
2983 WARN_ON(ret < 0);
2984 return 0;
2985 }
2986 late_initcall(printk_late_init);
2987
2988 #if defined CONFIG_PRINTK
2989 /*
2990 * Delayed printk version, for scheduler-internal messages:
2991 */
2992 #define PRINTK_PENDING_WAKEUP 0x01
2993 #define PRINTK_PENDING_OUTPUT 0x02
2994
2995 static DEFINE_PER_CPU(int, printk_pending);
2996
wake_up_klogd_work_func(struct irq_work * irq_work)2997 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2998 {
2999 int pending = __this_cpu_xchg(printk_pending, 0);
3000
3001 if (pending & PRINTK_PENDING_OUTPUT) {
3002 /* If trylock fails, someone else is doing the printing */
3003 if (console_trylock())
3004 console_unlock();
3005 }
3006
3007 if (pending & PRINTK_PENDING_WAKEUP)
3008 wake_up_interruptible(&log_wait);
3009 }
3010
3011 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3012 .func = wake_up_klogd_work_func,
3013 .flags = IRQ_WORK_LAZY,
3014 };
3015
wake_up_klogd(void)3016 void wake_up_klogd(void)
3017 {
3018 if (!printk_percpu_data_ready())
3019 return;
3020
3021 preempt_disable();
3022 if (waitqueue_active(&log_wait)) {
3023 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3024 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3025 }
3026 preempt_enable();
3027 }
3028
defer_console_output(void)3029 void defer_console_output(void)
3030 {
3031 if (!printk_percpu_data_ready())
3032 return;
3033
3034 preempt_disable();
3035 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3036 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3037 preempt_enable();
3038 }
3039
vprintk_deferred(const char * fmt,va_list args)3040 int vprintk_deferred(const char *fmt, va_list args)
3041 {
3042 int r;
3043
3044 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3045 defer_console_output();
3046
3047 return r;
3048 }
3049
printk_deferred(const char * fmt,...)3050 int printk_deferred(const char *fmt, ...)
3051 {
3052 va_list args;
3053 int r;
3054
3055 va_start(args, fmt);
3056 r = vprintk_deferred(fmt, args);
3057 va_end(args);
3058
3059 return r;
3060 }
3061
3062 /*
3063 * printk rate limiting, lifted from the networking subsystem.
3064 *
3065 * This enforces a rate limit: not more than 10 kernel messages
3066 * every 5s to make a denial-of-service attack impossible.
3067 */
3068 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3069
__printk_ratelimit(const char * func)3070 int __printk_ratelimit(const char *func)
3071 {
3072 return ___ratelimit(&printk_ratelimit_state, func);
3073 }
3074 EXPORT_SYMBOL(__printk_ratelimit);
3075
3076 /**
3077 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3078 * @caller_jiffies: pointer to caller's state
3079 * @interval_msecs: minimum interval between prints
3080 *
3081 * printk_timed_ratelimit() returns true if more than @interval_msecs
3082 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3083 * returned true.
3084 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3085 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3086 unsigned int interval_msecs)
3087 {
3088 unsigned long elapsed = jiffies - *caller_jiffies;
3089
3090 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3091 return false;
3092
3093 *caller_jiffies = jiffies;
3094 return true;
3095 }
3096 EXPORT_SYMBOL(printk_timed_ratelimit);
3097
3098 static DEFINE_SPINLOCK(dump_list_lock);
3099 static LIST_HEAD(dump_list);
3100
3101 /**
3102 * kmsg_dump_register - register a kernel log dumper.
3103 * @dumper: pointer to the kmsg_dumper structure
3104 *
3105 * Adds a kernel log dumper to the system. The dump callback in the
3106 * structure will be called when the kernel oopses or panics and must be
3107 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3108 */
kmsg_dump_register(struct kmsg_dumper * dumper)3109 int kmsg_dump_register(struct kmsg_dumper *dumper)
3110 {
3111 unsigned long flags;
3112 int err = -EBUSY;
3113
3114 /* The dump callback needs to be set */
3115 if (!dumper->dump)
3116 return -EINVAL;
3117
3118 spin_lock_irqsave(&dump_list_lock, flags);
3119 /* Don't allow registering multiple times */
3120 if (!dumper->registered) {
3121 dumper->registered = 1;
3122 list_add_tail_rcu(&dumper->list, &dump_list);
3123 err = 0;
3124 }
3125 spin_unlock_irqrestore(&dump_list_lock, flags);
3126
3127 return err;
3128 }
3129 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3130
3131 /**
3132 * kmsg_dump_unregister - unregister a kmsg dumper.
