1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 /**
33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34 * @pages: array of pages to be maybe marked dirty, and definitely released.
35 * @npages: number of pages in the @pages array.
36 * @make_dirty: whether to mark the pages dirty
37 *
38 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39 * variants called on that page.
40 *
41 * For each page in the @pages array, make that page (or its head page, if a
42 * compound page) dirty, if @make_dirty is true, and if the page was previously
43 * listed as clean. In any case, releases all pages using put_user_page(),
44 * possibly via put_user_pages(), for the non-dirty case.
45 *
46 * Please see the put_user_page() documentation for details.
47 *
48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49 * required, then the caller should a) verify that this is really correct,
50 * because _lock() is usually required, and b) hand code it:
51 * set_page_dirty_lock(), put_user_page().
52 *
53 */
put_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 bool make_dirty)
56 {
57 unsigned long index;
58
59 /*
60 * TODO: this can be optimized for huge pages: if a series of pages is
61 * physically contiguous and part of the same compound page, then a
62 * single operation to the head page should suffice.
63 */
64
65 if (!make_dirty) {
66 put_user_pages(pages, npages);
67 return;
68 }
69
70 for (index = 0; index < npages; index++) {
71 struct page *page = compound_head(pages[index]);
72 /*
73 * Checking PageDirty at this point may race with
74 * clear_page_dirty_for_io(), but that's OK. Two key
75 * cases:
76 *
77 * 1) This code sees the page as already dirty, so it
78 * skips the call to set_page_dirty(). That could happen
79 * because clear_page_dirty_for_io() called
80 * page_mkclean(), followed by set_page_dirty().
81 * However, now the page is going to get written back,
82 * which meets the original intention of setting it
83 * dirty, so all is well: clear_page_dirty_for_io() goes
84 * on to call TestClearPageDirty(), and write the page
85 * back.
86 *
87 * 2) This code sees the page as clean, so it calls
88 * set_page_dirty(). The page stays dirty, despite being
89 * written back, so it gets written back again in the
90 * next writeback cycle. This is harmless.
91 */
92 if (!PageDirty(page))
93 set_page_dirty_lock(page);
94 put_user_page(page);
95 }
96 }
97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
98
99 /**
100 * put_user_pages() - release an array of gup-pinned pages.
101 * @pages: array of pages to be marked dirty and released.
102 * @npages: number of pages in the @pages array.
103 *
104 * For each page in the @pages array, release the page using put_user_page().
105 *
106 * Please see the put_user_page() documentation for details.
107 */
put_user_pages(struct page ** pages,unsigned long npages)108 void put_user_pages(struct page **pages, unsigned long npages)
109 {
110 unsigned long index;
111
112 /*
113 * TODO: this can be optimized for huge pages: if a series of pages is
114 * physically contiguous and part of the same compound page, then a
115 * single operation to the head page should suffice.
116 */
117 for (index = 0; index < npages; index++)
118 put_user_page(pages[index]);
119 }
120 EXPORT_SYMBOL(put_user_pages);
121
122 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)123 static struct page *no_page_table(struct vm_area_struct *vma,
124 unsigned int flags)
125 {
126 /*
127 * When core dumping an enormous anonymous area that nobody
128 * has touched so far, we don't want to allocate unnecessary pages or
129 * page tables. Return error instead of NULL to skip handle_mm_fault,
130 * then get_dump_page() will return NULL to leave a hole in the dump.
131 * But we can only make this optimization where a hole would surely
132 * be zero-filled if handle_mm_fault() actually did handle it.
133 */
134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 return ERR_PTR(-EFAULT);
136 return NULL;
137 }
138
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 pte_t *pte, unsigned int flags)
141 {
142 /* No page to get reference */
143 if (flags & FOLL_GET)
144 return -EFAULT;
145
146 if (flags & FOLL_TOUCH) {
147 pte_t entry = *pte;
148
149 if (flags & FOLL_WRITE)
150 entry = pte_mkdirty(entry);
151 entry = pte_mkyoung(entry);
152
153 if (!pte_same(*pte, entry)) {
154 set_pte_at(vma->vm_mm, address, pte, entry);
155 update_mmu_cache(vma, address, pte);
156 }
157 }
158
159 /* Proper page table entry exists, but no corresponding struct page */
160 return -EEXIST;
161 }
162
163 /*
164 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
165 * but only after we've gone through a COW cycle and they are dirty.
166 */
can_follow_write_pte(pte_t pte,unsigned int flags)167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
168 {
169 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
170 }
171
172 /*
173 * A (separate) COW fault might break the page the other way and
174 * get_user_pages() would return the page from what is now the wrong
175 * VM. So we need to force a COW break at GUP time even for reads.
176 */
should_force_cow_break(struct vm_area_struct * vma,unsigned int flags)177 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
178 {
179 return is_cow_mapping(vma->vm_flags) && (flags & FOLL_GET);
180 }
181
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)182 static struct page *follow_page_pte(struct vm_area_struct *vma,
183 unsigned long address, pmd_t *pmd, unsigned int flags,
184 struct dev_pagemap **pgmap)
185 {
186 struct mm_struct *mm = vma->vm_mm;
187 struct page *page;
188 spinlock_t *ptl;
189 pte_t *ptep, pte;
190
191 /*
192 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
193 * ARM64 architecture.
194 */
195 if (is_vm_hugetlb_page(vma)) {
196 page = follow_huge_pmd_pte(vma, address, flags);
197 if (page)
198 return page;
199 return no_page_table(vma, flags);
200 }
201
202 retry:
203 if (unlikely(pmd_bad(*pmd)))
204 return no_page_table(vma, flags);
205
206 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
207 pte = *ptep;
208 if (!pte_present(pte)) {
209 swp_entry_t entry;
210 /*
211 * KSM's break_ksm() relies upon recognizing a ksm page
212 * even while it is being migrated, so for that case we
213 * need migration_entry_wait().
