• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
release_freepages(struct list_head * freelist)53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
split_map_pages(struct list_head * list)69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
PageMovable(struct page * page)96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
__SetPageMovable(struct page * page,struct address_space * mapping)112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
__ClearPageMovable(struct page * page)120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
defer_compaction(struct zone * zone,int order)142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
reset_cached_positions(struct zone * zone)214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
pageblock_skip_persistent(struct page * page)227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *block_page;
246 	struct page *end_page;
247 	unsigned long block_pfn;
248 
249 	if (!page)
250 		return false;
251 	if (zone != page_zone(page))
252 		return false;
253 	if (pageblock_skip_persistent(page))
254 		return false;
255 
256 	/*
257 	 * If skip is already cleared do no further checking once the
258 	 * restart points have been set.
259 	 */
260 	if (check_source && check_target && !get_pageblock_skip(page))
261 		return true;
262 
263 	/*
264 	 * If clearing skip for the target scanner, do not select a
265 	 * non-movable pageblock as the starting point.
266 	 */
267 	if (!check_source && check_target &&
268 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 		return false;
270 
271 	/* Ensure the start of the pageblock or zone is online and valid */
272 	block_pfn = pageblock_start_pfn(pfn);
273 	block_pfn = max(block_pfn, zone->zone_start_pfn);
274 	block_page = pfn_to_online_page(block_pfn);
275 	if (block_page) {
276 		page = block_page;
277 		pfn = block_pfn;
278 	}
279 
280 	/* Ensure the end of the pageblock or zone is online and valid */
281 	block_pfn = pageblock_end_pfn(pfn) - 1;
282 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 	end_page = pfn_to_online_page(block_pfn);
284 	if (!end_page)
285 		return false;
286 
287 	/*
288 	 * Only clear the hint if a sample indicates there is either a
289 	 * free page or an LRU page in the block. One or other condition
290 	 * is necessary for the block to be a migration source/target.
291 	 */
292 	do {
293 		if (pfn_valid_within(pfn)) {
294 			if (check_source && PageLRU(page)) {
295 				clear_pageblock_skip(page);
296 				return true;
297 			}
298 
299 			if (check_target && PageBuddy(page)) {
300 				clear_pageblock_skip(page);
301 				return true;
302 			}
303 		}
304 
305 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 	} while (page <= end_page);
308 
309 	return false;
310 }
311 
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
__reset_isolation_suitable(struct zone * zone)317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 	unsigned long migrate_pfn = zone->zone_start_pfn;
320 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 	unsigned long reset_migrate = free_pfn;
322 	unsigned long reset_free = migrate_pfn;
323 	bool source_set = false;
324 	bool free_set = false;
325 
326 	if (!zone->compact_blockskip_flush)
327 		return;
328 
329 	zone->compact_blockskip_flush = false;
330 
331 	/*
332 	 * Walk the zone and update pageblock skip information. Source looks
333 	 * for PageLRU while target looks for PageBuddy. When the scanner
334 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 	 * is suitable as both source and target.
336 	 */
337 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 					free_pfn -= pageblock_nr_pages) {
339 		cond_resched();
340 
341 		/* Update the migrate PFN */
342 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 		    migrate_pfn < reset_migrate) {
344 			source_set = true;
345 			reset_migrate = migrate_pfn;
346 			zone->compact_init_migrate_pfn = reset_migrate;
347 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 		}
350 
351 		/* Update the free PFN */
352 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 		    free_pfn > reset_free) {
354 			free_set = true;
355 			reset_free = free_pfn;
356 			zone->compact_init_free_pfn = reset_free;
357 			zone->compact_cached_free_pfn = reset_free;
358 		}
359 	}
360 
361 	/* Leave no distance if no suitable block was reset */
362 	if (reset_migrate >= reset_free) {
363 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 		zone->compact_cached_free_pfn = free_pfn;
366 	}
367 }
368 
reset_isolation_suitable(pg_data_t * pgdat)369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 	int zoneid;
372 
373 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 		struct zone *zone = &pgdat->node_zones[zoneid];
375 		if (!populated_zone(zone))
376 			continue;
377 
378 		/* Only flush if a full compaction finished recently */
379 		if (zone->compact_blockskip_flush)
380 			__reset_isolation_suitable(zone);
381 	}
382 }
383 
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 							unsigned long pfn)
390 {
391 	bool skip;
392 
393 	/* Do no update if skip hint is being ignored */
394 	if (cc->ignore_skip_hint)
395 		return false;
396 
397 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 		return false;
399 
400 	skip = get_pageblock_skip(page);
401 	if (!skip && !cc->no_set_skip_hint)
402 		set_pageblock_skip(page);
403 
404 	return skip;
405 }
406 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 	struct zone *zone = cc->zone;
410 
411 	pfn = pageblock_end_pfn(pfn);
412 
413 	/* Set for isolation rather than compaction */
414 	if (cc->no_set_skip_hint)
415 		return;
416 
417 	if (pfn > zone->compact_cached_migrate_pfn[0])
418 		zone->compact_cached_migrate_pfn[0] = pfn;
419 	if (cc->mode != MIGRATE_ASYNC &&
420 	    pfn > zone->compact_cached_migrate_pfn[1])
421 		zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423 
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)428 static void update_pageblock_skip(struct compact_control *cc,
429 			struct page *page, unsigned long pfn)
430 {
431 	struct zone *zone = cc->zone;
432 
433 	if (cc->no_set_skip_hint)
434 		return;
435 
436 	if (!page)
437 		return;
438 
439 	set_pageblock_skip(page);
440 
441 	/* Update where async and sync compaction should restart */
442 	if (pfn < zone->compact_cached_free_pfn)
443 		zone->compact_cached_free_pfn = pfn;
444 }
445 #else
isolation_suitable(struct compact_control * cc,struct page * page)446 static inline bool isolation_suitable(struct compact_control *cc,
447 					struct page *page)
448 {
449 	return true;
450 }
451 
pageblock_skip_persistent(struct page * page)452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 	return false;
455 }
456 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)457 static inline void update_pageblock_skip(struct compact_control *cc,
458 			struct page *page, unsigned long pfn)
459 {
460 }
461 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465 
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 							unsigned long pfn)
468 {
469 	return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472 
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 						struct compact_control *cc)
484 {
485 	/* Track if the lock is contended in async mode */
486 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 		if (spin_trylock_irqsave(lock, *flags))
488 			return true;
489 
490 		cc->contended = true;
491 	}
492 
493 	spin_lock_irqsave(lock, *flags);
494 	return true;
495 }
496 
497 /*
498  * Compaction requires the taking of some coarse locks that are potentially
499  * very heavily contended. The lock should be periodically unlocked to avoid
500  * having disabled IRQs for a long time, even when there is nobody waiting on
501  * the lock. It might also be that allowing the IRQs will result in
502  * need_resched() becoming true. If scheduling is needed, async compaction
503  * aborts. Sync compaction schedules.
504  * Either compaction type will also abort if a fatal signal is pending.
505  * In either case if the lock was locked, it is dropped and not regained.
506  *
507  * Returns true if compaction should abort due to fatal signal pending, or
508  *		async compaction due to need_resched()
509  * Returns false when compaction can continue (sync compaction might have
510  *		scheduled)
511  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)512 static bool compact_unlock_should_abort(spinlock_t *lock,
513 		unsigned long flags, bool *locked, struct compact_control *cc)
514 {
515 	if (*locked) {
516 		spin_unlock_irqrestore(lock, flags);
517 		*locked = false;
518 	}
519 
520 	if (fatal_signal_pending(current)) {
521 		cc->contended = true;
522 		return true;
523 	}
524 
525 	cond_resched();
526 
527 	return false;
528 }
529 
530 /*
531  * Isolate free pages onto a private freelist. If @strict is true, will abort
532  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533  * (even though it may still end up isolating some pages).
534  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536 				unsigned long *start_pfn,
537 				unsigned long end_pfn,
538 				struct list_head *freelist,
539 				unsigned int stride,
540 				bool strict)
541 {
542 	int nr_scanned = 0, total_isolated = 0;
543 	struct page *cursor;
544 	unsigned long flags = 0;
545 	bool locked = false;
546 	unsigned long blockpfn = *start_pfn;
547 	unsigned int order;
548 
549 	/* Strict mode is for isolation, speed is secondary */
550 	if (strict)
551 		stride = 1;
552 
553 	cursor = pfn_to_page(blockpfn);
554 
555 	/* Isolate free pages. */
556 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557 		int isolated;
558 		struct page *page = cursor;
559 
560 		/*
561 		 * Periodically drop the lock (if held) regardless of its
562 		 * contention, to give chance to IRQs. Abort if fatal signal
563 		 * pending or async compaction detects need_resched()
564 		 */
565 		if (!(blockpfn % SWAP_CLUSTER_MAX)
566 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
567 								&locked, cc))
568 			break;
569 
570 		nr_scanned++;
571 		if (!pfn_valid_within(blockpfn))
572 			goto isolate_fail;
573 
574 		/*
575 		 * For compound pages such as THP and hugetlbfs, we can save
576 		 * potentially a lot of iterations if we skip them at once.
577 		 * The check is racy, but we can consider only valid values
578 		 * and the only danger is skipping too much.
579 		 */
580 		if (PageCompound(page)) {
581 			const unsigned int order = compound_order(page);
582 
583 			if (likely(order < MAX_ORDER)) {
584 				blockpfn += (1UL << order) - 1;
585 				cursor += (1UL << order) - 1;
586 			}
587 			goto isolate_fail;
588 		}
589 
590 		if (!PageBuddy(page))
591 			goto isolate_fail;
592 
593 		/*
594 		 * If we already hold the lock, we can skip some rechecking.
595 		 * Note that if we hold the lock now, checked_pageblock was
596 		 * already set in some previous iteration (or strict is true),
597 		 * so it is correct to skip the suitable migration target
598 		 * recheck as well.
