• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 #include <trace/hooks/sched.h>
16 
17 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
18 
19 struct sugov_tunables {
20 	struct gov_attr_set	attr_set;
21 	unsigned int		rate_limit_us;
22 };
23 
24 struct sugov_policy {
25 	struct cpufreq_policy	*policy;
26 
27 	struct sugov_tunables	*tunables;
28 	struct list_head	tunables_hook;
29 
30 	raw_spinlock_t		update_lock;	/* For shared policies */
31 	u64			last_freq_update_time;
32 	s64			freq_update_delay_ns;
33 	unsigned int		next_freq;
34 	unsigned int		cached_raw_freq;
35 
36 	/* The next fields are only needed if fast switch cannot be used: */
37 	struct			irq_work irq_work;
38 	struct			kthread_work work;
39 	struct			mutex work_lock;
40 	struct			kthread_worker worker;
41 	struct task_struct	*thread;
42 	bool			work_in_progress;
43 
44 	bool			limits_changed;
45 	bool			need_freq_update;
46 };
47 
48 struct sugov_cpu {
49 	struct update_util_data	update_util;
50 	struct sugov_policy	*sg_policy;
51 	unsigned int		cpu;
52 
53 	bool			iowait_boost_pending;
54 	unsigned int		iowait_boost;
55 	u64			last_update;
56 
57 	unsigned long		bw_dl;
58 	unsigned long		max;
59 
60 	/* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62 	unsigned long		saved_idle_calls;
63 #endif
64 };
65 
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67 
68 /************************ Governor internals ***********************/
69 
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72 	s64 delta_ns;
73 
74 	/*
75 	 * Since cpufreq_update_util() is called with rq->lock held for
76 	 * the @target_cpu, our per-CPU data is fully serialized.
77 	 *
78 	 * However, drivers cannot in general deal with cross-CPU
79 	 * requests, so while get_next_freq() will work, our
80 	 * sugov_update_commit() call may not for the fast switching platforms.
81 	 *
82 	 * Hence stop here for remote requests if they aren't supported
83 	 * by the hardware, as calculating the frequency is pointless if
84 	 * we cannot in fact act on it.
85 	 *
86 	 * This is needed on the slow switching platforms too to prevent CPUs
87 	 * going offline from leaving stale IRQ work items behind.
88 	 */
89 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 		return false;
91 
92 	if (unlikely(sg_policy->limits_changed)) {
93 		sg_policy->limits_changed = false;
94 		sg_policy->need_freq_update = true;
95 		return true;
96 	}
97 
98 	delta_ns = time - sg_policy->last_freq_update_time;
99 
100 	return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102 
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 				   unsigned int next_freq)
105 {
106 	if (sg_policy->next_freq == next_freq)
107 		return false;
108 
109 	sg_policy->next_freq = next_freq;
110 	sg_policy->last_freq_update_time = time;
111 
112 	return true;
113 }
114 
sugov_fast_switch(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)115 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
116 			      unsigned int next_freq)
117 {
118 	struct cpufreq_policy *policy = sg_policy->policy;
119 	int cpu;
120 
121 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
122 		return;
123 
124 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
125 	if (!next_freq)
126 		return;
127 
128 	policy->cur = next_freq;
129 
130 	if (trace_cpu_frequency_enabled()) {
131 		for_each_cpu(cpu, policy->cpus)
132 			trace_cpu_frequency(next_freq, cpu);
133 	}
134 }
135 
sugov_deferred_update(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)136 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
137 				  unsigned int next_freq)
138 {
139 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
140 		return;
141 
142 	if (!sg_policy->work_in_progress) {
143 		sg_policy->work_in_progress = true;
144 		irq_work_queue(&sg_policy->irq_work);
145 	}
146 }
147 
148 /**
149  * get_next_freq - Compute a new frequency for a given cpufreq policy.
150  * @sg_policy: schedutil policy object to compute the new frequency for.
151  * @util: Current CPU utilization.
152  * @max: CPU capacity.
153  *
154  * If the utilization is frequency-invariant, choose the new frequency to be
155  * proportional to it, that is
156  *
157  * next_freq = C * max_freq * util / max
158  *
159  * Otherwise, approximate the would-be frequency-invariant utilization by
160  * util_raw * (curr_freq / max_freq) which leads to
161  *
162  * next_freq = C * curr_freq * util_raw / max
163  *
164  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
165  *
166  * The lowest driver-supported frequency which is equal or greater than the raw
167  * next_freq (as calculated above) is returned, subject to policy min/max and
168  * cpufreq driver limitations.