214 */
215 if (likely(!(flags & FOLL_MIGRATION)))
216 goto no_page;
217 if (pte_none(pte))
218 goto no_page;
219 entry = pte_to_swp_entry(pte);
220 if (!is_migration_entry(entry))
221 goto no_page;
222 pte_unmap_unlock(ptep, ptl);
223 migration_entry_wait(mm, pmd, address);
224 goto retry;
225 }
226 if ((flags & FOLL_NUMA) && pte_protnone(pte))
227 goto no_page;
228 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
229 pte_unmap_unlock(ptep, ptl);
230 return NULL;
231 }
232
233 page = vm_normal_page(vma, address, pte);
234 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
235 /*
236 * Only return device mapping pages in the FOLL_GET case since
237 * they are only valid while holding the pgmap reference.
238 */
239 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
240 if (*pgmap)
241 page = pte_page(pte);
242 else
243 goto no_page;
244 } else if (unlikely(!page)) {
245 if (flags & FOLL_DUMP) {
246 /* Avoid special (like zero) pages in core dumps */
247 page = ERR_PTR(-EFAULT);
248 goto out;
249 }
250
251 if (is_zero_pfn(pte_pfn(pte))) {
252 page = pte_page(pte);
253 } else {
254 int ret;
255
256 ret = follow_pfn_pte(vma, address, ptep, flags);
257 page = ERR_PTR(ret);
258 goto out;
259 }
260 }
261
262 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
263 int ret;
264 get_page(page);
265 pte_unmap_unlock(ptep, ptl);
266 lock_page(page);
267 ret = split_huge_page(page);
268 unlock_page(page);
269 put_page(page);
270 if (ret)
271 return ERR_PTR(ret);
272 goto retry;
273 }
274
275 if (flags & FOLL_GET) {
276 if (unlikely(!try_get_page(page))) {
277 page = ERR_PTR(-ENOMEM);
278 goto out;
279 }
280 }
281 if (flags & FOLL_TOUCH) {
282 if ((flags & FOLL_WRITE) &&
283 !pte_dirty(pte) && !PageDirty(page))
284 set_page_dirty(page);
285 /*
286 * pte_mkyoung() would be more correct here, but atomic care
287 * is needed to avoid losing the dirty bit: it is easier to use
288 * mark_page_accessed().
289 */
290 mark_page_accessed(page);
291 }
292 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
293 /* Do not mlock pte-mapped THP */
294 if (PageTransCompound(page))
295 goto out;
296
297 /*
298 * The preliminary mapping check is mainly to avoid the
299 * pointless overhead of lock_page on the ZERO_PAGE
300 * which might bounce very badly if there is contention.
301 *
302 * If the page is already locked, we don't need to
303 * handle it now - vmscan will handle it later if and
304 * when it attempts to reclaim the page.
305 */
306 if (page->mapping && trylock_page(page)) {
307 lru_add_drain(); /* push cached pages to LRU */
308 /*
309 * Because we lock page here, and migration is
310 * blocked by the pte's page reference, and we
311 * know the page is still mapped, we don't even
312 * need to check for file-cache page truncation.
313 */
314 mlock_vma_page(page);
315 unlock_page(page);
316 }
317 }
318 out:
319 pte_unmap_unlock(ptep, ptl);
320 return page;
321 no_page:
322 pte_unmap_unlock(ptep, ptl);
323 if (!pte_none(pte))
324 return NULL;
325 return no_page_table(vma, flags);
326 }
327
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)328 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
329 unsigned long address, pud_t *pudp,
330 unsigned int flags,
331 struct follow_page_context *ctx)
332 {
333 pmd_t *pmd, pmdval;
334 spinlock_t *ptl;
335 struct page *page;
336 struct mm_struct *mm = vma->vm_mm;
337
338 pmd = pmd_offset(pudp, address);
339 /*
340 * The READ_ONCE() will stabilize the pmdval in a register or
341 * on the stack so that it will stop changing under the code.
342 */
343 pmdval = READ_ONCE(*pmd);
344 if (pmd_none(pmdval))
345 return no_page_table(vma, flags);
346 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
347 page = follow_huge_pmd_pte(vma, address, flags);
348 if (page)
349 return page;
350 return no_page_table(vma, flags);
351 }
352 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
353 page = follow_huge_pd(vma, address,
354 __hugepd(pmd_val(pmdval)), flags,
355 PMD_SHIFT);
356 if (page)
357 return page;
358 return no_page_table(vma, flags);
359 }
360 retry:
361 if (!pmd_present(pmdval)) {
362 if (likely(!(flags & FOLL_MIGRATION)))
363 return no_page_table(vma, flags);
364 VM_BUG_ON(thp_migration_supported() &&
365 !is_pmd_migration_entry(pmdval));
366 if (is_pmd_migration_entry(pmdval))
367 pmd_migration_entry_wait(mm, pmd);
368 pmdval = READ_ONCE(*pmd);
369 /*
370 * MADV_DONTNEED may convert the pmd to null because
371 * mmap_sem is held in read mode
372 */
373 if (pmd_none(pmdval))
374 return no_page_table(vma, flags);
375 goto retry;
376 }
377 if (pmd_devmap(pmdval)) {
378 ptl = pmd_lock(mm, pmd);
379 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
380 spin_unlock(ptl);
381 if (page)
382 return page;
383 }
384 if (likely(!pmd_trans_huge(pmdval)))
385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386
387 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
388 return no_page_table(vma, flags);
389
390 retry_locked:
391 ptl = pmd_lock(mm, pmd);
392 if (unlikely(pmd_none(*pmd))) {
393 spin_unlock(ptl);
394 return no_page_table(vma, flags);
395 }
396 if (unlikely(!pmd_present(*pmd))) {
397 spin_unlock(ptl);
398 if (likely(!(flags & FOLL_MIGRATION)))
399 return no_page_table(vma, flags);
400 pmd_migration_entry_wait(mm, pmd);
401 goto retry_locked;
402 }
403 if (unlikely(!pmd_trans_huge(*pmd))) {
404 spin_unlock(ptl);
405 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
406 }
407 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
408 int ret;
409 page = pmd_page(*pmd);
410 if (is_huge_zero_page(page)) {
411 spin_unlock(ptl);
412 ret = 0;
413 split_huge_pmd(vma, pmd, address);
414 if (pmd_trans_unstable(pmd))
415 ret = -EBUSY;
416 } else if (flags & FOLL_SPLIT) {
417 if (unlikely(!try_get_page(page))) {
