• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74 
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77 
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
82 #endif
83 
84 struct rq;
85 struct cpuidle_state;
86 
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED	1
89 #define TASK_ON_RQ_MIGRATING	2
90 
91 extern __read_mostly int scheduler_running;
92 
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
95 
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98 
99 /*
100  * Helpers for converting nanosecond timing to jiffy resolution
101  */
102 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 
104 /*
105  * Increase resolution of nice-level calculations for 64-bit architectures.
106  * The extra resolution improves shares distribution and load balancing of
107  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108  * hierarchies, especially on larger systems. This is not a user-visible change
109  * and does not change the user-interface for setting shares/weights.
110  *
111  * We increase resolution only if we have enough bits to allow this increased
112  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113  * are pretty high and the returns do not justify the increased costs.
114  *
115  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116  * increase coverage and consistency always enable it on 64-bit platforms.
117  */
118 #ifdef CONFIG_64BIT
119 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) \
122 ({ \
123 	unsigned long __w = (w); \
124 	if (__w) \
125 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
126 	__w; \
127 })
128 #else
129 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w)		(w)
131 # define scale_load_down(w)	(w)
132 #endif
133 
134 /*
135  * Task weight (visible to users) and its load (invisible to users) have
136  * independent resolution, but they should be well calibrated. We use
137  * scale_load() and scale_load_down(w) to convert between them. The
138  * following must be true:
139  *
140  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141  *
142  */
143 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
144 
145 /*
146  * Single value that decides SCHED_DEADLINE internal math precision.
147  * 10 -> just above 1us
148  * 9  -> just above 0.5us
149  */
150 #define DL_SCALE		10
151 
152 /*
153  * Single value that denotes runtime == period, ie unlimited time.
154  */
155 #define RUNTIME_INF		((u64)~0ULL)
156 
idle_policy(int policy)157 static inline int idle_policy(int policy)
158 {
159 	return policy == SCHED_IDLE;
160 }
fair_policy(int policy)161 static inline int fair_policy(int policy)
162 {
163 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164 }
165 
rt_policy(int policy)166 static inline int rt_policy(int policy)
167 {
168 	return policy == SCHED_FIFO || policy == SCHED_RR;
169 }
170 
dl_policy(int policy)171 static inline int dl_policy(int policy)
172 {
173 	return policy == SCHED_DEADLINE;
174 }
valid_policy(int policy)175 static inline bool valid_policy(int policy)
176 {
177 	return idle_policy(policy) || fair_policy(policy) ||
178 		rt_policy(policy) || dl_policy(policy);
179 }
180 
task_has_idle_policy(struct task_struct * p)181 static inline int task_has_idle_policy(struct task_struct *p)
182 {
183 	return idle_policy(p->policy);
184 }
185 
task_has_rt_policy(struct task_struct * p)186 static inline int task_has_rt_policy(struct task_struct *p)
187 {
188 	return rt_policy(p->policy);
189 }
190 
task_has_dl_policy(struct task_struct * p)191 static inline int task_has_dl_policy(struct task_struct *p)
192 {
193 	return dl_policy(p->policy);
194 }
195 
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197 
198 /*
199  * !! For sched_setattr_nocheck() (kernel) only !!
200  *
201  * This is actually gross. :(
202  *
203  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204  * tasks, but still be able to sleep. We need this on platforms that cannot
205  * atomically change clock frequency. Remove once fast switching will be
206  * available on such platforms.
207  *
208  * SUGOV stands for SchedUtil GOVernor.
209  */
210 #define SCHED_FLAG_SUGOV	0x10000000
211 
212 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
213 
dl_entity_is_special(struct sched_dl_entity * dl_se)214 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
215 {
216 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
217 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
218 #else
219 	return false;
220 #endif
221 }
222 
223 /*
224  * Tells if entity @a should preempt entity @b.
225  */
226 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)227 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
228 {
229 	return dl_entity_is_special(a) ||
230 	       dl_time_before(a->deadline, b->deadline);
231 }
232 
233 /*
234  * This is the priority-queue data structure of the RT scheduling class:
235  */
236 struct rt_prio_array {
237 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
238 	struct list_head queue[MAX_RT_PRIO];
239 };
240 
241 struct rt_bandwidth {
242 	/* nests inside the rq lock: */
243 	raw_spinlock_t		rt_runtime_lock;
244 	ktime_t			rt_period;
245 	u64			rt_runtime;
246 	struct hrtimer		rt_period_timer;
247 	unsigned int		rt_period_active;
248 };
249 
250 void __dl_clear_params(struct task_struct *p);
251 
252 struct dl_bandwidth {
253 	raw_spinlock_t		dl_runtime_lock;
254 	u64			dl_runtime;
255 	u64			dl_period;
256 };
257 
dl_bandwidth_enabled(void)258 static inline int dl_bandwidth_enabled(void)
259 {
260 	return sysctl_sched_rt_runtime >= 0;
261 }
262 
263 /*
264  * To keep the bandwidth of -deadline tasks under control
265  * we need some place where:
266  *  - store the maximum -deadline bandwidth of each cpu;
267  *  - cache the fraction of bandwidth that is currently allocated in
268  *    each root domain;
269  *
270  * This is all done in the data structure below. It is similar to the
271  * one used for RT-throttling (rt_bandwidth), with the main difference
272  * that, since here we are only interested in admission control, we
273  * do not decrease any runtime while the group "executes", neither we
274  * need a timer to replenish it.
275  *
276  * With respect to SMP, bandwidth is given on a per root domain basis,
277  * meaning that:
278  *  - bw (< 100%) is the deadline bandwidth of each CPU;
279  *  - total_bw is the currently allocated bandwidth in each root domain;
280  */
281 struct dl_bw {
282 	raw_spinlock_t		lock;
283 	u64			bw;
284 	u64			total_bw;
285 };
286 
287 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
288 
289 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)290 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
291 {
292 	dl_b->total_bw -= tsk_bw;
293 	__dl_update(dl_b, (s32)tsk_bw / cpus);
294 }
295 
296 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)297 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
298 {
299 	dl_b->total_bw += tsk_bw;
300 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
301 }
302 
303 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)304 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
305 {
306 	return dl_b->bw != -1 &&
307 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
308 }
309 
310 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
311 extern void init_dl_bw(struct dl_bw *dl_b);
312 extern int  sched_dl_global_validate(void);
313 extern void sched_dl_do_global(void);
314 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
315 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
316 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
317 extern bool __checkparam_dl(const struct sched_attr *attr);
318 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
319 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
320 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
321 extern bool dl_cpu_busy(unsigned int cpu);
322 
323 #ifdef CONFIG_CGROUP_SCHED
324 
325 #include <linux/cgroup.h>
326 #include <linux/psi.h>
327 
328 struct cfs_rq;
329 struct rt_rq;
330 
331 extern struct list_head task_groups;
332 
333 struct cfs_bandwidth {
334 #ifdef CONFIG_CFS_BANDWIDTH
335 	raw_spinlock_t		lock;
336 	ktime_t			period;
337 	u64			quota;
338 	u64			runtime;
339 	s64			hierarchical_quota;
340 
341 	u8			idle;
342 	u8			period_active;
343 	u8			distribute_running;
344 	u8			slack_started;
345 	struct hrtimer		period_timer;
346 	struct hrtimer		slack_timer;
347 	struct list_head	throttled_cfs_rq;
348 
349 	/* Statistics: */
350 	int			nr_periods;
351 	int			nr_throttled;
352 	u64			throttled_time;
353 #endif
354 };
355 
356 /* Task group related information */
357 struct task_group {
358 	struct cgroup_subsys_state css;
359 
360 #ifdef CONFIG_FAIR_GROUP_SCHED
361 	/* schedulable entities of this group on each CPU */
362 	struct sched_entity	**se;
363 	/* runqueue "owned" by this group on each CPU */
364 	struct cfs_rq		**cfs_rq;
365 	unsigned long		shares;
366 
367 #ifdef	CONFIG_SMP
368 	/*
369 	 * load_avg can be heavily contended at clock tick time, so put
370 	 * it in its own cacheline separated from the fields above which
371 	 * will also be accessed at each tick.
372 	 */
373 	atomic_long_t		load_avg ____cacheline_aligned;
374 #endif
375 #endif
376 
377 #ifdef CONFIG_RT_GROUP_SCHED
378 	struct sched_rt_entity	**rt_se;
379 	struct rt_rq		**rt_rq;
380 
381 	struct rt_bandwidth	rt_bandwidth;
382 #endif
383 
384 	struct rcu_head		rcu;
385 	struct list_head	list;
386 
387 	struct task_group	*parent;
388 	struct list_head	siblings;
389 	struct list_head	children;
390 
391 #ifdef CONFIG_SCHED_AUTOGROUP
392 	struct autogroup	*autogroup;
393 #endif
394 
395 	struct cfs_bandwidth	cfs_bandwidth;
396 
397 #ifdef CONFIG_UCLAMP_TASK_GROUP
398 	/* The two decimal precision [%] value requested from user-space */
399 	unsigned int		uclamp_pct[UCLAMP_CNT];
400 	/* Clamp values requested for a task group */
401 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
402 	/* Effective clamp values used for a task group */
403 	struct uclamp_se	uclamp[UCLAMP_CNT];
404 	/* Latency-sensitive flag used for a task group */
405 	unsigned int		latency_sensitive;
406 #endif
407 
408 };
409 
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
412 
413 /*
414  * A weight of 0 or 1 can cause arithmetics problems.
415  * A weight of a cfs_rq is the sum of weights of which entities
416  * are queued on this cfs_rq, so a weight of a entity should not be
417  * too large, so as the shares value of a task group.
