1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 #include <trace/hooks/sched.h>
16
17 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
18
19 struct sugov_tunables {
20 struct gov_attr_set attr_set;
21 unsigned int rate_limit_us;
22 };
23
24 struct sugov_policy {
25 struct cpufreq_policy *policy;
26
27 struct sugov_tunables *tunables;
28 struct list_head tunables_hook;
29
30 raw_spinlock_t update_lock; /* For shared policies */
31 u64 last_freq_update_time;
32 s64 freq_update_delay_ns;
33 unsigned int next_freq;
34 unsigned int cached_raw_freq;
35
36 /* The next fields are only needed if fast switch cannot be used: */
37 struct irq_work irq_work;
38 struct kthread_work work;
39 struct mutex work_lock;
40 struct kthread_worker worker;
41 struct task_struct *thread;
42 bool work_in_progress;
43
44 bool limits_changed;
45 bool need_freq_update;
46 };
47
48 struct sugov_cpu {
49 struct update_util_data update_util;
50 struct sugov_policy *sg_policy;
51 unsigned int cpu;
52
53 bool iowait_boost_pending;
54 unsigned int iowait_boost;
55 u64 last_update;
56
57 unsigned long bw_dl;
58 unsigned long max;
59
60 /* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62 unsigned long saved_idle_calls;
63 #endif
64 };
65
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67
68 /************************ Governor internals ***********************/
69
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72 s64 delta_ns;
73
74 /*
75 * Since cpufreq_update_util() is called with rq->lock held for
76 * the @target_cpu, our per-CPU data is fully serialized.
77 *
78 * However, drivers cannot in general deal with cross-CPU
79 * requests, so while get_next_freq() will work, our
80 * sugov_update_commit() call may not for the fast switching platforms.
81 *
82 * Hence stop here for remote requests if they aren't supported
83 * by the hardware, as calculating the frequency is pointless if
84 * we cannot in fact act on it.
85 *
86 * This is needed on the slow switching platforms too to prevent CPUs
87 * going offline from leaving stale IRQ work items behind.
88 */
89 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 return false;
91
92 if (unlikely(sg_policy->limits_changed)) {
93 sg_policy->limits_changed = false;
94 sg_policy->need_freq_update = true;
95 return true;
96 }
97
98 delta_ns = time - sg_policy->last_freq_update_time;
99
100 return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 unsigned int next_freq)
105 {
106 if (sg_policy->next_freq == next_freq)
107 return false;
108
109 sg_policy->next_freq = next_freq;
110 sg_policy->last_freq_update_time = time;
111
112 return true;
113 }
114
sugov_fast_switch(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)115 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
116 unsigned int next_freq)
117 {
118 struct cpufreq_policy *policy = sg_policy->policy;
119 int cpu;
120
121 if (!sugov_update_next_freq(sg_policy, time, next_freq))
122 return;
123
124 next_freq = cpufreq_driver_fast_switch(policy, next_freq);
125 if (!next_freq)
126 return;
127
128 policy->cur = next_freq;
129
130 if (trace_cpu_frequency_enabled()) {
131 for_each_cpu(cpu, policy->cpus)
132 trace_cpu_frequency(next_freq, cpu);
133 }
134 }
135
sugov_deferred_update(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)136 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
137 unsigned int next_freq)
138 {
139 if (!sugov_update_next_freq(sg_policy, time, next_freq))
140 return;
141
142 if (!sg_policy->work_in_progress) {
143 sg_policy->work_in_progress = true;
144 irq_work_queue(&sg_policy->irq_work);
145 }
146 }
147
148 /**
149 * get_next_freq - Compute a new frequency for a given cpufreq policy.
150 * @sg_policy: schedutil policy object to compute the new frequency for.
151 * @util: Current CPU utilization.
152 * @max: CPU capacity.
153 *
154 * If the utilization is frequency-invariant, choose the new frequency to be
155 * proportional to it, that is
156 *
157 * next_freq = C * max_freq * util / max
158 *
159 * Otherwise, approximate the would-be frequency-invariant utilization by
160 * util_raw * (curr_freq / max_freq) which leads to
161 *
162 * next_freq = C * curr_freq * util_raw / max
163 *
164 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
165 *
166 * The lowest driver-supported frequency which is equal or greater than the raw
167 * next_freq (as calculated above) is returned, subject to policy min/max and
168 * cpufreq driver limitations.
