1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
release_freepages(struct list_head * freelist)53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
split_map_pages(struct list_head * list)69 static void split_map_pages(struct list_head *list)
70 {
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
PageMovable(struct page * page)96 int PageMovable(struct page *page)
97 {
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
__SetPageMovable(struct page * page,struct address_space * mapping)112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
__ClearPageMovable(struct page * page)120 void __ClearPageMovable(struct page *page)
121 {
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
defer_compaction(struct zone * zone,int order)142 void defer_compaction(struct zone *zone, int order)
143 {
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174 }
175
176 /*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183 {
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207 {
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212 }
213
reset_cached_positions(struct zone * zone)214 static void reset_cached_positions(struct zone *zone)
215 {
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
pageblock_skip_persistent(struct page * page)227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238 }
239
240 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243 {
244 struct page *page = pfn_to_online_page(pfn);
245 struct page *block_page;
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_pfn = max(block_pfn, zone->zone_start_pfn);
274 block_page = pfn_to_online_page(block_pfn);
275 if (block_page) {
276 page = block_page;
277 pfn = block_pfn;
278 }
279
280 /* Ensure the end of the pageblock or zone is online and valid */
281 block_pfn = pageblock_end_pfn(pfn) - 1;
282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 end_page = pfn_to_online_page(block_pfn);
284 if (!end_page)
285 return false;
286
287 /*
288 * Only clear the hint if a sample indicates there is either a
289 * free page or an LRU page in the block. One or other condition
290 * is necessary for the block to be a migration source/target.
291 */
292 do {
293 if (pfn_valid_within(pfn)) {
294 if (check_source && PageLRU(page)) {
295 clear_pageblock_skip(page);
296 return true;
297 }
298
299 if (check_target && PageBuddy(page)) {
300 clear_pageblock_skip(page);
301 return true;
302 }
303 }
304
305 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 } while (page <= end_page);
308
309 return false;
310 }
311
312 /*
313 * This function is called to clear all cached information on pageblocks that
314 * should be skipped for page isolation when the migrate and free page scanner
315 * meet.
316 */
__reset_isolation_suitable(struct zone * zone)317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 unsigned long migrate_pfn = zone->zone_start_pfn;
320 unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 unsigned long reset_migrate = free_pfn;
322 unsigned long reset_free = migrate_pfn;
323 bool source_set = false;
324 bool free_set = false;
325
326 if (!zone->compact_blockskip_flush)
327 return;
328
329 zone->compact_blockskip_flush = false;
330
331 /*
332 * Walk the zone and update pageblock skip information. Source looks
333 * for PageLRU while target looks for PageBuddy. When the scanner
334 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 * is suitable as both source and target.
336 */
337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 free_pfn -= pageblock_nr_pages) {
339 cond_resched();
340
341 /* Update the migrate PFN */
342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 migrate_pfn < reset_migrate) {
344 source_set = true;
345 reset_migrate = migrate_pfn;
346 zone->compact_init_migrate_pfn = reset_migrate;
347 zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 }
350
351 /* Update the free PFN */
352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 free_pfn > reset_free) {
354 free_set = true;
355 reset_free = free_pfn;
356 zone->compact_init_free_pfn = reset_free;
357 zone->compact_cached_free_pfn = reset_free;
358 }
359 }
360
361 /* Leave no distance if no suitable block was reset */
362 if (reset_migrate >= reset_free) {
363 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 zone->compact_cached_free_pfn = free_pfn;
366 }
367 }
368
reset_isolation_suitable(pg_data_t * pgdat)369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 int zoneid;
372
373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 struct zone *zone = &pgdat->node_zones[zoneid];
375 if (!populated_zone(zone))
376 continue;
377
378 /* Only flush if a full compaction finished recently */
379 if (zone->compact_blockskip_flush)
380 __reset_isolation_suitable(zone);
381 }
382 }
383
384 /*
385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386 * locks are not required for read/writers. Returns true if it was already set.
387 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 unsigned long pfn)
390 {
391 bool skip;
392
393 /* Do no update if skip hint is being ignored */
394 if (cc->ignore_skip_hint)
395 return false;
396
397 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 return false;
399
400 skip = get_pageblock_skip(page);
401 if (!skip && !cc->no_set_skip_hint)
402 set_pageblock_skip(page);
403
404 return skip;
405 }
406
update_cached_migrate(struct compact_control * cc,unsigned long pfn)407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 struct zone *zone = cc->zone;
410
411 pfn = pageblock_end_pfn(pfn);
412
413 /* Set for isolation rather than compaction */
414 if (cc->no_set_skip_hint)
415 return;
416
417 if (pfn > zone->compact_cached_migrate_pfn[0])
418 zone->compact_cached_migrate_pfn[0] = pfn;
419 if (cc->mode != MIGRATE_ASYNC &&
420 pfn > zone->compact_cached_migrate_pfn[1])
421 zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423
424 /*
425 * If no pages were isolated then mark this pageblock to be skipped in the
426 * future. The information is later cleared by __reset_isolation_suitable().
427 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)428 static void update_pageblock_skip(struct compact_control *cc,
429 struct page *page, unsigned long pfn)
430 {
431 struct zone *zone = cc->zone;
432
433 if (cc->no_set_skip_hint)
434 return;
435
436 if (!page)
437 return;
438
439 set_pageblock_skip(page);
440
441 /* Update where async and sync compaction should restart */
442 if (pfn < zone->compact_cached_free_pfn)
443 zone->compact_cached_free_pfn = pfn;
444 }
445 #else
isolation_suitable(struct compact_control * cc,struct page * page)446 static inline bool isolation_suitable(struct compact_control *cc,
447 struct page *page)
448 {
449 return true;
450 }
451
pageblock_skip_persistent(struct page * page)452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 return false;
455 }
456
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)457 static inline void update_pageblock_skip(struct compact_control *cc,
458 struct page *page, unsigned long pfn)
459 {
460 }
461
update_cached_migrate(struct compact_control * cc,unsigned long pfn)462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 unsigned long pfn)
468 {
469 return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472
473 /*
474 * Compaction requires the taking of some coarse locks that are potentially
475 * very heavily contended. For async compaction, trylock and record if the
476 * lock is contended. The lock will still be acquired but compaction will
477 * abort when the current block is finished regardless of success rate.
478 * Sync compaction acquires the lock.
479 *
480 * Always returns true which makes it easier to track lock state in callers.
481 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 struct compact_control *cc)
484 {
485 /* Track if the lock is contended in async mode */
486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 if (spin_trylock_irqsave(lock, *flags))
488 return true;
489
490 cc->contended = true;
491 }
492
493 spin_lock_irqsave(lock, *flags);
494 return true;
495 }
496
497 /*
498 * Compaction requires the taking of some coarse locks that are potentially
499 * very heavily contended. The lock should be periodically unlocked to avoid
500 * having disabled IRQs for a long time, even when there is nobody waiting on
501 * the lock. It might also be that allowing the IRQs will result in
502 * need_resched() becoming true. If scheduling is needed, async compaction
503 * aborts. Sync compaction schedules.
504 * Either compaction type will also abort if a fatal signal is pending.
505 * In either case if the lock was locked, it is dropped and not regained.
506 *
507 * Returns true if compaction should abort due to fatal signal pending, or
508 * async compaction due to need_resched()
509 * Returns false when compaction can continue (sync compaction might have
510 * scheduled)
511 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)512 static bool compact_unlock_should_abort(spinlock_t *lock,
513 unsigned long flags, bool *locked, struct compact_control *cc)
514 {
515 if (*locked) {
516 spin_unlock_irqrestore(lock, flags);
517 *locked = false;
518 }
519
520 if (fatal_signal_pending(current)) {
521 cc->contended = true;
522 return true;
523 }
524
525 cond_resched();
526
527 return false;
528 }
529
530 /*
531 * Isolate free pages onto a private freelist. If @strict is true, will abort
532 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533 * (even though it may still end up isolating some pages).
534 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536 unsigned long *start_pfn,
537 unsigned long end_pfn,
538 struct list_head *freelist,
539 unsigned int stride,
540 bool strict)
541 {
542 int nr_scanned = 0, total_isolated = 0;
543 struct page *cursor;
544 unsigned long flags = 0;
545 bool locked = false;
546 unsigned long blockpfn = *start_pfn;
547 unsigned int order;
548
549 /* Strict mode is for isolation, speed is secondary */
550 if (strict)
551 stride = 1;
552
553 cursor = pfn_to_page(blockpfn);
554
555 /* Isolate free pages. */
556 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557 int isolated;
558 struct page *page = cursor;
559
560 /*
561 * Periodically drop the lock (if held) regardless of its
562 * contention, to give chance to IRQs. Abort if fatal signal
563 * pending or async compaction detects need_resched()
564 */
565 if (!(blockpfn % SWAP_CLUSTER_MAX)
566 && compact_unlock_should_abort(&cc->zone->lock, flags,
567 &locked, cc))
568 break;
569
570 nr_scanned++;
571 if (!pfn_valid_within(blockpfn))
572 goto isolate_fail;
573
574 /*
575 * For compound pages such as THP and hugetlbfs, we can save
576 * potentially a lot of iterations if we skip them at once.
577 * The check is racy, but we can consider only valid values
578 * and the only danger is skipping too much.
579 */
580 if (PageCompound(page)) {
581 const unsigned int order = compound_order(page);
582
583 if (likely(order < MAX_ORDER)) {
584 blockpfn += (1UL << order) - 1;
585 cursor += (1UL << order) - 1;
586 }
587 goto isolate_fail;
588 }
589
590 if (!PageBuddy(page))
591 goto isolate_fail;
592
593 /*
594 * If we already hold the lock, we can skip some rechecking.