418  * (The default weight is 1024 - so there's no practical
419  *  limitation from this.)
420  */
421 #define MIN_SHARES		(1UL <<  1)
422 #define MAX_SHARES		(1UL << 18)
423 #endif
424 
425 typedef int (*tg_visitor)(struct task_group *, void *);
426 
427 extern int walk_tg_tree_from(struct task_group *from,
428 			     tg_visitor down, tg_visitor up, void *data);
429 
430 /*
431  * Iterate the full tree, calling @down when first entering a node and @up when
432  * leaving it for the final time.
433  *
434  * Caller must hold rcu_lock or sufficient equivalent.
435  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)436 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
437 {
438 	return walk_tg_tree_from(&root_task_group, down, up, data);
439 }
440 
441 extern int tg_nop(struct task_group *tg, void *data);
442 
443 extern void free_fair_sched_group(struct task_group *tg);
444 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
445 extern void online_fair_sched_group(struct task_group *tg);
446 extern void unregister_fair_sched_group(struct task_group *tg);
447 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
448 			struct sched_entity *se, int cpu,
449 			struct sched_entity *parent);
450 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
451 
452 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
453 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
454 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
455 
456 extern void free_rt_sched_group(struct task_group *tg);
457 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
458 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
459 		struct sched_rt_entity *rt_se, int cpu,
460 		struct sched_rt_entity *parent);
461 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
462 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
463 extern long sched_group_rt_runtime(struct task_group *tg);
464 extern long sched_group_rt_period(struct task_group *tg);
465 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
466 
467 extern struct task_group *sched_create_group(struct task_group *parent);
468 extern void sched_online_group(struct task_group *tg,
469 			       struct task_group *parent);
470 extern void sched_destroy_group(struct task_group *tg);
471 extern void sched_offline_group(struct task_group *tg);
472 
473 extern void sched_move_task(struct task_struct *tsk);
474 
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
477 
478 #ifdef CONFIG_SMP
479 extern void set_task_rq_fair(struct sched_entity *se,
480 			     struct cfs_rq *prev, struct cfs_rq *next);
481 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)482 static inline void set_task_rq_fair(struct sched_entity *se,
483 			     struct cfs_rq *prev, struct cfs_rq *next) { }
484 #endif /* CONFIG_SMP */
485 #endif /* CONFIG_FAIR_GROUP_SCHED */
486 
487 #else /* CONFIG_CGROUP_SCHED */
488 
489 struct cfs_bandwidth { };
490 
491 #endif	/* CONFIG_CGROUP_SCHED */
492 
493 /* CFS-related fields in a runqueue */
494 struct cfs_rq {
495 	struct load_weight	load;
496 	unsigned long		runnable_weight;
497 	unsigned int		nr_running;
498 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
499 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
500 
501 	u64			exec_clock;
502 	u64			min_vruntime;
503 #ifndef CONFIG_64BIT
504 	u64			min_vruntime_copy;
505 #endif
506 
507 	struct rb_root_cached	tasks_timeline;
508 
509 	/*
510 	 * 'curr' points to currently running entity on this cfs_rq.
511 	 * It is set to NULL otherwise (i.e when none are currently running).
512 	 */
513 	struct sched_entity	*curr;
514 	struct sched_entity	*next;
515 	struct sched_entity	*last;
516 	struct sched_entity	*skip;
517 
518 #ifdef	CONFIG_SCHED_DEBUG
519 	unsigned int		nr_spread_over;
520 #endif
521 
522 #ifdef CONFIG_SMP
523 	/*
524 	 * CFS load tracking
525 	 */
526 	struct sched_avg	avg;
527 #ifndef CONFIG_64BIT
528 	u64			load_last_update_time_copy;
529 #endif
530 	struct {
531 		raw_spinlock_t	lock ____cacheline_aligned;
532 		int		nr;
533 		unsigned long	load_avg;
534 		unsigned long	util_avg;
535 		unsigned long	runnable_sum;
536 	} removed;
537 
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 	unsigned long		tg_load_avg_contrib;
540 	long			propagate;
541 	long			prop_runnable_sum;
542 
543 	/*
544 	 *   h_load = weight * f(tg)
545 	 *
546 	 * Where f(tg) is the recursive weight fraction assigned to
547 	 * this group.
548 	 */
549 	unsigned long		h_load;
550 	u64			last_h_load_update;
551 	struct sched_entity	*h_load_next;
552 #endif /* CONFIG_FAIR_GROUP_SCHED */
553 #endif /* CONFIG_SMP */
554 
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
557 
558 	/*
559 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
560 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
561 	 * (like users, containers etc.)
562 	 *
563 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
564 	 * This list is used during load balance.
565 	 */
566 	int			on_list;
567 	struct list_head	leaf_cfs_rq_list;
568 	struct task_group	*tg;	/* group that "owns" this runqueue */
569 
570 #ifdef CONFIG_CFS_BANDWIDTH
571 	int			runtime_enabled;
572 	s64			runtime_remaining;
573 
574 	u64			throttled_clock;
575 	u64			throttled_clock_pelt;
576 	u64			throttled_clock_pelt_time;
577 	int			throttled;
578 	int			throttle_count;
579 	struct list_head	throttled_list;
580 #endif /* CONFIG_CFS_BANDWIDTH */
581 #endif /* CONFIG_FAIR_GROUP_SCHED */
582 };
583 
rt_bandwidth_enabled(void)584 static inline int rt_bandwidth_enabled(void)
585 {
586 	return sysctl_sched_rt_runtime >= 0;
587 }
588 
589 /* RT IPI pull logic requires IRQ_WORK */
590 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
591 # define HAVE_RT_PUSH_IPI
592 #endif
593 
594 /* Real-Time classes' related field in a runqueue: */
595 struct rt_rq {
596 	struct rt_prio_array	active;
597 	unsigned int		rt_nr_running;
598 	unsigned int		rr_nr_running;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 	struct {
601 		int		curr; /* highest queued rt task prio */
602 #ifdef CONFIG_SMP
603 		int		next; /* next highest */
604 #endif
605 	} highest_prio;
606 #endif
607 #ifdef CONFIG_SMP
608 	unsigned long		rt_nr_migratory;
609 	unsigned long		rt_nr_total;
610 	int			overloaded;
611 	struct plist_head	pushable_tasks;
612 
613 #endif /* CONFIG_SMP */
614 	int			rt_queued;
615 
616 	int			rt_throttled;
617 	u64			rt_time;
618 	u64			rt_runtime;
619 	/* Nests inside the rq lock: */
620 	raw_spinlock_t		rt_runtime_lock;
621 
622 #ifdef CONFIG_RT_GROUP_SCHED
623 	unsigned long		rt_nr_boosted;
624 
625 	struct rq		*rq;
626 	struct task_group	*tg;
627 #endif
628 };
629 
rt_rq_is_runnable(struct rt_rq * rt_rq)630 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
631 {
632 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
633 }
634 
635 /* Deadline class' related fields in a runqueue */
636 struct dl_rq {
637 	/* runqueue is an rbtree, ordered by deadline */
638 	struct rb_root_cached	root;
639 
640 	unsigned long		dl_nr_running;
641 
642 #ifdef CONFIG_SMP
643 	/*
644 	 * Deadline values of the currently executing and the
645 	 * earliest ready task on this rq. Caching these facilitates
646 	 * the decision whether or not a ready but not running task
647 	 * should migrate somewhere else.
648 	 */
649 	struct {
650 		u64		curr;
651 		u64		next;
652 	} earliest_dl;
653 
654 	unsigned long		dl_nr_migratory;
655 	int			overloaded;
656 
657 	/*
658 	 * Tasks on this rq that can be pushed away. They are kept in
659 	 * an rb-tree, ordered by tasks' deadlines, with caching
660 	 * of the leftmost (earliest deadline) element.
661 	 */
662 	struct rb_root_cached	pushable_dl_tasks_root;
663 #else
664 	struct dl_bw		dl_bw;
665 #endif
666 	/*
667 	 * "Active utilization" for this runqueue: increased when a
668 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
669 	 * task blocks
670 	 */
671 	u64			running_bw;
672 
673 	/*
674 	 * Utilization of the tasks "assigned" to this runqueue (including
675 	 * the tasks that are in runqueue and the tasks that executed on this
676 	 * CPU and blocked). Increased when a task moves to this runqueue, and
677 	 * decreased when the task moves away (migrates, changes scheduling
678 	 * policy, or terminates).
679 	 * This is needed to compute the "inactive utilization" for the
680 	 * runqueue (inactive utilization = this_bw - running_bw).
681 	 */
682 	u64			this_bw;
683 	u64			extra_bw;
684 
685 	/*
686 	 * Inverse of the fraction of CPU utilization that can be reclaimed
687 	 * by the GRUB algorithm.
688 	 */
689 	u64			bw_ratio;
690 };
691 
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693 /* An entity is a task if it doesn't "own" a runqueue */
694 #define entity_is_task(se)	(!se->my_q)
695 #else
696 #define entity_is_task(se)	1
697 #endif
698 
699 #ifdef CONFIG_SMP
700 /*
701  * XXX we want to get rid of these helpers and use the full load resolution.