3133 * @dumper: pointer to the kmsg_dumper structure
3134 *
3135 * Removes a dump device from the system. Returns zero on success and
3136 * %-EINVAL otherwise.
3137 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3138 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3139 {
3140 unsigned long flags;
3141 int err = -EINVAL;
3142
3143 spin_lock_irqsave(&dump_list_lock, flags);
3144 if (dumper->registered) {
3145 dumper->registered = 0;
3146 list_del_rcu(&dumper->list);
3147 err = 0;
3148 }
3149 spin_unlock_irqrestore(&dump_list_lock, flags);
3150 synchronize_rcu();
3151
3152 return err;
3153 }
3154 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3155
3156 static bool always_kmsg_dump;
3157 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3158
3159 /**
3160 * kmsg_dump - dump kernel log to kernel message dumpers.
3161 * @reason: the reason (oops, panic etc) for dumping
3162 *
3163 * Call each of the registered dumper's dump() callback, which can
3164 * retrieve the kmsg records with kmsg_dump_get_line() or
3165 * kmsg_dump_get_buffer().
3166 */
kmsg_dump(enum kmsg_dump_reason reason)3167 void kmsg_dump(enum kmsg_dump_reason reason)
3168 {
3169 struct kmsg_dumper *dumper;
3170 unsigned long flags;
3171
3172 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3173 return;
3174
3175 rcu_read_lock();
3176 list_for_each_entry_rcu(dumper, &dump_list, list) {
3177 if (dumper->max_reason && reason > dumper->max_reason)
3178 continue;
3179
3180 /* initialize iterator with data about the stored records */
3181 dumper->active = true;
3182
3183 logbuf_lock_irqsave(flags);
3184 dumper->cur_seq = clear_seq;
3185 dumper->cur_idx = clear_idx;
3186 dumper->next_seq = log_next_seq;
3187 dumper->next_idx = log_next_idx;
3188 logbuf_unlock_irqrestore(flags);
3189
3190 /* invoke dumper which will iterate over records */
3191 dumper->dump(dumper, reason);
3192
3193 /* reset iterator */
3194 dumper->active = false;
3195 }
3196 rcu_read_unlock();
3197 }
3198
3199 /**
3200 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3201 * @dumper: registered kmsg dumper
3202 * @syslog: include the "<4>" prefixes
3203 * @line: buffer to copy the line to
3204 * @size: maximum size of the buffer
3205 * @len: length of line placed into buffer
3206 *
3207 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3208 * record, and copy one record into the provided buffer.
3209 *
3210 * Consecutive calls will return the next available record moving
3211 * towards the end of the buffer with the youngest messages.
3212 *
3213 * A return value of FALSE indicates that there are no more records to
3214 * read.
3215 *
3216 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3217 */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3218 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3219 char *line, size_t size, size_t *len)
3220 {
3221 struct printk_log *msg;
3222 size_t l = 0;
3223 bool ret = false;
3224
3225 if (!dumper->active)
3226 goto out;
3227
3228 if (dumper->cur_seq < log_first_seq) {
3229 /* messages are gone, move to first available one */
3230 dumper->cur_seq = log_first_seq;
3231 dumper->cur_idx = log_first_idx;
3232 }
3233
3234 /* last entry */
3235 if (dumper->cur_seq >= log_next_seq)
3236 goto out;
3237
3238 msg = log_from_idx(dumper->cur_idx);
3239 l = msg_print_text(msg, syslog, printk_time, line, size);
3240
3241 dumper->cur_idx = log_next(dumper->cur_idx);
3242 dumper->cur_seq++;
3243 ret = true;
3244 out:
3245 if (len)
3246 *len = l;
3247 return ret;
3248 }
3249
3250 /**
3251 * kmsg_dump_get_line - retrieve one kmsg log line
3252 * @dumper: registered kmsg dumper
3253 * @syslog: include the "<4>" prefixes
3254 * @line: buffer to copy the line to
3255 * @size: maximum size of the buffer
3256 * @len: length of line placed into buffer
3257 *
3258 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3259 * record, and copy one record into the provided buffer.
3260 *
3261 * Consecutive calls will return the next available record moving
3262 * towards the end of the buffer with the youngest messages.
3263 *
3264 * A return value of FALSE indicates that there are no more records to
3265 * read.