599 		 */
600 		if (!locked) {
601 			locked = compact_lock_irqsave(&cc->zone->lock,
602 								&flags, cc);
603 
604 			/* Recheck this is a buddy page under lock */
605 			if (!PageBuddy(page))
606 				goto isolate_fail;
607 		}
608 
609 		/* Found a free page, will break it into order-0 pages */
610 		order = page_order(page);
611 		isolated = __isolate_free_page(page, order);
612 		if (!isolated)
613 			break;
614 		set_page_private(page, order);
615 
616 		total_isolated += isolated;
617 		cc->nr_freepages += isolated;
618 		list_add_tail(&page->lru, freelist);
619 
620 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 			blockpfn += isolated;
622 			break;
623 		}
624 		/* Advance to the end of split page */
625 		blockpfn += isolated - 1;
626 		cursor += isolated - 1;
627 		continue;
628 
629 isolate_fail:
630 		if (strict)
631 			break;
632 		else
633 			continue;
634 
635 	}
636 
637 	if (locked)
638 		spin_unlock_irqrestore(&cc->zone->lock, flags);
639 
640 	/*
641 	 * There is a tiny chance that we have read bogus compound_order(),
642 	 * so be careful to not go outside of the pageblock.
643 	 */
644 	if (unlikely(blockpfn > end_pfn))
645 		blockpfn = end_pfn;
646 
647 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 					nr_scanned, total_isolated);
649 
650 	/* Record how far we have got within the block */
651 	*start_pfn = blockpfn;
652 
653 	/*
654 	 * If strict isolation is requested by CMA then check that all the
655 	 * pages requested were isolated. If there were any failures, 0 is
656 	 * returned and CMA will fail.
657 	 */
658 	if (strict && blockpfn < end_pfn)
659 		total_isolated = 0;
660 
661 	cc->total_free_scanned += nr_scanned;
662 	if (total_isolated)
663 		count_compact_events(COMPACTISOLATED, total_isolated);
664 	return total_isolated;
665 }
666 
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)682 isolate_freepages_range(struct compact_control *cc,
683 			unsigned long start_pfn, unsigned long end_pfn)
684 {
685 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686 	LIST_HEAD(freelist);
687 
688 	pfn = start_pfn;
689 	block_start_pfn = pageblock_start_pfn(pfn);
690 	if (block_start_pfn < cc->zone->zone_start_pfn)
691 		block_start_pfn = cc->zone->zone_start_pfn;
692 	block_end_pfn = pageblock_end_pfn(pfn);
693 
694 	for (; pfn < end_pfn; pfn += isolated,
695 				block_start_pfn = block_end_pfn,
696 				block_end_pfn += pageblock_nr_pages) {
697 		/* Protect pfn from changing by isolate_freepages_block */
698 		unsigned long isolate_start_pfn = pfn;
699 
700 		block_end_pfn = min(block_end_pfn, end_pfn);
701 
702 		/*
703 		 * pfn could pass the block_end_pfn if isolated freepage
704 		 * is more than pageblock order. In this case, we adjust
705 		 * scanning range to right one.
706 		 */
707 		if (pfn >= block_end_pfn) {
708 			block_start_pfn = pageblock_start_pfn(pfn);
709 			block_end_pfn = pageblock_end_pfn(pfn);
710 			block_end_pfn = min(block_end_pfn, end_pfn);
711 		}
712 
713 		if (!pageblock_pfn_to_page(block_start_pfn,
714 					block_end_pfn, cc->zone))
715 			break;
716 
717 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718 					block_end_pfn, &freelist, 0, true);
719 
720 		/*
721 		 * In strict mode, isolate_freepages_block() returns 0 if
722 		 * there are any holes in the block (ie. invalid PFNs or
723 		 * non-free pages).
724 		 */
725 		if (!isolated)
726 			break;
727 
728 		/*
729 		 * If we managed to isolate pages, it is always (1 << n) *
730 		 * pageblock_nr_pages for some non-negative n.  (Max order
731 		 * page may span two pageblocks).
732 		 */
733 	}
734 
735 	/* __isolate_free_page() does not map the pages */
736 	split_map_pages(&freelist);
737 
738 	if (pfn < end_pfn) {
739 		/* Loop terminated early, cleanup. */
740 		release_freepages(&freelist);
741 		return 0;
742 	}
743 
744 	/* We don't use freelists for anything. */
745 	return pfn;
746 }
747 
748 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751 	unsigned long active, inactive, isolated;
752 
753 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 			node_page_state(pgdat, NR_INACTIVE_ANON);
755 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 			node_page_state(pgdat, NR_ACTIVE_ANON);
757 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 			node_page_state(pgdat, NR_ISOLATED_ANON);
759 
760 	return isolated > (inactive + active) / 2;
761 }
762 
763 /**
764  * isolate_migratepages_block() - isolate all migrate-able pages within
765  *				  a single pageblock
766  * @cc:		Compaction control structure.
767  * @low_pfn:	The first PFN to isolate
768  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
769  * @isolate_mode: Isolation mode to be used.
770  *
771  * Isolate all pages that can be migrated from the range specified by
772  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773  * Returns zero if there is a fatal signal pending, otherwise PFN of the
774  * first page that was not scanned (which may be both less, equal to or more
775  * than end_pfn).
776  *
777  * The pages are isolated on cc->migratepages list (not required to be empty),
778  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779  * is neither read nor updated.
780  */
781 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783 			unsigned long end_pfn, isolate_mode_t isolate_mode)
784 {
785 	pg_data_t *pgdat = cc->zone->zone_pgdat;
786 	unsigned long nr_scanned = 0, nr_isolated = 0;
787 	struct lruvec *lruvec;
788 	unsigned long flags = 0;
789 	bool locked = false;
790 	struct page *page = NULL, *valid_page = NULL;
791 	unsigned long start_pfn = low_pfn;
792 	bool skip_on_failure = false;
793 	unsigned long next_skip_pfn = 0;
794 	bool skip_updated = false;
795 
796 	/*
797 	 * Ensure that there are not too many pages isolated from the LRU
798 	 * list by either parallel reclaimers or compaction. If there are,
799 	 * delay for some time until fewer pages are isolated
800 	 */
801 	while (unlikely(too_many_isolated(pgdat))) {
802 		/* async migration should just abort */
803 		if (cc->mode == MIGRATE_ASYNC)
804 			return 0;
805 
806 		congestion_wait(BLK_RW_ASYNC, HZ/10);
807 
808 		if (fatal_signal_pending(current))
809 			return 0;
810 	}
811 
812 	cond_resched();
813 
814 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815 		skip_on_failure = true;
816 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
817 	}
818 
819 	/* Time to isolate some pages for migration */
820 	for (; low_pfn < end_pfn; low_pfn++) {
821 
822 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
823 			/*
824 			 * We have isolated all migration candidates in the
825 			 * previous order-aligned block, and did not skip it due
826 			 * to failure. We should migrate the pages now and
827 			 * hopefully succeed compaction.
828 			 */
829 			if (nr_isolated)
830 				break;
831 
832 			/*
833 			 * We failed to isolate in the previous order-aligned
834 			 * block. Set the new boundary to the end of the
835 			 * current block. Note we can't simply increase
836 			 * next_skip_pfn by 1 << order, as low_pfn might have
837 			 * been incremented by a higher number due to skipping
838 			 * a compound or a high-order buddy page in the
839 			 * previous loop iteration.
840 			 */
841 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842 		}
843 
844 		/*
845 		 * Periodically drop the lock (if held) regardless of its
846 		 * contention, to give chance to IRQs. Abort completely if
847 		 * a fatal signal is pending.
848 		 */
849 		if (!(low_pfn % SWAP_CLUSTER_MAX)
850 		    && compact_unlock_should_abort(&pgdat->lru_lock,
851 					    flags, &locked, cc)) {
852 			low_pfn = 0;
853 			goto fatal_pending;
854 		}
855 
856 		if (!pfn_valid_within(low_pfn))
857 			goto isolate_fail;
858 		nr_scanned++;
859 
860 		page = pfn_to_page(low_pfn);
861 
862 		/*
863 		 * Check if the pageblock has already been marked skipped.
864 		 * Only the aligned PFN is checked as the caller isolates
865 		 * COMPACT_CLUSTER_MAX at a time so the second call must
866 		 * not falsely conclude that the block should be skipped.
867 		 */
868 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870 				low_pfn = end_pfn;
871 				goto isolate_abort;
872 			}
873 			valid_page = page;
874 		}
875 
876 		/*
877 		 * Skip if free. We read page order here without zone lock
878 		 * which is generally unsafe, but the race window is small and
879 		 * the worst thing that can happen is that we skip some
880 		 * potential isolation targets.
881 		 */
882 		if (PageBuddy(page)) {
883 			unsigned long freepage_order = page_order_unsafe(page);
884 
885 			/*
886 			 * Without lock, we cannot be sure that what we got is
887 			 * a valid page order. Consider only values in the
888 			 * valid order range to prevent low_pfn overflow.
889 			 */
890 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
891 				low_pfn += (1UL << freepage_order) - 1;
892 			continue;
893 		}
894 
895 		/*
896 		 * Regardless of being on LRU, compound pages such as THP and
897 		 * hugetlbfs are not to be compacted. We can potentially save
898 		 * a lot of iterations if we skip them at once. The check is
899 		 * racy, but we can consider only valid values and the only
900 		 * danger is skipping too much.
901 		 */
902 		if (PageCompound(page)) {
903 			const unsigned int order = compound_order(page);
904 
905 			if (likely(order < MAX_ORDER))
906 				low_pfn += (1UL << order) - 1;
907 			goto isolate_fail;
908 		}
909 
910 		/*
911 		 * Check may be lockless but that's ok as we recheck later.
912 		 * It's possible to migrate LRU and non-lru movable pages.
913 		 * Skip any other type of page
914 		 */
915 		if (!PageLRU(page)) {
916 			/*
917 			 * __PageMovable can return false positive so we need
918 			 * to verify it under page_lock.