702  */
se_weight(struct sched_entity * se)703 static inline long se_weight(struct sched_entity *se)
704 {
705 	return scale_load_down(se->load.weight);
706 }
707 
se_runnable(struct sched_entity * se)708 static inline long se_runnable(struct sched_entity *se)
709 {
710 	return scale_load_down(se->runnable_weight);
711 }
712 
sched_asym_prefer(int a,int b)713 static inline bool sched_asym_prefer(int a, int b)
714 {
715 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
716 }
717 
718 struct perf_domain {
719 	struct em_perf_domain *em_pd;
720 	struct perf_domain *next;
721 	struct rcu_head rcu;
722 };
723 
724 struct max_cpu_capacity {
725 	raw_spinlock_t lock;
726 	unsigned long val;
727 	int cpu;
728 };
729 
730 /* Scheduling group status flags */
731 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
732 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
733 
734 /*
735  * We add the notion of a root-domain which will be used to define per-domain
736  * variables. Each exclusive cpuset essentially defines an island domain by
737  * fully partitioning the member CPUs from any other cpuset. Whenever a new
738  * exclusive cpuset is created, we also create and attach a new root-domain
739  * object.
740  *
741  */
742 struct root_domain {
743 	atomic_t		refcount;
744 	atomic_t		rto_count;
745 	struct rcu_head		rcu;
746 	cpumask_var_t		span;
747 	cpumask_var_t		online;
748 
749 	/*
750 	 * Indicate pullable load on at least one CPU, e.g:
751 	 * - More than one runnable task
752 	 * - Running task is misfit
753 	 */
754 	int			overload;
755 
756 	/* Indicate one or more cpus over-utilized (tipping point) */
757 	int			overutilized;
758 
759 	/*
760 	 * The bit corresponding to a CPU gets set here if such CPU has more
761 	 * than one runnable -deadline task (as it is below for RT tasks).
762 	 */
763 	cpumask_var_t		dlo_mask;
764 	atomic_t		dlo_count;
765 	struct dl_bw		dl_bw;
766 	struct cpudl		cpudl;
767 
768 #ifdef HAVE_RT_PUSH_IPI
769 	/*
770 	 * For IPI pull requests, loop across the rto_mask.
771 	 */
772 	struct irq_work		rto_push_work;
773 	raw_spinlock_t		rto_lock;
774 	/* These are only updated and read within rto_lock */
775 	int			rto_loop;
776 	int			rto_cpu;
777 	/* These atomics are updated outside of a lock */
778 	atomic_t		rto_loop_next;
779 	atomic_t		rto_loop_start;
780 #endif
781 	/*
782 	 * The "RT overload" flag: it gets set if a CPU has more than
783 	 * one runnable RT task.
784 	 */
785 	cpumask_var_t		rto_mask;
786 	struct cpupri		cpupri;
787 
788 	/* Maximum cpu capacity in the system. */
789 	struct max_cpu_capacity max_cpu_capacity;
790 
791 	/*
792 	 * NULL-terminated list of performance domains intersecting with the
793 	 * CPUs of the rd. Protected by RCU.
794 	 */
795 	struct perf_domain __rcu *pd;
796 };
797 
798 extern void init_defrootdomain(void);
799 extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
800 extern int sched_init_domains(const struct cpumask *cpu_map);
801 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
802 extern void sched_get_rd(struct root_domain *rd);
803 extern void sched_put_rd(struct root_domain *rd);
804 
805 #ifdef HAVE_RT_PUSH_IPI
806 extern void rto_push_irq_work_func(struct irq_work *work);
807 #endif
808 #endif /* CONFIG_SMP */
809 
810 #ifdef CONFIG_UCLAMP_TASK
811 /*
812  * struct uclamp_bucket - Utilization clamp bucket
813  * @value: utilization clamp value for tasks on this clamp bucket
814  * @tasks: number of RUNNABLE tasks on this clamp bucket
815  *
816  * Keep track of how many tasks are RUNNABLE for a given utilization
817  * clamp value.
818  */
819 struct uclamp_bucket {
820 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
821 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
822 };
823 
824 /*
825  * struct uclamp_rq - rq's utilization clamp
826  * @value: currently active clamp values for a rq
827  * @bucket: utilization clamp buckets affecting a rq
828  *
829  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
830  * A clamp value is affecting a rq when there is at least one task RUNNABLE
831  * (or actually running) with that value.
832  *
833  * There are up to UCLAMP_CNT possible different clamp values, currently there
834  * are only two: minimum utilization and maximum utilization.
835  *
836  * All utilization clamping values are MAX aggregated, since:
837  * - for util_min: we want to run the CPU at least at the max of the minimum
838  *   utilization required by its currently RUNNABLE tasks.
839  * - for util_max: we want to allow the CPU to run up to the max of the
840  *   maximum utilization allowed by its currently RUNNABLE tasks.
841  *
842  * Since on each system we expect only a limited number of different
843  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
844  * the metrics required to compute all the per-rq utilization clamp values.
845  */
846 struct uclamp_rq {
847 	unsigned int value;
848 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
849 };
850 
851 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
852 #endif /* CONFIG_UCLAMP_TASK */
853 
854 /*
855  * This is the main, per-CPU runqueue data structure.
856  *
857  * Locking rule: those places that want to lock multiple runqueues
858  * (such as the load balancing or the thread migration code), lock
859  * acquire operations must be ordered by ascending &runqueue.
860  */
861 struct rq {
862 	/* runqueue lock: */
863 	raw_spinlock_t		lock;
864 
865 	/*
866 	 * nr_running and cpu_load should be in the same cacheline because
867 	 * remote CPUs use both these fields when doing load calculation.
868 	 */
869 	unsigned int		nr_running;
870 #ifdef CONFIG_NUMA_BALANCING
871 	unsigned int		nr_numa_running;
872 	unsigned int		nr_preferred_running;
873 	unsigned int		numa_migrate_on;
874 #endif
875 #ifdef CONFIG_NO_HZ_COMMON
876 #ifdef CONFIG_SMP
877 	unsigned long		last_load_update_tick;
878 	unsigned long		last_blocked_load_update_tick;
879 	unsigned int		has_blocked_load;
880 #endif /* CONFIG_SMP */
881 	unsigned int		nohz_tick_stopped;
882 	atomic_t nohz_flags;
883 #endif /* CONFIG_NO_HZ_COMMON */
884 
885 	unsigned long		nr_load_updates;
886 	u64			nr_switches;
887 
888 #ifdef CONFIG_UCLAMP_TASK
889 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
890 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
891 	unsigned int		uclamp_flags;
892 #define UCLAMP_FLAG_IDLE 0x01
893 #endif
894 
895 	struct cfs_rq		cfs;
896 	struct rt_rq		rt;
897 	struct dl_rq		dl;
898 
899 #ifdef CONFIG_FAIR_GROUP_SCHED
900 	/* list of leaf cfs_rq on this CPU: */
901 	struct list_head	leaf_cfs_rq_list;
902 	struct list_head	*tmp_alone_branch;
903 #endif /* CONFIG_FAIR_GROUP_SCHED */
904 
905 	/*
906 	 * This is part of a global counter where only the total sum
907 	 * over all CPUs matters. A task can increase this counter on
908 	 * one CPU and if it got migrated afterwards it may decrease
909 	 * it on another CPU. Always updated under the runqueue lock:
910 	 */
911 	unsigned long		nr_uninterruptible;
912 
913 	struct task_struct	*curr;
914 	struct task_struct	*idle;
915 	struct task_struct	*stop;
916 	unsigned long		next_balance;
917 	struct mm_struct	*prev_mm;
918 
919 	unsigned int		clock_update_flags;
920 	u64			clock;
921 	/* Ensure that all clocks are in the same cache line */
922 	u64			clock_task ____cacheline_aligned;
923 	u64			clock_pelt;
924 	unsigned long		lost_idle_time;
925 
926 	atomic_t		nr_iowait;
927 
928 #ifdef CONFIG_MEMBARRIER
929 	int membarrier_state;
930 #endif
931 
932 #ifdef CONFIG_SMP
933 	struct root_domain		*rd;
934 	struct sched_domain __rcu	*sd;
935 
936 	unsigned long		cpu_capacity;
937 	unsigned long		cpu_capacity_orig;
938 
939 	struct callback_head	*balance_callback;
940 
941 	unsigned char		idle_balance;
942 
943 	unsigned long		misfit_task_load;
944 
945 	/* For active balancing */
946 	int			active_balance;
947 	int			push_cpu;
948 	struct cpu_stop_work	active_balance_work;
949 
950 	/* CPU of this runqueue: */
951 	int			cpu;
952 	int			online;
953 
954 	struct list_head cfs_tasks;
955 
956 	struct sched_avg	avg_rt;
957 	struct sched_avg	avg_dl;
958 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
959 	struct sched_avg	avg_irq;
960 #endif
961 	u64			idle_stamp;
962 	u64			avg_idle;
963 
964 	/* This is used to determine avg_idle's max value */
965 	u64			max_idle_balance_cost;
966 #endif
967 
968 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
969 	u64			prev_irq_time;
970 #endif
971 #ifdef CONFIG_PARAVIRT
972 	u64			prev_steal_time;
973 #endif
974 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
975 	u64			prev_steal_time_rq;
976 #endif
977 
978 	/* calc_load related fields */
979 	unsigned long		calc_load_update;
980 	long			calc_load_active;
981 
982 #ifdef CONFIG_SCHED_HRTICK
983 #ifdef CONFIG_SMP
984 	int			hrtick_csd_pending;
985 	call_single_data_t	hrtick_csd;
986 #endif
987 	struct hrtimer		hrtick_timer;
988 #endif
989 
990 #ifdef CONFIG_SCHEDSTATS
991 	/* latency stats */
992 	struct sched_info	rq_sched_info;
993 	unsigned long long	rq_cpu_time;
994 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
995 
996 	/* sys_sched_yield() stats */
997 	unsigned int		yld_count;
998 
999 	/* schedule() stats */
1000 	unsigned int		sched_count;
1001 	unsigned int		sched_goidle;
1002 
1003 	/* try_to_wake_up() stats */
1004 	unsigned int		ttwu_count;
1005 	unsigned int		ttwu_local;
1006 #endif
1007 
1008 #ifdef CONFIG_SMP
1009 	struct llist_head	wake_list;
1010 #endif
1011 
1012 #ifdef CONFIG_CPU_IDLE
1013 	/* Must be inspected within a rcu lock section */
1014 	struct cpuidle_state	*idle_state;
1015 #endif
1016 };
1017 
1018 #ifdef CONFIG_FAIR_GROUP_SCHED
1019 
1020 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1021 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1022 {
1023 	return cfs_rq->rq;
1024 }
1025 
1026 #else
1027 
rq_of(struct cfs_rq * cfs_rq)1028 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1029 {
1030 	return container_of(cfs_rq, struct rq, cfs);
1031 }
1032 #endif
1033 
cpu_of(struct rq * rq)1034 static inline int cpu_of(struct rq *rq)
1035 {
1036 #ifdef CONFIG_SMP
1037 	return rq->cpu;
1038 #else
1039 	return 0;
1040 #endif
1041 }
1042 
1043 
1044 #ifdef CONFIG_SCHED_SMT
1045 extern void __update_idle_core(struct rq *rq);
1046 
update_idle_core(struct rq * rq)1047 static inline void update_idle_core(struct rq *rq)
1048 {
1049 	if (static_branch_unlikely(&sched_smt_present))
1050 		__update_idle_core(rq);
1051 }
1052 
1053 #else
update_idle_core(struct rq * rq)1054 static inline void update_idle_core(struct rq *rq) { }
1055 #endif
1056 
1057 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1058 
1059 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1060 #define this_rq()		this_cpu_ptr(&runqueues)
1061 #define task_rq(p)		cpu_rq(task_cpu(p))
1062 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1063 #define raw_rq()		raw_cpu_ptr(&runqueues)
1064 
1065 extern void update_rq_clock(struct rq *rq);
1066 
__rq_clock_broken(struct rq * rq)1067 static inline u64 __rq_clock_broken(struct rq *rq)
1068 {
1069 	return READ_ONCE(rq->clock);
1070 }
1071 
1072 /*
1073  * rq::clock_update_flags bits
1074  *
1075  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1076  *  call to __schedule(). This is an optimisation to avoid
1077  *  neighbouring rq clock updates.
