1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29
30 #include "posix-timers.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/alarmtimer.h>
34
35 /**
36 * struct alarm_base - Alarm timer bases
37 * @lock: Lock for syncrhonized access to the base
38 * @timerqueue: Timerqueue head managing the list of events
39 * @gettime: Function to read the time correlating to the base
40 * @base_clockid: clockid for the base
41 */
42 static struct alarm_base {
43 spinlock_t lock;
44 struct timerqueue_head timerqueue;
45 ktime_t (*gettime)(void);
46 clockid_t base_clockid;
47 } alarm_bases[ALARM_NUMTYPE];
48
49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50 /* freezer information to handle clock_nanosleep triggered wakeups */
51 static enum alarmtimer_type freezer_alarmtype;
52 static ktime_t freezer_expires;
53 static ktime_t freezer_delta;
54 static DEFINE_SPINLOCK(freezer_delta_lock);
55 #endif
56
57 #ifdef CONFIG_RTC_CLASS
58 static struct wakeup_source *ws;
59
60 /* rtc timer and device for setting alarm wakeups at suspend */
61 static struct rtc_timer rtctimer;
62 static struct rtc_device *rtcdev;
63 static DEFINE_SPINLOCK(rtcdev_lock);
64
65 /**
66 * alarmtimer_get_rtcdev - Return selected rtcdevice
67 *
68 * This function returns the rtc device to use for wakealarms.
69 * If one has not already been chosen, it checks to see if a
70 * functional rtc device is available.
71 */
alarmtimer_get_rtcdev(void)72 struct rtc_device *alarmtimer_get_rtcdev(void)
73 {
74 unsigned long flags;
75 struct rtc_device *ret;
76
77 spin_lock_irqsave(&rtcdev_lock, flags);
78 ret = rtcdev;
79 spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81 return ret;
82 }
83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)85 static int alarmtimer_rtc_add_device(struct device *dev,
86 struct class_interface *class_intf)
87 {
88 unsigned long flags;
89 struct rtc_device *rtc = to_rtc_device(dev);
90 struct wakeup_source *__ws;
91 struct platform_device *pdev;
92 int ret = 0;
93
94 if (rtcdev)
95 return -EBUSY;
96
97 if (!rtc->ops->set_alarm)
98 return -1;
99 if (!device_may_wakeup(rtc->dev.parent))
100 return -1;
101
102 __ws = wakeup_source_register(dev, "alarmtimer");
103 pdev = platform_device_register_data(dev, "alarmtimer",
104 PLATFORM_DEVID_AUTO, NULL, 0);
105
106 spin_lock_irqsave(&rtcdev_lock, flags);
107 if (__ws && !IS_ERR(pdev) && !rtcdev) {
108 if (!try_module_get(rtc->owner)) {
109 ret = -1;
110 goto unlock;
111 }
112
113 rtcdev = rtc;
114 /* hold a reference so it doesn't go away */
115 get_device(dev);
116 ws = __ws;
117 __ws = NULL;
118 pdev = NULL;
119 } else {
120 ret = -1;
121 }
122 unlock:
123 spin_unlock_irqrestore(&rtcdev_lock, flags);
124
125 platform_device_unregister(pdev);
126 wakeup_source_unregister(__ws);
127
128 return ret;
129 }
130
alarmtimer_rtc_timer_init(void)131 static inline void alarmtimer_rtc_timer_init(void)
132 {
133 rtc_timer_init(&rtctimer, NULL, NULL);
134 }
135
136 static struct class_interface alarmtimer_rtc_interface = {
137 .add_dev = &alarmtimer_rtc_add_device,
138 };
139
alarmtimer_rtc_interface_setup(void)140 static int alarmtimer_rtc_interface_setup(void)
141 {
142 alarmtimer_rtc_interface.class = rtc_class;
143 return class_interface_register(&alarmtimer_rtc_interface);
144 }
alarmtimer_rtc_interface_remove(void)145 static void alarmtimer_rtc_interface_remove(void)
146 {
147 class_interface_unregister(&alarmtimer_rtc_interface);
148 }
149 #else
alarmtimer_get_rtcdev(void)150 struct rtc_device *alarmtimer_get_rtcdev(void)
151 {
152 return NULL;
153 }
154 #define rtcdev (NULL)
alarmtimer_rtc_interface_setup(void)155 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)156 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)157 static inline void alarmtimer_rtc_timer_init(void) { }
158 #endif
159
160 /**
161 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
162 * @base: pointer to the base where the timer is being run
163 * @alarm: pointer to alarm being enqueued.