919 			 */
920 			if (unlikely(__PageMovable(page)) &&
921 					!PageIsolated(page)) {
922 				if (locked) {
923 					spin_unlock_irqrestore(&pgdat->lru_lock,
924 									flags);
925 					locked = false;
926 				}
927 
928 				if (!isolate_movable_page(page, isolate_mode))
929 					goto isolate_success;
930 			}
931 
932 			goto isolate_fail;
933 		}
934 
935 		/*
936 		 * Migration will fail if an anonymous page is pinned in memory,
937 		 * so avoid taking lru_lock and isolating it unnecessarily in an
938 		 * admittedly racy check.
939 		 */
940 		if (!page_mapping(page) &&
941 		    page_count(page) > page_mapcount(page))
942 			goto isolate_fail;
943 
944 		/*
945 		 * Only allow to migrate anonymous pages in GFP_NOFS context
946 		 * because those do not depend on fs locks.
947 		 */
948 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
949 			goto isolate_fail;
950 
951 		/* If we already hold the lock, we can skip some rechecking */
952 		if (!locked) {
953 			locked = compact_lock_irqsave(&pgdat->lru_lock,
954 								&flags, cc);
955 
956 			/* Try get exclusive access under lock */
957 			if (!skip_updated) {
958 				skip_updated = true;
959 				if (test_and_set_skip(cc, page, low_pfn))
960 					goto isolate_abort;
961 			}
962 
963 			/* Recheck PageLRU and PageCompound under lock */
964 			if (!PageLRU(page))
965 				goto isolate_fail;
966 
967 			/*
968 			 * Page become compound since the non-locked check,
969 			 * and it's on LRU. It can only be a THP so the order
970 			 * is safe to read and it's 0 for tail pages.
971 			 */
972 			if (unlikely(PageCompound(page))) {
973 				low_pfn += compound_nr(page) - 1;
974 				goto isolate_fail;
975 			}
976 		}
977 
978 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
979 
980 		/* Try isolate the page */
981 		if (__isolate_lru_page(page, isolate_mode) != 0)
982 			goto isolate_fail;
983 
984 		VM_BUG_ON_PAGE(PageCompound(page), page);
985 
986 		/* Successfully isolated */
987 		del_page_from_lru_list(page, lruvec, page_lru(page));
988 		inc_node_page_state(page,
989 				NR_ISOLATED_ANON + page_is_file_cache(page));
990 
991 isolate_success:
992 		list_add(&page->lru, &cc->migratepages);
993 		cc->nr_migratepages++;
994 		nr_isolated++;
995 
996 		/*
997 		 * Avoid isolating too much unless this block is being
998 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
999 		 * or a lock is contended. For contention, isolate quickly to
1000 		 * potentially remove one source of contention.
1001 		 */
1002 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1003 		    !cc->rescan && !cc->contended) {
1004 			++low_pfn;
1005 			break;
1006 		}
1007 
1008 		continue;
1009 isolate_fail:
1010 		if (!skip_on_failure)
1011 			continue;
1012 
1013 		/*
1014 		 * We have isolated some pages, but then failed. Release them
1015 		 * instead of migrating, as we cannot form the cc->order buddy
1016 		 * page anyway.
1017 		 */
1018 		if (nr_isolated) {
1019 			if (locked) {
1020 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1021 				locked = false;
1022 			}
1023 			putback_movable_pages(&cc->migratepages);
1024 			cc->nr_migratepages = 0;
1025 			nr_isolated = 0;
1026 		}
1027 
1028 		if (low_pfn < next_skip_pfn) {
1029 			low_pfn = next_skip_pfn - 1;
1030 			/*
1031 			 * The check near the loop beginning would have updated
1032 			 * next_skip_pfn too, but this is a bit simpler.
1033 			 */
1034 			next_skip_pfn += 1UL << cc->order;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * The PageBuddy() check could have potentially brought us outside
1040 	 * the range to be scanned.
1041 	 */
1042 	if (unlikely(low_pfn > end_pfn))
1043 		low_pfn = end_pfn;
1044 
1045 isolate_abort:
1046 	if (locked)
1047 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1048 
1049 	/*
1050 	 * Updated the cached scanner pfn once the pageblock has been scanned
1051 	 * Pages will either be migrated in which case there is no point
1052 	 * scanning in the near future or migration failed in which case the
1053 	 * failure reason may persist. The block is marked for skipping if
1054 	 * there were no pages isolated in the block or if the block is
1055 	 * rescanned twice in a row.
1056 	 */
1057 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1058 		if (valid_page && !skip_updated)
1059 			set_pageblock_skip(valid_page);
1060 		update_cached_migrate(cc, low_pfn);
1061 	}
1062 
1063 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1064 						nr_scanned, nr_isolated);
1065 
1066 fatal_pending:
1067 	cc->total_migrate_scanned += nr_scanned;
1068 	if (nr_isolated)
1069 		count_compact_events(COMPACTISOLATED, nr_isolated);
1070 
1071 	return low_pfn;
1072 }
1073 
1074 /**
1075  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1076  * @cc:        Compaction control structure.
1077  * @start_pfn: The first PFN to start isolating.
1078  * @end_pfn:   The one-past-last PFN.
1079  *
1080  * Returns zero if isolation fails fatally due to e.g. pending signal.
1081  * Otherwise, function returns one-past-the-last PFN of isolated page
1082  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1083  */
1084 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1085 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1086 							unsigned long end_pfn)
1087 {
1088 	unsigned long pfn, block_start_pfn, block_end_pfn;
1089 
1090 	/* Scan block by block. First and last block may be incomplete */
1091 	pfn = start_pfn;
1092 	block_start_pfn = pageblock_start_pfn(pfn);
1093 	if (block_start_pfn < cc->zone->zone_start_pfn)
1094 		block_start_pfn = cc->zone->zone_start_pfn;
1095 	block_end_pfn = pageblock_end_pfn(pfn);
1096 
1097 	for (; pfn < end_pfn; pfn = block_end_pfn,
1098 				block_start_pfn = block_end_pfn,
1099 				block_end_pfn += pageblock_nr_pages) {
1100 
1101 		block_end_pfn = min(block_end_pfn, end_pfn);
1102 
1103 		if (!pageblock_pfn_to_page(block_start_pfn,
1104 					block_end_pfn, cc->zone))
1105 			continue;
1106 
1107 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1108 							ISOLATE_UNEVICTABLE);
1109 
1110 		if (!pfn)
1111 			break;
1112 
1113 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1114 			break;
1115 	}
1116 
1117 	return pfn;
1118 }
1119 
1120 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1121 #ifdef CONFIG_COMPACTION
1122 
suitable_migration_source(struct compact_control * cc,struct page * page)1123 static bool suitable_migration_source(struct compact_control *cc,
1124 							struct page *page)
1125 {
1126 	int block_mt;
1127 
1128 	if (pageblock_skip_persistent(page))
1129 		return false;
1130 
1131 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1132 		return true;
1133 
1134 	block_mt = get_pageblock_migratetype(page);
1135 
1136 	if (cc->migratetype == MIGRATE_MOVABLE)
1137 		return is_migrate_movable(block_mt);
1138 	else
1139 		return block_mt == cc->migratetype;
1140 }
1141 
1142 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1143 static bool suitable_migration_target(struct compact_control *cc,
1144 							struct page *page)
1145 {
1146 	/* If the page is a large free page, then disallow migration */
1147 	if (PageBuddy(page)) {
1148 		/*
1149 		 * We are checking page_order without zone->lock taken. But
1150 		 * the only small danger is that we skip a potentially suitable
1151 		 * pageblock, so it's not worth to check order for valid range.
1152 		 */
1153 		if (page_order_unsafe(page) >= pageblock_order)
1154 			return false;
1155 	}
1156 
1157 	if (cc->ignore_block_suitable)
1158 		return true;
1159 
1160 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1161 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1162 		return true;
1163 
1164 	/* Otherwise skip the block */
1165 	return false;
1166 }
1167 
1168 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1169 freelist_scan_limit(struct compact_control *cc)
1170 {
1171 	unsigned short shift = BITS_PER_LONG - 1;
1172 
1173 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1174 }
1175 
1176 /*
1177  * Test whether the free scanner has reached the same or lower pageblock than
1178  * the migration scanner, and compaction should thus terminate.
1179  */
compact_scanners_met(struct compact_control * cc)1180 static inline bool compact_scanners_met(struct compact_control *cc)
1181 {
1182 	return (cc->free_pfn >> pageblock_order)
1183 		<= (cc->migrate_pfn >> pageblock_order);
1184 }
1185 
1186 /*
1187  * Used when scanning for a suitable migration target which scans freelists
1188  * in reverse. Reorders the list such as the unscanned pages are scanned
1189  * first on the next iteration of the free scanner
1190  */
1191 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1192 move_freelist_head(struct list_head *freelist, struct page *freepage)
1193 {
1194 	LIST_HEAD(sublist);
1195 
1196 	if (!list_is_last(freelist, &freepage->lru)) {
1197 		list_cut_before(&sublist, freelist, &freepage->lru);
1198 		if (!list_empty(&sublist))
1199 			list_splice_tail(&sublist, freelist);
1200 	}
1201 }
1202 
1203 /*
1204  * Similar to move_freelist_head except used by the migration scanner
1205  * when scanning forward. It's possible for these list operations to
1206  * move against each other if they search the free list exactly in
1207  * lockstep.