169 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)170 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
171 unsigned long util, unsigned long max)
172 {
173 struct cpufreq_policy *policy = sg_policy->policy;
174 unsigned int freq = arch_scale_freq_invariant() ?
175 policy->cpuinfo.max_freq : policy->cur;
176 unsigned long next_freq = 0;
177
178 trace_android_vh_map_util_freq(util, freq, max, &next_freq);
179 if (next_freq)
180 freq = next_freq;
181 else
182 freq = map_util_freq(util, freq, max);
183
184 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
185 return sg_policy->next_freq;
186
187 sg_policy->need_freq_update = false;
188 sg_policy->cached_raw_freq = freq;
189 return cpufreq_driver_resolve_freq(policy, freq);
190 }
191
192 /*
193 * This function computes an effective utilization for the given CPU, to be
194 * used for frequency selection given the linear relation: f = u * f_max.
195 *
196 * The scheduler tracks the following metrics:
197 *
198 * cpu_util_{cfs,rt,dl,irq}()
199 * cpu_bw_dl()
200 *
201 * Where the cfs,rt and dl util numbers are tracked with the same metric and
202 * synchronized windows and are thus directly comparable.
203 *
204 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
205 * which excludes things like IRQ and steal-time. These latter are then accrued
206 * in the irq utilization.
207 *
208 * The DL bandwidth number otoh is not a measured metric but a value computed
209 * based on the task model parameters and gives the minimal utilization
210 * required to meet deadlines.
211 */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)212 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
213 unsigned long max, enum schedutil_type type,
214 struct task_struct *p)
215 {
216 unsigned long dl_util, util, irq;
217 struct rq *rq = cpu_rq(cpu);
218
219 if (!uclamp_is_used() &&
220 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
221 return max;
222 }
223
224 /*
225 * Early check to see if IRQ/steal time saturates the CPU, can be
226 * because of inaccuracies in how we track these -- see
227 * update_irq_load_avg().
228 */
229 irq = cpu_util_irq(rq);
230 if (unlikely(irq >= max))
231 return max;
232
233 /*
234 * Because the time spend on RT/DL tasks is visible as 'lost' time to
235 * CFS tasks and we use the same metric to track the effective
236 * utilization (PELT windows are synchronized) we can directly add them
237 * to obtain the CPU's actual utilization.
238 *
239 * CFS and RT utilization can be boosted or capped, depending on
240 * utilization clamp constraints requested by currently RUNNABLE
241 * tasks.
242 * When there are no CFS RUNNABLE tasks, clamps are released and
243 * frequency will be gracefully reduced with the utilization decay.
244 */
245 util = util_cfs + cpu_util_rt(rq);
246 if (type == FREQUENCY_UTIL)
247 util = uclamp_rq_util_with(rq, util, p);
248
249 dl_util = cpu_util_dl(rq);
250
251 /*
252 * For frequency selection we do not make cpu_util_dl() a permanent part
253 * of this sum because we want to use cpu_bw_dl() later on, but we need
254 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
255 * that we select f_max when there is no idle time.
256 *
257 * NOTE: numerical errors or stop class might cause us to not quite hit
258 * saturation when we should -- something for later.
259 */
260 if (util + dl_util >= max)
261 return max;
262
263 /*
264 * OTOH, for energy computation we need the estimated running time, so
265 * include util_dl and ignore dl_bw.
266 */
267 if (type == ENERGY_UTIL)
268 util += dl_util;
269
270 /*
271 * There is still idle time; further improve the number by using the
272 * irq metric. Because IRQ/steal time is hidden from the task clock we
273 * need to scale the task numbers:
274 *
275 * max - irq
276 * U' = irq + --------- * U
277 * max
278 */
279 util = scale_irq_capacity(util, irq, max);
280 util += irq;
281
282 /*
283 * Bandwidth required by DEADLINE must always be granted while, for
284 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
285 * to gracefully reduce the frequency when no tasks show up for longer
286 * periods of time.