164 *
165 * Adds alarm to a alarm_base timerqueue
166 *
167 * Must hold base->lock when calling.
168 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)169 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
170 {
171 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
172 timerqueue_del(&base->timerqueue, &alarm->node);
173
174 timerqueue_add(&base->timerqueue, &alarm->node);
175 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
176 }
177
178 /**
179 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
180 * @base: pointer to the base where the timer is running
181 * @alarm: pointer to alarm being removed
182 *
183 * Removes alarm to a alarm_base timerqueue
184 *
185 * Must hold base->lock when calling.
186 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)187 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
188 {
189 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
190 return;
191
192 timerqueue_del(&base->timerqueue, &alarm->node);
193 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
194 }
195
196
197 /**
198 * alarmtimer_fired - Handles alarm hrtimer being fired.
199 * @timer: pointer to hrtimer being run
200 *
201 * When a alarm timer fires, this runs through the timerqueue to
202 * see which alarms expired, and runs those. If there are more alarm
203 * timers queued for the future, we set the hrtimer to fire when
204 * when the next future alarm timer expires.
205 */
alarmtimer_fired(struct hrtimer * timer)206 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
207 {
208 struct alarm *alarm = container_of(timer, struct alarm, timer);
209 struct alarm_base *base = &alarm_bases[alarm->type];
210 unsigned long flags;
211 int ret = HRTIMER_NORESTART;
212 int restart = ALARMTIMER_NORESTART;
213
214 spin_lock_irqsave(&base->lock, flags);
215 alarmtimer_dequeue(base, alarm);
216 spin_unlock_irqrestore(&base->lock, flags);
217
218 if (alarm->function)
219 restart = alarm->function(alarm, base->gettime());
220
221 spin_lock_irqsave(&base->lock, flags);
222 if (restart != ALARMTIMER_NORESTART) {
223 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
224 alarmtimer_enqueue(base, alarm);
225 ret = HRTIMER_RESTART;
226 }
227 spin_unlock_irqrestore(&base->lock, flags);
228
229 trace_alarmtimer_fired(alarm, base->gettime());
230 return ret;
231
232 }
233
alarm_expires_remaining(const struct alarm * alarm)234 ktime_t alarm_expires_remaining(const struct alarm *alarm)
235 {
236 struct alarm_base *base = &alarm_bases[alarm->type];
237 return ktime_sub(alarm->node.expires, base->gettime());
238 }
239 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
240
241 #ifdef CONFIG_RTC_CLASS
242 /**
243 * alarmtimer_suspend - Suspend time callback
244 * @dev: unused
245 *
246 * When we are going into suspend, we look through the bases
247 * to see which is the soonest timer to expire. We then
248 * set an rtc timer to fire that far into the future, which
249 * will wake us from suspend.