595 * Note that if we hold the lock now, checked_pageblock was
596 * already set in some previous iteration (or strict is true),
597 * so it is correct to skip the suitable migration target
598 * recheck as well.
599 */
600 if (!locked) {
601 locked = compact_lock_irqsave(&cc->zone->lock,
602 &flags, cc);
603
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
606 goto isolate_fail;
607 }
608
609 /* Found a free page, will break it into order-0 pages */
610 order = page_order(page);
611 isolated = __isolate_free_page(page, order);
612 if (!isolated)
613 break;
614 set_page_private(page, order);
615
616 total_isolated += isolated;
617 cc->nr_freepages += isolated;
618 list_add_tail(&page->lru, freelist);
619
620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 blockpfn += isolated;
622 break;
623 }
624 /* Advance to the end of split page */
625 blockpfn += isolated - 1;
626 cursor += isolated - 1;
627 continue;
628
629 isolate_fail:
630 if (strict)
631 break;
632 else
633 continue;
634
635 }
636
637 if (locked)
638 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
640 /*
641 * There is a tiny chance that we have read bogus compound_order(),
642 * so be careful to not go outside of the pageblock.
643 */
644 if (unlikely(blockpfn > end_pfn))
645 blockpfn = end_pfn;
646
647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 nr_scanned, total_isolated);
649
650 /* Record how far we have got within the block */
651 *start_pfn = blockpfn;
652
653 /*
654 * If strict isolation is requested by CMA then check that all the
655 * pages requested were isolated. If there were any failures, 0 is
656 * returned and CMA will fail.
657 */
658 if (strict && blockpfn < end_pfn)
659 total_isolated = 0;
660
661 cc->total_free_scanned += nr_scanned;
662 if (total_isolated)
663 count_compact_events(COMPACTISOLATED, total_isolated);
664 return total_isolated;
665 }
666
667 /**
668 * isolate_freepages_range() - isolate free pages.
669 * @cc: Compaction control structure.
670 * @start_pfn: The first PFN to start isolating.
671 * @end_pfn: The one-past-last PFN.
672 *
673 * Non-free pages, invalid PFNs, or zone boundaries within the
674 * [start_pfn, end_pfn) range are considered errors, cause function to
675 * undo its actions and return zero.
676 *
677 * Otherwise, function returns one-past-the-last PFN of isolated page
678 * (which may be greater then end_pfn if end fell in a middle of
679 * a free page).
680 */
681 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)682 isolate_freepages_range(struct compact_control *cc,
683 unsigned long start_pfn, unsigned long end_pfn)
684 {
685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686 LIST_HEAD(freelist);
687
688 pfn = start_pfn;
689 block_start_pfn = pageblock_start_pfn(pfn);
690 if (block_start_pfn < cc->zone->zone_start_pfn)
691 block_start_pfn = cc->zone->zone_start_pfn;
692 block_end_pfn = pageblock_end_pfn(pfn);
693
694 for (; pfn < end_pfn; pfn += isolated,
695 block_start_pfn = block_end_pfn,
696 block_end_pfn += pageblock_nr_pages) {
697 /* Protect pfn from changing by isolate_freepages_block */
698 unsigned long isolate_start_pfn = pfn;
699
700 block_end_pfn = min(block_end_pfn, end_pfn);
701
702 /*
703 * pfn could pass the block_end_pfn if isolated freepage
704 * is more than pageblock order. In this case, we adjust
705 * scanning range to right one.
706 */
707 if (pfn >= block_end_pfn) {
708 block_start_pfn = pageblock_start_pfn(pfn);
709 block_end_pfn = pageblock_end_pfn(pfn);
710 block_end_pfn = min(block_end_pfn, end_pfn);
711 }
712
713 if (!pageblock_pfn_to_page(block_start_pfn,
714 block_end_pfn, cc->zone))
715 break;
716
717 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718 block_end_pfn, &freelist, 0, true);
719
720 /*
721 * In strict mode, isolate_freepages_block() returns 0 if
722 * there are any holes in the block (ie. invalid PFNs or
723 * non-free pages).
724 */
725 if (!isolated)
726 break;
727
728 /*
729 * If we managed to isolate pages, it is always (1 << n) *
730 * pageblock_nr_pages for some non-negative n. (Max order
731 * page may span two pageblocks).
732 */
733 }
734
735 /* __isolate_free_page() does not map the pages */
736 split_map_pages(&freelist);
737
738 if (pfn < end_pfn) {
739 /* Loop terminated early, cleanup. */
740 release_freepages(&freelist);
741 return 0;
742 }
743
744 /* We don't use freelists for anything. */
745 return pfn;
746 }
747
748 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751 unsigned long active, inactive, isolated;
752
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
759
760 return isolated > (inactive + active) / 2;
761 }
762
763 /**
764 * isolate_migratepages_block() - isolate all migrate-able pages within
765 * a single pageblock
766 * @cc: Compaction control structure.
767 * @low_pfn: The first PFN to isolate
768 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
769 * @isolate_mode: Isolation mode to be used.
770 *
771 * Isolate all pages that can be migrated from the range specified by
772 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773 * Returns zero if there is a fatal signal pending, otherwise PFN of the
774 * first page that was not scanned (which may be both less, equal to or more
775 * than end_pfn).
776 *
777 * The pages are isolated on cc->migratepages list (not required to be empty),
778 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779 * is neither read nor updated.
780 */
781 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783 unsigned long end_pfn, isolate_mode_t isolate_mode)
784 {
785 pg_data_t *pgdat = cc->zone->zone_pgdat;
786 unsigned long nr_scanned = 0, nr_isolated = 0;
787 struct lruvec *lruvec;
788 unsigned long flags = 0;
789 bool locked = false;
790 struct page *page = NULL, *valid_page = NULL;
791 unsigned long start_pfn = low_pfn;
792 bool skip_on_failure = false;
793 unsigned long next_skip_pfn = 0;
794 bool skip_updated = false;
795
796 /*
797 * Ensure that there are not too many pages isolated from the LRU
798 * list by either parallel reclaimers or compaction. If there are,
799 * delay for some time until fewer pages are isolated
800 */
801 while (unlikely(too_many_isolated(pgdat))) {
802 /* async migration should just abort */
803 if (cc->mode == MIGRATE_ASYNC)
804 return 0;
805
806 congestion_wait(BLK_RW_ASYNC, HZ/10);
807
808 if (fatal_signal_pending(current))
809 return 0;
810 }
811
812 cond_resched();
813
814 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815 skip_on_failure = true;
816 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
817 }
818
819 /* Time to isolate some pages for migration */
820 for (; low_pfn < end_pfn; low_pfn++) {
821
822 if (skip_on_failure && low_pfn >= next_skip_pfn) {
823 /*
824 * We have isolated all migration candidates in the
825 * previous order-aligned block, and did not skip it due
826 * to failure. We should migrate the pages now and
827 * hopefully succeed compaction.
828 */
829 if (nr_isolated)
830 break;
831
832 /*
833 * We failed to isolate in the previous order-aligned
834 * block. Set the new boundary to the end of the
835 * current block. Note we can't simply increase
836 * next_skip_pfn by 1 << order, as low_pfn might have
837 * been incremented by a higher number due to skipping
838 * a compound or a high-order buddy page in the
839 * previous loop iteration.
840 */
841 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842 }
843
844 /*
845 * Periodically drop the lock (if held) regardless of its
846 * contention, to give chance to IRQs. Abort completely if
847 * a fatal signal is pending.
848 */
849 if (!(low_pfn % SWAP_CLUSTER_MAX)
850 && compact_unlock_should_abort(&pgdat->lru_lock,
851 flags, &locked, cc)) {
852 low_pfn = 0;
853 goto fatal_pending;
854 }
855
856 if (!pfn_valid_within(low_pfn))
857 goto isolate_fail;
858 nr_scanned++;
859
860 page = pfn_to_page(low_pfn);
861
862 /*
863 * Check if the pageblock has already been marked skipped.
864 * Only the aligned PFN is checked as the caller isolates
865 * COMPACT_CLUSTER_MAX at a time so the second call must
866 * not falsely conclude that the block should be skipped.
867 */
868 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870 low_pfn = end_pfn;
871 goto isolate_abort;
872 }
873 valid_page = page;
874 }
875
876 /*
877 * Skip if free. We read page order here without zone lock
878 * which is generally unsafe, but the race window is small and
879 * the worst thing that can happen is that we skip some
880 * potential isolation targets.
881 */
882 if (PageBuddy(page)) {
883 unsigned long freepage_order = page_order_unsafe(page);
884
885 /*
886 * Without lock, we cannot be sure that what we got is
887 * a valid page order. Consider only values in the
888 * valid order range to prevent low_pfn overflow.
889 */
890 if (freepage_order > 0 && freepage_order < MAX_ORDER)
891 low_pfn += (1UL << freepage_order) - 1;
892 continue;
893 }
894
895 /*
896 * Regardless of being on LRU, compound pages such as THP and
897 * hugetlbfs are not to be compacted. We can potentially save
898 * a lot of iterations if we skip them at once. The check is
899 * racy, but we can consider only valid values and the only
900 * danger is skipping too much.
901 */
902 if (PageCompound(page)) {
903 const unsigned int order = compound_order(page);
904
905 if (likely(order < MAX_ORDER))
906 low_pfn += (1UL << order) - 1;
907 goto isolate_fail;
908 }
909
910 /*
911 * Check may be lockless but that's ok as we recheck later.