287 *
288 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
289 * bw_dl as requested freq. However, cpufreq is not yet ready for such
290 * an interface. So, we only do the latter for now.
291 */
292 if (type == FREQUENCY_UTIL)
293 util += cpu_bw_dl(rq);
294
295 return min(max, util);
296 }
297
sugov_get_util(struct sugov_cpu * sg_cpu)298 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
299 {
300 struct rq *rq = cpu_rq(sg_cpu->cpu);
301 unsigned long util = cpu_util_cfs(rq);
302 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
303
304 sg_cpu->max = max;
305 sg_cpu->bw_dl = cpu_bw_dl(rq);
306
307 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
308 }
309
310 /**
311 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
312 * @sg_cpu: the sugov data for the CPU to boost
313 * @time: the update time from the caller
314 * @set_iowait_boost: true if an IO boost has been requested
315 *
316 * The IO wait boost of a task is disabled after a tick since the last update
317 * of a CPU. If a new IO wait boost is requested after more then a tick, then
318 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
319 * efficiency by ignoring sporadic wakeups from IO.
320 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)321 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
322 bool set_iowait_boost)
323 {
324 s64 delta_ns = time - sg_cpu->last_update;
325
326 /* Reset boost only if a tick has elapsed since last request */
327 if (delta_ns <= TICK_NSEC)
328 return false;
329
330 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
331 sg_cpu->iowait_boost_pending = set_iowait_boost;
332
333 return true;
334 }
335
336 /**
337 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
338 * @sg_cpu: the sugov data for the CPU to boost
339 * @time: the update time from the caller
340 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
341 *
342 * Each time a task wakes up after an IO operation, the CPU utilization can be
343 * boosted to a certain utilization which doubles at each "frequent and
344 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
345 * of the maximum OPP.
346 *
347 * To keep doubling, an IO boost has to be requested at least once per tick,
348 * otherwise we restart from the utilization of the minimum OPP.
349 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)350 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
351 unsigned int flags)
352 {
353 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
354
355 /* Reset boost if the CPU appears to have been idle enough */
356 if (sg_cpu->iowait_boost &&
357 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
358 return;
359
360 /* Boost only tasks waking up after IO */
361 if (!set_iowait_boost)
362 return;
363
364 /* Ensure boost doubles only one time at each request */
365 if (sg_cpu->iowait_boost_pending)
366 return;
367 sg_cpu->iowait_boost_pending = true;
368
369 /* Double the boost at each request */
370 if (sg_cpu->iowait_boost) {
371 sg_cpu->iowait_boost =
372 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
373 return;
374 }
375
376 /* First wakeup after IO: start with minimum boost */
377 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
378 }
379
380 /**
381 * sugov_iowait_apply() - Apply the IO boost to a CPU.
382 * @sg_cpu: the sugov data for the cpu to boost
383 * @time: the update time from the caller
384 * @util: the utilization to (eventually) boost
385 * @max: the maximum value the utilization can be boosted to
386 *
387 * A CPU running a task which woken up after an IO operation can have its
388 * utilization boosted to speed up the completion of those IO operations.
389 * The IO boost value is increased each time a task wakes up from IO, in
390 * sugov_iowait_apply(), and it's instead decreased by this function,
391 * each time an increase has not been requested (!iowait_boost_pending).
392 *
393 * A CPU which also appears to have been idle for at least one tick has also
394 * its IO boost utilization reset.
395 *
396 * This mechanism is designed to boost high frequently IO waiting tasks, while
397 * being more conservative on tasks which does sporadic IO operations.
398 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long util,unsigned long max)399 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
400 unsigned long util, unsigned long max)
401 {
402 unsigned long boost;
403
404 /* No boost currently required */
405 if (!sg_cpu->iowait_boost)
406 return util;
407
408 /* Reset boost if the CPU appears to have been idle enough */
409 if (sugov_iowait_reset(sg_cpu, time, false))
410 return util;
411
412 if (!sg_cpu->iowait_boost_pending) {
413 /*
414 * No boost pending; reduce the boost value.