250 */
alarmtimer_suspend(struct device * dev)251 static int alarmtimer_suspend(struct device *dev)
252 {
253 ktime_t min, now, expires;
254 int i, ret, type;
255 struct rtc_device *rtc;
256 unsigned long flags;
257 struct rtc_time tm;
258
259 spin_lock_irqsave(&freezer_delta_lock, flags);
260 min = freezer_delta;
261 expires = freezer_expires;
262 type = freezer_alarmtype;
263 freezer_delta = 0;
264 spin_unlock_irqrestore(&freezer_delta_lock, flags);
265
266 rtc = alarmtimer_get_rtcdev();
267 /* If we have no rtcdev, just return */
268 if (!rtc)
269 return 0;
270
271 /* Find the soonest timer to expire*/
272 for (i = 0; i < ALARM_NUMTYPE; i++) {
273 struct alarm_base *base = &alarm_bases[i];
274 struct timerqueue_node *next;
275 ktime_t delta;
276
277 spin_lock_irqsave(&base->lock, flags);
278 next = timerqueue_getnext(&base->timerqueue);
279 spin_unlock_irqrestore(&base->lock, flags);
280 if (!next)
281 continue;
282 delta = ktime_sub(next->expires, base->gettime());
283 if (!min || (delta < min)) {
284 expires = next->expires;
285 min = delta;
286 type = i;
287 }
288 }
289 if (min == 0)
290 return 0;
291
292 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
293 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
294 return -EBUSY;
295 }
296
297 trace_alarmtimer_suspend(expires, type);
298
299 /* Setup an rtc timer to fire that far in the future */
300 rtc_timer_cancel(rtc, &rtctimer);
301 rtc_read_time(rtc, &tm);
302 now = rtc_tm_to_ktime(tm);
303 now = ktime_add(now, min);
304
305 /* Set alarm, if in the past reject suspend briefly to handle */
306 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
307 if (ret < 0)
308 __pm_wakeup_event(ws, MSEC_PER_SEC);
309 return ret;
310 }
311
alarmtimer_resume(struct device * dev)312 static int alarmtimer_resume(struct device *dev)
313 {
314 struct rtc_device *rtc;
315
316 rtc = alarmtimer_get_rtcdev();
317 if (rtc)
318 rtc_timer_cancel(rtc, &rtctimer);
319 return 0;
320 }
321
322 #else
alarmtimer_suspend(struct device * dev)323 static int alarmtimer_suspend(struct device *dev)
324 {
325 return 0;
326 }
327
alarmtimer_resume(struct device * dev)328 static int alarmtimer_resume(struct device *dev)
329 {
330 return 0;
331 }
332 #endif
333
334 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))335 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
336 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
337 {
338 timerqueue_init(&alarm->node);
339 alarm->timer.function = alarmtimer_fired;
340 alarm->function = function;
341 alarm->type = type;
342 alarm->state = ALARMTIMER_STATE_INACTIVE;
343 }
344
345 /**
346 * alarm_init - Initialize an alarm structure
347 * @alarm: ptr to alarm to be initialized
348 * @type: the type of the alarm
349 * @function: callback that is run when the alarm fires
350 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))351 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
352 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
353 {
354 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
355 HRTIMER_MODE_ABS);
356 __alarm_init(alarm, type, function);
357 }
358 EXPORT_SYMBOL_GPL(alarm_init);
359
360 /**
361 * alarm_start - Sets an absolute alarm to fire
362 * @alarm: ptr to alarm to set
363 * @start: time to run the alarm
364 */
alarm_start(struct alarm * alarm,ktime_t start)365 void alarm_start(struct alarm *alarm, ktime_t start)
366 {
367 struct alarm_base *base = &alarm_bases[alarm->type];
368 unsigned long flags;
369
370 spin_lock_irqsave(&base->lock, flags);
371 alarm->node.expires = start;
372 alarmtimer_enqueue(base, alarm);
373 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
374 spin_unlock_irqrestore(&base->lock, flags);
375
376 trace_alarmtimer_start(alarm, base->gettime());
377 }
378 EXPORT_SYMBOL_GPL(alarm_start);
379
380 /**
381 * alarm_start_relative - Sets a relative alarm to fire
382 * @alarm: ptr to alarm to set
383 * @start: time relative to now to run the alarm
384 */
alarm_start_relative(struct alarm * alarm,ktime_t start)385 void alarm_start_relative(struct alarm *alarm, ktime_t start)
386 {
387 struct alarm_base *base = &alarm_bases[alarm->type];
388
389 start = ktime_add_safe(start, base->gettime());
390 alarm_start(alarm, start);
391 }
392 EXPORT_SYMBOL_GPL(alarm_start_relative);
393
alarm_restart(struct alarm * alarm)394 void alarm_restart(struct alarm *alarm)
395 {
396 struct alarm_base *base = &alarm_bases[alarm->type];