1208  */
1209 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1210 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1211 {
1212 	LIST_HEAD(sublist);
1213 
1214 	if (!list_is_first(freelist, &freepage->lru)) {
1215 		list_cut_position(&sublist, freelist, &freepage->lru);
1216 		if (!list_empty(&sublist))
1217 			list_splice_tail(&sublist, freelist);
1218 	}
1219 }
1220 
1221 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1222 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1223 {
1224 	unsigned long start_pfn, end_pfn;
1225 	struct page *page = pfn_to_page(pfn);
1226 
1227 	/* Do not search around if there are enough pages already */
1228 	if (cc->nr_freepages >= cc->nr_migratepages)
1229 		return;
1230 
1231 	/* Minimise scanning during async compaction */
1232 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1233 		return;
1234 
1235 	/* Pageblock boundaries */
1236 	start_pfn = pageblock_start_pfn(pfn);
1237 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1238 
1239 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1240 
1241 	/* Skip this pageblock in the future as it's full or nearly full */
1242 	if (cc->nr_freepages < cc->nr_migratepages)
1243 		set_pageblock_skip(page);
1244 
1245 	return;
1246 }
1247 
1248 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1249 static int next_search_order(struct compact_control *cc, int order)
1250 {
1251 	order--;
1252 	if (order < 0)
1253 		order = cc->order - 1;
1254 
1255 	/* Search wrapped around? */
1256 	if (order == cc->search_order) {
1257 		cc->search_order--;
1258 		if (cc->search_order < 0)
1259 			cc->search_order = cc->order - 1;
1260 		return -1;
1261 	}
1262 
1263 	return order;
1264 }
1265 
1266 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1267 fast_isolate_freepages(struct compact_control *cc)
1268 {
1269 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1270 	unsigned int nr_scanned = 0;
1271 	unsigned long low_pfn, min_pfn, highest = 0;
1272 	unsigned long nr_isolated = 0;
1273 	unsigned long distance;
1274 	struct page *page = NULL;
1275 	bool scan_start = false;
1276 	int order;
1277 
1278 	/* Full compaction passes in a negative order */
1279 	if (cc->order <= 0)
1280 		return cc->free_pfn;
1281 
1282 	/*
1283 	 * If starting the scan, use a deeper search and use the highest
1284 	 * PFN found if a suitable one is not found.
1285 	 */
1286 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1287 		limit = pageblock_nr_pages >> 1;
1288 		scan_start = true;
1289 	}
1290 
1291 	/*
1292 	 * Preferred point is in the top quarter of the scan space but take
1293 	 * a pfn from the top half if the search is problematic.
1294 	 */
1295 	distance = (cc->free_pfn - cc->migrate_pfn);
1296 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1297 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1298 
1299 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1300 		low_pfn = min_pfn;
1301 
1302 	/*
1303 	 * Search starts from the last successful isolation order or the next
1304 	 * order to search after a previous failure
1305 	 */
1306 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1307 
1308 	for (order = cc->search_order;
1309 	     !page && order >= 0;
1310 	     order = next_search_order(cc, order)) {
1311 		struct free_area *area = &cc->zone->free_area[order];
1312 		struct list_head *freelist;
1313 		struct page *freepage;
1314 		unsigned long flags;
1315 		unsigned int order_scanned = 0;
1316 		unsigned long high_pfn = 0;
1317 
1318 		if (!area->nr_free)
1319 			continue;
1320 
1321 		spin_lock_irqsave(&cc->zone->lock, flags);
1322 		freelist = &area->free_list[MIGRATE_MOVABLE];
1323 		list_for_each_entry_reverse(freepage, freelist, lru) {
1324 			unsigned long pfn;
1325 
1326 			order_scanned++;
1327 			nr_scanned++;
1328 			pfn = page_to_pfn(freepage);
1329 
1330 			if (pfn >= highest)
1331 				highest = pageblock_start_pfn(pfn);
1332 
1333 			if (pfn >= low_pfn) {
1334 				cc->fast_search_fail = 0;
1335 				cc->search_order = order;
1336 				page = freepage;
1337 				break;
1338 			}
1339 
1340 			if (pfn >= min_pfn && pfn > high_pfn) {
1341 				high_pfn = pfn;
1342 
1343 				/* Shorten the scan if a candidate is found */
1344 				limit >>= 1;
1345 			}
1346 
1347 			if (order_scanned >= limit)
1348 				break;
1349 		}
1350 
1351 		/* Use a minimum pfn if a preferred one was not found */
1352 		if (!page && high_pfn) {
1353 			page = pfn_to_page(high_pfn);
1354 
1355 			/* Update freepage for the list reorder below */
1356 			freepage = page;
1357 		}
1358 
1359 		/* Reorder to so a future search skips recent pages */
1360 		move_freelist_head(freelist, freepage);
1361 
1362 		/* Isolate the page if available */
1363 		if (page) {
1364 			if (__isolate_free_page(page, order)) {
1365 				set_page_private(page, order);
1366 				nr_isolated = 1 << order;
1367 				cc->nr_freepages += nr_isolated;
1368 				list_add_tail(&page->lru, &cc->freepages);
1369 				count_compact_events(COMPACTISOLATED, nr_isolated);
1370 			} else {
1371 				/* If isolation fails, abort the search */
1372 				order = cc->search_order + 1;
1373 				page = NULL;
1374 			}
1375 		}
1376 
1377 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1378 
1379 		/*
1380 		 * Smaller scan on next order so the total scan ig related
1381 		 * to freelist_scan_limit.
1382 		 */
1383 		if (order_scanned >= limit)
1384 			limit = min(1U, limit >> 1);
1385 	}
1386 
1387 	if (!page) {
1388 		cc->fast_search_fail++;
1389 		if (scan_start) {
1390 			/*
1391 			 * Use the highest PFN found above min. If one was
1392 			 * not found, be pessemistic for direct compaction
1393 			 * and use the min mark.
1394 			 */
1395 			if (highest) {
1396 				page = pfn_to_page(highest);
1397 				cc->free_pfn = highest;
1398 			} else {
1399 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1400 					page = pfn_to_page(min_pfn);
1401 					cc->free_pfn = min_pfn;
1402 				}
1403 			}
1404 		}
1405 	}
1406 
1407 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1408 		highest -= pageblock_nr_pages;
1409 		cc->zone->compact_cached_free_pfn = highest;
1410 	}
1411 
1412 	cc->total_free_scanned += nr_scanned;
1413 	if (!page)
1414 		return cc->free_pfn;
1415 
1416 	low_pfn = page_to_pfn(page);
1417 	fast_isolate_around(cc, low_pfn);
1418 	return low_pfn;
1419 }
1420 
1421 /*
1422  * Based on information in the current compact_control, find blocks
1423  * suitable for isolating free pages from and then isolate them.
1424  */
isolate_freepages(struct compact_control * cc)1425 static void isolate_freepages(struct compact_control *cc)
1426 {
1427 	struct zone *zone = cc->zone;
1428 	struct page *page;
1429 	unsigned long block_start_pfn;	/* start of current pageblock */
1430 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1431 	unsigned long block_end_pfn;	/* end of current pageblock */
1432 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1433 	struct list_head *freelist = &cc->freepages;
1434 	unsigned int stride;
1435 
1436 	/* Try a small search of the free lists for a candidate */
1437 	isolate_start_pfn = fast_isolate_freepages(cc);
1438 	if (cc->nr_freepages)
1439 		goto splitmap;
1440 
1441 	/*
1442 	 * Initialise the free scanner. The starting point is where we last
1443 	 * successfully isolated from, zone-cached value, or the end of the
1444 	 * zone when isolating for the first time. For looping we also need
1445 	 * this pfn aligned down to the pageblock boundary, because we do
1446 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1447 	 * For ending point, take care when isolating in last pageblock of a
1448 	 * a zone which ends in the middle of a pageblock.
1449 	 * The low boundary is the end of the pageblock the migration scanner
1450 	 * is using.
1451 	 */
1452 	isolate_start_pfn = cc->free_pfn;
1453 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1454 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1455 						zone_end_pfn(zone));
1456 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1457 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1458 
1459 	/*
1460 	 * Isolate free pages until enough are available to migrate the
1461 	 * pages on cc->migratepages. We stop searching if the migrate
1462 	 * and free page scanners meet or enough free pages are isolated.
1463 	 */
1464 	for (; block_start_pfn >= low_pfn;
1465 				block_end_pfn = block_start_pfn,
1466 				block_start_pfn -= pageblock_nr_pages,
1467 				isolate_start_pfn = block_start_pfn) {
1468 		unsigned long nr_isolated;
1469 
1470 		/*
1471 		 * This can iterate a massively long zone without finding any
1472 		 * suitable migration targets, so periodically check resched.
1473 		 */
1474 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1475 			cond_resched();
1476 
1477 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1478 									zone);
1479 		if (!page)
1480 			continue;
1481 
1482 		/* Check the block is suitable for migration */
1483 		if (!suitable_migration_target(cc, page))
1484 			continue;
1485 
1486 		/* If isolation recently failed, do not retry */
1487 		if (!isolation_suitable(cc, page))
1488 			continue;
1489 
1490 		/* Found a block suitable for isolating free pages from. */
1491 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1492 					block_end_pfn, freelist, stride, false);
1493 
1494 		/* Update the skip hint if the full pageblock was scanned */
1495 		if (isolate_start_pfn == block_end_pfn)
1496 			update_pageblock_skip(cc, page, block_start_pfn);
1497 
1498 		/* Are enough freepages isolated? */
1499 		if (cc->nr_freepages >= cc->nr_migratepages) {
1500 			if (isolate_start_pfn >= block_end_pfn) {
1501 				/*
1502 				 * Restart at previous pageblock if more
1503 				 * freepages can be isolated next time.
1504 				 */
1505 				isolate_start_pfn =
1506 					block_start_pfn - pageblock_nr_pages;
1507 			}
1508 			break;
1509 		} else if (isolate_start_pfn < block_end_pfn) {
1510 			/*
1511 			 * If isolation failed early, do not continue
1512 			 * needlessly.
1513 			 */
1514 			break;
1515 		}
1516 
1517 		/* Adjust stride depending on isolation */
1518 		if (nr_isolated) {
1519 			stride = 1;
1520 			continue;
1521 		}
1522 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1523 	}
1524 
1525 	/*
1526 	 * Record where the free scanner will restart next time. Either we
1527 	 * broke from the loop and set isolate_start_pfn based on the last
1528 	 * call to isolate_freepages_block(), or we met the migration scanner
1529 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1530 	 */
1531 	cc->free_pfn = isolate_start_pfn;
1532 
1533 splitmap:
1534 	/* __isolate_free_page() does not map the pages */
1535 	split_map_pages(freelist);
1536 }
1537 
1538 /*
1539  * This is a migrate-callback that "allocates" freepages by taking pages
1540  * from the isolated freelists in the block we are migrating to.