912 * It's possible to migrate LRU and non-lru movable pages.
913 * Skip any other type of page
914 */
915 if (!PageLRU(page)) {
916 /*
917 * __PageMovable can return false positive so we need
918 * to verify it under page_lock.
919 */
920 if (unlikely(__PageMovable(page)) &&
921 !PageIsolated(page)) {
922 if (locked) {
923 spin_unlock_irqrestore(&pgdat->lru_lock,
924 flags);
925 locked = false;
926 }
927
928 if (!isolate_movable_page(page, isolate_mode))
929 goto isolate_success;
930 }
931
932 goto isolate_fail;
933 }
934
935 /*
936 * Migration will fail if an anonymous page is pinned in memory,
937 * so avoid taking lru_lock and isolating it unnecessarily in an
938 * admittedly racy check.
939 */
940 if (!page_mapping(page) &&
941 page_count(page) > page_mapcount(page))
942 goto isolate_fail;
943
944 /*
945 * Only allow to migrate anonymous pages in GFP_NOFS context
946 * because those do not depend on fs locks.
947 */
948 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
949 goto isolate_fail;
950
951 /* If we already hold the lock, we can skip some rechecking */
952 if (!locked) {
953 locked = compact_lock_irqsave(&pgdat->lru_lock,
954 &flags, cc);
955
956 /* Try get exclusive access under lock */
957 if (!skip_updated) {
958 skip_updated = true;
959 if (test_and_set_skip(cc, page, low_pfn))
960 goto isolate_abort;
961 }
962
963 /* Recheck PageLRU and PageCompound under lock */
964 if (!PageLRU(page))
965 goto isolate_fail;
966
967 /*
968 * Page become compound since the non-locked check,
969 * and it's on LRU. It can only be a THP so the order
970 * is safe to read and it's 0 for tail pages.
971 */
972 if (unlikely(PageCompound(page))) {
973 low_pfn += compound_nr(page) - 1;
974 goto isolate_fail;
975 }
976 }
977
978 lruvec = mem_cgroup_page_lruvec(page, pgdat);
979
980 /* Try isolate the page */
981 if (__isolate_lru_page(page, isolate_mode) != 0)
982 goto isolate_fail;
983
984 VM_BUG_ON_PAGE(PageCompound(page), page);
985
986 /* Successfully isolated */
987 del_page_from_lru_list(page, lruvec, page_lru(page));
988 inc_node_page_state(page,
989 NR_ISOLATED_ANON + page_is_file_cache(page));
990
991 isolate_success:
992 list_add(&page->lru, &cc->migratepages);
993 cc->nr_migratepages++;
994 nr_isolated++;
995
996 /*
997 * Avoid isolating too much unless this block is being
998 * rescanned (e.g. dirty/writeback pages, parallel allocation)
999 * or a lock is contended. For contention, isolate quickly to
1000 * potentially remove one source of contention.
1001 */
1002 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1003 !cc->rescan && !cc->contended) {
1004 ++low_pfn;
1005 break;
1006 }
1007
1008 continue;
1009 isolate_fail:
1010 if (!skip_on_failure)
1011 continue;
1012
1013 /*
1014 * We have isolated some pages, but then failed. Release them
1015 * instead of migrating, as we cannot form the cc->order buddy
1016 * page anyway.
1017 */
1018 if (nr_isolated) {
1019 if (locked) {
1020 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1021 locked = false;
1022 }
1023 putback_movable_pages(&cc->migratepages);
1024 cc->nr_migratepages = 0;
1025 nr_isolated = 0;
1026 }
1027
1028 if (low_pfn < next_skip_pfn) {
1029 low_pfn = next_skip_pfn - 1;
1030 /*
1031 * The check near the loop beginning would have updated
1032 * next_skip_pfn too, but this is a bit simpler.
1033 */
1034 next_skip_pfn += 1UL << cc->order;
1035 }
1036 }
1037
1038 /*
1039 * The PageBuddy() check could have potentially brought us outside
1040 * the range to be scanned.
1041 */
1042 if (unlikely(low_pfn > end_pfn))
1043 low_pfn = end_pfn;
1044
1045 isolate_abort:
1046 if (locked)
1047 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1048
1049 /*
1050 * Updated the cached scanner pfn once the pageblock has been scanned
1051 * Pages will either be migrated in which case there is no point
1052 * scanning in the near future or migration failed in which case the
1053 * failure reason may persist. The block is marked for skipping if
1054 * there were no pages isolated in the block or if the block is
1055 * rescanned twice in a row.
1056 */
1057 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1058 if (valid_page && !skip_updated)
1059 set_pageblock_skip(valid_page);
1060 update_cached_migrate(cc, low_pfn);
1061 }
1062
1063 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1064 nr_scanned, nr_isolated);
1065
1066 fatal_pending:
1067 cc->total_migrate_scanned += nr_scanned;
1068 if (nr_isolated)
1069 count_compact_events(COMPACTISOLATED, nr_isolated);
1070
1071 return low_pfn;
1072 }
1073
1074 /**
1075 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1076 * @cc: Compaction control structure.
1077 * @start_pfn: The first PFN to start isolating.
1078 * @end_pfn: The one-past-last PFN.
1079 *
1080 * Returns zero if isolation fails fatally due to e.g. pending signal.
1081 * Otherwise, function returns one-past-the-last PFN of isolated page
1082 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1083 */
1084 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1085 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1086 unsigned long end_pfn)
1087 {
1088 unsigned long pfn, block_start_pfn, block_end_pfn;
1089
1090 /* Scan block by block. First and last block may be incomplete */
1091 pfn = start_pfn;
1092 block_start_pfn = pageblock_start_pfn(pfn);
1093 if (block_start_pfn < cc->zone->zone_start_pfn)
1094 block_start_pfn = cc->zone->zone_start_pfn;
1095 block_end_pfn = pageblock_end_pfn(pfn);
1096
1097 for (; pfn < end_pfn; pfn = block_end_pfn,
1098 block_start_pfn = block_end_pfn,
1099 block_end_pfn += pageblock_nr_pages) {
1100
1101 block_end_pfn = min(block_end_pfn, end_pfn);
1102
1103 if (!pageblock_pfn_to_page(block_start_pfn,
1104 block_end_pfn, cc->zone))
1105 continue;
1106
1107 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1108 ISOLATE_UNEVICTABLE);
1109
1110 if (!pfn)
1111 break;
1112
1113 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1114 break;
1115 }
1116
1117 return pfn;
1118 }
1119
1120 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1121 #ifdef CONFIG_COMPACTION
1122
suitable_migration_source(struct compact_control * cc,struct page * page)1123 static bool suitable_migration_source(struct compact_control *cc,
1124 struct page *page)
1125 {
1126 int block_mt;
1127
1128 if (pageblock_skip_persistent(page))
1129 return false;
1130
1131 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1132 return true;
1133
1134 block_mt = get_pageblock_migratetype(page);
1135
1136 if (cc->migratetype == MIGRATE_MOVABLE)
1137 return is_migrate_movable(block_mt);
1138 else
1139 return block_mt == cc->migratetype;
1140 }
1141
1142 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1143 static bool suitable_migration_target(struct compact_control *cc,
1144 struct page *page)
1145 {
1146 /* If the page is a large free page, then disallow migration */
1147 if (PageBuddy(page)) {
1148 /*
1149 * We are checking page_order without zone->lock taken. But
1150 * the only small danger is that we skip a potentially suitable
1151 * pageblock, so it's not worth to check order for valid range.
1152 */
1153 if (page_order_unsafe(page) >= pageblock_order)
1154 return false;
1155 }
1156
1157 if (cc->ignore_block_suitable)
1158 return true;
1159
1160 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1161 if (is_migrate_movable(get_pageblock_migratetype(page)))
1162 return true;
1163
1164 /* Otherwise skip the block */
1165 return false;
1166 }
1167
1168 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1169 freelist_scan_limit(struct compact_control *cc)
1170 {
1171 unsigned short shift = BITS_PER_LONG - 1;
1172
1173 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1174 }
1175
1176 /*
1177 * Test whether the free scanner has reached the same or lower pageblock than
1178 * the migration scanner, and compaction should thus terminate.
1179 */
compact_scanners_met(struct compact_control * cc)1180 static inline bool compact_scanners_met(struct compact_control *cc)
1181 {
1182 return (cc->free_pfn >> pageblock_order)
1183 <= (cc->migrate_pfn >> pageblock_order);
1184 }
1185
1186 /*
1187 * Used when scanning for a suitable migration target which scans freelists
1188 * in reverse. Reorders the list such as the unscanned pages are scanned
1189 * first on the next iteration of the free scanner
1190 */
1191 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1192 move_freelist_head(struct list_head *freelist, struct page *freepage)
1193 {
1194 LIST_HEAD(sublist);
1195
1196 if (!list_is_last(freelist, &freepage->lru)) {
1197 list_cut_before(&sublist, freelist, &freepage->lru);
1198 if (!list_empty(&sublist))
1199 list_splice_tail(&sublist, freelist);
1200 }
1201 }
1202
1203 /*
1204 * Similar to move_freelist_head except used by the migration scanner
1205 * when scanning forward. It's possible for these list operations to
1206 * move against each other if they search the free list exactly in
1207 * lockstep.