418 spin_unlock(ptl);
419 return ERR_PTR(-ENOMEM);
420 }
421 spin_unlock(ptl);
422 lock_page(page);
423 ret = split_huge_page(page);
424 unlock_page(page);
425 put_page(page);
426 if (pmd_none(*pmd))
427 return no_page_table(vma, flags);
428 } else { /* flags & FOLL_SPLIT_PMD */
429 spin_unlock(ptl);
430 split_huge_pmd(vma, pmd, address);
431 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
432 }
433
434 return ret ? ERR_PTR(ret) :
435 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
436 }
437 page = follow_trans_huge_pmd(vma, address, pmd, flags);
438 spin_unlock(ptl);
439 ctx->page_mask = HPAGE_PMD_NR - 1;
440 return page;
441 }
442
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)443 static struct page *follow_pud_mask(struct vm_area_struct *vma,
444 unsigned long address, p4d_t *p4dp,
445 unsigned int flags,
446 struct follow_page_context *ctx)
447 {
448 pud_t *pud;
449 spinlock_t *ptl;
450 struct page *page;
451 struct mm_struct *mm = vma->vm_mm;
452
453 pud = pud_offset(p4dp, address);
454 if (pud_none(*pud))
455 return no_page_table(vma, flags);
456 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
457 page = follow_huge_pud(mm, address, pud, flags);
458 if (page)
459 return page;
460 return no_page_table(vma, flags);
461 }
462 if (is_hugepd(__hugepd(pud_val(*pud)))) {
463 page = follow_huge_pd(vma, address,
464 __hugepd(pud_val(*pud)), flags,
465 PUD_SHIFT);
466 if (page)
467 return page;
468 return no_page_table(vma, flags);
469 }
470 if (pud_devmap(*pud)) {
471 ptl = pud_lock(mm, pud);
472 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
473 spin_unlock(ptl);
474 if (page)
475 return page;
476 }
477 if (unlikely(pud_bad(*pud)))
478 return no_page_table(vma, flags);
479
480 return follow_pmd_mask(vma, address, pud, flags, ctx);
481 }
482
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)483 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
484 unsigned long address, pgd_t *pgdp,
485 unsigned int flags,
486 struct follow_page_context *ctx)
487 {
488 p4d_t *p4d;
489 struct page *page;
490
491 p4d = p4d_offset(pgdp, address);
492 if (p4d_none(*p4d))
493 return no_page_table(vma, flags);
494 BUILD_BUG_ON(p4d_huge(*p4d));
495 if (unlikely(p4d_bad(*p4d)))
496 return no_page_table(vma, flags);
497
498 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
499 page = follow_huge_pd(vma, address,
500 __hugepd(p4d_val(*p4d)), flags,
501 P4D_SHIFT);
502 if (page)
503 return page;
504 return no_page_table(vma, flags);
505 }
506 return follow_pud_mask(vma, address, p4d, flags, ctx);
507 }
508
509 /**
510 * follow_page_mask - look up a page descriptor from a user-virtual address
511 * @vma: vm_area_struct mapping @address
512 * @address: virtual address to look up
513 * @flags: flags modifying lookup behaviour
514 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
515 * pointer to output page_mask
516 *
517 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
518 *
519 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
520 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
521 *
522 * On output, the @ctx->page_mask is set according to the size of the page.
523 *
524 * Return: the mapped (struct page *), %NULL if no mapping exists, or
525 * an error pointer if there is a mapping to something not represented
526 * by a page descriptor (see also vm_normal_page()).
527 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)528 static struct page *follow_page_mask(struct vm_area_struct *vma,
529 unsigned long address, unsigned int flags,
530 struct follow_page_context *ctx)
531 {
532 pgd_t *pgd;
533 struct page *page;
534 struct mm_struct *mm = vma->vm_mm;
535
536 ctx->page_mask = 0;
537
538 /* make this handle hugepd */
539 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
540 if (!IS_ERR(page)) {
541 BUG_ON(flags & FOLL_GET);
542 return page;
543 }
544
545 pgd = pgd_offset(mm, address);
546
547 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
548 return no_page_table(vma, flags);
549
550 if (pgd_huge(*pgd)) {
551 page = follow_huge_pgd(mm, address, pgd, flags);
552 if (page)
553 return page;
554 return no_page_table(vma, flags);
555 }
556 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
557 page = follow_huge_pd(vma, address,
558 __hugepd(pgd_val(*pgd)), flags,
559 PGDIR_SHIFT);
560 if (page)
561 return page;
562 return no_page_table(vma, flags);
563 }
564
565 return follow_p4d_mask(vma, address, pgd, flags, ctx);
566 }
567
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)568 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
569 unsigned int foll_flags)
570 {
571 struct follow_page_context ctx = { NULL };
572 struct page *page;
573
574 page = follow_page_mask(vma, address, foll_flags, &ctx);
575 if (ctx.pgmap)
576 put_dev_pagemap(ctx.pgmap);
577 return page;
578 }
579
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)580 static int get_gate_page(struct mm_struct *mm, unsigned long address,
581 unsigned int gup_flags, struct vm_area_struct **vma,
582 struct page **page)
583 {
584 pgd_t *pgd;
585 p4d_t *p4d;
586 pud_t *pud;
587 pmd_t *pmd;
588 pte_t *pte;
589 int ret = -EFAULT;
590
591 /* user gate pages are read-only */
592 if (gup_flags & FOLL_WRITE)
593 return -EFAULT;
594 if (address > TASK_SIZE)
595 pgd = pgd_offset_k(address);
596 else
597 pgd = pgd_offset_gate(mm, address);
598 if (pgd_none(*pgd))
599 return -EFAULT;
600 p4d = p4d_offset(pgd, address);
601 if (p4d_none(*p4d))
602 return -EFAULT;
603 pud = pud_offset(p4d, address);
604 if (pud_none(*pud))
605 return -EFAULT;
606 pmd = pmd_offset(pud, address);
607 if (!pmd_present(*pmd))
608 return -EFAULT;
609 VM_BUG_ON(pmd_trans_huge(*pmd));
610 pte = pte_offset_map(pmd, address);
611 if (pte_none(*pte))
612 goto unmap;
613 *vma = get_gate_vma(mm);
614 if (!page)