1078  *
1079  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1080  *  in effect and calls to update_rq_clock() are being ignored.
1081  *
1082  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1083  *  made to update_rq_clock() since the last time rq::lock was pinned.
1084  *
1085  * If inside of __schedule(), clock_update_flags will have been
1086  * shifted left (a left shift is a cheap operation for the fast path
1087  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1088  *
1089  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1090  *
1091  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1092  * one position though, because the next rq_unpin_lock() will shift it
1093  * back.
1094  */
1095 #define RQCF_REQ_SKIP		0x01
1096 #define RQCF_ACT_SKIP		0x02
1097 #define RQCF_UPDATED		0x04
1098 
assert_clock_updated(struct rq * rq)1099 static inline void assert_clock_updated(struct rq *rq)
1100 {
1101 	/*
1102 	 * The only reason for not seeing a clock update since the
1103 	 * last rq_pin_lock() is if we're currently skipping updates.
1104 	 */
1105 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1106 }
1107 
rq_clock(struct rq * rq)1108 static inline u64 rq_clock(struct rq *rq)
1109 {
1110 	lockdep_assert_held(&rq->lock);
1111 	assert_clock_updated(rq);
1112 
1113 	return rq->clock;
1114 }
1115 
rq_clock_task(struct rq * rq)1116 static inline u64 rq_clock_task(struct rq *rq)
1117 {
1118 	lockdep_assert_held(&rq->lock);
1119 	assert_clock_updated(rq);
1120 
1121 	return rq->clock_task;
1122 }
1123 
rq_clock_skip_update(struct rq * rq)1124 static inline void rq_clock_skip_update(struct rq *rq)
1125 {
1126 	lockdep_assert_held(&rq->lock);
1127 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1128 }
1129 
1130 /*
1131  * See rt task throttling, which is the only time a skip
1132  * request is cancelled.
1133  */
rq_clock_cancel_skipupdate(struct rq * rq)1134 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1135 {
1136 	lockdep_assert_held(&rq->lock);
1137 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1138 }
1139 
1140 struct rq_flags {
1141 	unsigned long flags;
1142 	struct pin_cookie cookie;
1143 #ifdef CONFIG_SCHED_DEBUG
1144 	/*
1145 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1146 	 * current pin context is stashed here in case it needs to be
1147 	 * restored in rq_repin_lock().
1148 	 */
1149 	unsigned int clock_update_flags;
1150 #endif
1151 };
1152 
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1153 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1154 {
1155 	rf->cookie = lockdep_pin_lock(&rq->lock);
1156 
1157 #ifdef CONFIG_SCHED_DEBUG
1158 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1159 	rf->clock_update_flags = 0;
1160 #endif
1161 }
1162 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1163 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1164 {
1165 #ifdef CONFIG_SCHED_DEBUG
1166 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1167 		rf->clock_update_flags = RQCF_UPDATED;
1168 #endif
1169 
1170 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1171 }
1172 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1173 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1174 {
1175 	lockdep_repin_lock(&rq->lock, rf->cookie);
1176 
1177 #ifdef CONFIG_SCHED_DEBUG
1178 	/*
1179 	 * Restore the value we stashed in @rf for this pin context.
1180 	 */
1181 	rq->clock_update_flags |= rf->clock_update_flags;
1182 #endif
1183 }
1184 
1185 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1186 	__acquires(rq->lock);
1187 
1188 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1189 	__acquires(p->pi_lock)
1190 	__acquires(rq->lock);
1191 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1192 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1193 	__releases(rq->lock)
1194 {
1195 	rq_unpin_lock(rq, rf);
1196 	raw_spin_unlock(&rq->lock);
1197 }
1198 
1199 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1200 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1201 	__releases(rq->lock)
1202 	__releases(p->pi_lock)
1203 {
1204 	rq_unpin_lock(rq, rf);
1205 	raw_spin_unlock(&rq->lock);
1206 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1207 }
1208 
1209 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1210 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1211 	__acquires(rq->lock)
1212 {
1213 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1214 	rq_pin_lock(rq, rf);
1215 }
1216 
1217 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1218 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1219 	__acquires(rq->lock)
1220 {
1221 	raw_spin_lock_irq(&rq->lock);
1222 	rq_pin_lock(rq, rf);
1223 }
1224 
1225 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1226 rq_lock(struct rq *rq, struct rq_flags *rf)
1227 	__acquires(rq->lock)
1228 {
1229 	raw_spin_lock(&rq->lock);
1230 	rq_pin_lock(rq, rf);
1231 }
1232 
1233 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1234 rq_relock(struct rq *rq, struct rq_flags *rf)
1235 	__acquires(rq->lock)
1236 {
1237 	raw_spin_lock(&rq->lock);
1238 	rq_repin_lock(rq, rf);
1239 }
1240 
1241 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1242 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1243 	__releases(rq->lock)
1244 {
1245 	rq_unpin_lock(rq, rf);
1246 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1247 }
1248 
1249 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1250 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1251 	__releases(rq->lock)
1252 {
1253 	rq_unpin_lock(rq, rf);
1254 	raw_spin_unlock_irq(&rq->lock);
1255 }
1256 
1257 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1258 rq_unlock(struct rq *rq, struct rq_flags *rf)
1259 	__releases(rq->lock)
1260 {
1261 	rq_unpin_lock(rq, rf);
1262 	raw_spin_unlock(&rq->lock);
1263 }
1264 
1265 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1266 this_rq_lock_irq(struct rq_flags *rf)
1267 	__acquires(rq->lock)
1268 {
1269 	struct rq *rq;
1270 
1271 	local_irq_disable();
1272 	rq = this_rq();
1273 	rq_lock(rq, rf);
1274 	return rq;
1275 }
1276 
1277 #ifdef CONFIG_NUMA
1278 enum numa_topology_type {
1279 	NUMA_DIRECT,
1280 	NUMA_GLUELESS_MESH,
1281 	NUMA_BACKPLANE,
1282 };
1283 extern enum numa_topology_type sched_numa_topology_type;
1284 extern int sched_max_numa_distance;
1285 extern bool find_numa_distance(int distance);
1286 extern void sched_init_numa(void);
1287 extern void sched_domains_numa_masks_set(unsigned int cpu);
1288 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1289 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1290 #else
sched_init_numa(void)1291 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1292 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1293 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1294 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1295 {
1296 	return nr_cpu_ids;
1297 }
1298 #endif
1299 
1300 #ifdef CONFIG_NUMA_BALANCING
1301 /* The regions in numa_faults array from task_struct */
1302 enum numa_faults_stats {
1303 	NUMA_MEM = 0,
1304 	NUMA_CPU,
1305 	NUMA_MEMBUF,
1306 	NUMA_CPUBUF
1307 };
1308 extern void sched_setnuma(struct task_struct *p, int node);
1309 extern int migrate_task_to(struct task_struct *p, int cpu);
1310 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1311 			int cpu, int scpu);
1312 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1313 #else
1314 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1315 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1316 {
1317 }
1318 #endif /* CONFIG_NUMA_BALANCING */
1319 
1320 #ifdef CONFIG_SMP
1321 
1322 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1323 queue_balance_callback(struct rq *rq,
1324 		       struct callback_head *head,
1325 		       void (*func)(struct rq *rq))
1326 {
1327 	lockdep_assert_held(&rq->lock);
1328 
1329 	if (unlikely(head->next))
1330 		return;
1331 
1332 	head->func = (void (*)(struct callback_head *))func;
1333 	head->next = rq->balance_callback;
1334 	rq->balance_callback = head;
1335 }
1336 
1337 extern void sched_ttwu_pending(void);
1338 
1339 #define rcu_dereference_check_sched_domain(p) \
1340 	rcu_dereference_check((p), \
1341 			      lockdep_is_held(&sched_domains_mutex))
1342 
1343 /*
1344  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1345  * See destroy_sched_domains: call_rcu for details.