1208 */
1209 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1210 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1211 {
1212 LIST_HEAD(sublist);
1213
1214 if (!list_is_first(freelist, &freepage->lru)) {
1215 list_cut_position(&sublist, freelist, &freepage->lru);
1216 if (!list_empty(&sublist))
1217 list_splice_tail(&sublist, freelist);
1218 }
1219 }
1220
1221 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1222 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1223 {
1224 unsigned long start_pfn, end_pfn;
1225 struct page *page = pfn_to_page(pfn);
1226
1227 /* Do not search around if there are enough pages already */
1228 if (cc->nr_freepages >= cc->nr_migratepages)
1229 return;
1230
1231 /* Minimise scanning during async compaction */
1232 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1233 return;
1234
1235 /* Pageblock boundaries */
1236 start_pfn = pageblock_start_pfn(pfn);
1237 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1238
1239 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1240
1241 /* Skip this pageblock in the future as it's full or nearly full */
1242 if (cc->nr_freepages < cc->nr_migratepages)
1243 set_pageblock_skip(page);
1244
1245 return;
1246 }
1247
1248 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1249 static int next_search_order(struct compact_control *cc, int order)
1250 {
1251 order--;
1252 if (order < 0)
1253 order = cc->order - 1;
1254
1255 /* Search wrapped around? */
1256 if (order == cc->search_order) {
1257 cc->search_order--;
1258 if (cc->search_order < 0)
1259 cc->search_order = cc->order - 1;
1260 return -1;
1261 }
1262
1263 return order;
1264 }
1265
1266 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1267 fast_isolate_freepages(struct compact_control *cc)
1268 {
1269 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1270 unsigned int nr_scanned = 0;
1271 unsigned long low_pfn, min_pfn, highest = 0;
1272 unsigned long nr_isolated = 0;
1273 unsigned long distance;
1274 struct page *page = NULL;
1275 bool scan_start = false;
1276 int order;
1277
1278 /* Full compaction passes in a negative order */
1279 if (cc->order <= 0)
1280 return cc->free_pfn;
1281
1282 /*
1283 * If starting the scan, use a deeper search and use the highest
1284 * PFN found if a suitable one is not found.
1285 */
1286 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1287 limit = pageblock_nr_pages >> 1;
1288 scan_start = true;
1289 }
1290
1291 /*
1292 * Preferred point is in the top quarter of the scan space but take
1293 * a pfn from the top half if the search is problematic.
1294 */
1295 distance = (cc->free_pfn - cc->migrate_pfn);
1296 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1297 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1298
1299 if (WARN_ON_ONCE(min_pfn > low_pfn))
1300 low_pfn = min_pfn;
1301
1302 /*
1303 * Search starts from the last successful isolation order or the next
1304 * order to search after a previous failure
1305 */
1306 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1307
1308 for (order = cc->search_order;
1309 !page && order >= 0;
1310 order = next_search_order(cc, order)) {
1311 struct free_area *area = &cc->zone->free_area[order];
1312 struct list_head *freelist;
1313 struct page *freepage;
1314 unsigned long flags;
1315 unsigned int order_scanned = 0;
1316 unsigned long high_pfn = 0;
1317
1318 if (!area->nr_free)
1319 continue;
1320
1321 spin_lock_irqsave(&cc->zone->lock, flags);
1322 freelist = &area->free_list[MIGRATE_MOVABLE];
1323 list_for_each_entry_reverse(freepage, freelist, lru) {
1324 unsigned long pfn;
1325
1326 order_scanned++;
1327 nr_scanned++;
1328 pfn = page_to_pfn(freepage);
1329
1330 if (pfn >= highest)
1331 highest = pageblock_start_pfn(pfn);
1332
1333 if (pfn >= low_pfn) {
1334 cc->fast_search_fail = 0;
1335 cc->search_order = order;
1336 page = freepage;
1337 break;
1338 }
1339
1340 if (pfn >= min_pfn && pfn > high_pfn) {
1341 high_pfn = pfn;
1342
1343 /* Shorten the scan if a candidate is found */
1344 limit >>= 1;
1345 }
1346
1347 if (order_scanned >= limit)
1348 break;
1349 }
1350
1351 /* Use a minimum pfn if a preferred one was not found */
1352 if (!page && high_pfn) {
1353 page = pfn_to_page(high_pfn);
1354
1355 /* Update freepage for the list reorder below */
1356 freepage = page;
1357 }
1358
1359 /* Reorder to so a future search skips recent pages */
1360 move_freelist_head(freelist, freepage);
1361
1362 /* Isolate the page if available */
1363 if (page) {
1364 if (__isolate_free_page(page, order)) {
1365 set_page_private(page, order);
1366 nr_isolated = 1 << order;
1367 cc->nr_freepages += nr_isolated;
1368 list_add_tail(&page->lru, &cc->freepages);
1369 count_compact_events(COMPACTISOLATED, nr_isolated);
1370 } else {
1371 /* If isolation fails, abort the search */
1372 order = cc->search_order + 1;
1373 page = NULL;
1374 }
1375 }
1376
1377 spin_unlock_irqrestore(&cc->zone->lock, flags);
1378
1379 /*
1380 * Smaller scan on next order so the total scan ig related
1381 * to freelist_scan_limit.
1382 */
1383 if (order_scanned >= limit)
1384 limit = min(1U, limit >> 1);
1385 }
1386
1387 if (!page) {
1388 cc->fast_search_fail++;
1389 if (scan_start) {
1390 /*
1391 * Use the highest PFN found above min. If one was
1392 * not found, be pessemistic for direct compaction
1393 * and use the min mark.
1394 */
1395 if (highest) {
1396 page = pfn_to_page(highest);
1397 cc->free_pfn = highest;
1398 } else {
1399 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1400 page = pfn_to_page(min_pfn);
1401 cc->free_pfn = min_pfn;
1402 }
1403 }
1404 }
1405 }
1406
1407 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1408 highest -= pageblock_nr_pages;
1409 cc->zone->compact_cached_free_pfn = highest;
1410 }
1411
1412 cc->total_free_scanned += nr_scanned;
1413 if (!page)
1414 return cc->free_pfn;
1415
1416 low_pfn = page_to_pfn(page);
1417 fast_isolate_around(cc, low_pfn);
1418 return low_pfn;
1419 }
1420
1421 /*
1422 * Based on information in the current compact_control, find blocks
1423 * suitable for isolating free pages from and then isolate them.
1424 */
isolate_freepages(struct compact_control * cc)1425 static void isolate_freepages(struct compact_control *cc)
1426 {
1427 struct zone *zone = cc->zone;
1428 struct page *page;
1429 unsigned long block_start_pfn; /* start of current pageblock */
1430 unsigned long isolate_start_pfn; /* exact pfn we start at */
1431 unsigned long block_end_pfn; /* end of current pageblock */
1432 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1433 struct list_head *freelist = &cc->freepages;
1434 unsigned int stride;
1435
1436 /* Try a small search of the free lists for a candidate */
1437 isolate_start_pfn = fast_isolate_freepages(cc);
1438 if (cc->nr_freepages)
1439 goto splitmap;
1440
1441 /*
1442 * Initialise the free scanner. The starting point is where we last
1443 * successfully isolated from, zone-cached value, or the end of the
1444 * zone when isolating for the first time. For looping we also need
1445 * this pfn aligned down to the pageblock boundary, because we do
1446 * block_start_pfn -= pageblock_nr_pages in the for loop.
1447 * For ending point, take care when isolating in last pageblock of a
1448 * a zone which ends in the middle of a pageblock.
1449 * The low boundary is the end of the pageblock the migration scanner
1450 * is using.
1451 */
1452 isolate_start_pfn = cc->free_pfn;
1453 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1454 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1455 zone_end_pfn(zone));
1456 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1457 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1458
1459 /*
1460 * Isolate free pages until enough are available to migrate the
1461 * pages on cc->migratepages. We stop searching if the migrate
1462 * and free page scanners meet or enough free pages are isolated.
1463 */
1464 for (; block_start_pfn >= low_pfn;
1465 block_end_pfn = block_start_pfn,
1466 block_start_pfn -= pageblock_nr_pages,
1467 isolate_start_pfn = block_start_pfn) {
1468 unsigned long nr_isolated;
1469
1470 /*
1471 * This can iterate a massively long zone without finding any
1472 * suitable migration targets, so periodically check resched.
1473 */
1474 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1475 cond_resched();
1476
1477 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1478 zone);
1479 if (!page)
1480 continue;
1481
1482 /* Check the block is suitable for migration */
1483 if (!suitable_migration_target(cc, page))
1484 continue;
1485
1486 /* If isolation recently failed, do not retry */
1487 if (!isolation_suitable(cc, page))
1488 continue;
1489
1490 /* Found a block suitable for isolating free pages from. */
1491 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1492 block_end_pfn, freelist, stride, false);
1493
1494 /* Update the skip hint if the full pageblock was scanned */
1495 if (isolate_start_pfn == block_end_pfn)
1496 update_pageblock_skip(cc, page, block_start_pfn);
1497
1498 /* Are enough freepages isolated? */
1499 if (cc->nr_freepages >= cc->nr_migratepages) {
1500 if (isolate_start_pfn >= block_end_pfn) {
1501 /*
1502 * Restart at previous pageblock if more
1503 * freepages can be isolated next time.
1504 */
1505 isolate_start_pfn =
1506 block_start_pfn - pageblock_nr_pages;
1507 }
1508 break;
1509 } else if (isolate_start_pfn < block_end_pfn) {
1510 /*
1511 * If isolation failed early, do not continue
1512 * needlessly.