615 goto out;
616 *page = vm_normal_page(*vma, address, *pte);
617 if (!*page) {
618 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
619 goto unmap;
620 *page = pte_page(*pte);
621 }
622 if (unlikely(!try_get_page(*page))) {
623 ret = -ENOMEM;
624 goto unmap;
625 }
626 out:
627 ret = 0;
628 unmap:
629 pte_unmap(pte);
630 return ret;
631 }
632
633 /*
634 * mmap_sem must be held on entry. If @nonblocking != NULL and
635 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
636 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
637 */
faultin_page(struct task_struct * tsk,struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * nonblocking)638 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
639 unsigned long address, unsigned int *flags, int *nonblocking)
640 {
641 unsigned int fault_flags = 0;
642 vm_fault_t ret;
643
644 /* mlock all present pages, but do not fault in new pages */
645 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
646 return -ENOENT;
647 if (*flags & FOLL_WRITE)
648 fault_flags |= FAULT_FLAG_WRITE;
649 if (*flags & FOLL_REMOTE)
650 fault_flags |= FAULT_FLAG_REMOTE;
651 if (nonblocking)
652 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
653 if (*flags & FOLL_NOWAIT)
654 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
655 if (*flags & FOLL_TRIED) {
656 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
657 fault_flags |= FAULT_FLAG_TRIED;
658 }
659
660 ret = handle_mm_fault(vma, address, fault_flags);
661 if (ret & VM_FAULT_ERROR) {
662 int err = vm_fault_to_errno(ret, *flags);
663
664 if (err)
665 return err;
666 BUG();
667 }
668
669 if (tsk) {
670 if (ret & VM_FAULT_MAJOR)
671 tsk->maj_flt++;
672 else
673 tsk->min_flt++;
674 }
675
676 if (ret & VM_FAULT_RETRY) {
677 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
678 *nonblocking = 0;
679 return -EBUSY;
680 }
681
682 /*
683 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
684 * necessary, even if maybe_mkwrite decided not to set pte_write. We
685 * can thus safely do subsequent page lookups as if they were reads.
686 * But only do so when looping for pte_write is futile: in some cases
687 * userspace may also be wanting to write to the gotten user page,
688 * which a read fault here might prevent (a readonly page might get
689 * reCOWed by userspace write).
690 */
691 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
692 *flags |= FOLL_COW;
693 return 0;
694 }
695
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)696 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
697 {
698 vm_flags_t vm_flags = vma->vm_flags;
699 int write = (gup_flags & FOLL_WRITE);
700 int foreign = (gup_flags & FOLL_REMOTE);
701
702 if (vm_flags & (VM_IO | VM_PFNMAP))
703 return -EFAULT;
704
705 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
706 return -EFAULT;
707
708 if (write) {
709 if (!(vm_flags & VM_WRITE)) {
710 if (!(gup_flags & FOLL_FORCE))
711 return -EFAULT;
712 /*
713 * We used to let the write,force case do COW in a
714 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
715 * set a breakpoint in a read-only mapping of an
716 * executable, without corrupting the file (yet only
717 * when that file had been opened for writing!).
718 * Anon pages in shared mappings are surprising: now
719 * just reject it.
720 */
721 if (!is_cow_mapping(vm_flags))
722 return -EFAULT;
723 }
724 } else if (!(vm_flags & VM_READ)) {
725 if (!(gup_flags & FOLL_FORCE))
726 return -EFAULT;
727 /*
728 * Is there actually any vma we can reach here which does not
729 * have VM_MAYREAD set?
730 */
731 if (!(vm_flags & VM_MAYREAD))
732 return -EFAULT;
733 }
734 /*
735 * gups are always data accesses, not instruction
736 * fetches, so execute=false here
737 */
738 if (!arch_vma_access_permitted(vma, write, false, foreign))
739 return -EFAULT;
740 return 0;
741 }
742
743 /**
744 * __get_user_pages() - pin user pages in memory
745 * @tsk: task_struct of target task
746 * @mm: mm_struct of target mm
747 * @start: starting user address
748 * @nr_pages: number of pages from start to pin
749 * @gup_flags: flags modifying pin behaviour
750 * @pages: array that receives pointers to the pages pinned.
751 * Should be at least nr_pages long. Or NULL, if caller
752 * only intends to ensure the pages are faulted in.
753 * @vmas: array of pointers to vmas corresponding to each page.
754 * Or NULL if the caller does not require them.
755 * @nonblocking: whether waiting for disk IO or mmap_sem contention
756 *
757 * Returns number of pages pinned. This may be fewer than the number
758 * requested. If nr_pages is 0 or negative, returns 0. If no pages
759 * were pinned, returns -errno. Each page returned must be released
760 * with a put_page() call when it is finished with. vmas will only
761 * remain valid while mmap_sem is held.
762 *
763 * Must be called with mmap_sem held. It may be released. See below.
764 *
765 * __get_user_pages walks a process's page tables and takes a reference to
766 * each struct page that each user address corresponds to at a given
767 * instant. That is, it takes the page that would be accessed if a user
768 * thread accesses the given user virtual address at that instant.
769 *
770 * This does not guarantee that the page exists in the user mappings when
771 * __get_user_pages returns, and there may even be a completely different
772 * page there in some cases (eg. if mmapped pagecache has been invalidated
773 * and subsequently re faulted). However it does guarantee that the page
774 * won't be freed completely. And mostly callers simply care that the page
775 * contains data that was valid *at some point in time*. Typically, an IO
776 * or similar operation cannot guarantee anything stronger anyway because
777 * locks can't be held over the syscall boundary.