169  */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)170 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
171 				  unsigned long util, unsigned long max)
172 {
173 	struct cpufreq_policy *policy = sg_policy->policy;
174 	unsigned int freq = arch_scale_freq_invariant() ?
175 				policy->cpuinfo.max_freq : policy->cur;
176 	unsigned long next_freq = 0;
177 
178 	trace_android_vh_map_util_freq(util, freq, max, &next_freq);
179 	if (next_freq)
180 		freq = next_freq;
181 	else
182 		freq = map_util_freq(util, freq, max);
183 
184 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
185 		return sg_policy->next_freq;
186 
187 	sg_policy->need_freq_update = false;
188 	sg_policy->cached_raw_freq = freq;
189 	return cpufreq_driver_resolve_freq(policy, freq);
190 }
191 
192 /*
193  * This function computes an effective utilization for the given CPU, to be
194  * used for frequency selection given the linear relation: f = u * f_max.
195  *
196  * The scheduler tracks the following metrics:
197  *
198  *   cpu_util_{cfs,rt,dl,irq}()
199  *   cpu_bw_dl()
200  *
201  * Where the cfs,rt and dl util numbers are tracked with the same metric and
202  * synchronized windows and are thus directly comparable.
203  *
204  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
205  * which excludes things like IRQ and steal-time. These latter are then accrued
206  * in the irq utilization.
207  *
208  * The DL bandwidth number otoh is not a measured metric but a value computed
209  * based on the task model parameters and gives the minimal utilization
210  * required to meet deadlines.
211  */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)212 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
213 				 unsigned long max, enum schedutil_type type,
214 				 struct task_struct *p)
215 {
216 	unsigned long dl_util, util, irq;
217 	struct rq *rq = cpu_rq(cpu);
218 
219 	if (!uclamp_is_used() &&
220 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
221 		return max;
222 	}
223 
224 	/*
225 	 * Early check to see if IRQ/steal time saturates the CPU, can be
226 	 * because of inaccuracies in how we track these -- see
227 	 * update_irq_load_avg().
228 	 */
229 	irq = cpu_util_irq(rq);
230 	if (unlikely(irq >= max))
231 		return max;
232 
233 	/*
234 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
235 	 * CFS tasks and we use the same metric to track the effective
236 	 * utilization (PELT windows are synchronized) we can directly add them
237 	 * to obtain the CPU's actual utilization.
238 	 *
239 	 * CFS and RT utilization can be boosted or capped, depending on
240 	 * utilization clamp constraints requested by currently RUNNABLE
241 	 * tasks.
242 	 * When there are no CFS RUNNABLE tasks, clamps are released and
243 	 * frequency will be gracefully reduced with the utilization decay.
244 	 */
245 	util = util_cfs + cpu_util_rt(rq);
246 	if (type == FREQUENCY_UTIL)
247 		util = uclamp_rq_util_with(rq, util, p);
248 
249 	dl_util = cpu_util_dl(rq);
250 
251 	/*
252 	 * For frequency selection we do not make cpu_util_dl() a permanent part
253 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
254 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
255 	 * that we select f_max when there is no idle time.
256 	 *
257 	 * NOTE: numerical errors or stop class might cause us to not quite hit
258 	 * saturation when we should -- something for later.
259 	 */
260 	if (util + dl_util >= max)
261 		return max;
262 
263 	/*
264 	 * OTOH, for energy computation we need the estimated running time, so
265 	 * include util_dl and ignore dl_bw.
266 	 */
267 	if (type == ENERGY_UTIL)
268 		util += dl_util;
269 
270 	/*
271 	 * There is still idle time; further improve the number by using the
272 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
273 	 * need to scale the task numbers:
274 	 *
275 	 *              max - irq
276 	 *   U' = irq + --------- * U
277 	 *                 max
278 	 */
279 	util = scale_irq_capacity(util, irq, max);
280 	util += irq;
281 
282 	/*
283 	 * Bandwidth required by DEADLINE must always be granted while, for
284 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
285 	 * to gracefully reduce the frequency when no tasks show up for longer
286 	 * periods of time.