1513 */
1514 break;
1515 }
1516
1517 /* Adjust stride depending on isolation */
1518 if (nr_isolated) {
1519 stride = 1;
1520 continue;
1521 }
1522 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1523 }
1524
1525 /*
1526 * Record where the free scanner will restart next time. Either we
1527 * broke from the loop and set isolate_start_pfn based on the last
1528 * call to isolate_freepages_block(), or we met the migration scanner
1529 * and the loop terminated due to isolate_start_pfn < low_pfn
1530 */
1531 cc->free_pfn = isolate_start_pfn;
1532
1533 splitmap:
1534 /* __isolate_free_page() does not map the pages */
1535 split_map_pages(freelist);
1536 }
1537
1538 /*
1539 * This is a migrate-callback that "allocates" freepages by taking pages
1540 * from the isolated freelists in the block we are migrating to.
1541 */
compaction_alloc(struct page * migratepage,unsigned long data)1542 static struct page *compaction_alloc(struct page *migratepage,
1543 unsigned long data)
1544 {
1545 struct compact_control *cc = (struct compact_control *)data;
1546 struct page *freepage;
1547
1548 if (list_empty(&cc->freepages)) {
1549 isolate_freepages(cc);
1550
1551 if (list_empty(&cc->freepages))
1552 return NULL;
1553 }
1554
1555 freepage = list_entry(cc->freepages.next, struct page, lru);
1556 list_del(&freepage->lru);
1557 cc->nr_freepages--;
1558
1559 return freepage;
1560 }
1561
1562 /*
1563 * This is a migrate-callback that "frees" freepages back to the isolated
1564 * freelist. All pages on the freelist are from the same zone, so there is no
1565 * special handling needed for NUMA.
1566 */
compaction_free(struct page * page,unsigned long data)1567 static void compaction_free(struct page *page, unsigned long data)
1568 {
1569 struct compact_control *cc = (struct compact_control *)data;
1570
1571 list_add(&page->lru, &cc->freepages);
1572 cc->nr_freepages++;
1573 }
1574
1575 /* possible outcome of isolate_migratepages */
1576 typedef enum {
1577 ISOLATE_ABORT, /* Abort compaction now */
1578 ISOLATE_NONE, /* No pages isolated, continue scanning */
1579 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1580 } isolate_migrate_t;
1581
1582 /*
1583 * Allow userspace to control policy on scanning the unevictable LRU for
1584 * compactable pages.
1585 */
1586 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1587
1588 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1589 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1590 {
1591 if (cc->fast_start_pfn == ULONG_MAX)
1592 return;
1593
1594 if (!cc->fast_start_pfn)
1595 cc->fast_start_pfn = pfn;
1596
1597 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1598 }
1599
1600 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1601 reinit_migrate_pfn(struct compact_control *cc)
1602 {
1603 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1604 return cc->migrate_pfn;
1605
1606 cc->migrate_pfn = cc->fast_start_pfn;
1607 cc->fast_start_pfn = ULONG_MAX;
1608
1609 return cc->migrate_pfn;
1610 }
1611
1612 /*
1613 * Briefly search the free lists for a migration source that already has
1614 * some free pages to reduce the number of pages that need migration
1615 * before a pageblock is free.
1616 */
fast_find_migrateblock(struct compact_control * cc)1617 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1618 {
1619 unsigned int limit = freelist_scan_limit(cc);
1620 unsigned int nr_scanned = 0;
1621 unsigned long distance;
1622 unsigned long pfn = cc->migrate_pfn;
1623 unsigned long high_pfn;
1624 int order;
1625 bool found_block = false;
1626
1627 /* Skip hints are relied on to avoid repeats on the fast search */
1628 if (cc->ignore_skip_hint)
1629 return pfn;
1630
1631 /*
1632 * If the migrate_pfn is not at the start of a zone or the start
1633 * of a pageblock then assume this is a continuation of a previous
1634 * scan restarted due to COMPACT_CLUSTER_MAX.
1635 */
1636 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1637 return pfn;
1638
1639 /*
1640 * For smaller orders, just linearly scan as the number of pages
1641 * to migrate should be relatively small and does not necessarily
1642 * justify freeing up a large block for a small allocation.
1643 */
1644 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1645 return pfn;
1646
1647 /*
1648 * Only allow kcompactd and direct requests for movable pages to
1649 * quickly clear out a MOVABLE pageblock for allocation. This
1650 * reduces the risk that a large movable pageblock is freed for
1651 * an unmovable/reclaimable small allocation.
1652 */
1653 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1654 return pfn;
1655
1656 /*
1657 * When starting the migration scanner, pick any pageblock within the
1658 * first half of the search space. Otherwise try and pick a pageblock
1659 * within the first eighth to reduce the chances that a migration
1660 * target later becomes a source.
1661 */
1662 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1663 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1664 distance >>= 2;
1665 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1666
1667 for (order = cc->order - 1;
1668 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1669 order--) {
1670 struct free_area *area = &cc->zone->free_area[order];
1671 struct list_head *freelist;
1672 unsigned long flags;
1673 struct page *freepage;
1674
1675 if (!area->nr_free)
1676 continue;
1677
1678 spin_lock_irqsave(&cc->zone->lock, flags);
1679 freelist = &area->free_list[MIGRATE_MOVABLE];
1680 list_for_each_entry(freepage, freelist, lru) {
1681 unsigned long free_pfn;
1682
1683 if (nr_scanned++ >= limit) {
1684 move_freelist_tail(freelist, freepage);
1685 break;
1686 }
1687
1688 free_pfn = page_to_pfn(freepage);
1689 if (free_pfn < high_pfn) {
1690 /*
1691 * Avoid if skipped recently. Ideally it would
1692 * move to the tail but even safe iteration of
1693 * the list assumes an entry is deleted, not
1694 * reordered.
1695 */
1696 if (get_pageblock_skip(freepage))
1697 continue;
1698
1699 /* Reorder to so a future search skips recent pages */
1700 move_freelist_tail(freelist, freepage);
1701
1702 update_fast_start_pfn(cc, free_pfn);
1703 pfn = pageblock_start_pfn(free_pfn);
1704 if (pfn < cc->zone->zone_start_pfn)
1705 pfn = cc->zone->zone_start_pfn;
1706 cc->fast_search_fail = 0;
1707 found_block = true;
1708 set_pageblock_skip(freepage);
1709 break;
1710 }
1711 }
1712 spin_unlock_irqrestore(&cc->zone->lock, flags);
1713 }
1714
1715 cc->total_migrate_scanned += nr_scanned;
1716
1717 /*
1718 * If fast scanning failed then use a cached entry for a page block
1719 * that had free pages as the basis for starting a linear scan.
1720 */
1721 if (!found_block) {
1722 cc->fast_search_fail++;
1723 pfn = reinit_migrate_pfn(cc);
1724 }
1725 return pfn;
1726 }
1727
1728 /*
1729 * Isolate all pages that can be migrated from the first suitable block,
1730 * starting at the block pointed to by the migrate scanner pfn within
1731 * compact_control.
1732 */
isolate_migratepages(struct compact_control * cc)1733 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1734 {
1735 unsigned long block_start_pfn;
1736 unsigned long block_end_pfn;
1737 unsigned long low_pfn;
1738 struct page *page;
1739 const isolate_mode_t isolate_mode =
1740 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1741 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1742 bool fast_find_block;
1743
1744 /*
1745 * Start at where we last stopped, or beginning of the zone as
1746 * initialized by compact_zone(). The first failure will use
1747 * the lowest PFN as the starting point for linear scanning.
1748 */
1749 low_pfn = fast_find_migrateblock(cc);
1750 block_start_pfn = pageblock_start_pfn(low_pfn);
1751 if (block_start_pfn < cc->zone->zone_start_pfn)
1752 block_start_pfn = cc->zone->zone_start_pfn;
1753
1754 /*
1755 * fast_find_migrateblock marks a pageblock skipped so to avoid
1756 * the isolation_suitable check below, check whether the fast
1757 * search was successful.
1758 */
1759 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1760
1761 /* Only scan within a pageblock boundary */
1762 block_end_pfn = pageblock_end_pfn(low_pfn);
1763
1764 /*
1765 * Iterate over whole pageblocks until we find the first suitable.
1766 * Do not cross the free scanner.
1767 */
1768 for (; block_end_pfn <= cc->free_pfn;
1769 fast_find_block = false,
1770 low_pfn = block_end_pfn,
1771 block_start_pfn = block_end_pfn,
1772 block_end_pfn += pageblock_nr_pages) {
1773
1774 /*
1775 * This can potentially iterate a massively long zone with
1776 * many pageblocks unsuitable, so periodically check if we
1777 * need to schedule.
1778 */
1779 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1780 cond_resched();
1781
1782 page = pageblock_pfn_to_page(block_start_pfn,
1783 block_end_pfn, cc->zone);
1784 if (!page)
1785 continue;
1786
1787 /*
1788 * If isolation recently failed, do not retry. Only check the
1789 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1790 * to be visited multiple times. Assume skip was checked
1791 * before making it "skip" so other compaction instances do
1792 * not scan the same block.
1793 */
1794 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1795 !fast_find_block && !isolation_suitable(cc, page))
1796 continue;
1797
1798 /*
1799 * For async compaction, also only scan in MOVABLE blocks
1800 * without huge pages. Async compaction is optimistic to see
1801 * if the minimum amount of work satisfies the allocation.
1802 * The cached PFN is updated as it's possible that all
1803 * remaining blocks between source and target are unsuitable
1804 * and the compaction scanners fail to meet.
1805 */
1806 if (!suitable_migration_source(cc, page)) {
1807 update_cached_migrate(cc, block_end_pfn);
1808 continue;
1809 }
1810
1811 /* Perform the isolation */
1812 low_pfn = isolate_migratepages_block(cc, low_pfn,
1813 block_end_pfn, isolate_mode);
1814
1815 if (!low_pfn)
1816 return ISOLATE_ABORT;
1817
1818 /*
1819 * Either we isolated something and proceed with migration. Or
1820 * we failed and compact_zone should decide if we should
1821 * continue or not.