1541  */
compaction_alloc(struct page * migratepage,unsigned long data)1542 static struct page *compaction_alloc(struct page *migratepage,
1543 					unsigned long data)
1544 {
1545 	struct compact_control *cc = (struct compact_control *)data;
1546 	struct page *freepage;
1547 
1548 	if (list_empty(&cc->freepages)) {
1549 		isolate_freepages(cc);
1550 
1551 		if (list_empty(&cc->freepages))
1552 			return NULL;
1553 	}
1554 
1555 	freepage = list_entry(cc->freepages.next, struct page, lru);
1556 	list_del(&freepage->lru);
1557 	cc->nr_freepages--;
1558 
1559 	return freepage;
1560 }
1561 
1562 /*
1563  * This is a migrate-callback that "frees" freepages back to the isolated
1564  * freelist.  All pages on the freelist are from the same zone, so there is no
1565  * special handling needed for NUMA.
1566  */
compaction_free(struct page * page,unsigned long data)1567 static void compaction_free(struct page *page, unsigned long data)
1568 {
1569 	struct compact_control *cc = (struct compact_control *)data;
1570 
1571 	list_add(&page->lru, &cc->freepages);
1572 	cc->nr_freepages++;
1573 }
1574 
1575 /* possible outcome of isolate_migratepages */
1576 typedef enum {
1577 	ISOLATE_ABORT,		/* Abort compaction now */
1578 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1579 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1580 } isolate_migrate_t;
1581 
1582 /*
1583  * Allow userspace to control policy on scanning the unevictable LRU for
1584  * compactable pages.
1585  */
1586 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1587 
1588 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1589 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1590 {
1591 	if (cc->fast_start_pfn == ULONG_MAX)
1592 		return;
1593 
1594 	if (!cc->fast_start_pfn)
1595 		cc->fast_start_pfn = pfn;
1596 
1597 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1598 }
1599 
1600 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1601 reinit_migrate_pfn(struct compact_control *cc)
1602 {
1603 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1604 		return cc->migrate_pfn;
1605 
1606 	cc->migrate_pfn = cc->fast_start_pfn;
1607 	cc->fast_start_pfn = ULONG_MAX;
1608 
1609 	return cc->migrate_pfn;
1610 }
1611 
1612 /*
1613  * Briefly search the free lists for a migration source that already has
1614  * some free pages to reduce the number of pages that need migration
1615  * before a pageblock is free.
1616  */
fast_find_migrateblock(struct compact_control * cc)1617 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1618 {
1619 	unsigned int limit = freelist_scan_limit(cc);
1620 	unsigned int nr_scanned = 0;
1621 	unsigned long distance;
1622 	unsigned long pfn = cc->migrate_pfn;
1623 	unsigned long high_pfn;
1624 	int order;
1625 	bool found_block = false;
1626 
1627 	/* Skip hints are relied on to avoid repeats on the fast search */
1628 	if (cc->ignore_skip_hint)
1629 		return pfn;
1630 
1631 	/*
1632 	 * If the migrate_pfn is not at the start of a zone or the start
1633 	 * of a pageblock then assume this is a continuation of a previous
1634 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1635 	 */
1636 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1637 		return pfn;
1638 
1639 	/*
1640 	 * For smaller orders, just linearly scan as the number of pages
1641 	 * to migrate should be relatively small and does not necessarily
1642 	 * justify freeing up a large block for a small allocation.
1643 	 */
1644 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1645 		return pfn;
1646 
1647 	/*
1648 	 * Only allow kcompactd and direct requests for movable pages to
1649 	 * quickly clear out a MOVABLE pageblock for allocation. This
1650 	 * reduces the risk that a large movable pageblock is freed for
1651 	 * an unmovable/reclaimable small allocation.
1652 	 */
1653 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1654 		return pfn;
1655 
1656 	/*
1657 	 * When starting the migration scanner, pick any pageblock within the
1658 	 * first half of the search space. Otherwise try and pick a pageblock
1659 	 * within the first eighth to reduce the chances that a migration
1660 	 * target later becomes a source.
1661 	 */
1662 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1663 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1664 		distance >>= 2;
1665 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1666 
1667 	for (order = cc->order - 1;
1668 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1669 	     order--) {
1670 		struct free_area *area = &cc->zone->free_area[order];
1671 		struct list_head *freelist;
1672 		unsigned long flags;
1673 		struct page *freepage;
1674 
1675 		if (!area->nr_free)
1676 			continue;
1677 
1678 		spin_lock_irqsave(&cc->zone->lock, flags);
1679 		freelist = &area->free_list[MIGRATE_MOVABLE];
1680 		list_for_each_entry(freepage, freelist, lru) {
1681 			unsigned long free_pfn;
1682 
1683 			if (nr_scanned++ >= limit) {
1684 				move_freelist_tail(freelist, freepage);
1685 				break;
1686 			}
1687 
1688 			free_pfn = page_to_pfn(freepage);
1689 			if (free_pfn < high_pfn) {
1690 				/*
1691 				 * Avoid if skipped recently. Ideally it would
1692 				 * move to the tail but even safe iteration of
1693 				 * the list assumes an entry is deleted, not
1694 				 * reordered.
1695 				 */
1696 				if (get_pageblock_skip(freepage))
1697 					continue;
1698 
1699 				/* Reorder to so a future search skips recent pages */
1700 				move_freelist_tail(freelist, freepage);
1701 
1702 				update_fast_start_pfn(cc, free_pfn);
1703 				pfn = pageblock_start_pfn(free_pfn);
1704 				if (pfn < cc->zone->zone_start_pfn)
1705 					pfn = cc->zone->zone_start_pfn;
1706 				cc->fast_search_fail = 0;
1707 				found_block = true;
1708 				set_pageblock_skip(freepage);
1709 				break;
1710 			}
1711 		}
1712 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1713 	}
1714 
1715 	cc->total_migrate_scanned += nr_scanned;
1716 
1717 	/*
1718 	 * If fast scanning failed then use a cached entry for a page block
1719 	 * that had free pages as the basis for starting a linear scan.
1720 	 */
1721 	if (!found_block) {
1722 		cc->fast_search_fail++;
1723 		pfn = reinit_migrate_pfn(cc);
1724 	}
1725 	return pfn;
1726 }
1727 
1728 /*
1729  * Isolate all pages that can be migrated from the first suitable block,
1730  * starting at the block pointed to by the migrate scanner pfn within
1731  * compact_control.
1732  */
isolate_migratepages(struct compact_control * cc)1733 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1734 {
1735 	unsigned long block_start_pfn;
1736 	unsigned long block_end_pfn;
1737 	unsigned long low_pfn;
1738 	struct page *page;
1739 	const isolate_mode_t isolate_mode =
1740 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1741 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1742 	bool fast_find_block;
1743 
1744 	/*
1745 	 * Start at where we last stopped, or beginning of the zone as
1746 	 * initialized by compact_zone(). The first failure will use
1747 	 * the lowest PFN as the starting point for linear scanning.
1748 	 */
1749 	low_pfn = fast_find_migrateblock(cc);
1750 	block_start_pfn = pageblock_start_pfn(low_pfn);
1751 	if (block_start_pfn < cc->zone->zone_start_pfn)
1752 		block_start_pfn = cc->zone->zone_start_pfn;
1753 
1754 	/*
1755 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1756 	 * the isolation_suitable check below, check whether the fast
1757 	 * search was successful.
1758 	 */
1759 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1760 
1761 	/* Only scan within a pageblock boundary */
1762 	block_end_pfn = pageblock_end_pfn(low_pfn);
1763 
1764 	/*
1765 	 * Iterate over whole pageblocks until we find the first suitable.
1766 	 * Do not cross the free scanner.
1767 	 */
1768 	for (; block_end_pfn <= cc->free_pfn;
1769 			fast_find_block = false,
1770 			low_pfn = block_end_pfn,
1771 			block_start_pfn = block_end_pfn,
1772 			block_end_pfn += pageblock_nr_pages) {
1773 
1774 		/*
1775 		 * This can potentially iterate a massively long zone with
1776 		 * many pageblocks unsuitable, so periodically check if we
1777 		 * need to schedule.
1778 		 */
1779 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1780 			cond_resched();
1781 
1782 		page = pageblock_pfn_to_page(block_start_pfn,
1783 						block_end_pfn, cc->zone);
1784 		if (!page)
1785 			continue;
1786 
1787 		/*
1788 		 * If isolation recently failed, do not retry. Only check the
1789 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1790 		 * to be visited multiple times. Assume skip was checked
1791 		 * before making it "skip" so other compaction instances do
1792 		 * not scan the same block.
1793 		 */
1794 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1795 		    !fast_find_block && !isolation_suitable(cc, page))
1796 			continue;
1797 
1798 		/*
1799 		 * For async compaction, also only scan in MOVABLE blocks
1800 		 * without huge pages. Async compaction is optimistic to see
1801 		 * if the minimum amount of work satisfies the allocation.
1802 		 * The cached PFN is updated as it's possible that all
1803 		 * remaining blocks between source and target are unsuitable
1804 		 * and the compaction scanners fail to meet.
1805 		 */
1806 		if (!suitable_migration_source(cc, page)) {
1807 			update_cached_migrate(cc, block_end_pfn);
1808 			continue;
1809 		}
1810 
1811 		/* Perform the isolation */
1812 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1813 						block_end_pfn, isolate_mode);
1814 
1815 		if (!low_pfn)
1816 			return ISOLATE_ABORT;
1817 
1818 		/*
1819 		 * Either we isolated something and proceed with migration. Or
1820 		 * we failed and compact_zone should decide if we should
1821 		 * continue or not.