287 	 *
288 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
289 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
290 	 * an interface. So, we only do the latter for now.
291 	 */
292 	if (type == FREQUENCY_UTIL)
293 		util += cpu_bw_dl(rq);
294 
295 	return min(max, util);
296 }
297 
sugov_get_util(struct sugov_cpu * sg_cpu)298 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
299 {
300 	struct rq *rq = cpu_rq(sg_cpu->cpu);
301 	unsigned long util = cpu_util_cfs(rq);
302 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
303 
304 	sg_cpu->max = max;
305 	sg_cpu->bw_dl = cpu_bw_dl(rq);
306 
307 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
308 }
309 
310 /**
311  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
312  * @sg_cpu: the sugov data for the CPU to boost
313  * @time: the update time from the caller
314  * @set_iowait_boost: true if an IO boost has been requested
315  *
316  * The IO wait boost of a task is disabled after a tick since the last update
317  * of a CPU. If a new IO wait boost is requested after more then a tick, then
318  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
319  * efficiency by ignoring sporadic wakeups from IO.
320  */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)321 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
322 			       bool set_iowait_boost)
323 {
324 	s64 delta_ns = time - sg_cpu->last_update;
325 
326 	/* Reset boost only if a tick has elapsed since last request */
327 	if (delta_ns <= TICK_NSEC)
328 		return false;
329 
330 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
331 	sg_cpu->iowait_boost_pending = set_iowait_boost;
332 
333 	return true;
334 }
335 
336 /**
337  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
338  * @sg_cpu: the sugov data for the CPU to boost
339  * @time: the update time from the caller
340  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
341  *
342  * Each time a task wakes up after an IO operation, the CPU utilization can be
343  * boosted to a certain utilization which doubles at each "frequent and
344  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
345  * of the maximum OPP.
346  *
347  * To keep doubling, an IO boost has to be requested at least once per tick,
348  * otherwise we restart from the utilization of the minimum OPP.
349  */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)350 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
351 			       unsigned int flags)
352 {
353 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
354 
355 	/* Reset boost if the CPU appears to have been idle enough */
356 	if (sg_cpu->iowait_boost &&
357 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
358 		return;
359 
360 	/* Boost only tasks waking up after IO */
361 	if (!set_iowait_boost)
362 		return;
363 
364 	/* Ensure boost doubles only one time at each request */
365 	if (sg_cpu->iowait_boost_pending)
366 		return;
367 	sg_cpu->iowait_boost_pending = true;
368 
369 	/* Double the boost at each request */
370 	if (sg_cpu->iowait_boost) {
371 		sg_cpu->iowait_boost =
372 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
373 		return;
374 	}
375 
376 	/* First wakeup after IO: start with minimum boost */
377 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
378 }
379 
380 /**
381  * sugov_iowait_apply() - Apply the IO boost to a CPU.
382  * @sg_cpu: the sugov data for the cpu to boost
383  * @time: the update time from the caller
384  * @util: the utilization to (eventually) boost
385  * @max: the maximum value the utilization can be boosted to
386  *
387  * A CPU running a task which woken up after an IO operation can have its
388  * utilization boosted to speed up the completion of those IO operations.
389  * The IO boost value is increased each time a task wakes up from IO, in
390  * sugov_iowait_apply(), and it's instead decreased by this function,
391  * each time an increase has not been requested (!iowait_boost_pending).
392  *
393  * A CPU which also appears to have been idle for at least one tick has also
394  * its IO boost utilization reset.
395  *
396  * This mechanism is designed to boost high frequently IO waiting tasks, while
397  * being more conservative on tasks which does sporadic IO operations.
398  */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long util,unsigned long max)399 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
400 					unsigned long util, unsigned long max)
401 {
402 	unsigned long boost;
403 
404 	/* No boost currently required */
405 	if (!sg_cpu->iowait_boost)
406 		return util;
407 
408 	/* Reset boost if the CPU appears to have been idle enough */
409 	if (sugov_iowait_reset(sg_cpu, time, false))
410 		return util;
411 
412 	if (!sg_cpu->iowait_boost_pending) {
413 		/*
414 		 * No boost pending; reduce the boost value.