415 */
416 sg_cpu->iowait_boost >>= 1;
417 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
418 sg_cpu->iowait_boost = 0;
419 return util;
420 }
421 }
422
423 sg_cpu->iowait_boost_pending = false;
424
425 /*
426 * @util is already in capacity scale; convert iowait_boost
427 * into the same scale so we can compare.
428 */
429 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
430 return max(boost, util);
431 }
432
433 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)434 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
435 {
436 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
437 bool ret = idle_calls == sg_cpu->saved_idle_calls;
438
439 sg_cpu->saved_idle_calls = idle_calls;
440 return ret;
441 }
442 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)443 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
444 #endif /* CONFIG_NO_HZ_COMMON */
445
446 /*
447 * Make sugov_should_update_freq() ignore the rate limit when DL
448 * has increased the utilization.
449 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu,struct sugov_policy * sg_policy)450 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
451 {
452 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
453 sg_policy->limits_changed = true;
454 }
455
sugov_update_single(struct update_util_data * hook,u64 time,unsigned int flags)456 static void sugov_update_single(struct update_util_data *hook, u64 time,
457 unsigned int flags)
458 {
459 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
460 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
461 unsigned long util, max;
462 unsigned int next_f;
463 bool busy;
464
465 sugov_iowait_boost(sg_cpu, time, flags);
466 sg_cpu->last_update = time;
467
468 ignore_dl_rate_limit(sg_cpu, sg_policy);
469
470 if (!sugov_should_update_freq(sg_policy, time))
471 return;
472
473 /* Limits may have changed, don't skip frequency update */
474 busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
475
476 util = sugov_get_util(sg_cpu);
477 max = sg_cpu->max;
478 util = sugov_iowait_apply(sg_cpu, time, util, max);
479 next_f = get_next_freq(sg_policy, util, max);
480 /*
481 * Do not reduce the frequency if the CPU has not been idle
482 * recently, as the reduction is likely to be premature then.
483 */
484 if (busy && next_f < sg_policy->next_freq) {
485 next_f = sg_policy->next_freq;
486
487 /* Reset cached freq as next_freq has changed */
488 sg_policy->cached_raw_freq = 0;
489 }
490
491 /*
492 * This code runs under rq->lock for the target CPU, so it won't run
493 * concurrently on two different CPUs for the same target and it is not
494 * necessary to acquire the lock in the fast switch case.
495 */
496 if (sg_policy->policy->fast_switch_enabled) {
497 sugov_fast_switch(sg_policy, time, next_f);
498 } else {
499 raw_spin_lock(&sg_policy->update_lock);
500 sugov_deferred_update(sg_policy, time, next_f);
501 raw_spin_unlock(&sg_policy->update_lock);
502 }
503 }
504
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)505 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
506 {
507 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
508 struct cpufreq_policy *policy = sg_policy->policy;
509 unsigned long util = 0, max = 1;
510 unsigned int j;
511
512 for_each_cpu(j, policy->cpus) {
513 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
514 unsigned long j_util, j_max;
515
516 j_util = sugov_get_util(j_sg_cpu);
517 j_max = j_sg_cpu->max;
518 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
519
520 if (j_util * max > j_max * util) {
521 util = j_util;
522 max = j_max;
523 }
524 }
525
526 return get_next_freq(sg_policy, util, max);
527 }
528
529 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)530 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
531 {
532 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
533 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
534 unsigned int next_f;
535
536 raw_spin_lock(&sg_policy->update_lock);
537
538 sugov_iowait_boost(sg_cpu, time, flags);
539 sg_cpu->last_update = time;
540
541 ignore_dl_rate_limit(sg_cpu, sg_policy);
542
543 if (sugov_should_update_freq(sg_policy, time)) {
544 next_f = sugov_next_freq_shared(sg_cpu, time);
545
546 if (sg_policy->policy->fast_switch_enabled)
547 sugov_fast_switch(sg_policy, time, next_f);
548 else
549 sugov_deferred_update(sg_policy, time, next_f);
550 }
551
552 raw_spin_unlock(&sg_policy->update_lock);
553 }
554
sugov_work(struct kthread_work * work)555 static void sugov_work(struct kthread_work *work)
556 {
557 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
558 unsigned int freq;
559 unsigned long flags;
560
561 /*
562 * Hold sg_policy->update_lock shortly to handle the case where:
563 * incase sg_policy->next_freq is read here, and then updated by
564 * sugov_deferred_update() just before work_in_progress is set to false
565 * here, we may miss queueing the new update.