1346  *
1347  * The domain tree of any CPU may only be accessed from within
1348  * preempt-disabled sections.
1349  */
1350 #define for_each_domain(cpu, __sd) \
1351 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1352 			__sd; __sd = __sd->parent)
1353 
1354 /**
1355  * highest_flag_domain - Return highest sched_domain containing flag.
1356  * @cpu:	The CPU whose highest level of sched domain is to
1357  *		be returned.
1358  * @flag:	The flag to check for the highest sched_domain
1359  *		for the given CPU.
1360  *
1361  * Returns the highest sched_domain of a CPU which contains the given flag.
1362  */
highest_flag_domain(int cpu,int flag)1363 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1364 {
1365 	struct sched_domain *sd, *hsd = NULL;
1366 
1367 	for_each_domain(cpu, sd) {
1368 		if (!(sd->flags & flag))
1369 			break;
1370 		hsd = sd;
1371 	}
1372 
1373 	return hsd;
1374 }
1375 
lowest_flag_domain(int cpu,int flag)1376 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1377 {
1378 	struct sched_domain *sd;
1379 
1380 	for_each_domain(cpu, sd) {
1381 		if (sd->flags & flag)
1382 			break;
1383 	}
1384 
1385 	return sd;
1386 }
1387 
1388 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1389 DECLARE_PER_CPU(int, sd_llc_size);
1390 DECLARE_PER_CPU(int, sd_llc_id);
1391 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1392 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1393 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1394 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1395 extern struct static_key_false sched_asym_cpucapacity;
1396 
1397 struct sched_group_capacity {
1398 	atomic_t		ref;
1399 	/*
1400 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1401 	 * for a single CPU.
1402 	 */
1403 	unsigned long		capacity;
1404 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1405 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1406 	unsigned long		next_update;
1407 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1408 
1409 #ifdef CONFIG_SCHED_DEBUG
1410 	int			id;
1411 #endif
1412 
1413 	unsigned long		cpumask[0];		/* Balance mask */
1414 };
1415 
1416 struct sched_group {
1417 	struct sched_group	*next;			/* Must be a circular list */
1418 	atomic_t		ref;
1419 
1420 	unsigned int		group_weight;
1421 	struct sched_group_capacity *sgc;
1422 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1423 
1424 	/*
1425 	 * The CPUs this group covers.
1426 	 *
1427 	 * NOTE: this field is variable length. (Allocated dynamically
1428 	 * by attaching extra space to the end of the structure,
1429 	 * depending on how many CPUs the kernel has booted up with)
1430 	 */
1431 	unsigned long		cpumask[0];
1432 };
1433 
sched_group_span(struct sched_group * sg)1434 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1435 {
1436 	return to_cpumask(sg->cpumask);
1437 }
1438 
1439 /*
1440  * See build_balance_mask().
1441  */
group_balance_mask(struct sched_group * sg)1442 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1443 {
1444 	return to_cpumask(sg->sgc->cpumask);
1445 }
1446 
1447 /**
1448  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1449  * @group: The group whose first CPU is to be returned.
1450  */
group_first_cpu(struct sched_group * group)1451 static inline unsigned int group_first_cpu(struct sched_group *group)
1452 {
1453 	return cpumask_first(sched_group_span(group));
1454 }
1455 
1456 extern int group_balance_cpu(struct sched_group *sg);
1457 
1458 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1459 void register_sched_domain_sysctl(void);
1460 void dirty_sched_domain_sysctl(int cpu);
1461 void unregister_sched_domain_sysctl(void);
1462 #else
register_sched_domain_sysctl(void)1463 static inline void register_sched_domain_sysctl(void)
1464 {
1465 }
dirty_sched_domain_sysctl(int cpu)1466 static inline void dirty_sched_domain_sysctl(int cpu)
1467 {
1468 }
unregister_sched_domain_sysctl(void)1469 static inline void unregister_sched_domain_sysctl(void)
1470 {
1471 }
1472 #endif
1473 
1474 extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1475 
1476 #else
1477 
sched_ttwu_pending(void)1478 static inline void sched_ttwu_pending(void) { }
1479 
newidle_balance(struct rq * this_rq,struct rq_flags * rf)1480 static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1481 
1482 #endif /* CONFIG_SMP */
1483 
1484 #include "stats.h"
1485 #include "autogroup.h"
1486 
1487 #ifdef CONFIG_CGROUP_SCHED
1488 
1489 /*
1490  * Return the group to which this tasks belongs.
1491  *
1492  * We cannot use task_css() and friends because the cgroup subsystem
1493  * changes that value before the cgroup_subsys::attach() method is called,
1494  * therefore we cannot pin it and might observe the wrong value.
1495  *
1496  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1497  * core changes this before calling sched_move_task().
1498  *
1499  * Instead we use a 'copy' which is updated from sched_move_task() while
1500  * holding both task_struct::pi_lock and rq::lock.
1501  */
task_group(struct task_struct * p)1502 static inline struct task_group *task_group(struct task_struct *p)
1503 {
1504 	return p->sched_task_group;
1505 }
1506 
1507 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1508 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1509 {
1510 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1511 	struct task_group *tg = task_group(p);
1512 #endif
1513 
1514 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1516 	p->se.cfs_rq = tg->cfs_rq[cpu];
1517 	p->se.parent = tg->se[cpu];
1518 #endif
1519 
1520 #ifdef CONFIG_RT_GROUP_SCHED
1521 	p->rt.rt_rq  = tg->rt_rq[cpu];
1522 	p->rt.parent = tg->rt_se[cpu];
1523 #endif
1524 }
1525 
1526 #else /* CONFIG_CGROUP_SCHED */
1527 
set_task_rq(struct task_struct * p,unsigned int cpu)1528 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1529 static inline struct task_group *task_group(struct task_struct *p)
1530 {
1531 	return NULL;
1532 }
1533 
1534 #endif /* CONFIG_CGROUP_SCHED */
1535 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1536 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1537 {
1538 	set_task_rq(p, cpu);
1539 #ifdef CONFIG_SMP
1540 	/*
1541 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1542 	 * successfully executed on another CPU. We must ensure that updates of
1543 	 * per-task data have been completed by this moment.
1544 	 */
1545 	smp_wmb();
1546 #ifdef CONFIG_THREAD_INFO_IN_TASK
1547 	WRITE_ONCE(p->cpu, cpu);
1548 #else
1549 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1550 #endif
1551 	p->wake_cpu = cpu;
1552 #endif
1553 }
1554 
1555 /*
1556  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1557  */
1558 #ifdef CONFIG_SCHED_DEBUG
1559 # include <linux/static_key.h>
1560 # define const_debug __read_mostly
1561 #else
1562 # define const_debug const
1563 #endif
1564 
1565 #define SCHED_FEAT(name, enabled)	\
1566 	__SCHED_FEAT_##name ,
1567 
1568 enum {
1569 #include "features.h"
1570 	__SCHED_FEAT_NR,
1571 };
1572 
1573 #undef SCHED_FEAT
1574 
1575 #ifdef CONFIG_SCHED_DEBUG
1576 
1577 /*
1578  * To support run-time toggling of sched features, all the translation units
1579  * (but core.c) reference the sysctl_sched_features defined in core.c.
1580  */
1581 extern const_debug unsigned int sysctl_sched_features;
1582 
1583 #ifdef CONFIG_JUMP_LABEL
1584 #define SCHED_FEAT(name, enabled)					\
1585 static __always_inline bool static_branch_##name(struct static_key *key) \
1586 {									\
1587 	return static_key_##enabled(key);				\
1588 }
1589 
1590 #include "features.h"
1591 #undef SCHED_FEAT
1592 
1593 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1594 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1595 
1596 #else /* !CONFIG_JUMP_LABEL */
1597 
1598 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1599 
1600 #endif /* CONFIG_JUMP_LABEL */
1601 
1602 #else /* !SCHED_DEBUG */
1603 
1604 /*
1605  * Each translation unit has its own copy of sysctl_sched_features to allow
1606  * constants propagation at compile time and compiler optimization based on
1607  * features default.
1608  */
1609 #define SCHED_FEAT(name, enabled)	\
1610 	(1UL << __SCHED_FEAT_##name) * enabled |
1611 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1612 #include "features.h"
1613 	0;
1614 #undef SCHED_FEAT
1615 
1616 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1617 
1618 #endif /* SCHED_DEBUG */
1619 
1620 extern struct static_key_false sched_numa_balancing;
1621 extern struct static_key_false sched_schedstats;
1622 
global_rt_period(void)1623 static inline u64 global_rt_period(void)
1624 {
1625 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1626 }
1627 
global_rt_runtime(void)1628 static inline u64 global_rt_runtime(void)
1629 {
1630 	if (sysctl_sched_rt_runtime < 0)
1631 		return RUNTIME_INF;
1632 
1633 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1634 }
1635 
task_current(struct rq * rq,struct task_struct * p)1636 static inline int task_current(struct rq *rq, struct task_struct *p)
1637 {
1638 	return rq->curr == p;
1639 }
1640 
task_running(struct rq * rq,struct task_struct * p)1641 static inline int task_running(struct rq *rq, struct task_struct *p)
1642 {
1643 #ifdef CONFIG_SMP
1644 	return p->on_cpu;
1645 #else
1646 	return task_current(rq, p);
1647 #endif
1648 }
1649 
task_on_rq_queued(struct task_struct * p)1650 static inline int task_on_rq_queued(struct task_struct *p)
1651 {
1652 	return p->on_rq == TASK_ON_RQ_QUEUED;
1653 }
1654 
task_on_rq_migrating(struct task_struct * p)1655 static inline int task_on_rq_migrating(struct task_struct *p)
1656 {
1657 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1658 }
1659 
1660 /*
1661  * wake flags
1662  */
1663 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1664 #define WF_FORK			0x02		/* Child wakeup after fork */
1665 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1666 
1667 /*
1668  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1669  * of tasks with abnormal "nice" values across CPUs the contribution that
1670  * each task makes to its run queue's load is weighted according to its
1671  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1672  * scaled version of the new time slice allocation that they receive on time
1673  * slice expiry etc.