415 		 */
416 		sg_cpu->iowait_boost >>= 1;
417 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
418 			sg_cpu->iowait_boost = 0;
419 			return util;
420 		}
421 	}
422 
423 	sg_cpu->iowait_boost_pending = false;
424 
425 	/*
426 	 * @util is already in capacity scale; convert iowait_boost
427 	 * into the same scale so we can compare.
428 	 */
429 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
430 	return max(boost, util);
431 }
432 
433 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)434 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
435 {
436 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
437 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
438 
439 	sg_cpu->saved_idle_calls = idle_calls;
440 	return ret;
441 }
442 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)443 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
444 #endif /* CONFIG_NO_HZ_COMMON */
445 
446 /*
447  * Make sugov_should_update_freq() ignore the rate limit when DL
448  * has increased the utilization.
449  */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu,struct sugov_policy * sg_policy)450 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
451 {
452 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
453 		sg_policy->limits_changed = true;
454 }
455 
sugov_update_single(struct update_util_data * hook,u64 time,unsigned int flags)456 static void sugov_update_single(struct update_util_data *hook, u64 time,
457 				unsigned int flags)
458 {
459 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
460 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
461 	unsigned long util, max;
462 	unsigned int next_f;
463 	bool busy;
464 
465 	sugov_iowait_boost(sg_cpu, time, flags);
466 	sg_cpu->last_update = time;
467 
468 	ignore_dl_rate_limit(sg_cpu, sg_policy);
469 
470 	if (!sugov_should_update_freq(sg_policy, time))
471 		return;
472 
473 	/* Limits may have changed, don't skip frequency update */
474 	busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
475 
476 	util = sugov_get_util(sg_cpu);
477 	max = sg_cpu->max;
478 	util = sugov_iowait_apply(sg_cpu, time, util, max);
479 	next_f = get_next_freq(sg_policy, util, max);
480 	/*
481 	 * Do not reduce the frequency if the CPU has not been idle
482 	 * recently, as the reduction is likely to be premature then.
483 	 */
484 	if (busy && next_f < sg_policy->next_freq) {
485 		next_f = sg_policy->next_freq;
486 
487 		/* Reset cached freq as next_freq has changed */
488 		sg_policy->cached_raw_freq = 0;
489 	}
490 
491 	/*
492 	 * This code runs under rq->lock for the target CPU, so it won't run
493 	 * concurrently on two different CPUs for the same target and it is not
494 	 * necessary to acquire the lock in the fast switch case.
495 	 */
496 	if (sg_policy->policy->fast_switch_enabled) {
497 		sugov_fast_switch(sg_policy, time, next_f);
498 	} else {
499 		raw_spin_lock(&sg_policy->update_lock);
500 		sugov_deferred_update(sg_policy, time, next_f);
501 		raw_spin_unlock(&sg_policy->update_lock);
502 	}
503 }
504 
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)505 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
506 {
507 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
508 	struct cpufreq_policy *policy = sg_policy->policy;
509 	unsigned long util = 0, max = 1;
510 	unsigned int j;
511 
512 	for_each_cpu(j, policy->cpus) {
513 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
514 		unsigned long j_util, j_max;
515 
516 		j_util = sugov_get_util(j_sg_cpu);
517 		j_max = j_sg_cpu->max;
518 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
519 
520 		if (j_util * max > j_max * util) {
521 			util = j_util;
522 			max = j_max;
523 		}
524 	}
525 
526 	return get_next_freq(sg_policy, util, max);
527 }
528 
529 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)530 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
531 {
532 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
533 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
534 	unsigned int next_f;
535 
536 	raw_spin_lock(&sg_policy->update_lock);
537 
538 	sugov_iowait_boost(sg_cpu, time, flags);
539 	sg_cpu->last_update = time;
540 
541 	ignore_dl_rate_limit(sg_cpu, sg_policy);
542 
543 	if (sugov_should_update_freq(sg_policy, time)) {
544 		next_f = sugov_next_freq_shared(sg_cpu, time);
545 
546 		if (sg_policy->policy->fast_switch_enabled)
547 			sugov_fast_switch(sg_policy, time, next_f);
548 		else
549 			sugov_deferred_update(sg_policy, time, next_f);
550 	}
551 
552 	raw_spin_unlock(&sg_policy->update_lock);
553 }
554 
sugov_work(struct kthread_work * work)555 static void sugov_work(struct kthread_work *work)
556 {
557 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
558 	unsigned int freq;
559 	unsigned long flags;
560 
561 	/*
562 	 * Hold sg_policy->update_lock shortly to handle the case where:
563 	 * incase sg_policy->next_freq is read here, and then updated by
564 	 * sugov_deferred_update() just before work_in_progress is set to false
565 	 * here, we may miss queueing the new update.