397 unsigned long flags;
398
399 spin_lock_irqsave(&base->lock, flags);
400 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
401 hrtimer_restart(&alarm->timer);
402 alarmtimer_enqueue(base, alarm);
403 spin_unlock_irqrestore(&base->lock, flags);
404 }
405 EXPORT_SYMBOL_GPL(alarm_restart);
406
407 /**
408 * alarm_try_to_cancel - Tries to cancel an alarm timer
409 * @alarm: ptr to alarm to be canceled
410 *
411 * Returns 1 if the timer was canceled, 0 if it was not running,
412 * and -1 if the callback was running
413 */
alarm_try_to_cancel(struct alarm * alarm)414 int alarm_try_to_cancel(struct alarm *alarm)
415 {
416 struct alarm_base *base = &alarm_bases[alarm->type];
417 unsigned long flags;
418 int ret;
419
420 spin_lock_irqsave(&base->lock, flags);
421 ret = hrtimer_try_to_cancel(&alarm->timer);
422 if (ret >= 0)
423 alarmtimer_dequeue(base, alarm);
424 spin_unlock_irqrestore(&base->lock, flags);
425
426 trace_alarmtimer_cancel(alarm, base->gettime());
427 return ret;
428 }
429 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
430
431
432 /**
433 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
434 * @alarm: ptr to alarm to be canceled
435 *
436 * Returns 1 if the timer was canceled, 0 if it was not active.
437 */
alarm_cancel(struct alarm * alarm)438 int alarm_cancel(struct alarm *alarm)
439 {
440 for (;;) {
441 int ret = alarm_try_to_cancel(alarm);
442 if (ret >= 0)
443 return ret;
444 hrtimer_cancel_wait_running(&alarm->timer);
445 }
446 }
447 EXPORT_SYMBOL_GPL(alarm_cancel);
448
449
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)450 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
451 {
452 u64 overrun = 1;
453 ktime_t delta;
454
455 delta = ktime_sub(now, alarm->node.expires);
456
457 if (delta < 0)
458 return 0;
459
460 if (unlikely(delta >= interval)) {
461 s64 incr = ktime_to_ns(interval);
462
463 overrun = ktime_divns(delta, incr);
464
465 alarm->node.expires = ktime_add_ns(alarm->node.expires,
466 incr*overrun);
467
468 if (alarm->node.expires > now)
469 return overrun;
470 /*
471 * This (and the ktime_add() below) is the
472 * correction for exact:
473 */
474 overrun++;
475 }
476
477 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
478 return overrun;
479 }
480 EXPORT_SYMBOL_GPL(alarm_forward);
481
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)482 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
483 {
484 struct alarm_base *base = &alarm_bases[alarm->type];
485 ktime_t now = base->gettime();
486
487 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
488 /*
489 * Same issue as with posix_timer_fn(). Timers which are
490 * periodic but the signal is ignored can starve the system
491 * with a very small interval. The real fix which was
492 * promised in the context of posix_timer_fn() never
493 * materialized, but someone should really work on it.
494 *
495 * To prevent DOS fake @now to be 1 jiffie out which keeps
496 * the overrun accounting correct but creates an
497 * inconsistency vs. timer_gettime(2).
498 */
499 ktime_t kj = NSEC_PER_SEC / HZ;
500
501 if (interval < kj)
502 now = ktime_add(now, kj);
503 }
504
505 return alarm_forward(alarm, now, interval);
506 }
507
alarm_forward_now(struct alarm * alarm,ktime_t interval)508 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
509 {
510 return __alarm_forward_now(alarm, interval, false);
511 }
512 EXPORT_SYMBOL_GPL(alarm_forward_now);
513
514 #ifdef CONFIG_POSIX_TIMERS
515
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)516 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
517 {
518 struct alarm_base *base;
519 unsigned long flags;
520 ktime_t delta;
521
522 switch(type) {
523 case ALARM_REALTIME:
524 base = &alarm_bases[ALARM_REALTIME];
525 type = ALARM_REALTIME_FREEZER;
526 break;
527 case ALARM_BOOTTIME:
528 base = &alarm_bases[ALARM_BOOTTIME];
529 type = ALARM_BOOTTIME_FREEZER;
530 break;
531 default:
532 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
533 return;
534 }
535
536 delta = ktime_sub(absexp, base->gettime());
537
538 spin_lock_irqsave(&freezer_delta_lock, flags);
539 if (!freezer_delta || (delta < freezer_delta)) {
540 freezer_delta = delta;
541 freezer_expires = absexp;
542 freezer_alarmtype = type;
543 }
544 spin_unlock_irqrestore(&freezer_delta_lock, flags);
545 }
546
547 /**
548 * clock2alarm - helper that converts from clockid to alarmtypes
549 * @clockid: clockid.