1822 		 */
1823 		break;
1824 	}
1825 
1826 	/* Record where migration scanner will be restarted. */
1827 	cc->migrate_pfn = low_pfn;
1828 
1829 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1830 }
1831 
1832 /*
1833  * order == -1 is expected when compacting via
1834  * /proc/sys/vm/compact_memory
1835  */
is_via_compact_memory(int order)1836 static inline bool is_via_compact_memory(int order)
1837 {
1838 	return order == -1;
1839 }
1840 
__compact_finished(struct compact_control * cc)1841 static enum compact_result __compact_finished(struct compact_control *cc)
1842 {
1843 	unsigned int order;
1844 	const int migratetype = cc->migratetype;
1845 	int ret;
1846 
1847 	/* Compaction run completes if the migrate and free scanner meet */
1848 	if (compact_scanners_met(cc)) {
1849 		/* Let the next compaction start anew. */
1850 		reset_cached_positions(cc->zone);
1851 
1852 		/*
1853 		 * Mark that the PG_migrate_skip information should be cleared
1854 		 * by kswapd when it goes to sleep. kcompactd does not set the
1855 		 * flag itself as the decision to be clear should be directly
1856 		 * based on an allocation request.
1857 		 */
1858 		if (cc->direct_compaction)
1859 			cc->zone->compact_blockskip_flush = true;
1860 
1861 		if (cc->whole_zone)
1862 			return COMPACT_COMPLETE;
1863 		else
1864 			return COMPACT_PARTIAL_SKIPPED;
1865 	}
1866 
1867 	if (is_via_compact_memory(cc->order))
1868 		return COMPACT_CONTINUE;
1869 
1870 	/*
1871 	 * Always finish scanning a pageblock to reduce the possibility of
1872 	 * fallbacks in the future. This is particularly important when
1873 	 * migration source is unmovable/reclaimable but it's not worth
1874 	 * special casing.
1875 	 */
1876 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1877 		return COMPACT_CONTINUE;
1878 
1879 	/* Direct compactor: Is a suitable page free? */
1880 	ret = COMPACT_NO_SUITABLE_PAGE;
1881 	for (order = cc->order; order < MAX_ORDER; order++) {
1882 		struct free_area *area = &cc->zone->free_area[order];
1883 		bool can_steal;
1884 
1885 		/* Job done if page is free of the right migratetype */
1886 		if (!free_area_empty(area, migratetype))
1887 			return COMPACT_SUCCESS;
1888 
1889 #ifdef CONFIG_CMA
1890 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1891 		if (migratetype == MIGRATE_MOVABLE &&
1892 			!free_area_empty(area, MIGRATE_CMA))
1893 			return COMPACT_SUCCESS;
1894 #endif
1895 		/*
1896 		 * Job done if allocation would steal freepages from
1897 		 * other migratetype buddy lists.
1898 		 */
1899 		if (find_suitable_fallback(area, order, migratetype,
1900 						true, &can_steal) != -1) {
1901 
1902 			/* movable pages are OK in any pageblock */
1903 			if (migratetype == MIGRATE_MOVABLE)
1904 				return COMPACT_SUCCESS;
1905 
1906 			/*
1907 			 * We are stealing for a non-movable allocation. Make
1908 			 * sure we finish compacting the current pageblock
1909 			 * first so it is as free as possible and we won't
1910 			 * have to steal another one soon. This only applies
1911 			 * to sync compaction, as async compaction operates
1912 			 * on pageblocks of the same migratetype.
1913 			 */
1914 			if (cc->mode == MIGRATE_ASYNC ||
1915 					IS_ALIGNED(cc->migrate_pfn,
1916 							pageblock_nr_pages)) {
1917 				return COMPACT_SUCCESS;
1918 			}
1919 
1920 			ret = COMPACT_CONTINUE;
1921 			break;
1922 		}
1923 	}
1924 
1925 	if (cc->contended || fatal_signal_pending(current))
1926 		ret = COMPACT_CONTENDED;
1927 
1928 	return ret;
1929 }
1930 
compact_finished(struct compact_control * cc)1931 static enum compact_result compact_finished(struct compact_control *cc)
1932 {
1933 	int ret;
1934 
1935 	ret = __compact_finished(cc);
1936 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1937 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1938 		ret = COMPACT_CONTINUE;
1939 
1940 	return ret;
1941 }
1942 
1943 /*
1944  * compaction_suitable: Is this suitable to run compaction on this zone now?
1945  * Returns
1946  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1947  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1948  *   COMPACT_CONTINUE - If compaction should run now
1949  */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1950 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1951 					unsigned int alloc_flags,
1952 					int classzone_idx,
1953 					unsigned long wmark_target)
1954 {
1955 	unsigned long watermark;
1956 
1957 	if (is_via_compact_memory(order))
1958 		return COMPACT_CONTINUE;
1959 
1960 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1961 	/*
1962 	 * If watermarks for high-order allocation are already met, there
1963 	 * should be no need for compaction at all.
1964 	 */
1965 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1966 								alloc_flags))
1967 		return COMPACT_SUCCESS;
1968 
1969 	/*
1970 	 * Watermarks for order-0 must be met for compaction to be able to
1971 	 * isolate free pages for migration targets. This means that the
1972 	 * watermark and alloc_flags have to match, or be more pessimistic than
1973 	 * the check in __isolate_free_page(). We don't use the direct
1974 	 * compactor's alloc_flags, as they are not relevant for freepage
1975 	 * isolation. We however do use the direct compactor's classzone_idx to
1976 	 * skip over zones where lowmem reserves would prevent allocation even
1977 	 * if compaction succeeds.
1978 	 * For costly orders, we require low watermark instead of min for
1979 	 * compaction to proceed to increase its chances.
1980 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1981 	 * suitable migration targets
1982 	 */
1983 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1984 				low_wmark_pages(zone) : min_wmark_pages(zone);
1985 	watermark += compact_gap(order);
1986 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1987 						ALLOC_CMA, wmark_target))
1988 		return COMPACT_SKIPPED;
1989 
1990 	return COMPACT_CONTINUE;
1991 }
1992 
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1993 enum compact_result compaction_suitable(struct zone *zone, int order,
1994 					unsigned int alloc_flags,
1995 					int classzone_idx)
1996 {
1997 	enum compact_result ret;
1998 	int fragindex;
1999 
2000 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2001 				    zone_page_state(zone, NR_FREE_PAGES));
2002 	/*
2003 	 * fragmentation index determines if allocation failures are due to
2004 	 * low memory or external fragmentation
2005 	 *
2006 	 * index of -1000 would imply allocations might succeed depending on
2007 	 * watermarks, but we already failed the high-order watermark check
2008 	 * index towards 0 implies failure is due to lack of memory
2009 	 * index towards 1000 implies failure is due to fragmentation
2010 	 *
2011 	 * Only compact if a failure would be due to fragmentation. Also
2012 	 * ignore fragindex for non-costly orders where the alternative to
2013 	 * a successful reclaim/compaction is OOM. Fragindex and the
2014 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2015 	 * excessive compaction for costly orders, but it should not be at the
2016 	 * expense of system stability.
2017 	 */
2018 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2019 		fragindex = fragmentation_index(zone, order);
2020 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2021 			ret = COMPACT_NOT_SUITABLE_ZONE;
2022 	}
2023 
2024 	trace_mm_compaction_suitable(zone, order, ret);
2025 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2026 		ret = COMPACT_SKIPPED;
2027 
2028 	return ret;
2029 }
2030 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2031 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2032 		int alloc_flags)
2033 {
2034 	struct zone *zone;
2035 	struct zoneref *z;
2036 
2037 	/*
2038 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2039 	 * retrying the reclaim.
2040 	 */
2041 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2042 					ac->nodemask) {
2043 		unsigned long available;
2044 		enum compact_result compact_result;
2045 
2046 		/*
2047 		 * Do not consider all the reclaimable memory because we do not
2048 		 * want to trash just for a single high order allocation which
2049 		 * is even not guaranteed to appear even if __compaction_suitable
2050 		 * is happy about the watermark check.
2051 		 */
2052 		available = zone_reclaimable_pages(zone) / order;
2053 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2054 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2055 				ac_classzone_idx(ac), available);
2056 		if (compact_result != COMPACT_SKIPPED)
2057 			return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2064 compact_zone(struct compact_control *cc, struct capture_control *capc)
2065 {
2066 	enum compact_result ret;
2067 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2068 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2069 	unsigned long last_migrated_pfn;
2070 	const bool sync = cc->mode != MIGRATE_ASYNC;
2071 	bool update_cached;
2072 
2073 	/*
2074 	 * These counters track activities during zone compaction.  Initialize
2075 	 * them before compacting a new zone.
2076 	 */
2077 	cc->total_migrate_scanned = 0;
2078 	cc->total_free_scanned = 0;
2079 	cc->nr_migratepages = 0;
2080 	cc->nr_freepages = 0;
2081 	INIT_LIST_HEAD(&cc->freepages);
2082 	INIT_LIST_HEAD(&cc->migratepages);
2083 
2084 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2085 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2086 							cc->classzone_idx);
2087 	/* Compaction is likely to fail */
2088 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2089 		return ret;
2090 
2091 	/* huh, compaction_suitable is returning something unexpected */
2092 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2093 
2094 	/*
2095 	 * Clear pageblock skip if there were failures recently and compaction
2096 	 * is about to be retried after being deferred.
2097 	 */
2098 	if (compaction_restarting(cc->zone, cc->order))
2099 		__reset_isolation_suitable(cc->zone);
2100 
2101 	/*
2102 	 * Setup to move all movable pages to the end of the zone. Used cached
2103 	 * information on where the scanners should start (unless we explicitly
2104 	 * want to compact the whole zone), but check that it is initialised
2105 	 * by ensuring the values are within zone boundaries.