1822 */
1823 break;
1824 }
1825
1826 /* Record where migration scanner will be restarted. */
1827 cc->migrate_pfn = low_pfn;
1828
1829 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1830 }
1831
1832 /*
1833 * order == -1 is expected when compacting via
1834 * /proc/sys/vm/compact_memory
1835 */
is_via_compact_memory(int order)1836 static inline bool is_via_compact_memory(int order)
1837 {
1838 return order == -1;
1839 }
1840
__compact_finished(struct compact_control * cc)1841 static enum compact_result __compact_finished(struct compact_control *cc)
1842 {
1843 unsigned int order;
1844 const int migratetype = cc->migratetype;
1845 int ret;
1846
1847 /* Compaction run completes if the migrate and free scanner meet */
1848 if (compact_scanners_met(cc)) {
1849 /* Let the next compaction start anew. */
1850 reset_cached_positions(cc->zone);
1851
1852 /*
1853 * Mark that the PG_migrate_skip information should be cleared
1854 * by kswapd when it goes to sleep. kcompactd does not set the
1855 * flag itself as the decision to be clear should be directly
1856 * based on an allocation request.
1857 */
1858 if (cc->direct_compaction)
1859 cc->zone->compact_blockskip_flush = true;
1860
1861 if (cc->whole_zone)
1862 return COMPACT_COMPLETE;
1863 else
1864 return COMPACT_PARTIAL_SKIPPED;
1865 }
1866
1867 if (is_via_compact_memory(cc->order))
1868 return COMPACT_CONTINUE;
1869
1870 /*
1871 * Always finish scanning a pageblock to reduce the possibility of
1872 * fallbacks in the future. This is particularly important when
1873 * migration source is unmovable/reclaimable but it's not worth
1874 * special casing.
1875 */
1876 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1877 return COMPACT_CONTINUE;
1878
1879 /* Direct compactor: Is a suitable page free? */
1880 ret = COMPACT_NO_SUITABLE_PAGE;
1881 for (order = cc->order; order < MAX_ORDER; order++) {
1882 struct free_area *area = &cc->zone->free_area[order];
1883 bool can_steal;
1884
1885 /* Job done if page is free of the right migratetype */
1886 if (!free_area_empty(area, migratetype))
1887 return COMPACT_SUCCESS;
1888
1889 #ifdef CONFIG_CMA
1890 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1891 if (migratetype == MIGRATE_MOVABLE &&
1892 !free_area_empty(area, MIGRATE_CMA))
1893 return COMPACT_SUCCESS;
1894 #endif
1895 /*
1896 * Job done if allocation would steal freepages from
1897 * other migratetype buddy lists.
1898 */
1899 if (find_suitable_fallback(area, order, migratetype,
1900 true, &can_steal) != -1) {
1901
1902 /* movable pages are OK in any pageblock */
1903 if (migratetype == MIGRATE_MOVABLE)
1904 return COMPACT_SUCCESS;
1905
1906 /*
1907 * We are stealing for a non-movable allocation. Make
1908 * sure we finish compacting the current pageblock
1909 * first so it is as free as possible and we won't
1910 * have to steal another one soon. This only applies
1911 * to sync compaction, as async compaction operates
1912 * on pageblocks of the same migratetype.
1913 */
1914 if (cc->mode == MIGRATE_ASYNC ||
1915 IS_ALIGNED(cc->migrate_pfn,
1916 pageblock_nr_pages)) {
1917 return COMPACT_SUCCESS;
1918 }
1919
1920 ret = COMPACT_CONTINUE;
1921 break;
1922 }
1923 }
1924
1925 if (cc->contended || fatal_signal_pending(current))
1926 ret = COMPACT_CONTENDED;
1927
1928 return ret;
1929 }
1930
compact_finished(struct compact_control * cc)1931 static enum compact_result compact_finished(struct compact_control *cc)
1932 {
1933 int ret;
1934
1935 ret = __compact_finished(cc);
1936 trace_mm_compaction_finished(cc->zone, cc->order, ret);
1937 if (ret == COMPACT_NO_SUITABLE_PAGE)
1938 ret = COMPACT_CONTINUE;
1939
1940 return ret;
1941 }
1942
1943 /*
1944 * compaction_suitable: Is this suitable to run compaction on this zone now?
1945 * Returns
1946 * COMPACT_SKIPPED - If there are too few free pages for compaction
1947 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1948 * COMPACT_CONTINUE - If compaction should run now
1949 */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1950 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1951 unsigned int alloc_flags,
1952 int classzone_idx,
1953 unsigned long wmark_target)
1954 {
1955 unsigned long watermark;
1956
1957 if (is_via_compact_memory(order))
1958 return COMPACT_CONTINUE;
1959
1960 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1961 /*
1962 * If watermarks for high-order allocation are already met, there
1963 * should be no need for compaction at all.
1964 */
1965 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1966 alloc_flags))
1967 return COMPACT_SUCCESS;
1968
1969 /*
1970 * Watermarks for order-0 must be met for compaction to be able to
1971 * isolate free pages for migration targets. This means that the
1972 * watermark and alloc_flags have to match, or be more pessimistic than
1973 * the check in __isolate_free_page(). We don't use the direct
1974 * compactor's alloc_flags, as they are not relevant for freepage
1975 * isolation. We however do use the direct compactor's classzone_idx to
1976 * skip over zones where lowmem reserves would prevent allocation even
1977 * if compaction succeeds.
1978 * For costly orders, we require low watermark instead of min for
1979 * compaction to proceed to increase its chances.
1980 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1981 * suitable migration targets
1982 */
1983 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1984 low_wmark_pages(zone) : min_wmark_pages(zone);
1985 watermark += compact_gap(order);
1986 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1987 ALLOC_CMA, wmark_target))
1988 return COMPACT_SKIPPED;
1989
1990 return COMPACT_CONTINUE;
1991 }
1992
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1993 enum compact_result compaction_suitable(struct zone *zone, int order,
1994 unsigned int alloc_flags,
1995 int classzone_idx)
1996 {
1997 enum compact_result ret;
1998 int fragindex;
1999
2000 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2001 zone_page_state(zone, NR_FREE_PAGES));
2002 /*
2003 * fragmentation index determines if allocation failures are due to
2004 * low memory or external fragmentation
2005 *
2006 * index of -1000 would imply allocations might succeed depending on
2007 * watermarks, but we already failed the high-order watermark check
2008 * index towards 0 implies failure is due to lack of memory
2009 * index towards 1000 implies failure is due to fragmentation
2010 *
2011 * Only compact if a failure would be due to fragmentation. Also
2012 * ignore fragindex for non-costly orders where the alternative to
2013 * a successful reclaim/compaction is OOM. Fragindex and the
2014 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2015 * excessive compaction for costly orders, but it should not be at the
2016 * expense of system stability.
2017 */
2018 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2019 fragindex = fragmentation_index(zone, order);
2020 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2021 ret = COMPACT_NOT_SUITABLE_ZONE;
2022 }
2023
2024 trace_mm_compaction_suitable(zone, order, ret);
2025 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2026 ret = COMPACT_SKIPPED;
2027
2028 return ret;
2029 }
2030
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2031 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2032 int alloc_flags)
2033 {
2034 struct zone *zone;
2035 struct zoneref *z;
2036
2037 /*
2038 * Make sure at least one zone would pass __compaction_suitable if we continue
2039 * retrying the reclaim.
2040 */
2041 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2042 ac->nodemask) {
2043 unsigned long available;
2044 enum compact_result compact_result;
2045
2046 /*
2047 * Do not consider all the reclaimable memory because we do not
2048 * want to trash just for a single high order allocation which
2049 * is even not guaranteed to appear even if __compaction_suitable
2050 * is happy about the watermark check.
2051 */
2052 available = zone_reclaimable_pages(zone) / order;
2053 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2054 compact_result = __compaction_suitable(zone, order, alloc_flags,
2055 ac_classzone_idx(ac), available);
2056 if (compact_result != COMPACT_SKIPPED)
2057 return true;
2058 }
2059
2060 return false;
2061 }
2062
2063 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2064 compact_zone(struct compact_control *cc, struct capture_control *capc)
2065 {
2066 enum compact_result ret;
2067 unsigned long start_pfn = cc->zone->zone_start_pfn;
2068 unsigned long end_pfn = zone_end_pfn(cc->zone);
2069 unsigned long last_migrated_pfn;
2070 const bool sync = cc->mode != MIGRATE_ASYNC;
2071 bool update_cached;
2072
2073 /*
2074 * These counters track activities during zone compaction. Initialize
2075 * them before compacting a new zone.
2076 */
2077 cc->total_migrate_scanned = 0;
2078 cc->total_free_scanned = 0;
2079 cc->nr_migratepages = 0;
2080 cc->nr_freepages = 0;
2081 INIT_LIST_HEAD(&cc->freepages);
2082 INIT_LIST_HEAD(&cc->migratepages);
2083
2084 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2085 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2086 cc->classzone_idx);
2087 /* Compaction is likely to fail */
2088 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2089 return ret;
2090
2091 /* huh, compaction_suitable is returning something unexpected */
2092 VM_BUG_ON(ret != COMPACT_CONTINUE);
2093
2094 /*
2095 * Clear pageblock skip if there were failures recently and compaction
2096 * is about to be retried after being deferred.