550 */
clock2alarm(clockid_t clockid)551 static enum alarmtimer_type clock2alarm(clockid_t clockid)
552 {
553 if (clockid == CLOCK_REALTIME_ALARM)
554 return ALARM_REALTIME;
555 if (clockid == CLOCK_BOOTTIME_ALARM)
556 return ALARM_BOOTTIME;
557 return -1;
558 }
559
560 /**
561 * alarm_handle_timer - Callback for posix timers
562 * @alarm: alarm that fired
563 *
564 * Posix timer callback for expired alarm timers.
565 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)566 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
567 ktime_t now)
568 {
569 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
570 it.alarm.alarmtimer);
571 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
572 unsigned long flags;
573 int si_private = 0;
574
575 spin_lock_irqsave(&ptr->it_lock, flags);
576
577 ptr->it_active = 0;
578 if (ptr->it_interval)
579 si_private = ++ptr->it_requeue_pending;
580
581 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
582 /*
583 * Handle ignored signals and rearm the timer. This will go
584 * away once we handle ignored signals proper. Ensure that
585 * small intervals cannot starve the system.
586 */
587 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
588 ++ptr->it_requeue_pending;
589 ptr->it_active = 1;
590 result = ALARMTIMER_RESTART;
591 }
592 spin_unlock_irqrestore(&ptr->it_lock, flags);
593
594 return result;
595 }
596
597 /**
598 * alarm_timer_rearm - Posix timer callback for rearming timer
599 * @timr: Pointer to the posixtimer data struct
600 */
alarm_timer_rearm(struct k_itimer * timr)601 static void alarm_timer_rearm(struct k_itimer *timr)
602 {
603 struct alarm *alarm = &timr->it.alarm.alarmtimer;
604
605 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
606 alarm_start(alarm, alarm->node.expires);
607 }
608
609 /**
610 * alarm_timer_forward - Posix timer callback for forwarding timer
611 * @timr: Pointer to the posixtimer data struct
612 * @now: Current time to forward the timer against
613 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)614 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
615 {
616 struct alarm *alarm = &timr->it.alarm.alarmtimer;
617
618 return alarm_forward(alarm, timr->it_interval, now);
619 }
620
621 /**
622 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
623 * @timr: Pointer to the posixtimer data struct
624 * @now: Current time to calculate against
625 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)626 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
627 {
628 struct alarm *alarm = &timr->it.alarm.alarmtimer;
629
630 return ktime_sub(alarm->node.expires, now);
631 }
632
633 /**
634 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
635 * @timr: Pointer to the posixtimer data struct
636 */
alarm_timer_try_to_cancel(struct k_itimer * timr)637 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
638 {
639 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
640 }
641
642 /**
643 * alarm_timer_wait_running - Posix timer callback to wait for a timer
644 * @timr: Pointer to the posixtimer data struct
645 *
646 * Called from the core code when timer cancel detected that the callback
647 * is running. @timr is unlocked and rcu read lock is held to prevent it
648 * from being freed.