778 *
779 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
780 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
781 * appropriate) must be called after the page is finished with, and
782 * before put_page is called.
783 *
784 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
785 * or mmap_sem contention, and if waiting is needed to pin all pages,
786 * *@nonblocking will be set to 0. Further, if @gup_flags does not
787 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
788 * this case.
789 *
790 * A caller using such a combination of @nonblocking and @gup_flags
791 * must therefore hold the mmap_sem for reading only, and recognize
792 * when it's been released. Otherwise, it must be held for either
793 * reading or writing and will not be released.
794 *
795 * In most cases, get_user_pages or get_user_pages_fast should be used
796 * instead of __get_user_pages. __get_user_pages should be used only if
797 * you need some special @gup_flags.
798 */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)799 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
800 unsigned long start, unsigned long nr_pages,
801 unsigned int gup_flags, struct page **pages,
802 struct vm_area_struct **vmas, int *nonblocking)
803 {
804 long ret = 0, i = 0;
805 struct vm_area_struct *vma = NULL;
806 struct follow_page_context ctx = { NULL };
807
808 if (!nr_pages)
809 return 0;
810
811 start = untagged_addr(start);
812
813 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
814
815 /*
816 * If FOLL_FORCE is set then do not force a full fault as the hinting
817 * fault information is unrelated to the reference behaviour of a task
818 * using the address space
819 */
820 if (!(gup_flags & FOLL_FORCE))
821 gup_flags |= FOLL_NUMA;
822
823 do {
824 struct page *page;
825 unsigned int foll_flags = gup_flags;
826 unsigned int page_increm;
827
828 /* first iteration or cross vma bound */
829 if (!vma || start >= vma->vm_end) {
830 vma = find_extend_vma(mm, start);
831 if (!vma && in_gate_area(mm, start)) {
832 ret = get_gate_page(mm, start & PAGE_MASK,
833 gup_flags, &vma,
834 pages ? &pages[i] : NULL);
835 if (ret)
836 goto out;
837 ctx.page_mask = 0;
838 goto next_page;
839 }
840
841 if (!vma || check_vma_flags(vma, gup_flags)) {
842 ret = -EFAULT;
843 goto out;
844 }
845 if (is_vm_hugetlb_page(vma)) {
846 if (should_force_cow_break(vma, foll_flags))
847 foll_flags |= FOLL_WRITE;
848 i = follow_hugetlb_page(mm, vma, pages, vmas,
849 &start, &nr_pages, i,
850 foll_flags, nonblocking);
851 continue;
852 }
853 }
854
855 if (should_force_cow_break(vma, foll_flags))
856 foll_flags |= FOLL_WRITE;
857
858 retry:
859 /*
860 * If we have a pending SIGKILL, don't keep faulting pages and
861 * potentially allocating memory.
862 */
863 if (fatal_signal_pending(current)) {
864 ret = -ERESTARTSYS;
865 goto out;
866 }
867 cond_resched();
868
869 page = follow_page_mask(vma, start, foll_flags, &ctx);
870 if (!page) {
871 ret = faultin_page(tsk, vma, start, &foll_flags,
872 nonblocking);
873 switch (ret) {
874 case 0:
875 goto retry;
876 case -EBUSY:
877 ret = 0;
878 /* FALLTHRU */
879 case -EFAULT:
880 case -ENOMEM:
881 case -EHWPOISON:
882 goto out;
883 case -ENOENT:
884 goto next_page;
885 }
886 BUG();
887 } else if (PTR_ERR(page) == -EEXIST) {
888 /*
889 * Proper page table entry exists, but no corresponding
890 * struct page.
891 */
892 goto next_page;
893 } else if (IS_ERR(page)) {
894 ret = PTR_ERR(page);
895 goto out;
896 }
897 if (pages) {
898 pages[i] = page;
899 flush_anon_page(vma, page, start);
900 flush_dcache_page(page);
901 ctx.page_mask = 0;
902 }
903 next_page:
904 if (vmas) {
905 vmas[i] = vma;
906 ctx.page_mask = 0;
907 }
908 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
909 if (page_increm > nr_pages)
910 page_increm = nr_pages;
911 i += page_increm;
912 start += page_increm * PAGE_SIZE;
913 nr_pages -= page_increm;
914 } while (nr_pages);
915 out:
916 if (ctx.pgmap)
917 put_dev_pagemap(ctx.pgmap);
918 return i ? i : ret;
919 }
920
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)921 static bool vma_permits_fault(struct vm_area_struct *vma,
922 unsigned int fault_flags)
923 {
924 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
925 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
926 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
927
928 if (!(vm_flags & vma->vm_flags))
929 return false;
930
931 /*
932 * The architecture might have a hardware protection
933 * mechanism other than read/write that can deny access.
934 *
935 * gup always represents data access, not instruction
936 * fetches, so execute=false here:
937 */
938 if (!arch_vma_access_permitted(vma, write, false, foreign))
939 return false;
940
941 return true;
942 }
943
944 /*
945 * fixup_user_fault() - manually resolve a user page fault
946 * @tsk: the task_struct to use for page fault accounting, or
947 * NULL if faults are not to be recorded.
948 * @mm: mm_struct of target mm
949 * @address: user address
950 * @fault_flags:flags to pass down to handle_mm_fault()
951 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
952 * does not allow retry
953 *
954 * This is meant to be called in the specific scenario where for locking reasons
955 * we try to access user memory in atomic context (within a pagefault_disable()
956 * section), this returns -EFAULT, and we want to resolve the user fault before
957 * trying again.
958 *
959 * Typically this is meant to be used by the futex code.
960 *
961 * The main difference with get_user_pages() is that this function will
962 * unconditionally call handle_mm_fault() which will in turn perform all the
963 * necessary SW fixup of the dirty and young bits in the PTE, while
964 * get_user_pages() only guarantees to update these in the struct page.
965 *
966 * This is important for some architectures where those bits also gate the
967 * access permission to the page because they are maintained in software. On
968 * such architectures, gup() will not be enough to make a subsequent access
969 * succeed.