1674  */
1675 
1676 #define WEIGHT_IDLEPRIO		3
1677 #define WMULT_IDLEPRIO		1431655765
1678 
1679 extern const int		sched_prio_to_weight[40];
1680 extern const u32		sched_prio_to_wmult[40];
1681 
1682 /*
1683  * {de,en}queue flags:
1684  *
1685  * DEQUEUE_SLEEP  - task is no longer runnable
1686  * ENQUEUE_WAKEUP - task just became runnable
1687  *
1688  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1689  *                are in a known state which allows modification. Such pairs
1690  *                should preserve as much state as possible.
1691  *
1692  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1693  *        in the runqueue.
1694  *
1695  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1696  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1697  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1698  *
1699  */
1700 
1701 #define DEQUEUE_SLEEP		0x01
1702 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1703 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1704 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1705 
1706 #define ENQUEUE_WAKEUP		0x01
1707 #define ENQUEUE_RESTORE		0x02
1708 #define ENQUEUE_MOVE		0x04
1709 #define ENQUEUE_NOCLOCK		0x08
1710 
1711 #define ENQUEUE_HEAD		0x10
1712 #define ENQUEUE_REPLENISH	0x20
1713 #ifdef CONFIG_SMP
1714 #define ENQUEUE_MIGRATED	0x40
1715 #else
1716 #define ENQUEUE_MIGRATED	0x00
1717 #endif
1718 
1719 #define RETRY_TASK		((void *)-1UL)
1720 
1721 struct sched_class {
1722 	const struct sched_class *next;
1723 
1724 #ifdef CONFIG_UCLAMP_TASK
1725 	int uclamp_enabled;
1726 #endif
1727 
1728 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1729 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1730 	void (*yield_task)   (struct rq *rq);
1731 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1732 
1733 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1734 
1735 	/*
1736 	 * Both @prev and @rf are optional and may be NULL, in which case the
1737 	 * caller must already have invoked put_prev_task(rq, prev, rf).
1738 	 *
1739 	 * Otherwise it is the responsibility of the pick_next_task() to call
1740 	 * put_prev_task() on the @prev task or something equivalent, IFF it
1741 	 * returns a next task.
1742 	 *
1743 	 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
1744 	 * higher prio class has runnable tasks.
1745 	 */
1746 	struct task_struct * (*pick_next_task)(struct rq *rq,
1747 					       struct task_struct *prev,
1748 					       struct rq_flags *rf);
1749 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1750 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1751 
1752 #ifdef CONFIG_SMP
1753 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1754 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1755 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1756 
1757 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1758 
1759 	void (*set_cpus_allowed)(struct task_struct *p,
1760 				 const struct cpumask *newmask);
1761 
1762 	void (*rq_online)(struct rq *rq);
1763 	void (*rq_offline)(struct rq *rq);
1764 #endif
1765 
1766 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1767 	void (*task_fork)(struct task_struct *p);
1768 	void (*task_dead)(struct task_struct *p);
1769 
1770 	/*
1771 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1772 	 * cannot assume the switched_from/switched_to pair is serliazed by
1773 	 * rq->lock. They are however serialized by p->pi_lock.
1774 	 */
1775 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1776 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1777 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1778 			      int oldprio);
1779 
1780 	unsigned int (*get_rr_interval)(struct rq *rq,
1781 					struct task_struct *task);
1782 
1783 	void (*update_curr)(struct rq *rq);
1784 
1785 #define TASK_SET_GROUP		0
1786 #define TASK_MOVE_GROUP		1
1787 
1788 #ifdef CONFIG_FAIR_GROUP_SCHED
1789 	void (*task_change_group)(struct task_struct *p, int type);
1790 #endif
1791 };
1792 
put_prev_task(struct rq * rq,struct task_struct * prev)1793 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1794 {
1795 	WARN_ON_ONCE(rq->curr != prev);
1796 	prev->sched_class->put_prev_task(rq, prev);
1797 }
1798 
set_next_task(struct rq * rq,struct task_struct * next)1799 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1800 {
1801 	WARN_ON_ONCE(rq->curr != next);
1802 	next->sched_class->set_next_task(rq, next, false);
1803 }
1804 
1805 #ifdef CONFIG_SMP
1806 #define sched_class_highest (&stop_sched_class)
1807 #else
1808 #define sched_class_highest (&dl_sched_class)
1809 #endif
1810 
1811 #define for_class_range(class, _from, _to) \
1812 	for (class = (_from); class != (_to); class = class->next)
1813 
1814 #define for_each_class(class) \
1815 	for_class_range(class, sched_class_highest, NULL)
1816 
1817 extern const struct sched_class stop_sched_class;
1818 extern const struct sched_class dl_sched_class;
1819 extern const struct sched_class rt_sched_class;
1820 extern const struct sched_class fair_sched_class;
1821 extern const struct sched_class idle_sched_class;
1822 
sched_stop_runnable(struct rq * rq)1823 static inline bool sched_stop_runnable(struct rq *rq)
1824 {
1825 	return rq->stop && task_on_rq_queued(rq->stop);
1826 }
1827 
sched_dl_runnable(struct rq * rq)1828 static inline bool sched_dl_runnable(struct rq *rq)
1829 {
1830 	return rq->dl.dl_nr_running > 0;
1831 }
1832 
sched_rt_runnable(struct rq * rq)1833 static inline bool sched_rt_runnable(struct rq *rq)
1834 {
1835 	return rq->rt.rt_queued > 0;
1836 }
1837 
sched_fair_runnable(struct rq * rq)1838 static inline bool sched_fair_runnable(struct rq *rq)
1839 {
1840 	return rq->cfs.nr_running > 0;
1841 }
1842 
1843 #ifdef CONFIG_SMP
1844 
1845 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1846 
1847 extern void trigger_load_balance(struct rq *rq);
1848 
1849 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1850 
1851 #endif
1852 
1853 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1854 static inline void idle_set_state(struct rq *rq,
1855 				  struct cpuidle_state *idle_state)
1856 {
1857 	rq->idle_state = idle_state;
1858 }
1859 
idle_get_state(struct rq * rq)1860 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1861 {
1862 	SCHED_WARN_ON(!rcu_read_lock_held());
1863 
1864 	return rq->idle_state;
1865 }
1866 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1867 static inline void idle_set_state(struct rq *rq,
1868 				  struct cpuidle_state *idle_state)
1869 {
1870 }
1871 
idle_get_state(struct rq * rq)1872 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1873 {
1874 	return NULL;
1875 }
1876 #endif
1877 
1878 extern void schedule_idle(void);
1879 
1880 extern void sysrq_sched_debug_show(void);
1881 extern void sched_init_granularity(void);
1882 extern void update_max_interval(void);
1883 
1884 extern void init_sched_dl_class(void);
1885 extern void init_sched_rt_class(void);
1886 extern void init_sched_fair_class(void);
1887 
1888 extern void reweight_task(struct task_struct *p, int prio);
1889 
1890 extern void resched_curr(struct rq *rq);
1891 extern void resched_cpu(int cpu);
1892 
1893 extern struct rt_bandwidth def_rt_bandwidth;
1894 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1895 
1896 extern struct dl_bandwidth def_dl_bandwidth;
1897 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1898 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1899 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1900 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1901 
1902 #define BW_SHIFT		20
1903 #define BW_UNIT			(1 << BW_SHIFT)
1904 #define RATIO_SHIFT		8
1905 #define MAX_BW_BITS		(64 - BW_SHIFT)
1906 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
1907 unsigned long to_ratio(u64 period, u64 runtime);
1908 
1909 extern void init_entity_runnable_average(struct sched_entity *se);
1910 extern void post_init_entity_util_avg(struct task_struct *p);
1911 
1912 #ifdef CONFIG_NO_HZ_FULL
1913 extern bool sched_can_stop_tick(struct rq *rq);
1914 extern int __init sched_tick_offload_init(void);
1915 
1916 /*
1917  * Tick may be needed by tasks in the runqueue depending on their policy and
1918  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1919  * nohz mode if necessary.