2106 	 */
2107 	cc->fast_start_pfn = 0;
2108 	if (cc->whole_zone) {
2109 		cc->migrate_pfn = start_pfn;
2110 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2111 	} else {
2112 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2113 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2114 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2115 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2116 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2117 		}
2118 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2119 			cc->migrate_pfn = start_pfn;
2120 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2121 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2122 		}
2123 
2124 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2125 			cc->whole_zone = true;
2126 	}
2127 
2128 	last_migrated_pfn = 0;
2129 
2130 	/*
2131 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2132 	 * the basis that some migrations will fail in ASYNC mode. However,
2133 	 * if the cached PFNs match and pageblocks are skipped due to having
2134 	 * no isolation candidates, then the sync state does not matter.
2135 	 * Until a pageblock with isolation candidates is found, keep the
2136 	 * cached PFNs in sync to avoid revisiting the same blocks.
2137 	 */
2138 	update_cached = !sync &&
2139 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2140 
2141 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2142 				cc->free_pfn, end_pfn, sync);
2143 
2144 	migrate_prep_local();
2145 
2146 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2147 		int err;
2148 		unsigned long start_pfn = cc->migrate_pfn;
2149 
2150 		/*
2151 		 * Avoid multiple rescans which can happen if a page cannot be
2152 		 * isolated (dirty/writeback in async mode) or if the migrated
2153 		 * pages are being allocated before the pageblock is cleared.
2154 		 * The first rescan will capture the entire pageblock for
2155 		 * migration. If it fails, it'll be marked skip and scanning
2156 		 * will proceed as normal.
2157 		 */
2158 		cc->rescan = false;
2159 		if (pageblock_start_pfn(last_migrated_pfn) ==
2160 		    pageblock_start_pfn(start_pfn)) {
2161 			cc->rescan = true;
2162 		}
2163 
2164 		switch (isolate_migratepages(cc)) {
2165 		case ISOLATE_ABORT:
2166 			ret = COMPACT_CONTENDED;
2167 			putback_movable_pages(&cc->migratepages);
2168 			cc->nr_migratepages = 0;
2169 			last_migrated_pfn = 0;
2170 			goto out;
2171 		case ISOLATE_NONE:
2172 			if (update_cached) {
2173 				cc->zone->compact_cached_migrate_pfn[1] =
2174 					cc->zone->compact_cached_migrate_pfn[0];
2175 			}
2176 
2177 			/*
2178 			 * We haven't isolated and migrated anything, but
2179 			 * there might still be unflushed migrations from
2180 			 * previous cc->order aligned block.
2181 			 */
2182 			goto check_drain;
2183 		case ISOLATE_SUCCESS:
2184 			update_cached = false;
2185 			last_migrated_pfn = start_pfn;
2186 			;
2187 		}
2188 
2189 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2190 				compaction_free, (unsigned long)cc, cc->mode,
2191 				MR_COMPACTION);
2192 
2193 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2194 							&cc->migratepages);
2195 
2196 		/* All pages were either migrated or will be released */
2197 		cc->nr_migratepages = 0;
2198 		if (err) {
2199 			putback_movable_pages(&cc->migratepages);
2200 			/*
2201 			 * migrate_pages() may return -ENOMEM when scanners meet
2202 			 * and we want compact_finished() to detect it
2203 			 */
2204 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2205 				ret = COMPACT_CONTENDED;
2206 				goto out;
2207 			}
2208 			/*
2209 			 * We failed to migrate at least one page in the current
2210 			 * order-aligned block, so skip the rest of it.
2211 			 */
2212 			if (cc->direct_compaction &&
2213 						(cc->mode == MIGRATE_ASYNC)) {
2214 				cc->migrate_pfn = block_end_pfn(
2215 						cc->migrate_pfn - 1, cc->order);
2216 				/* Draining pcplists is useless in this case */
2217 				last_migrated_pfn = 0;
2218 			}
2219 		}
2220 
2221 check_drain:
2222 		/*
2223 		 * Has the migration scanner moved away from the previous
2224 		 * cc->order aligned block where we migrated from? If yes,
2225 		 * flush the pages that were freed, so that they can merge and
2226 		 * compact_finished() can detect immediately if allocation
2227 		 * would succeed.
2228 		 */
2229 		if (cc->order > 0 && last_migrated_pfn) {
2230 			int cpu;
2231 			unsigned long current_block_start =
2232 				block_start_pfn(cc->migrate_pfn, cc->order);
2233 
2234 			if (last_migrated_pfn < current_block_start) {
2235 				cpu = get_cpu();
2236 				lru_add_drain_cpu(cpu);
2237 				drain_local_pages(cc->zone);
2238 				put_cpu();
2239 				/* No more flushing until we migrate again */
2240 				last_migrated_pfn = 0;
2241 			}
2242 		}
2243 
2244 		/* Stop if a page has been captured */
2245 		if (capc && capc->page) {
2246 			ret = COMPACT_SUCCESS;
2247 			break;
2248 		}
2249 	}
2250 
2251 out:
2252 	/*
2253 	 * Release free pages and update where the free scanner should restart,
2254 	 * so we don't leave any returned pages behind in the next attempt.
2255 	 */
2256 	if (cc->nr_freepages > 0) {
2257 		unsigned long free_pfn = release_freepages(&cc->freepages);
2258 
2259 		cc->nr_freepages = 0;
2260 		VM_BUG_ON(free_pfn == 0);
2261 		/* The cached pfn is always the first in a pageblock */
2262 		free_pfn = pageblock_start_pfn(free_pfn);
2263 		/*
2264 		 * Only go back, not forward. The cached pfn might have been
2265 		 * already reset to zone end in compact_finished()
2266 		 */
2267 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2268 			cc->zone->compact_cached_free_pfn = free_pfn;
2269 	}
2270 
2271 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2272 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2273 
2274 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2275 				cc->free_pfn, end_pfn, sync, ret);
2276 
2277 	return ret;
2278 }
2279 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx,struct page ** capture)2280 static enum compact_result compact_zone_order(struct zone *zone, int order,
2281 		gfp_t gfp_mask, enum compact_priority prio,
2282 		unsigned int alloc_flags, int classzone_idx,
2283 		struct page **capture)
2284 {
2285 	enum compact_result ret;
2286 	struct compact_control cc = {
2287 		.order = order,
2288 		.search_order = order,
2289 		.gfp_mask = gfp_mask,
2290 		.zone = zone,
2291 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2292 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2293 		.alloc_flags = alloc_flags,
2294 		.classzone_idx = classzone_idx,
2295 		.direct_compaction = true,
2296 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2297 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2298 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2299 	};
2300 	struct capture_control capc = {
2301 		.cc = &cc,
2302 		.page = NULL,
2303 	};
2304 
2305 	/*
2306 	 * Make sure the structs are really initialized before we expose the
2307 	 * capture control, in case we are interrupted and the interrupt handler
2308 	 * frees a page.
2309 	 */
2310 	barrier();
2311 	WRITE_ONCE(current->capture_control, &capc);
2312 
2313 	ret = compact_zone(&cc, &capc);
2314 
2315 	VM_BUG_ON(!list_empty(&cc.freepages));
2316 	VM_BUG_ON(!list_empty(&cc.migratepages));
2317 
2318 	/*
2319 	 * Make sure we hide capture control first before we read the captured
2320 	 * page pointer, otherwise an interrupt could free and capture a page
2321 	 * and we would leak it.
2322 	 */
2323 	WRITE_ONCE(current->capture_control, NULL);
2324 	*capture = READ_ONCE(capc.page);
2325 
2326 	return ret;
2327 }
2328 
2329 int sysctl_extfrag_threshold = 500;
2330 
2331 /**
2332  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2333  * @gfp_mask: The GFP mask of the current allocation
2334  * @order: The order of the current allocation
2335  * @alloc_flags: The allocation flags of the current allocation
2336  * @ac: The context of current allocation
2337  * @prio: Determines how hard direct compaction should try to succeed
2338  * @capture: Pointer to free page created by compaction will be stored here
2339  *
2340  * This is the main entry point for direct page compaction.
2341  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2342 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2343 		unsigned int alloc_flags, const struct alloc_context *ac,
2344 		enum compact_priority prio, struct page **capture)
2345 {
2346 	struct zoneref *z;
2347 	struct zone *zone;
2348 	enum compact_result rc = COMPACT_SKIPPED;
2349 
2350 	if (!gfp_compaction_allowed(gfp_mask))
2351 		return COMPACT_SKIPPED;
2352 
2353 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2354 
2355 	/* Compact each zone in the list */
2356 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2357 								ac->nodemask) {
2358 		enum compact_result status;
2359 
2360 		if (prio > MIN_COMPACT_PRIORITY
2361 					&& compaction_deferred(zone, order)) {
2362 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2363 			continue;
2364 		}
2365 
2366 		status = compact_zone_order(zone, order, gfp_mask, prio,
2367 				alloc_flags, ac_classzone_idx(ac), capture);
2368 		rc = max(status, rc);
2369 
2370 		/* The allocation should succeed, stop compacting */
2371 		if (status == COMPACT_SUCCESS) {
2372 			/*
2373 			 * We think the allocation will succeed in this zone,
2374 			 * but it is not certain, hence the false. The caller
2375 			 * will repeat this with true if allocation indeed
2376 			 * succeeds in this zone.
2377 			 */
2378 			compaction_defer_reset(zone, order, false);
2379 
2380 			break;
2381 		}
2382 
2383 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2384 					status == COMPACT_PARTIAL_SKIPPED))
2385 			/*
2386 			 * We think that allocation won't succeed in this zone
2387 			 * so we defer compaction there. If it ends up
2388 			 * succeeding after all, it will be reset.