970 *
971 * This function will not return with an unlocked mmap_sem. So it has not the
972 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
973 */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)974 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
975 unsigned long address, unsigned int fault_flags,
976 bool *unlocked)
977 {
978 struct vm_area_struct *vma;
979 vm_fault_t ret, major = 0;
980
981 address = untagged_addr(address);
982
983 if (unlocked)
984 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
985
986 retry:
987 vma = find_extend_vma(mm, address);
988 if (!vma || address < vma->vm_start)
989 return -EFAULT;
990
991 if (!vma_permits_fault(vma, fault_flags))
992 return -EFAULT;
993
994 ret = handle_mm_fault(vma, address, fault_flags);
995 major |= ret & VM_FAULT_MAJOR;
996 if (ret & VM_FAULT_ERROR) {
997 int err = vm_fault_to_errno(ret, 0);
998
999 if (err)
1000 return err;
1001 BUG();
1002 }
1003
1004 if (ret & VM_FAULT_RETRY) {
1005 down_read(&mm->mmap_sem);
1006 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1007 *unlocked = true;
1008 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1009 fault_flags |= FAULT_FLAG_TRIED;
1010 goto retry;
1011 }
1012 }
1013
1014 if (tsk) {
1015 if (major)
1016 tsk->maj_flt++;
1017 else
1018 tsk->min_flt++;
1019 }
1020 return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(fixup_user_fault);
1023
__get_user_pages_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1024 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1025 struct mm_struct *mm,
1026 unsigned long start,
1027 unsigned long nr_pages,
1028 struct page **pages,
1029 struct vm_area_struct **vmas,
1030 int *locked,
1031 unsigned int flags)
1032 {
1033 long ret, pages_done;
1034 bool lock_dropped;
1035
1036 if (locked) {
1037 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1038 BUG_ON(vmas);
1039 /* check caller initialized locked */
1040 BUG_ON(*locked != 1);
1041 }
1042
1043 if (pages)
1044 flags |= FOLL_GET;
1045
1046 pages_done = 0;
1047 lock_dropped = false;
1048 for (;;) {
1049 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1050 vmas, locked);
1051 if (!locked)
1052 /* VM_FAULT_RETRY couldn't trigger, bypass */
1053 return ret;
1054
1055 /* VM_FAULT_RETRY cannot return errors */
1056 if (!*locked) {
1057 BUG_ON(ret < 0);
1058 BUG_ON(ret >= nr_pages);
1059 }
1060
1061 if (ret > 0) {
1062 nr_pages -= ret;
1063 pages_done += ret;
1064 if (!nr_pages)
1065 break;
1066 }
1067 if (*locked) {
1068 /*
1069 * VM_FAULT_RETRY didn't trigger or it was a
1070 * FOLL_NOWAIT.
1071 */
1072 if (!pages_done)
1073 pages_done = ret;
1074 break;
1075 }
1076 /*
1077 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1078 * For the prefault case (!pages) we only update counts.
1079 */
1080 if (likely(pages))
1081 pages += ret;
1082 start += ret << PAGE_SHIFT;
1083
1084 /*
1085 * Repeat on the address that fired VM_FAULT_RETRY
1086 * without FAULT_FLAG_ALLOW_RETRY but with
1087 * FAULT_FLAG_TRIED.
1088 */
1089 *locked = 1;
1090 lock_dropped = true;
1091 down_read(&mm->mmap_sem);
1092 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1093 pages, NULL, NULL);
1094 if (ret != 1) {
1095 BUG_ON(ret > 1);
1096 if (!pages_done)
1097 pages_done = ret;
1098 break;
1099 }
1100 nr_pages--;
1101 pages_done++;
1102 if (!nr_pages)
1103 break;
1104 if (likely(pages))
1105 pages++;
1106 start += PAGE_SIZE;
1107 }
1108 if (lock_dropped && *locked) {
1109 /*
1110 * We must let the caller know we temporarily dropped the lock
1111 * and so the critical section protected by it was lost.
1112 */
1113 up_read(&mm->mmap_sem);
1114 *locked = 0;
1115 }
1116 return pages_done;
1117 }
1118
1119 /*
1120 * get_user_pages_remote() - pin user pages in memory
1121 * @tsk: the task_struct to use for page fault accounting, or
1122 * NULL if faults are not to be recorded.
1123 * @mm: mm_struct of target mm
1124 * @start: starting user address
1125 * @nr_pages: number of pages from start to pin
1126 * @gup_flags: flags modifying lookup behaviour
1127 * @pages: array that receives pointers to the pages pinned.
1128 * Should be at least nr_pages long. Or NULL, if caller
1129 * only intends to ensure the pages are faulted in.
1130 * @vmas: array of pointers to vmas corresponding to each page.
1131 * Or NULL if the caller does not require them.
1132 * @locked: pointer to lock flag indicating whether lock is held and
1133 * subsequently whether VM_FAULT_RETRY functionality can be
1134 * utilised. Lock must initially be held.
1135 *
1136 * Returns number of pages pinned. This may be fewer than the number
1137 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1138 * were pinned, returns -errno. Each page returned must be released
1139 * with a put_page() call when it is finished with. vmas will only
1140 * remain valid while mmap_sem is held.
1141 *
1142 * Must be called with mmap_sem held for read or write.
1143 *
1144 * get_user_pages walks a process's page tables and takes a reference to
1145 * each struct page that each user address corresponds to at a given
1146 * instant. That is, it takes the page that would be accessed if a user
1147 * thread accesses the given user virtual address at that instant.
1148 *
1149 * This does not guarantee that the page exists in the user mappings when
1150 * get_user_pages returns, and there may even be a completely different
1151 * page there in some cases (eg. if mmapped pagecache has been invalidated
1152 * and subsequently re faulted). However it does guarantee that the page
1153 * won't be freed completely. And mostly callers simply care that the page
1154 * contains data that was valid *at some point in time*. Typically, an IO
1155 * or similar operation cannot guarantee anything stronger anyway because
1156 * locks can't be held over the syscall boundary.