566 	 *
567 	 * Note: If a work was queued after the update_lock is released,
568 	 * sugov_work() will just be called again by kthread_work code; and the
569 	 * request will be proceed before the sugov thread sleeps.
570 	 */
571 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
572 	freq = sg_policy->next_freq;
573 	sg_policy->work_in_progress = false;
574 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
575 
576 	mutex_lock(&sg_policy->work_lock);
577 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
578 	mutex_unlock(&sg_policy->work_lock);
579 }
580 
sugov_irq_work(struct irq_work * irq_work)581 static void sugov_irq_work(struct irq_work *irq_work)
582 {
583 	struct sugov_policy *sg_policy;
584 
585 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
586 
587 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
588 }
589 
590 /************************** sysfs interface ************************/
591 
592 static struct sugov_tunables *global_tunables;
593 static DEFINE_MUTEX(global_tunables_lock);
594 
to_sugov_tunables(struct gov_attr_set * attr_set)595 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
596 {
597 	return container_of(attr_set, struct sugov_tunables, attr_set);
598 }
599 
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)600 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
601 {
602 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
603 
604 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
605 }
606 
607 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)608 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
609 {
610 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
611 	struct sugov_policy *sg_policy;
612 	unsigned int rate_limit_us;
613 
614 	if (kstrtouint(buf, 10, &rate_limit_us))
615 		return -EINVAL;
616 
617 	tunables->rate_limit_us = rate_limit_us;
618 
619 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
620 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
621 
622 	return count;
623 }
624 
625 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
626 
627 static struct attribute *sugov_attrs[] = {
628 	&rate_limit_us.attr,
629 	NULL
630 };
631 ATTRIBUTE_GROUPS(sugov);
632 
sugov_tunables_free(struct kobject * kobj)633 static void sugov_tunables_free(struct kobject *kobj)
634 {
635 	struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
636 
637 	kfree(to_sugov_tunables(attr_set));
638 }
639 
640 static struct kobj_type sugov_tunables_ktype = {
641 	.default_groups = sugov_groups,
642 	.sysfs_ops = &governor_sysfs_ops,
643 	.release = &sugov_tunables_free,
644 };
645 
646 /********************** cpufreq governor interface *********************/
647 
648 struct cpufreq_governor schedutil_gov;
649 
sugov_policy_alloc(struct cpufreq_policy * policy)650 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
651 {
652 	struct sugov_policy *sg_policy;
653 
654 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
655 	if (!sg_policy)
656 		return NULL;
657 
658 	sg_policy->policy = policy;
659 	raw_spin_lock_init(&sg_policy->update_lock);
660 	return sg_policy;
661 }
662 
sugov_policy_free(struct sugov_policy * sg_policy)663 static void sugov_policy_free(struct sugov_policy *sg_policy)
664 {
665 	kfree(sg_policy);
666 }
667 
sugov_kthread_create(struct sugov_policy * sg_policy)668 static int sugov_kthread_create(struct sugov_policy *sg_policy)
669 {
670 	struct task_struct *thread;
671 	struct sched_attr attr = {
672 		.size		= sizeof(struct sched_attr),
673 		.sched_policy	= SCHED_DEADLINE,
674 		.sched_flags	= SCHED_FLAG_SUGOV,
675 		.sched_nice	= 0,
676 		.sched_priority	= 0,
677 		/*
678 		 * Fake (unused) bandwidth; workaround to "fix"
679 		 * priority inheritance.