649 */
alarm_timer_wait_running(struct k_itimer * timr)650 static void alarm_timer_wait_running(struct k_itimer *timr)
651 {
652 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
653 }
654
655 /**
656 * alarm_timer_arm - Posix timer callback to arm a timer
657 * @timr: Pointer to the posixtimer data struct
658 * @expires: The new expiry time
659 * @absolute: Expiry value is absolute time
660 * @sigev_none: Posix timer does not deliver signals
661 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)662 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
663 bool absolute, bool sigev_none)
664 {
665 struct alarm *alarm = &timr->it.alarm.alarmtimer;
666 struct alarm_base *base = &alarm_bases[alarm->type];
667
668 if (!absolute)
669 expires = ktime_add_safe(expires, base->gettime());
670 if (sigev_none)
671 alarm->node.expires = expires;
672 else
673 alarm_start(&timr->it.alarm.alarmtimer, expires);
674 }
675
676 /**
677 * alarm_clock_getres - posix getres interface
678 * @which_clock: clockid
679 * @tp: timespec to fill
680 *
681 * Returns the granularity of underlying alarm base clock
682 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)683 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
684 {
685 if (!alarmtimer_get_rtcdev())
686 return -EINVAL;
687
688 tp->tv_sec = 0;
689 tp->tv_nsec = hrtimer_resolution;
690 return 0;
691 }
692
693 /**
694 * alarm_clock_get - posix clock_get interface
695 * @which_clock: clockid
696 * @tp: timespec to fill.
697 *
698 * Provides the underlying alarm base time.
699 */
alarm_clock_get(clockid_t which_clock,struct timespec64 * tp)700 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
701 {
702 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
703
704 if (!alarmtimer_get_rtcdev())
705 return -EINVAL;
706
707 *tp = ktime_to_timespec64(base->gettime());
708 return 0;
709 }
710
711 /**
712 * alarm_timer_create - posix timer_create interface
713 * @new_timer: k_itimer pointer to manage
714 *
715 * Initializes the k_itimer structure.
716 */
alarm_timer_create(struct k_itimer * new_timer)717 static int alarm_timer_create(struct k_itimer *new_timer)
718 {
719 enum alarmtimer_type type;
720
721 if (!alarmtimer_get_rtcdev())
722 return -EOPNOTSUPP;
723
724 if (!capable(CAP_WAKE_ALARM))
725 return -EPERM;
726
727 type = clock2alarm(new_timer->it_clock);
728 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
729 return 0;
730 }
731
732 /**
733 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
734 * @alarm: ptr to alarm that fired
735 *
736 * Wakes up the task that set the alarmtimer
737 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)738 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
739 ktime_t now)
740 {
741 struct task_struct *task = (struct task_struct *)alarm->data;
742
743 alarm->data = NULL;
744 if (task)
745 wake_up_process(task);
746 return ALARMTIMER_NORESTART;
747 }
748
749 /**
750 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
751 * @alarm: ptr to alarmtimer
752 * @absexp: absolute expiration time
753 *
754 * Sets the alarm timer and sleeps until it is fired or interrupted.
755 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)756 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
757 enum alarmtimer_type type)
758 {
759 struct restart_block *restart;
760 alarm->data = (void *)current;
761 do {
762 set_current_state(TASK_INTERRUPTIBLE);
763 alarm_start(alarm, absexp);
764 if (likely(alarm->data))
765 schedule();
766
767 alarm_cancel(alarm);
768 } while (alarm->data && !signal_pending(current));
769
770 __set_current_state(TASK_RUNNING);
771
772 destroy_hrtimer_on_stack(&alarm->timer);
773
774 if (!alarm->data)
775 return 0;
776
777 if (freezing(current))
778 alarmtimer_freezerset(absexp, type);
779 restart = ¤t->restart_block;
780 if (restart->nanosleep.type != TT_NONE) {
781 struct timespec64 rmt;
782 ktime_t rem;
783
784 rem = ktime_sub(absexp, alarm_bases[type].gettime());
785
786 if (rem <= 0)
787 return 0;
788 rmt = ktime_to_timespec64(rem);
789
790 return nanosleep_copyout(restart, &rmt);
791 }
792 return -ERESTART_RESTARTBLOCK;
793 }
794
795 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))796 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