1157 *
1158 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1159 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1160 * be called after the page is finished with, and before put_page is called.
1161 *
1162 * get_user_pages is typically used for fewer-copy IO operations, to get a
1163 * handle on the memory by some means other than accesses via the user virtual
1164 * addresses. The pages may be submitted for DMA to devices or accessed via
1165 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1166 * use the correct cache flushing APIs.
1167 *
1168 * See also get_user_pages_fast, for performance critical applications.
1169 *
1170 * get_user_pages should be phased out in favor of
1171 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1172 * should use get_user_pages because it cannot pass
1173 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1174 */
get_user_pages_remote(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1175 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1176 unsigned long start, unsigned long nr_pages,
1177 unsigned int gup_flags, struct page **pages,
1178 struct vm_area_struct **vmas, int *locked)
1179 {
1180 /*
1181 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1182 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1183 * vmas. As there are no users of this flag in this call we simply
1184 * disallow this option for now.
1185 */
1186 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1187 return -EINVAL;
1188
1189 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1190 locked,
1191 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1192 }
1193 EXPORT_SYMBOL(get_user_pages_remote);
1194
1195 /**
1196 * populate_vma_page_range() - populate a range of pages in the vma.
1197 * @vma: target vma
1198 * @start: start address
1199 * @end: end address
1200 * @nonblocking:
1201 *
1202 * This takes care of mlocking the pages too if VM_LOCKED is set.
1203 *
1204 * return 0 on success, negative error code on error.
1205 *
1206 * vma->vm_mm->mmap_sem must be held.
1207 *
1208 * If @nonblocking is NULL, it may be held for read or write and will
1209 * be unperturbed.
1210 *
1211 * If @nonblocking is non-NULL, it must held for read only and may be
1212 * released. If it's released, *@nonblocking will be set to 0.
1213 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * nonblocking)1214 long populate_vma_page_range(struct vm_area_struct *vma,
1215 unsigned long start, unsigned long end, int *nonblocking)
1216 {
1217 struct mm_struct *mm = vma->vm_mm;
1218 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1219 int gup_flags;
1220
1221 VM_BUG_ON(start & ~PAGE_MASK);
1222 VM_BUG_ON(end & ~PAGE_MASK);
1223 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1224 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1225 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1226
1227 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1228 if (vma->vm_flags & VM_LOCKONFAULT)
1229 gup_flags &= ~FOLL_POPULATE;
1230 /*
1231 * We want to touch writable mappings with a write fault in order
1232 * to break COW, except for shared mappings because these don't COW
1233 * and we would not want to dirty them for nothing.
1234 */
1235 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1236 gup_flags |= FOLL_WRITE;
1237
1238 /*
1239 * We want mlock to succeed for regions that have any permissions
1240 * other than PROT_NONE.
1241 */
1242 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1243 gup_flags |= FOLL_FORCE;
1244
1245 /*
1246 * We made sure addr is within a VMA, so the following will
1247 * not result in a stack expansion that recurses back here.
1248 */
1249 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1250 NULL, NULL, nonblocking);
1251 }
1252
1253 /*
1254 * __mm_populate - populate and/or mlock pages within a range of address space.
1255 *
1256 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1257 * flags. VMAs must be already marked with the desired vm_flags, and
1258 * mmap_sem must not be held.
1259 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1260 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1261 {
1262 struct mm_struct *mm = current->mm;
1263 unsigned long end, nstart, nend;
1264 struct vm_area_struct *vma = NULL;
1265 int locked = 0;
1266 long ret = 0;
1267
1268 end = start + len;
1269
1270 for (nstart = start; nstart < end; nstart = nend) {
1271 /*
1272 * We want to fault in pages for [nstart; end) address range.
1273 * Find first corresponding VMA.
1274 */
1275 if (!locked) {
1276 locked = 1;
1277 down_read(&mm->mmap_sem);
1278 vma = find_vma(mm, nstart);
1279 } else if (nstart >= vma->vm_end)
1280 vma = vma->vm_next;
1281 if (!vma || vma->vm_start >= end)
1282 break;
1283 /*
1284 * Set [nstart; nend) to intersection of desired address
1285 * range with the first VMA. Also, skip undesirable VMA types.
1286 */
1287 nend = min(end, vma->vm_end);
1288 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1289 continue;
1290 if (nstart < vma->vm_start)
1291 nstart = vma->vm_start;
1292 /*
1293 * Now fault in a range of pages. populate_vma_page_range()
1294 * double checks the vma flags, so that it won't mlock pages
1295 * if the vma was already munlocked.
1296 */
1297 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1298 if (ret < 0) {
1299 if (ignore_errors) {
1300 ret = 0;
1301 continue; /* continue at next VMA */
1302 }
1303 break;
1304 }
1305 nend = nstart + ret * PAGE_SIZE;
1306 ret = 0;
1307 }
1308 if (locked)
1309 up_read(&mm->mmap_sem);
1310 return ret; /* 0 or negative error code */
1311 }
1312
1313 /**
1314 * get_dump_page() - pin user page in memory while writing it to core dump
1315 * @addr: user address
1316 *
1317 * Returns struct page pointer of user page pinned for dump,
1318 * to be freed afterwards by put_page().
1319 *
1320 * Returns NULL on any kind of failure - a hole must then be inserted into
1321 * the corefile, to preserve alignment with its headers; and also returns
1322 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1323 * allowing a hole to be left in the corefile to save diskspace.
1324 *
1325 * Called without mmap_sem, but after all other threads have been killed.
1326 */
1327 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1328 struct page *get_dump_page(unsigned long addr)
1329 {
1330 struct vm_area_struct *vma;
1331 struct page *page;
1332
1333 if (__get_user_pages(current, current->mm, addr, 1,
1334 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1335 NULL) < 1)
1336 return NULL;
1337 flush_cache_page(vma, addr, page_to_pfn(page));
1338 return page;
1339 }
1340 #endif /* CONFIG_ELF_CORE */
1341 #else /* CONFIG_MMU */
__get_user_pages_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1342 static long __get_user_pages_locked(struct task_struct *tsk,
1343 struct mm_struct *mm, unsigned long start,
1344 unsigned long nr_pages, struct page **pages,
1345 struct vm_area_struct **vmas, int *locked,
1346 unsigned int foll_flags)
1347 {
1348 struct vm_area_struct *vma;
1349 unsigned long vm_flags;
1350 int i;
1351
1352 /* calculate required read or write permissions.