680 		 */
681 		.sched_runtime	=  1000000,
682 		.sched_deadline = 10000000,
683 		.sched_period	= 10000000,
684 	};
685 	struct cpufreq_policy *policy = sg_policy->policy;
686 	int ret;
687 
688 	/* kthread only required for slow path */
689 	if (policy->fast_switch_enabled)
690 		return 0;
691 
692 	kthread_init_work(&sg_policy->work, sugov_work);
693 	kthread_init_worker(&sg_policy->worker);
694 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
695 				"sugov:%d",
696 				cpumask_first(policy->related_cpus));
697 	if (IS_ERR(thread)) {
698 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
699 		return PTR_ERR(thread);
700 	}
701 
702 	ret = sched_setattr_nocheck(thread, &attr);
703 	if (ret) {
704 		kthread_stop(thread);
705 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
706 		return ret;
707 	}
708 
709 	sg_policy->thread = thread;
710 	kthread_bind_mask(thread, policy->related_cpus);
711 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
712 	mutex_init(&sg_policy->work_lock);
713 
714 	wake_up_process(thread);
715 
716 	return 0;
717 }
718 
sugov_kthread_stop(struct sugov_policy * sg_policy)719 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
720 {
721 	/* kthread only required for slow path */
722 	if (sg_policy->policy->fast_switch_enabled)
723 		return;
724 
725 	kthread_flush_worker(&sg_policy->worker);
726 	kthread_stop(sg_policy->thread);
727 	mutex_destroy(&sg_policy->work_lock);
728 }
729 
sugov_tunables_alloc(struct sugov_policy * sg_policy)730 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
731 {
732 	struct sugov_tunables *tunables;
733 
734 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
735 	if (tunables) {
736 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
737 		if (!have_governor_per_policy())
738 			global_tunables = tunables;
739 	}
740 	return tunables;
741 }
742 
sugov_clear_global_tunables(void)743 static void sugov_clear_global_tunables(void)
744 {
745 	if (!have_governor_per_policy())
746 		global_tunables = NULL;
747 }
748 
sugov_init(struct cpufreq_policy * policy)749 static int sugov_init(struct cpufreq_policy *policy)
750 {
751 	struct sugov_policy *sg_policy;
752 	struct sugov_tunables *tunables;
753 	int ret = 0;
754 
755 	/* State should be equivalent to EXIT */
756 	if (policy->governor_data)
757 		return -EBUSY;
758 
759 	cpufreq_enable_fast_switch(policy);
760 
761 	sg_policy = sugov_policy_alloc(policy);
762 	if (!sg_policy) {
763 		ret = -ENOMEM;
764 		goto disable_fast_switch;
765 	}
766 
767 	ret = sugov_kthread_create(sg_policy);
768 	if (ret)
769 		goto free_sg_policy;
770 
771 	mutex_lock(&global_tunables_lock);
772 
773 	if (global_tunables) {
774 		if (WARN_ON(have_governor_per_policy())) {
775 			ret = -EINVAL;
776 			goto stop_kthread;
777 		}
778 		policy->governor_data = sg_policy;
779 		sg_policy->tunables = global_tunables;
780 
781 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
782 		goto out;
783 	}
784 
785 	tunables = sugov_tunables_alloc(sg_policy);
786 	if (!tunables) {
787 		ret = -ENOMEM;
788 		goto stop_kthread;
789 	}
790 
791 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
792 
793 	policy->governor_data = sg_policy;
794 	sg_policy->tunables = tunables;
795 
796 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
797 				   get_governor_parent_kobj(policy), "%s",
798 				   schedutil_gov.name);
799 	if (ret)
800 		goto fail;
801 
802 out:
803 	mutex_unlock(&global_tunables_lock);
804 	return 0;
805 
806 fail:
807 	kobject_put(&tunables->attr_set.kobj);
808 	policy->governor_data = NULL;
809 	sugov_clear_global_tunables();
810 
811 stop_kthread:
812 	sugov_kthread_stop(sg_policy);
813 	mutex_unlock(&global_tunables_lock);
814 
815 free_sg_policy:
816 	sugov_policy_free(sg_policy);
817 
818 disable_fast_switch:
819 	cpufreq_disable_fast_switch(policy);
820 
821 	pr_err("initialization failed (error %d)\n", ret);
822 	return ret;
823 }
824 
sugov_exit(struct cpufreq_policy * policy)825 static void sugov_exit(struct cpufreq_policy *policy)
826 {
827 	struct sugov_policy *sg_policy = policy->governor_data;
828 	struct sugov_tunables *tunables = sg_policy->tunables;
829 	unsigned int count;
830 
831 	mutex_lock(&global_tunables_lock);
832 
833 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
834 	policy->governor_data = NULL;
835 	if (!count)
836 		sugov_clear_global_tunables();
837 
838 	mutex_unlock(&global_tunables_lock);
839 
840 	sugov_kthread_stop(sg_policy);
841 	sugov_policy_free(sg_policy);
842 	cpufreq_disable_fast_switch(policy);
843 }
844 
sugov_start(struct cpufreq_policy * policy)845 static int sugov_start(struct cpufreq_policy *policy)
846 {
847 	struct sugov_policy *sg_policy = policy->governor_data;
848 	unsigned int cpu;
849 
850 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
851 	sg_policy->last_freq_update_time	= 0;
852 	sg_policy->next_freq			= 0;
853 	sg_policy->work_in_progress		= false;
854 	sg_policy->limits_changed		= false;
855 	sg_policy->need_freq_update		= false;
856 	sg_policy->cached_raw_freq		= 0;
857 
858 	for_each_cpu(cpu, policy->cpus) {
859 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
860 
861 		memset(sg_cpu, 0, sizeof(*sg_cpu));
862 		sg_cpu->cpu			= cpu;
863 		sg_cpu->sg_policy		= sg_policy;
864 	}
865 
866 	for_each_cpu(cpu, policy->cpus) {
867 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
868 
869 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
870 					     policy_is_shared(policy) ?