1920  */
sched_update_tick_dependency(struct rq * rq)1921 static inline void sched_update_tick_dependency(struct rq *rq)
1922 {
1923 	int cpu;
1924 
1925 	if (!tick_nohz_full_enabled())
1926 		return;
1927 
1928 	cpu = cpu_of(rq);
1929 
1930 	if (!tick_nohz_full_cpu(cpu))
1931 		return;
1932 
1933 	if (sched_can_stop_tick(rq))
1934 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1935 	else
1936 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1937 }
1938 #else
sched_tick_offload_init(void)1939 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1940 static inline void sched_update_tick_dependency(struct rq *rq) { }
1941 #endif
1942 
add_nr_running(struct rq * rq,unsigned count)1943 static inline void add_nr_running(struct rq *rq, unsigned count)
1944 {
1945 	unsigned prev_nr = rq->nr_running;
1946 
1947 	rq->nr_running = prev_nr + count;
1948 
1949 #ifdef CONFIG_SMP
1950 	if (prev_nr < 2 && rq->nr_running >= 2) {
1951 		if (!READ_ONCE(rq->rd->overload))
1952 			WRITE_ONCE(rq->rd->overload, 1);
1953 	}
1954 #endif
1955 
1956 	sched_update_tick_dependency(rq);
1957 }
1958 
sub_nr_running(struct rq * rq,unsigned count)1959 static inline void sub_nr_running(struct rq *rq, unsigned count)
1960 {
1961 	rq->nr_running -= count;
1962 	/* Check if we still need preemption */
1963 	sched_update_tick_dependency(rq);
1964 }
1965 
1966 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1967 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1968 
1969 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1970 
1971 extern const_debug unsigned int sysctl_sched_nr_migrate;
1972 extern const_debug unsigned int sysctl_sched_migration_cost;
1973 
1974 #ifdef CONFIG_SCHED_HRTICK
1975 
1976 /*
1977  * Use hrtick when:
1978  *  - enabled by features
1979  *  - hrtimer is actually high res
1980  */
hrtick_enabled(struct rq * rq)1981 static inline int hrtick_enabled(struct rq *rq)
1982 {
1983 	if (!sched_feat(HRTICK))
1984 		return 0;
1985 	if (!cpu_active(cpu_of(rq)))
1986 		return 0;
1987 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1988 }
1989 
1990 void hrtick_start(struct rq *rq, u64 delay);
1991 
1992 #else
1993 
hrtick_enabled(struct rq * rq)1994 static inline int hrtick_enabled(struct rq *rq)
1995 {
1996 	return 0;
1997 }
1998 
1999 #endif /* CONFIG_SCHED_HRTICK */
2000 
2001 #ifndef arch_scale_freq_capacity
2002 static __always_inline
arch_scale_freq_capacity(int cpu)2003 unsigned long arch_scale_freq_capacity(int cpu)
2004 {
2005 	return SCHED_CAPACITY_SCALE;
2006 }
2007 #endif
2008 
2009 #ifndef arch_scale_max_freq_capacity
2010 struct sched_domain;
2011 static __always_inline
arch_scale_max_freq_capacity(struct sched_domain * sd,int cpu)2012 unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu)
2013 {
2014 	return SCHED_CAPACITY_SCALE;
2015 }
2016 #endif
2017 
2018 #ifdef CONFIG_SMP
2019 #ifdef CONFIG_PREEMPTION
2020 
2021 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2022 
2023 /*
2024  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2025  * way at the expense of forcing extra atomic operations in all
2026  * invocations.  This assures that the double_lock is acquired using the
2027  * same underlying policy as the spinlock_t on this architecture, which
2028  * reduces latency compared to the unfair variant below.  However, it
2029  * also adds more overhead and therefore may reduce throughput.
2030  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2031 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2032 	__releases(this_rq->lock)
2033 	__acquires(busiest->lock)
2034 	__acquires(this_rq->lock)
2035 {
2036 	raw_spin_unlock(&this_rq->lock);
2037 	double_rq_lock(this_rq, busiest);
2038 
2039 	return 1;
2040 }
2041 
2042 #else
2043 /*
2044  * Unfair double_lock_balance: Optimizes throughput at the expense of
2045  * latency by eliminating extra atomic operations when the locks are
2046  * already in proper order on entry.  This favors lower CPU-ids and will
2047  * grant the double lock to lower CPUs over higher ids under contention,
2048  * regardless of entry order into the function.
2049  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2050 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2051 	__releases(this_rq->lock)
2052 	__acquires(busiest->lock)
2053 	__acquires(this_rq->lock)
2054 {
2055 	int ret = 0;
2056 
2057 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2058 		if (busiest < this_rq) {
2059 			raw_spin_unlock(&this_rq->lock);
2060 			raw_spin_lock(&busiest->lock);
2061 			raw_spin_lock_nested(&this_rq->lock,
2062 					      SINGLE_DEPTH_NESTING);
2063 			ret = 1;
2064 		} else
2065 			raw_spin_lock_nested(&busiest->lock,
2066 					      SINGLE_DEPTH_NESTING);
2067 	}
2068 	return ret;
2069 }
2070 
2071 #endif /* CONFIG_PREEMPTION */
2072 
2073 /*
2074  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2075  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2076 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2077 {
2078 	if (unlikely(!irqs_disabled())) {
2079 		/* printk() doesn't work well under rq->lock */
2080 		raw_spin_unlock(&this_rq->lock);
2081 		BUG_ON(1);
2082 	}
2083 
2084 	return _double_lock_balance(this_rq, busiest);
2085 }
2086 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2087 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2088 	__releases(busiest->lock)
2089 {
2090 	raw_spin_unlock(&busiest->lock);
2091 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2092 }
2093 
double_lock(spinlock_t * l1,spinlock_t * l2)2094 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2095 {
2096 	if (l1 > l2)
2097 		swap(l1, l2);
2098 
2099 	spin_lock(l1);
2100 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2101 }
2102 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2103 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2104 {
2105 	if (l1 > l2)
2106 		swap(l1, l2);
2107 
2108 	spin_lock_irq(l1);
2109 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2110 }
2111 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2112 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2113 {
2114 	if (l1 > l2)
2115 		swap(l1, l2);
2116 
2117 	raw_spin_lock(l1);
2118 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2119 }
2120 
2121 /*
2122  * double_rq_lock - safely lock two runqueues
2123  *
2124  * Note this does not disable interrupts like task_rq_lock,
2125  * you need to do so manually before calling.
2126  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2127 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2128 	__acquires(rq1->lock)
2129 	__acquires(rq2->lock)
2130 {
2131 	BUG_ON(!irqs_disabled());
2132 	if (rq1 == rq2) {
2133 		raw_spin_lock(&rq1->lock);
2134 		__acquire(rq2->lock);	/* Fake it out ;) */
2135 	} else {
2136 		if (rq1 < rq2) {
2137 			raw_spin_lock(&rq1->lock);
2138 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2139 		} else {
2140 			raw_spin_lock(&rq2->lock);
2141 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2142 		}
2143 	}
2144 }
2145 
2146 /*
2147  * double_rq_unlock - safely unlock two runqueues
2148  *
2149  * Note this does not restore interrupts like task_rq_unlock,
2150  * you need to do so manually after calling.
2151  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2152 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2153 	__releases(rq1->lock)
2154 	__releases(rq2->lock)
2155 {
2156 	raw_spin_unlock(&rq1->lock);
2157 	if (rq1 != rq2)
2158 		raw_spin_unlock(&rq2->lock);
2159 	else
2160 		__release(rq2->lock);
2161 }
2162 
2163 extern void set_rq_online (struct rq *rq);
2164 extern void set_rq_offline(struct rq *rq);
2165 extern bool sched_smp_initialized;
2166 
2167 #else /* CONFIG_SMP */
2168 
2169 /*
2170  * double_rq_lock - safely lock two runqueues
2171  *
2172  * Note this does not disable interrupts like task_rq_lock,
2173  * you need to do so manually before calling.
2174  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2175 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2176 	__acquires(rq1->lock)
2177 	__acquires(rq2->lock)
2178 {
2179 	BUG_ON(!irqs_disabled());
2180 	BUG_ON(rq1 != rq2);
2181 	raw_spin_lock(&rq1->lock);
2182 	__acquire(rq2->lock);	/* Fake it out ;) */
2183 }
2184 
2185 /*
2186  * double_rq_unlock - safely unlock two runqueues
2187  *
2188  * Note this does not restore interrupts like task_rq_unlock,
2189  * you need to do so manually after calling.
2190  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2191 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2192 	__releases(rq1->lock)
2193 	__releases(rq2->lock)
2194 {
2195 	BUG_ON(rq1 != rq2);
2196 	raw_spin_unlock(&rq1->lock);
2197 	__release(rq2->lock);
2198 }
2199 
2200 #endif
2201 
2202 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2203 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2204 
2205 #ifdef	CONFIG_SCHED_DEBUG
2206 extern bool sched_debug_enabled;
2207 
2208 extern void print_cfs_stats(struct seq_file *m, int cpu);
2209 extern void print_rt_stats(struct seq_file *m, int cpu);
2210 extern void print_dl_stats(struct seq_file *m, int cpu);
2211 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2212 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2213 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2214 #ifdef CONFIG_NUMA_BALANCING
2215 extern void
2216 show_numa_stats(struct task_struct *p, struct seq_file *m);
2217 extern void
2218 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2219 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2220 #endif /* CONFIG_NUMA_BALANCING */
2221 #endif /* CONFIG_SCHED_DEBUG */
2222 
2223 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2224 extern void init_rt_rq(struct rt_rq *rt_rq);
2225 extern void init_dl_rq(struct dl_rq *dl_rq);
2226 
2227 extern void cfs_bandwidth_usage_inc(void);
2228 extern void cfs_bandwidth_usage_dec(void);
2229 
2230 #ifdef CONFIG_NO_HZ_COMMON
2231 #define NOHZ_BALANCE_KICK_BIT	0
2232 #define NOHZ_STATS_KICK_BIT	1
2233 
2234 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2235 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2236 
2237 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2238 
2239 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2240 
2241 extern void nohz_balance_exit_idle(struct rq *rq);
2242 #else
nohz_balance_exit_idle(struct rq * rq)2243 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2244 #endif
2245 
2246 
2247 #ifdef CONFIG_SMP
2248 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2249 void __dl_update(struct dl_bw *dl_b, s64 bw)
2250 {
2251 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2252 	int i;
2253 
2254 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2255 			 "sched RCU must be held");
2256 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2257 		struct rq *rq = cpu_rq(i);
2258 
2259 		rq->dl.extra_bw += bw;
2260 	}
2261 }
2262 #else
2263 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2264 void __dl_update(struct dl_bw *dl_b, s64 bw)
2265 {
2266 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2267 
2268 	dl->extra_bw += bw;
2269 }
2270 #endif
2271 
2272 
2273 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2274 struct irqtime {
2275 	u64			total;
2276 	u64			tick_delta;
2277 	u64			irq_start_time;
2278 	struct u64_stats_sync	sync;
2279 };
2280 
2281 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2282 
2283 /*
2284  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2285  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2286  * and never move forward.