797 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
798 {
799 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
800 HRTIMER_MODE_ABS);
801 __alarm_init(alarm, type, function);
802 }
803
804 /**
805 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
806 * @restart: ptr to restart block
807 *
808 * Handles restarted clock_nanosleep calls
809 */
alarm_timer_nsleep_restart(struct restart_block * restart)810 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
811 {
812 enum alarmtimer_type type = restart->nanosleep.clockid;
813 ktime_t exp = restart->nanosleep.expires;
814 struct alarm alarm;
815
816 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
817
818 return alarmtimer_do_nsleep(&alarm, exp, type);
819 }
820
821 /**
822 * alarm_timer_nsleep - alarmtimer nanosleep
823 * @which_clock: clockid
824 * @flags: determins abstime or relative
825 * @tsreq: requested sleep time (abs or rel)
826 * @rmtp: remaining sleep time saved
827 *
828 * Handles clock_nanosleep calls against _ALARM clockids
829 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)830 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
831 const struct timespec64 *tsreq)
832 {
833 enum alarmtimer_type type = clock2alarm(which_clock);
834 struct restart_block *restart = ¤t->restart_block;
835 struct alarm alarm;
836 ktime_t exp;
837 int ret = 0;
838
839 if (!alarmtimer_get_rtcdev())
840 return -EOPNOTSUPP;
841
842 if (flags & ~TIMER_ABSTIME)
843 return -EINVAL;
844
845 if (!capable(CAP_WAKE_ALARM))
846 return -EPERM;
847
848 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
849
850 exp = timespec64_to_ktime(*tsreq);
851 /* Convert (if necessary) to absolute time */
852 if (flags != TIMER_ABSTIME) {
853 ktime_t now = alarm_bases[type].gettime();
854
855 exp = ktime_add_safe(now, exp);
856 }
857
858 ret = alarmtimer_do_nsleep(&alarm, exp, type);
859 if (ret != -ERESTART_RESTARTBLOCK)
860 return ret;
861
862 /* abs timers don't set remaining time or restart */
863 if (flags == TIMER_ABSTIME)
864 return -ERESTARTNOHAND;
865
866 restart->nanosleep.clockid = type;
867 restart->nanosleep.expires = exp;
868 set_restart_fn(restart, alarm_timer_nsleep_restart);
869 return ret;
870 }
871
872 const struct k_clock alarm_clock = {
873 .clock_getres = alarm_clock_getres,
874 .clock_get = alarm_clock_get,
875 .timer_create = alarm_timer_create,
876 .timer_set = common_timer_set,
877 .timer_del = common_timer_del,
878 .timer_get = common_timer_get,
879 .timer_arm = alarm_timer_arm,
880 .timer_rearm = alarm_timer_rearm,
881 .timer_forward = alarm_timer_forward,
882 .timer_remaining = alarm_timer_remaining,
883 .timer_try_to_cancel = alarm_timer_try_to_cancel,
884 .timer_wait_running = alarm_timer_wait_running,
885 .nsleep = alarm_timer_nsleep,
886 };
887 #endif /* CONFIG_POSIX_TIMERS */
888
889
890 /* Suspend hook structures */
891 static const struct dev_pm_ops alarmtimer_pm_ops = {
892 .suspend = alarmtimer_suspend,
893 .resume = alarmtimer_resume,
894 };
895
896 static struct platform_driver alarmtimer_driver = {
897 .driver = {
898 .name = "alarmtimer",
899 .pm = &alarmtimer_pm_ops,
900 }
901 };
902
903 /**
904 * alarmtimer_init - Initialize alarm timer code
905 *
906 * This function initializes the alarm bases and registers
907 * the posix clock ids.
908 */
alarmtimer_init(void)909 static int __init alarmtimer_init(void)
910 {
911 int error;
912 int i;
913
914 alarmtimer_rtc_timer_init();
915
916 /* Initialize alarm bases */
917 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
918 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
919 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
920 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
921 for (i = 0; i < ALARM_NUMTYPE; i++) {
922 timerqueue_init_head(&alarm_bases[i].timerqueue);
923 spin_lock_init(&alarm_bases[i].lock);
924 }
925
926 error = alarmtimer_rtc_interface_setup();
927 if (error)
928 return error;
929
930 error = platform_driver_register(&alarmtimer_driver);
931 if (error)
932 goto out_if;
933
934 return 0;
935 out_if:
936 alarmtimer_rtc_interface_remove();
937 return error;
938 }
939 device_initcall(alarmtimer_init);
940