2389 			 */
2390 			defer_compaction(zone, order);
2391 
2392 		/*
2393 		 * We might have stopped compacting due to need_resched() in
2394 		 * async compaction, or due to a fatal signal detected. In that
2395 		 * case do not try further zones
2396 		 */
2397 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2398 					|| fatal_signal_pending(current))
2399 			break;
2400 	}
2401 
2402 	return rc;
2403 }
2404 
2405 
2406 /* Compact all zones within a node */
compact_node(int nid)2407 static void compact_node(int nid)
2408 {
2409 	pg_data_t *pgdat = NODE_DATA(nid);
2410 	int zoneid;
2411 	struct zone *zone;
2412 	struct compact_control cc = {
2413 		.order = -1,
2414 		.mode = MIGRATE_SYNC,
2415 		.ignore_skip_hint = true,
2416 		.whole_zone = true,
2417 		.gfp_mask = GFP_KERNEL,
2418 	};
2419 
2420 
2421 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2422 
2423 		zone = &pgdat->node_zones[zoneid];
2424 		if (!populated_zone(zone))
2425 			continue;
2426 
2427 		cc.zone = zone;
2428 
2429 		compact_zone(&cc, NULL);
2430 
2431 		VM_BUG_ON(!list_empty(&cc.freepages));
2432 		VM_BUG_ON(!list_empty(&cc.migratepages));
2433 	}
2434 }
2435 
2436 /* Compact all nodes in the system */
compact_nodes(void)2437 static void compact_nodes(void)
2438 {
2439 	int nid;
2440 
2441 	/* Flush pending updates to the LRU lists */
2442 	lru_add_drain_all();
2443 
2444 	for_each_online_node(nid)
2445 		compact_node(nid);
2446 }
2447 
2448 /* The written value is actually unused, all memory is compacted */
2449 int sysctl_compact_memory;
2450 
2451 /*
2452  * This is the entry point for compacting all nodes via
2453  * /proc/sys/vm/compact_memory
2454  */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2455 int sysctl_compaction_handler(struct ctl_table *table, int write,
2456 			void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458 	if (write)
2459 		compact_nodes();
2460 
2461 	return 0;
2462 }
2463 
2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2465 static ssize_t sysfs_compact_node(struct device *dev,
2466 			struct device_attribute *attr,
2467 			const char *buf, size_t count)
2468 {
2469 	int nid = dev->id;
2470 
2471 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472 		/* Flush pending updates to the LRU lists */
2473 		lru_add_drain_all();
2474 
2475 		compact_node(nid);
2476 	}
2477 
2478 	return count;
2479 }
2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481 
compaction_register_node(struct node * node)2482 int compaction_register_node(struct node *node)
2483 {
2484 	return device_create_file(&node->dev, &dev_attr_compact);
2485 }
2486 
compaction_unregister_node(struct node * node)2487 void compaction_unregister_node(struct node *node)
2488 {
2489 	return device_remove_file(&node->dev, &dev_attr_compact);
2490 }
2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492 
kcompactd_work_requested(pg_data_t * pgdat)2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494 {
2495 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496 }
2497 
kcompactd_node_suitable(pg_data_t * pgdat)2498 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499 {
2500 	int zoneid;
2501 	struct zone *zone;
2502 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503 
2504 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505 		zone = &pgdat->node_zones[zoneid];
2506 
2507 		if (!populated_zone(zone))
2508 			continue;
2509 
2510 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511 					classzone_idx) == COMPACT_CONTINUE)
2512 			return true;
2513 	}
2514 
2515 	return false;
2516 }
2517 
kcompactd_do_work(pg_data_t * pgdat)2518 static void kcompactd_do_work(pg_data_t *pgdat)
2519 {
2520 	/*
2521 	 * With no special task, compact all zones so that a page of requested
2522 	 * order is allocatable.
2523 	 */
2524 	int zoneid;
2525 	struct zone *zone;
2526 	struct compact_control cc = {
2527 		.order = pgdat->kcompactd_max_order,
2528 		.search_order = pgdat->kcompactd_max_order,
2529 		.classzone_idx = pgdat->kcompactd_classzone_idx,
2530 		.mode = MIGRATE_SYNC_LIGHT,
2531 		.ignore_skip_hint = false,
2532 		.gfp_mask = GFP_KERNEL,
2533 	};
2534 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2535 							cc.classzone_idx);
2536 	count_compact_event(KCOMPACTD_WAKE);
2537 
2538 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2539 		int status;
2540 
2541 		zone = &pgdat->node_zones[zoneid];
2542 		if (!populated_zone(zone))
2543 			continue;
2544 
2545 		if (compaction_deferred(zone, cc.order))
2546 			continue;
2547 
2548 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2549 							COMPACT_CONTINUE)
2550 			continue;
2551 
2552 		if (kthread_should_stop())
2553 			return;
2554 
2555 		cc.zone = zone;
2556 		status = compact_zone(&cc, NULL);
2557 
2558 		if (status == COMPACT_SUCCESS) {
2559 			compaction_defer_reset(zone, cc.order, false);
2560 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2561 			/*
2562 			 * Buddy pages may become stranded on pcps that could
2563 			 * otherwise coalesce on the zone's free area for
2564 			 * order >= cc.order.  This is ratelimited by the
2565 			 * upcoming deferral.
2566 			 */
2567 			drain_all_pages(zone);
2568 
2569 			/*
2570 			 * We use sync migration mode here, so we defer like
2571 			 * sync direct compaction does.
2572 			 */
2573 			defer_compaction(zone, cc.order);
2574 		}
2575 
2576 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2577 				     cc.total_migrate_scanned);
2578 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2579 				     cc.total_free_scanned);
2580 
2581 		VM_BUG_ON(!list_empty(&cc.freepages));
2582 		VM_BUG_ON(!list_empty(&cc.migratepages));
2583 	}
2584 
2585 	/*
2586 	 * Regardless of success, we are done until woken up next. But remember
2587 	 * the requested order/classzone_idx in case it was higher/tighter than
2588 	 * our current ones
2589 	 */
2590 	if (pgdat->kcompactd_max_order <= cc.order)
2591 		pgdat->kcompactd_max_order = 0;
2592 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2593 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2594 }
2595 
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)2596 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2597 {
2598 	if (!order)
2599 		return;
2600 
2601 	if (pgdat->kcompactd_max_order < order)
2602 		pgdat->kcompactd_max_order = order;
2603 
2604 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2605 		pgdat->kcompactd_classzone_idx = classzone_idx;
2606 
2607 	/*
2608 	 * Pairs with implicit barrier in wait_event_freezable()
2609 	 * such that wakeups are not missed.
2610 	 */
2611 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2612 		return;
2613 
2614 	if (!kcompactd_node_suitable(pgdat))
2615 		return;
2616 
2617 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2618 							classzone_idx);
2619 	wake_up_interruptible(&pgdat->kcompactd_wait);
2620 }
2621 
2622 /*
2623  * The background compaction daemon, started as a kernel thread
2624  * from the init process.
2625  */
kcompactd(void * p)2626 static int kcompactd(void *p)
2627 {
2628 	pg_data_t *pgdat = (pg_data_t*)p;
2629 	struct task_struct *tsk = current;
2630 
2631 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2632 
2633 	if (!cpumask_empty(cpumask))
2634 		set_cpus_allowed_ptr(tsk, cpumask);
2635 
2636 	set_freezable();
2637 
2638 	pgdat->kcompactd_max_order = 0;
2639 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2640 
2641 	while (!kthread_should_stop()) {
2642 		unsigned long pflags;
2643 
2644 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2645 		wait_event_freezable(pgdat->kcompactd_wait,
2646 				kcompactd_work_requested(pgdat));
2647 
2648 		psi_memstall_enter(&pflags);
2649 		kcompactd_do_work(pgdat);
2650 		psi_memstall_leave(&pflags);
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 /*
2657  * This kcompactd start function will be called by init and node-hot-add.
2658  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2659  */
kcompactd_run(int nid)2660 int kcompactd_run(int nid)
2661 {
2662 	pg_data_t *pgdat = NODE_DATA(nid);
2663 	int ret = 0;
2664 
2665 	if (pgdat->kcompactd)
2666 		return 0;
2667 
2668 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2669 	if (IS_ERR(pgdat->kcompactd)) {
2670 		pr_err("Failed to start kcompactd on node %d\n", nid);
2671 		ret = PTR_ERR(pgdat->kcompactd);
2672 		pgdat->kcompactd = NULL;
2673 	}
2674 	return ret;
2675 }
2676 
2677 /*
2678  * Called by memory hotplug when all memory in a node is offlined. Caller must
2679  * hold mem_hotplug_begin/end().
2680  */
kcompactd_stop(int nid)2681 void kcompactd_stop(int nid)
2682 {
2683 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2684 
2685 	if (kcompactd) {
2686 		kthread_stop(kcompactd);
2687 		NODE_DATA(nid)->kcompactd = NULL;
2688 	}
2689 }
2690 
2691 /*
2692  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2693  * not required for correctness. So if the last cpu in a node goes
2694  * away, we get changed to run anywhere: as the first one comes back,
2695  * restore their cpu bindings.
2696  */
kcompactd_cpu_online(unsigned int cpu)2697 static int kcompactd_cpu_online(unsigned int cpu)
2698 {
2699 	int nid;
2700 
2701 	for_each_node_state(nid, N_MEMORY) {
2702 		pg_data_t *pgdat = NODE_DATA(nid);
2703 		const struct cpumask *mask;
2704 
2705 		mask = cpumask_of_node(pgdat->node_id);
2706 
2707 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2708 			/* One of our CPUs online: restore mask */
2709 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2710 	}
2711 	return 0;
2712 }
2713 
kcompactd_init(void)2714 static int __init kcompactd_init(void)
2715 {
2716 	int nid;
2717 	int ret;
2718 
2719 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2720 					"mm/compaction:online",
2721 					kcompactd_cpu_online, NULL);
2722 	if (ret < 0) {
2723 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2724 		return ret;
2725 	}
2726 
2727 	for_each_node_state(nid, N_MEMORY)
2728 		kcompactd_run(nid);
2729 	return 0;
2730 }
2731 subsys_initcall(kcompactd_init)
2732 
2733 #endif /* CONFIG_COMPACTION */
2734