566 *
567 * Note: If a work was queued after the update_lock is released,
568 * sugov_work() will just be called again by kthread_work code; and the
569 * request will be proceed before the sugov thread sleeps.
570 */
571 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
572 freq = sg_policy->next_freq;
573 sg_policy->work_in_progress = false;
574 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
575
576 mutex_lock(&sg_policy->work_lock);
577 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
578 mutex_unlock(&sg_policy->work_lock);
579 }
580
sugov_irq_work(struct irq_work * irq_work)581 static void sugov_irq_work(struct irq_work *irq_work)
582 {
583 struct sugov_policy *sg_policy;
584
585 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
586
587 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
588 }
589
590 /************************** sysfs interface ************************/
591
592 static struct sugov_tunables *global_tunables;
593 static DEFINE_MUTEX(global_tunables_lock);
594
to_sugov_tunables(struct gov_attr_set * attr_set)595 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
596 {
597 return container_of(attr_set, struct sugov_tunables, attr_set);
598 }
599
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)600 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
601 {
602 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
603
604 return sprintf(buf, "%u\n", tunables->rate_limit_us);
605 }
606
607 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)608 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
609 {
610 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
611 struct sugov_policy *sg_policy;
612 unsigned int rate_limit_us;
613
614 if (kstrtouint(buf, 10, &rate_limit_us))
615 return -EINVAL;
616
617 tunables->rate_limit_us = rate_limit_us;
618
619 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
620 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
621
622 return count;
623 }
624
625 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
626
627 static struct attribute *sugov_attrs[] = {
628 &rate_limit_us.attr,
629 NULL
630 };
631 ATTRIBUTE_GROUPS(sugov);
632
sugov_tunables_free(struct kobject * kobj)633 static void sugov_tunables_free(struct kobject *kobj)
634 {
635 struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
636
637 kfree(to_sugov_tunables(attr_set));
638 }
639
640 static struct kobj_type sugov_tunables_ktype = {
641 .default_groups = sugov_groups,
642 .sysfs_ops = &governor_sysfs_ops,
643 .release = &sugov_tunables_free,
644 };
645
646 /********************** cpufreq governor interface *********************/
647
648 struct cpufreq_governor schedutil_gov;
649
sugov_policy_alloc(struct cpufreq_policy * policy)650 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
651 {
652 struct sugov_policy *sg_policy;
653
654 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
655 if (!sg_policy)
656 return NULL;
657
658 sg_policy->policy = policy;
659 raw_spin_lock_init(&sg_policy->update_lock);
660 return sg_policy;
661 }
662
sugov_policy_free(struct sugov_policy * sg_policy)663 static void sugov_policy_free(struct sugov_policy *sg_policy)
664 {
665 kfree(sg_policy);
666 }
667
sugov_kthread_create(struct sugov_policy * sg_policy)668 static int sugov_kthread_create(struct sugov_policy *sg_policy)
669 {
670 struct task_struct *thread;
671 struct sched_attr attr = {
672 .size = sizeof(struct sched_attr),
673 .sched_policy = SCHED_DEADLINE,
674 .sched_flags = SCHED_FLAG_SUGOV,
675 .sched_nice = 0,
676 .sched_priority = 0,
677 /*
678 * Fake (unused) bandwidth; workaround to "fix"
679 * priority inheritance.