2097 */
2098 if (compaction_restarting(cc->zone, cc->order))
2099 __reset_isolation_suitable(cc->zone);
2100
2101 /*
2102 * Setup to move all movable pages to the end of the zone. Used cached
2103 * information on where the scanners should start (unless we explicitly
2104 * want to compact the whole zone), but check that it is initialised
2105 * by ensuring the values are within zone boundaries.
2106 */
2107 cc->fast_start_pfn = 0;
2108 if (cc->whole_zone) {
2109 cc->migrate_pfn = start_pfn;
2110 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2111 } else {
2112 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2113 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2114 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2115 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2116 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2117 }
2118 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2119 cc->migrate_pfn = start_pfn;
2120 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2121 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2122 }
2123
2124 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2125 cc->whole_zone = true;
2126 }
2127
2128 last_migrated_pfn = 0;
2129
2130 /*
2131 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2132 * the basis that some migrations will fail in ASYNC mode. However,
2133 * if the cached PFNs match and pageblocks are skipped due to having
2134 * no isolation candidates, then the sync state does not matter.
2135 * Until a pageblock with isolation candidates is found, keep the
2136 * cached PFNs in sync to avoid revisiting the same blocks.
2137 */
2138 update_cached = !sync &&
2139 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2140
2141 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2142 cc->free_pfn, end_pfn, sync);
2143
2144 migrate_prep_local();
2145
2146 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2147 int err;
2148 unsigned long start_pfn = cc->migrate_pfn;
2149
2150 /*
2151 * Avoid multiple rescans which can happen if a page cannot be
2152 * isolated (dirty/writeback in async mode) or if the migrated
2153 * pages are being allocated before the pageblock is cleared.
2154 * The first rescan will capture the entire pageblock for
2155 * migration. If it fails, it'll be marked skip and scanning
2156 * will proceed as normal.
2157 */
2158 cc->rescan = false;
2159 if (pageblock_start_pfn(last_migrated_pfn) ==
2160 pageblock_start_pfn(start_pfn)) {
2161 cc->rescan = true;
2162 }
2163
2164 switch (isolate_migratepages(cc)) {
2165 case ISOLATE_ABORT:
2166 ret = COMPACT_CONTENDED;
2167 putback_movable_pages(&cc->migratepages);
2168 cc->nr_migratepages = 0;
2169 last_migrated_pfn = 0;
2170 goto out;
2171 case ISOLATE_NONE:
2172 if (update_cached) {
2173 cc->zone->compact_cached_migrate_pfn[1] =
2174 cc->zone->compact_cached_migrate_pfn[0];
2175 }
2176
2177 /*
2178 * We haven't isolated and migrated anything, but
2179 * there might still be unflushed migrations from
2180 * previous cc->order aligned block.
2181 */
2182 goto check_drain;
2183 case ISOLATE_SUCCESS:
2184 update_cached = false;
2185 last_migrated_pfn = start_pfn;
2186 ;
2187 }
2188
2189 err = migrate_pages(&cc->migratepages, compaction_alloc,
2190 compaction_free, (unsigned long)cc, cc->mode,
2191 MR_COMPACTION);
2192
2193 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2194 &cc->migratepages);
2195
2196 /* All pages were either migrated or will be released */
2197 cc->nr_migratepages = 0;
2198 if (err) {
2199 putback_movable_pages(&cc->migratepages);
2200 /*
2201 * migrate_pages() may return -ENOMEM when scanners meet
2202 * and we want compact_finished() to detect it
2203 */
2204 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2205 ret = COMPACT_CONTENDED;
2206 goto out;
2207 }
2208 /*
2209 * We failed to migrate at least one page in the current
2210 * order-aligned block, so skip the rest of it.
2211 */
2212 if (cc->direct_compaction &&
2213 (cc->mode == MIGRATE_ASYNC)) {
2214 cc->migrate_pfn = block_end_pfn(
2215 cc->migrate_pfn - 1, cc->order);
2216 /* Draining pcplists is useless in this case */
2217 last_migrated_pfn = 0;
2218 }
2219 }
2220
2221 check_drain:
2222 /*
2223 * Has the migration scanner moved away from the previous
2224 * cc->order aligned block where we migrated from? If yes,
2225 * flush the pages that were freed, so that they can merge and
2226 * compact_finished() can detect immediately if allocation
2227 * would succeed.
2228 */
2229 if (cc->order > 0 && last_migrated_pfn) {
2230 int cpu;
2231 unsigned long current_block_start =
2232 block_start_pfn(cc->migrate_pfn, cc->order);
2233
2234 if (last_migrated_pfn < current_block_start) {
2235 cpu = get_cpu();
2236 lru_add_drain_cpu(cpu);
2237 drain_local_pages(cc->zone);
2238 put_cpu();
2239 /* No more flushing until we migrate again */
2240 last_migrated_pfn = 0;
2241 }
2242 }
2243
2244 /* Stop if a page has been captured */
2245 if (capc && capc->page) {
2246 ret = COMPACT_SUCCESS;
2247 break;
2248 }
2249 }
2250
2251 out:
2252 /*
2253 * Release free pages and update where the free scanner should restart,
2254 * so we don't leave any returned pages behind in the next attempt.
2255 */
2256 if (cc->nr_freepages > 0) {
2257 unsigned long free_pfn = release_freepages(&cc->freepages);
2258
2259 cc->nr_freepages = 0;
2260 VM_BUG_ON(free_pfn == 0);
2261 /* The cached pfn is always the first in a pageblock */
2262 free_pfn = pageblock_start_pfn(free_pfn);
2263 /*
2264 * Only go back, not forward. The cached pfn might have been
2265 * already reset to zone end in compact_finished()
2266 */
2267 if (free_pfn > cc->zone->compact_cached_free_pfn)
2268 cc->zone->compact_cached_free_pfn = free_pfn;
2269 }
2270
2271 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2272 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2273
2274 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2275 cc->free_pfn, end_pfn, sync, ret);
2276
2277 return ret;
2278 }
2279
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx,struct page ** capture)2280 static enum compact_result compact_zone_order(struct zone *zone, int order,
2281 gfp_t gfp_mask, enum compact_priority prio,
2282 unsigned int alloc_flags, int classzone_idx,
2283 struct page **capture)
2284 {
2285 enum compact_result ret;
2286 struct compact_control cc = {
2287 .order = order,
2288 .search_order = order,
2289 .gfp_mask = gfp_mask,
2290 .zone = zone,
2291 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2292 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2293 .alloc_flags = alloc_flags,
2294 .classzone_idx = classzone_idx,
2295 .direct_compaction = true,
2296 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2297 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2298 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2299 };
2300 struct capture_control capc = {
2301 .cc = &cc,
2302 .page = NULL,
2303 };
2304
2305 /*
2306 * Make sure the structs are really initialized before we expose the
2307 * capture control, in case we are interrupted and the interrupt handler
2308 * frees a page.
2309 */
2310 barrier();
2311 WRITE_ONCE(current->capture_control, &capc);
2312
2313 ret = compact_zone(&cc, &capc);
2314
2315 VM_BUG_ON(!list_empty(&cc.freepages));
2316 VM_BUG_ON(!list_empty(&cc.migratepages));
2317
2318 /*
2319 * Make sure we hide capture control first before we read the captured
2320 * page pointer, otherwise an interrupt could free and capture a page
2321 * and we would leak it.
2322 */
2323 WRITE_ONCE(current->capture_control, NULL);
2324 *capture = READ_ONCE(capc.page);
2325
2326 return ret;
2327 }
2328
2329 int sysctl_extfrag_threshold = 500;
2330
2331 /**
2332 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2333 * @gfp_mask: The GFP mask of the current allocation
2334 * @order: The order of the current allocation
2335 * @alloc_flags: The allocation flags of the current allocation
2336 * @ac: The context of current allocation
2337 * @prio: Determines how hard direct compaction should try to succeed
2338 * @capture: Pointer to free page created by compaction will be stored here
2339 *
2340 * This is the main entry point for direct page compaction.
2341 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2342 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2343 unsigned int alloc_flags, const struct alloc_context *ac,
2344 enum compact_priority prio, struct page **capture)
2345 {
2346 struct zoneref *z;
2347 struct zone *zone;
2348 enum compact_result rc = COMPACT_SKIPPED;
2349
2350 if (!gfp_compaction_allowed(gfp_mask))
2351 return COMPACT_SKIPPED;
2352
2353 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2354
2355 /* Compact each zone in the list */
2356 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2357 ac->nodemask) {
2358 enum compact_result status;
2359
2360 if (prio > MIN_COMPACT_PRIORITY
2361 && compaction_deferred(zone, order)) {
2362 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2363 continue;
2364 }
2365
2366 status = compact_zone_order(zone, order, gfp_mask, prio,
2367 alloc_flags, ac_classzone_idx(ac), capture);
2368 rc = max(status, rc);
2369
2370 /* The allocation should succeed, stop compacting */
2371 if (status == COMPACT_SUCCESS) {
2372 /*
2373 * We think the allocation will succeed in this zone,
2374 * but it is not certain, hence the false. The caller
2375 * will repeat this with true if allocation indeed
2376 * succeeds in this zone.
2377 */
2378 compaction_defer_reset(zone, order, false);
2379
2380 break;
2381 }
2382
2383 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2384 status == COMPACT_PARTIAL_SKIPPED))
2385 /*
2386 * We think that allocation won't succeed in this zone
2387 * so we defer compaction there. If it ends up
2388 * succeeding after all, it will be reset.