2287  */
irq_time_read(int cpu)2288 static inline u64 irq_time_read(int cpu)
2289 {
2290 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2291 	unsigned int seq;
2292 	u64 total;
2293 
2294 	do {
2295 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2296 		total = irqtime->total;
2297 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2298 
2299 	return total;
2300 }
2301 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2302 
2303 #ifdef CONFIG_CPU_FREQ
2304 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2305 
2306 /**
2307  * cpufreq_update_util - Take a note about CPU utilization changes.
2308  * @rq: Runqueue to carry out the update for.
2309  * @flags: Update reason flags.
2310  *
2311  * This function is called by the scheduler on the CPU whose utilization is
2312  * being updated.
2313  *
2314  * It can only be called from RCU-sched read-side critical sections.
2315  *
2316  * The way cpufreq is currently arranged requires it to evaluate the CPU
2317  * performance state (frequency/voltage) on a regular basis to prevent it from
2318  * being stuck in a completely inadequate performance level for too long.
2319  * That is not guaranteed to happen if the updates are only triggered from CFS
2320  * and DL, though, because they may not be coming in if only RT tasks are
2321  * active all the time (or there are RT tasks only).
2322  *
2323  * As a workaround for that issue, this function is called periodically by the
2324  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2325  * but that really is a band-aid.  Going forward it should be replaced with
2326  * solutions targeted more specifically at RT tasks.
2327  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2328 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2329 {
2330 	struct update_util_data *data;
2331 
2332 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2333 						  cpu_of(rq)));
2334 	if (data)
2335 		data->func(data, rq_clock(rq), flags);
2336 }
2337 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2338 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2339 #endif /* CONFIG_CPU_FREQ */
2340 
2341 #ifdef CONFIG_UCLAMP_TASK
2342 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2343 
2344 /**
2345  * uclamp_util_with - clamp @util with @rq and @p effective uclamp values.
2346  * @rq:		The rq to clamp against. Must not be NULL.
2347  * @util:	The util value to clamp.
2348  * @p:		The task to clamp against. Can be NULL if you want to clamp
2349  *		against @rq only.
2350  *
2351  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2352  *
2353  * If sched_uclamp_used static key is disabled, then just return the util
2354  * without any clamping since uclamp aggregation at the rq level in the fast
2355  * path is disabled, rendering this operation a NOP.
2356  *
2357  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2358  * will return the correct effective uclamp value of the task even if the
2359  * static key is disabled.
2360  */
2361 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2362 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2363 				  struct task_struct *p)
2364 {
2365 	unsigned long min_util;
2366 	unsigned long max_util;
2367 
2368 	if (!static_branch_likely(&sched_uclamp_used))
2369 		return util;
2370 
2371 	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2372 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2373 
2374 	if (p) {
2375 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2376 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2377 	}
2378 
2379 	/*
2380 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2381 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2382 	 * inversion. Fix it now when the clamps are applied.
2383 	 */
2384 	if (unlikely(min_util >= max_util))
2385 		return min_util;
2386 
2387 	return clamp(util, min_util, max_util);
2388 }
2389 
uclamp_boosted(struct task_struct * p)2390 static inline bool uclamp_boosted(struct task_struct *p)
2391 {
2392 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2393 }
2394 
2395 /*
2396  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2397  * by default in the fast path and only gets turned on once userspace performs
2398  * an operation that requires it.
2399  *
2400  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2401  * hence is active.
2402  */
uclamp_is_used(void)2403 static inline bool uclamp_is_used(void)
2404 {
2405 	return static_branch_likely(&sched_uclamp_used);
2406 }
2407 #else /* CONFIG_UCLAMP_TASK */
2408 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2409 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2410 				  struct task_struct *p)
2411 {
2412 	return util;
2413 }
uclamp_boosted(struct task_struct * p)2414 static inline bool uclamp_boosted(struct task_struct *p)
2415 {
2416 	return false;
2417 }
2418 
uclamp_is_used(void)2419 static inline bool uclamp_is_used(void)
2420 {
2421 	return false;
2422 }
2423 #endif /* CONFIG_UCLAMP_TASK */
2424 
2425 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_latency_sensitive(struct task_struct * p)2426 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2427 {
2428 	struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
2429 	struct task_group *tg;
2430 
2431 	if (!css)
2432 		return false;
2433 	tg = container_of(css, struct task_group, css);
2434 
2435 	return tg->latency_sensitive;
2436 }
2437 #else
uclamp_latency_sensitive(struct task_struct * p)2438 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2439 {
2440 	return false;
2441 }
2442 #endif /* CONFIG_UCLAMP_TASK_GROUP */
2443 
2444 #ifdef arch_scale_freq_capacity
2445 # ifndef arch_scale_freq_invariant
2446 #  define arch_scale_freq_invariant()	true
2447 # endif
2448 #else
2449 # define arch_scale_freq_invariant()	false
2450 #endif
2451 
2452 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2453 static inline unsigned long capacity_orig_of(int cpu)
2454 {
2455 	return cpu_rq(cpu)->cpu_capacity_orig;
2456 }
2457 #endif
2458 
2459 /**
2460  * enum schedutil_type - CPU utilization type
2461  * @FREQUENCY_UTIL:	Utilization used to select frequency
2462  * @ENERGY_UTIL:	Utilization used during energy calculation
2463  *
2464  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2465  * need to be aggregated differently depending on the usage made of them. This
2466  * enum is used within schedutil_freq_util() to differentiate the types of
2467  * utilization expected by the callers, and adjust the aggregation accordingly.
2468  */
2469 enum schedutil_type {
2470 	FREQUENCY_UTIL,
2471 	ENERGY_UTIL,
2472 };
2473 
2474 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2475 
2476 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2477 				 unsigned long max, enum schedutil_type type,
2478 				 struct task_struct *p);
2479 
cpu_bw_dl(struct rq * rq)2480 static inline unsigned long cpu_bw_dl(struct rq *rq)
2481 {
2482 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2483 }
2484 
cpu_util_dl(struct rq * rq)2485 static inline unsigned long cpu_util_dl(struct rq *rq)
2486 {
2487 	return READ_ONCE(rq->avg_dl.util_avg);
2488 }
2489 
cpu_util_cfs(struct rq * rq)2490 static inline unsigned long cpu_util_cfs(struct rq *rq)
2491 {
2492 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2493 
2494 	if (sched_feat(UTIL_EST)) {
2495 		util = max_t(unsigned long, util,
2496 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2497 	}
2498 
2499 	return util;
2500 }
2501 
cpu_util_rt(struct rq * rq)2502 static inline unsigned long cpu_util_rt(struct rq *rq)
2503 {
2504 	return READ_ONCE(rq->avg_rt.util_avg);
2505 }
2506 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2507 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2508 				 unsigned long max, enum schedutil_type type,
2509 				 struct task_struct *p)
2510 {
2511 	return 0;
2512 }
2513 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2514 
2515 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2516 static inline unsigned long cpu_util_irq(struct rq *rq)
2517 {
2518 	return rq->avg_irq.util_avg;
2519 }
2520 
2521 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2522 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2523 {
2524 	util *= (max - irq);
2525 	util /= max;
2526 
2527 	return util;
2528 
2529 }
2530 #else
cpu_util_irq(struct rq * rq)2531 static inline unsigned long cpu_util_irq(struct rq *rq)
2532 {
2533 	return 0;
2534 }
2535 
2536 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2537 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2538 {
2539 	return util;
2540 }
2541 #endif
2542 
2543 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2544 
2545 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2546 
2547 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2548 
sched_energy_enabled(void)2549 static inline bool sched_energy_enabled(void)
2550 {
2551 	return static_branch_unlikely(&sched_energy_present);
2552 }
2553 
2554 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2555 
2556 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2557 static inline bool sched_energy_enabled(void) { return false; }
2558 
2559 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2560 
2561 #ifdef CONFIG_MEMBARRIER
2562 /*
2563  * The scheduler provides memory barriers required by membarrier between:
2564  * - prior user-space memory accesses and store to rq->membarrier_state,
2565  * - store to rq->membarrier_state and following user-space memory accesses.
2566  * In the same way it provides those guarantees around store to rq->curr.
2567  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2568 static inline void membarrier_switch_mm(struct rq *rq,
2569 					struct mm_struct *prev_mm,
2570 					struct mm_struct *next_mm)
2571 {
2572 	int membarrier_state;
2573 
2574 	if (prev_mm == next_mm)
2575 		return;
2576 
2577 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2578 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2579 		return;
2580 
2581 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2582 }
2583 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2584 static inline void membarrier_switch_mm(struct rq *rq,
2585 					struct mm_struct *prev_mm,
2586 					struct mm_struct *next_mm)
2587 {
2588 }
2589 #endif
2590