680 */
681 .sched_runtime = 1000000,
682 .sched_deadline = 10000000,
683 .sched_period = 10000000,
684 };
685 struct cpufreq_policy *policy = sg_policy->policy;
686 int ret;
687
688 /* kthread only required for slow path */
689 if (policy->fast_switch_enabled)
690 return 0;
691
692 kthread_init_work(&sg_policy->work, sugov_work);
693 kthread_init_worker(&sg_policy->worker);
694 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
695 "sugov:%d",
696 cpumask_first(policy->related_cpus));
697 if (IS_ERR(thread)) {
698 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
699 return PTR_ERR(thread);
700 }
701
702 ret = sched_setattr_nocheck(thread, &attr);
703 if (ret) {
704 kthread_stop(thread);
705 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
706 return ret;
707 }
708
709 sg_policy->thread = thread;
710 kthread_bind_mask(thread, policy->related_cpus);
711 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
712 mutex_init(&sg_policy->work_lock);
713
714 wake_up_process(thread);
715
716 return 0;
717 }
718
sugov_kthread_stop(struct sugov_policy * sg_policy)719 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
720 {
721 /* kthread only required for slow path */
722 if (sg_policy->policy->fast_switch_enabled)
723 return;
724
725 kthread_flush_worker(&sg_policy->worker);
726 kthread_stop(sg_policy->thread);
727 mutex_destroy(&sg_policy->work_lock);
728 }
729
sugov_tunables_alloc(struct sugov_policy * sg_policy)730 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
731 {
732 struct sugov_tunables *tunables;
733
734 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
735 if (tunables) {
736 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
737 if (!have_governor_per_policy())
738 global_tunables = tunables;
739 }
740 return tunables;
741 }
742
sugov_clear_global_tunables(void)743 static void sugov_clear_global_tunables(void)
744 {
745 if (!have_governor_per_policy())
746 global_tunables = NULL;
747 }
748
sugov_init(struct cpufreq_policy * policy)749 static int sugov_init(struct cpufreq_policy *policy)
750 {
751 struct sugov_policy *sg_policy;
752 struct sugov_tunables *tunables;
753 int ret = 0;
754
755 /* State should be equivalent to EXIT */
756 if (policy->governor_data)
757 return -EBUSY;
758
759 cpufreq_enable_fast_switch(policy);
760
761 sg_policy = sugov_policy_alloc(policy);
762 if (!sg_policy) {
763 ret = -ENOMEM;
764 goto disable_fast_switch;
765 }
766
767 ret = sugov_kthread_create(sg_policy);
768 if (ret)
769 goto free_sg_policy;
770
771 mutex_lock(&global_tunables_lock);
772
773 if (global_tunables) {
774 if (WARN_ON(have_governor_per_policy())) {
775 ret = -EINVAL;
776 goto stop_kthread;
777 }
778 policy->governor_data = sg_policy;
779 sg_policy->tunables = global_tunables;
780
781 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
782 goto out;
783 }
784
785 tunables = sugov_tunables_alloc(sg_policy);
786 if (!tunables) {
787 ret = -ENOMEM;
788 goto stop_kthread;
789 }
790
791 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
792
793 policy->governor_data = sg_policy;
794 sg_policy->tunables = tunables;
795
796 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
797 get_governor_parent_kobj(policy), "%s",
798 schedutil_gov.name);
799 if (ret)
800 goto fail;
801
802 out:
803 mutex_unlock(&global_tunables_lock);
804 return 0;
805
806 fail:
807 kobject_put(&tunables->attr_set.kobj);
808 policy->governor_data = NULL;
809 sugov_clear_global_tunables();
810
811 stop_kthread:
812 sugov_kthread_stop(sg_policy);
813 mutex_unlock(&global_tunables_lock);
814
815 free_sg_policy:
816 sugov_policy_free(sg_policy);
817
818 disable_fast_switch:
819 cpufreq_disable_fast_switch(policy);
820
821 pr_err("initialization failed (error %d)\n", ret);
822 return ret;
823 }
824
sugov_exit(struct cpufreq_policy * policy)825 static void sugov_exit(struct cpufreq_policy *policy)
826 {
827 struct sugov_policy *sg_policy = policy->governor_data;
828 struct sugov_tunables *tunables = sg_policy->tunables;
829 unsigned int count;
830
831 mutex_lock(&global_tunables_lock);
832
833 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
834 policy->governor_data = NULL;
835 if (!count)
836 sugov_clear_global_tunables();
837
838 mutex_unlock(&global_tunables_lock);
839
840 sugov_kthread_stop(sg_policy);
841 sugov_policy_free(sg_policy);
842 cpufreq_disable_fast_switch(policy);
843 }
844
sugov_start(struct cpufreq_policy * policy)845 static int sugov_start(struct cpufreq_policy *policy)
846 {
847 struct sugov_policy *sg_policy = policy->governor_data;
848 unsigned int cpu;
849
850 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
851 sg_policy->last_freq_update_time = 0;
852 sg_policy->next_freq = 0;
853 sg_policy->work_in_progress = false;
854 sg_policy->limits_changed = false;
855 sg_policy->need_freq_update = false;
856 sg_policy->cached_raw_freq = 0;
857
858 for_each_cpu(cpu, policy->cpus) {
859 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
860
861 memset(sg_cpu, 0, sizeof(*sg_cpu));
862 sg_cpu->cpu = cpu;
863 sg_cpu->sg_policy = sg_policy;
864 }
865
866 for_each_cpu(cpu, policy->cpus) {
867 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
868
869 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
870 policy_is_shared(policy) ?