2389 */
2390 defer_compaction(zone, order);
2391
2392 /*
2393 * We might have stopped compacting due to need_resched() in
2394 * async compaction, or due to a fatal signal detected. In that
2395 * case do not try further zones
2396 */
2397 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2398 || fatal_signal_pending(current))
2399 break;
2400 }
2401
2402 return rc;
2403 }
2404
2405
2406 /* Compact all zones within a node */
compact_node(int nid)2407 static void compact_node(int nid)
2408 {
2409 pg_data_t *pgdat = NODE_DATA(nid);
2410 int zoneid;
2411 struct zone *zone;
2412 struct compact_control cc = {
2413 .order = -1,
2414 .mode = MIGRATE_SYNC,
2415 .ignore_skip_hint = true,
2416 .whole_zone = true,
2417 .gfp_mask = GFP_KERNEL,
2418 };
2419
2420
2421 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2422
2423 zone = &pgdat->node_zones[zoneid];
2424 if (!populated_zone(zone))
2425 continue;
2426
2427 cc.zone = zone;
2428
2429 compact_zone(&cc, NULL);
2430
2431 VM_BUG_ON(!list_empty(&cc.freepages));
2432 VM_BUG_ON(!list_empty(&cc.migratepages));
2433 }
2434 }
2435
2436 /* Compact all nodes in the system */
compact_nodes(void)2437 static void compact_nodes(void)
2438 {
2439 int nid;
2440
2441 /* Flush pending updates to the LRU lists */
2442 lru_add_drain_all();
2443
2444 for_each_online_node(nid)
2445 compact_node(nid);
2446 }
2447
2448 /* The written value is actually unused, all memory is compacted */
2449 int sysctl_compact_memory;
2450
2451 /*
2452 * This is the entry point for compacting all nodes via
2453 * /proc/sys/vm/compact_memory
2454 */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2455 int sysctl_compaction_handler(struct ctl_table *table, int write,
2456 void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458 if (write)
2459 compact_nodes();
2460
2461 return 0;
2462 }
2463
2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2465 static ssize_t sysfs_compact_node(struct device *dev,
2466 struct device_attribute *attr,
2467 const char *buf, size_t count)
2468 {
2469 int nid = dev->id;
2470
2471 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472 /* Flush pending updates to the LRU lists */
2473 lru_add_drain_all();
2474
2475 compact_node(nid);
2476 }
2477
2478 return count;
2479 }
2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481
compaction_register_node(struct node * node)2482 int compaction_register_node(struct node *node)
2483 {
2484 return device_create_file(&node->dev, &dev_attr_compact);
2485 }
2486
compaction_unregister_node(struct node * node)2487 void compaction_unregister_node(struct node *node)
2488 {
2489 return device_remove_file(&node->dev, &dev_attr_compact);
2490 }
2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492
kcompactd_work_requested(pg_data_t * pgdat)2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494 {
2495 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496 }
2497
kcompactd_node_suitable(pg_data_t * pgdat)2498 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499 {
2500 int zoneid;
2501 struct zone *zone;
2502 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503
2504 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505 zone = &pgdat->node_zones[zoneid];
2506
2507 if (!populated_zone(zone))
2508 continue;
2509
2510 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511 classzone_idx) == COMPACT_CONTINUE)
2512 return true;
2513 }
2514
2515 return false;
2516 }
2517
kcompactd_do_work(pg_data_t * pgdat)2518 static void kcompactd_do_work(pg_data_t *pgdat)
2519 {
2520 /*
2521 * With no special task, compact all zones so that a page of requested
2522 * order is allocatable.
2523 */
2524 int zoneid;
2525 struct zone *zone;
2526 struct compact_control cc = {
2527 .order = pgdat->kcompactd_max_order,
2528 .search_order = pgdat->kcompactd_max_order,
2529 .classzone_idx = pgdat->kcompactd_classzone_idx,
2530 .mode = MIGRATE_SYNC_LIGHT,
2531 .ignore_skip_hint = false,
2532 .gfp_mask = GFP_KERNEL,
2533 };
2534 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2535 cc.classzone_idx);
2536 count_compact_event(KCOMPACTD_WAKE);
2537
2538 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2539 int status;
2540
2541 zone = &pgdat->node_zones[zoneid];
2542 if (!populated_zone(zone))
2543 continue;
2544
2545 if (compaction_deferred(zone, cc.order))
2546 continue;
2547
2548 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2549 COMPACT_CONTINUE)
2550 continue;
2551
2552 if (kthread_should_stop())
2553 return;
2554
2555 cc.zone = zone;
2556 status = compact_zone(&cc, NULL);
2557
2558 if (status == COMPACT_SUCCESS) {
2559 compaction_defer_reset(zone, cc.order, false);
2560 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2561 /*
2562 * Buddy pages may become stranded on pcps that could
2563 * otherwise coalesce on the zone's free area for
2564 * order >= cc.order. This is ratelimited by the
2565 * upcoming deferral.
2566 */
2567 drain_all_pages(zone);
2568
2569 /*
2570 * We use sync migration mode here, so we defer like
2571 * sync direct compaction does.
2572 */
2573 defer_compaction(zone, cc.order);
2574 }
2575
2576 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2577 cc.total_migrate_scanned);
2578 count_compact_events(KCOMPACTD_FREE_SCANNED,
2579 cc.total_free_scanned);
2580
2581 VM_BUG_ON(!list_empty(&cc.freepages));
2582 VM_BUG_ON(!list_empty(&cc.migratepages));
2583 }
2584
2585 /*
2586 * Regardless of success, we are done until woken up next. But remember
2587 * the requested order/classzone_idx in case it was higher/tighter than
2588 * our current ones
2589 */
2590 if (pgdat->kcompactd_max_order <= cc.order)
2591 pgdat->kcompactd_max_order = 0;
2592 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2593 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2594 }
2595
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)2596 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2597 {
2598 if (!order)
2599 return;
2600
2601 if (pgdat->kcompactd_max_order < order)
2602 pgdat->kcompactd_max_order = order;
2603
2604 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2605 pgdat->kcompactd_classzone_idx = classzone_idx;
2606
2607 /*
2608 * Pairs with implicit barrier in wait_event_freezable()
2609 * such that wakeups are not missed.
2610 */
2611 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2612 return;
2613
2614 if (!kcompactd_node_suitable(pgdat))
2615 return;
2616
2617 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2618 classzone_idx);
2619 wake_up_interruptible(&pgdat->kcompactd_wait);
2620 }
2621
2622 /*
2623 * The background compaction daemon, started as a kernel thread
2624 * from the init process.
2625 */
kcompactd(void * p)2626 static int kcompactd(void *p)
2627 {
2628 pg_data_t *pgdat = (pg_data_t*)p;
2629 struct task_struct *tsk = current;
2630
2631 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2632
2633 if (!cpumask_empty(cpumask))
2634 set_cpus_allowed_ptr(tsk, cpumask);
2635
2636 set_freezable();
2637
2638 pgdat->kcompactd_max_order = 0;
2639 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2640
2641 while (!kthread_should_stop()) {
2642 unsigned long pflags;
2643
2644 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2645 wait_event_freezable(pgdat->kcompactd_wait,
2646 kcompactd_work_requested(pgdat));
2647
2648 psi_memstall_enter(&pflags);
2649 kcompactd_do_work(pgdat);
2650 psi_memstall_leave(&pflags);
2651 }
2652
2653 return 0;
2654 }
2655
2656 /*
2657 * This kcompactd start function will be called by init and node-hot-add.
2658 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2659 */
kcompactd_run(int nid)2660 int kcompactd_run(int nid)
2661 {
2662 pg_data_t *pgdat = NODE_DATA(nid);
2663 int ret = 0;
2664
2665 if (pgdat->kcompactd)
2666 return 0;
2667
2668 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2669 if (IS_ERR(pgdat->kcompactd)) {
2670 pr_err("Failed to start kcompactd on node %d\n", nid);
2671 ret = PTR_ERR(pgdat->kcompactd);
2672 pgdat->kcompactd = NULL;
2673 }
2674 return ret;
2675 }
2676
2677 /*
2678 * Called by memory hotplug when all memory in a node is offlined. Caller must
2679 * hold mem_hotplug_begin/end().
2680 */
kcompactd_stop(int nid)2681 void kcompactd_stop(int nid)
2682 {
2683 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2684
2685 if (kcompactd) {
2686 kthread_stop(kcompactd);
2687 NODE_DATA(nid)->kcompactd = NULL;
2688 }
2689 }
2690
2691 /*
2692 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2693 * not required for correctness. So if the last cpu in a node goes
2694 * away, we get changed to run anywhere: as the first one comes back,
2695 * restore their cpu bindings.
2696 */
kcompactd_cpu_online(unsigned int cpu)2697 static int kcompactd_cpu_online(unsigned int cpu)
2698 {
2699 int nid;
2700
2701 for_each_node_state(nid, N_MEMORY) {
2702 pg_data_t *pgdat = NODE_DATA(nid);
2703 const struct cpumask *mask;
2704
2705 mask = cpumask_of_node(pgdat->node_id);
2706
2707 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2708 /* One of our CPUs online: restore mask */
2709 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2710 }
2711 return 0;
2712 }
2713
kcompactd_init(void)2714 static int __init kcompactd_init(void)
2715 {
2716 int nid;
2717 int ret;
2718
2719 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2720 "mm/compaction:online",
2721 kcompactd_cpu_online, NULL);
2722 if (ret < 0) {
2723 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2724 return ret;
2725 }
2726
2727 for_each_node_state(nid, N_MEMORY)
2728 kcompactd_run(nid);
2729 return 0;
2730 }
2731 subsys_initcall(kcompactd_init)
2732
2733 #endif /* CONFIG_COMPACTION */
2734