871 							sugov_update_shared :
872 							sugov_update_single);
873 	}
874 	return 0;
875 }
876 
sugov_stop(struct cpufreq_policy * policy)877 static void sugov_stop(struct cpufreq_policy *policy)
878 {
879 	struct sugov_policy *sg_policy = policy->governor_data;
880 	unsigned int cpu;
881 
882 	for_each_cpu(cpu, policy->cpus)
883 		cpufreq_remove_update_util_hook(cpu);
884 
885 	synchronize_rcu();
886 
887 	if (!policy->fast_switch_enabled) {
888 		irq_work_sync(&sg_policy->irq_work);
889 		kthread_cancel_work_sync(&sg_policy->work);
890 	}
891 }
892 
sugov_limits(struct cpufreq_policy * policy)893 static void sugov_limits(struct cpufreq_policy *policy)
894 {
895 	struct sugov_policy *sg_policy = policy->governor_data;
896 
897 	if (!policy->fast_switch_enabled) {
898 		mutex_lock(&sg_policy->work_lock);
899 		cpufreq_policy_apply_limits(policy);
900 		mutex_unlock(&sg_policy->work_lock);
901 	}
902 
903 	sg_policy->limits_changed = true;
904 }
905 
906 struct cpufreq_governor schedutil_gov = {
907 	.name			= "schedutil",
908 	.owner			= THIS_MODULE,
909 	.dynamic_switching	= true,
910 	.init			= sugov_init,
911 	.exit			= sugov_exit,
912 	.start			= sugov_start,
913 	.stop			= sugov_stop,
914 	.limits			= sugov_limits,
915 };
916 
917 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)918 struct cpufreq_governor *cpufreq_default_governor(void)
919 {
920 	return &schedutil_gov;
921 }
922 #endif
923 
sugov_register(void)924 static int __init sugov_register(void)
925 {
926 	return cpufreq_register_governor(&schedutil_gov);
927 }
928 core_initcall(sugov_register);
929 
930 #ifdef CONFIG_ENERGY_MODEL
931 extern bool sched_energy_update;
932 extern struct mutex sched_energy_mutex;
933 
rebuild_sd_workfn(struct work_struct * work)934 static void rebuild_sd_workfn(struct work_struct *work)
935 {
936 	mutex_lock(&sched_energy_mutex);
937 	sched_energy_update = true;
938 	rebuild_sched_domains();
939 	sched_energy_update = false;
940 	mutex_unlock(&sched_energy_mutex);
941 }
942 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
943 
944 /*
945  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
946  * on governor changes to make sure the scheduler knows about it.
947  */
sched_cpufreq_governor_change(struct cpufreq_policy * policy,struct cpufreq_governor * old_gov)948 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
949 				  struct cpufreq_governor *old_gov)
950 {
951 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
952 		/*
953 		 * When called from the cpufreq_register_driver() path, the
954 		 * cpu_hotplug_lock is already held, so use a work item to
955 		 * avoid nested locking in rebuild_sched_domains().
956 		 */
957 		schedule_work(&rebuild_sd_work);
958 	}
959 
960 }
961 #endif
962