871 sugov_update_shared :
872 sugov_update_single);
873 }
874 return 0;
875 }
876
sugov_stop(struct cpufreq_policy * policy)877 static void sugov_stop(struct cpufreq_policy *policy)
878 {
879 struct sugov_policy *sg_policy = policy->governor_data;
880 unsigned int cpu;
881
882 for_each_cpu(cpu, policy->cpus)
883 cpufreq_remove_update_util_hook(cpu);
884
885 synchronize_rcu();
886
887 if (!policy->fast_switch_enabled) {
888 irq_work_sync(&sg_policy->irq_work);
889 kthread_cancel_work_sync(&sg_policy->work);
890 }
891 }
892
sugov_limits(struct cpufreq_policy * policy)893 static void sugov_limits(struct cpufreq_policy *policy)
894 {
895 struct sugov_policy *sg_policy = policy->governor_data;
896
897 if (!policy->fast_switch_enabled) {
898 mutex_lock(&sg_policy->work_lock);
899 cpufreq_policy_apply_limits(policy);
900 mutex_unlock(&sg_policy->work_lock);
901 }
902
903 sg_policy->limits_changed = true;
904 }
905
906 struct cpufreq_governor schedutil_gov = {
907 .name = "schedutil",
908 .owner = THIS_MODULE,
909 .dynamic_switching = true,
910 .init = sugov_init,
911 .exit = sugov_exit,
912 .start = sugov_start,
913 .stop = sugov_stop,
914 .limits = sugov_limits,
915 };
916
917 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)918 struct cpufreq_governor *cpufreq_default_governor(void)
919 {
920 return &schedutil_gov;
921 }
922 #endif
923
sugov_register(void)924 static int __init sugov_register(void)
925 {
926 return cpufreq_register_governor(&schedutil_gov);
927 }
928 core_initcall(sugov_register);
929
930 #ifdef CONFIG_ENERGY_MODEL
931 extern bool sched_energy_update;
932 extern struct mutex sched_energy_mutex;
933
rebuild_sd_workfn(struct work_struct * work)934 static void rebuild_sd_workfn(struct work_struct *work)
935 {
936 mutex_lock(&sched_energy_mutex);
937 sched_energy_update = true;
938 rebuild_sched_domains();
939 sched_energy_update = false;
940 mutex_unlock(&sched_energy_mutex);
941 }
942 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
943
944 /*
945 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
946 * on governor changes to make sure the scheduler knows about it.
947 */
sched_cpufreq_governor_change(struct cpufreq_policy * policy,struct cpufreq_governor * old_gov)948 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
949 struct cpufreq_governor *old_gov)
950 {
951 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
952 /*
953 * When called from the cpufreq_register_driver() path, the
954 * cpu_hotplug_lock is already held, so use a work item to
955 * avoid nested locking in rebuild_sched_domains().
956 */
957 schedule_work(&rebuild_sd_work);
958 }
959
960 }
961 #endif
962