3266 */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3267 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3268 char *line, size_t size, size_t *len)
3269 {
3270 unsigned long flags;
3271 bool ret;
3272
3273 logbuf_lock_irqsave(flags);
3274 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3275 logbuf_unlock_irqrestore(flags);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3280
3281 /**
3282 * kmsg_dump_get_buffer - copy kmsg log lines
3283 * @dumper: registered kmsg dumper
3284 * @syslog: include the "<4>" prefixes
3285 * @buf: buffer to copy the line to
3286 * @size: maximum size of the buffer
3287 * @len: length of line placed into buffer
3288 *
3289 * Start at the end of the kmsg buffer and fill the provided buffer
3290 * with as many of the the *youngest* kmsg records that fit into it.
3291 * If the buffer is large enough, all available kmsg records will be
3292 * copied with a single call.
3293 *
3294 * Consecutive calls will fill the buffer with the next block of
3295 * available older records, not including the earlier retrieved ones.
3296 *
3297 * A return value of FALSE indicates that there are no more records to
3298 * read.
3299 */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3300 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3301 char *buf, size_t size, size_t *len)
3302 {
3303 unsigned long flags;
3304 u64 seq;
3305 u32 idx;
3306 u64 next_seq;
3307 u32 next_idx;
3308 size_t l = 0;
3309 bool ret = false;
3310 bool time = printk_time;
3311
3312 if (!dumper->active)
3313 goto out;
3314
3315 logbuf_lock_irqsave(flags);
3316 if (dumper->cur_seq < log_first_seq) {
3317 /* messages are gone, move to first available one */
3318 dumper->cur_seq = log_first_seq;
3319 dumper->cur_idx = log_first_idx;
3320 }
3321
3322 /* last entry */
3323 if (dumper->cur_seq >= dumper->next_seq) {
3324 logbuf_unlock_irqrestore(flags);
3325 goto out;
3326 }
3327
3328 /* calculate length of entire buffer */
3329 seq = dumper->cur_seq;
3330 idx = dumper->cur_idx;
3331 while (seq < dumper->next_seq) {
3332 struct printk_log *msg = log_from_idx(idx);
3333
3334 l += msg_print_text(msg, true, time, NULL, 0);
3335 idx = log_next(idx);
3336 seq++;
3337 }
3338
3339 /* move first record forward until length fits into the buffer */
3340 seq = dumper->cur_seq;
3341 idx = dumper->cur_idx;
3342 while (l >= size && seq < dumper->next_seq) {
3343 struct printk_log *msg = log_from_idx(idx);
3344
3345 l -= msg_print_text(msg, true, time, NULL, 0);
3346 idx = log_next(idx);
3347 seq++;
3348 }
3349
3350 /* last message in next interation */
3351 next_seq = seq;
3352 next_idx = idx;
3353
3354 l = 0;
3355 while (seq < dumper->next_seq) {
3356 struct printk_log *msg = log_from_idx(idx);
3357
3358 l += msg_print_text(msg, syslog, time, buf + l, size - l);
3359 idx = log_next(idx);
3360 seq++;
3361 }
3362
3363 dumper->next_seq = next_seq;
3364 dumper->next_idx = next_idx;
3365 ret = true;
3366 logbuf_unlock_irqrestore(flags);
3367 out:
3368 if (len)
3369 *len = l;
3370 return ret;
3371 }
3372 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3373
3374 /**
3375 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3376 * @dumper: registered kmsg dumper
3377 *
3378 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3379 * kmsg_dump_get_buffer() can be called again and used multiple
3380 * times within the same dumper.dump() callback.
3381 *
3382 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3383 */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3384 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3385 {
3386 dumper->cur_seq = clear_seq;
3387 dumper->cur_idx = clear_idx;
3388 dumper->next_seq = log_next_seq;
3389 dumper->next_idx = log_next_idx;
3390 }
3391
3392 /**
3393 * kmsg_dump_rewind - reset the interator
3394 * @dumper: registered kmsg dumper
3395 *
3396 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3397 * kmsg_dump_get_buffer() can be called again and used multiple
3398 * times within the same dumper.dump() callback.
3399 */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3400 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3401 {
3402 unsigned long flags;
3403
3404 logbuf_lock_irqsave(flags);
3405 kmsg_dump_rewind_nolock(dumper);
3406 logbuf_unlock_irqrestore(flags);
3407 }
3408 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3409
3410 #endif
3411