1353 * If FOLL_FORCE is set, we only require the "MAY" flags.
1354 */
1355 vm_flags = (foll_flags & FOLL_WRITE) ?
1356 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1357 vm_flags &= (foll_flags & FOLL_FORCE) ?
1358 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1359
1360 for (i = 0; i < nr_pages; i++) {
1361 vma = find_vma(mm, start);
1362 if (!vma)
1363 goto finish_or_fault;
1364
1365 /* protect what we can, including chardevs */
1366 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1367 !(vm_flags & vma->vm_flags))
1368 goto finish_or_fault;
1369
1370 if (pages) {
1371 pages[i] = virt_to_page(start);
1372 if (pages[i])
1373 get_page(pages[i]);
1374 }
1375 if (vmas)
1376 vmas[i] = vma;
1377 start = (start + PAGE_SIZE) & PAGE_MASK;
1378 }
1379
1380 return i;
1381
1382 finish_or_fault:
1383 return i ? : -EFAULT;
1384 }
1385 #endif /* !CONFIG_MMU */
1386
1387 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
check_dax_vmas(struct vm_area_struct ** vmas,long nr_pages)1388 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1389 {
1390 long i;
1391 struct vm_area_struct *vma_prev = NULL;
1392
1393 for (i = 0; i < nr_pages; i++) {
1394 struct vm_area_struct *vma = vmas[i];
1395
1396 if (vma == vma_prev)
1397 continue;
1398
1399 vma_prev = vma;
1400
1401 if (vma_is_fsdax(vma))
1402 return true;
1403 }
1404 return false;
1405 }
1406
1407 #ifdef CONFIG_CMA
new_non_cma_page(struct page * page,unsigned long private)1408 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1409 {
1410 /*
1411 * We want to make sure we allocate the new page from the same node
1412 * as the source page.
1413 */
1414 int nid = page_to_nid(page);
1415 /*
1416 * Trying to allocate a page for migration. Ignore allocation
1417 * failure warnings. We don't force __GFP_THISNODE here because
1418 * this node here is the node where we have CMA reservation and
1419 * in some case these nodes will have really less non movable
1420 * allocation memory.
1421 */
1422 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1423
1424 if (PageHighMem(page))
1425 gfp_mask |= __GFP_HIGHMEM;
1426
1427 #ifdef CONFIG_HUGETLB_PAGE
1428 if (PageHuge(page)) {
1429 struct hstate *h = page_hstate(page);
1430 /*
1431 * We don't want to dequeue from the pool because pool pages will
1432 * mostly be from the CMA region.
1433 */
1434 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1435 }
1436 #endif
1437 if (PageTransHuge(page)) {
1438 struct page *thp;
1439 /*
1440 * ignore allocation failure warnings
1441 */
1442 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1443
1444 /*
1445 * Remove the movable mask so that we don't allocate from
1446 * CMA area again.
1447 */
1448 thp_gfpmask &= ~__GFP_MOVABLE;
1449 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1450 if (!thp)
1451 return NULL;
1452 prep_transhuge_page(thp);
1453 return thp;
1454 }
1455
1456 return __alloc_pages_node(nid, gfp_mask, 0);
1457 }
1458
check_and_migrate_cma_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1459 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1460 struct mm_struct *mm,
1461 unsigned long start,
1462 unsigned long nr_pages,
1463 struct page **pages,
1464 struct vm_area_struct **vmas,
1465 unsigned int gup_flags)
1466 {
1467 unsigned long i;
1468 unsigned long step;
1469 bool drain_allow = true;
1470 bool migrate_allow = true;
1471 LIST_HEAD(cma_page_list);
1472
1473 check_again:
1474 for (i = 0; i < nr_pages;) {
1475
1476 struct page *head = compound_head(pages[i]);
1477
1478 /*
1479 * gup may start from a tail page. Advance step by the left
1480 * part.
1481 */
1482 step = compound_nr(head) - (pages[i] - head);
1483 /*
1484 * If we get a page from the CMA zone, since we are going to
1485 * be pinning these entries, we might as well move them out
1486 * of the CMA zone if possible.
1487 */
1488 if (is_migrate_cma_page(head)) {
1489 if (PageHuge(head))
1490 isolate_huge_page(head, &cma_page_list);
1491 else {
1492 if (!PageLRU(head) && drain_allow) {
1493 lru_add_drain_all();
1494 drain_allow = false;
1495 }
1496
1497 if (!isolate_lru_page(head)) {
1498 list_add_tail(&head->lru, &cma_page_list);
1499 mod_node_page_state(page_pgdat(head),
1500 NR_ISOLATED_ANON +
1501 page_is_file_cache(head),
1502 hpage_nr_pages(head));
1503 }
1504 }
1505 }
1506
1507 i += step;
1508 }
1509
1510 if (!list_empty(&cma_page_list)) {
1511 /*
1512 * drop the above get_user_pages reference.
1513 */
1514 for (i = 0; i < nr_pages; i++)
1515 put_page(pages[i]);
1516
1517 if (migrate_pages(&cma_page_list, new_non_cma_page,
1518 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1519 /*
1520 * some of the pages failed migration. Do get_user_pages
1521 * without migration.
1522 */
1523 migrate_allow = false;
1524
1525 if (!list_empty(&cma_page_list))
1526 putback_movable_pages(&cma_page_list);
1527 }
1528 /*
1529 * We did migrate all the pages, Try to get the page references
1530 * again migrating any new CMA pages which we failed to isolate
1531 * earlier.
1532 */
1533 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1534 pages, vmas, NULL,
1535 gup_flags);
1536
1537 if ((nr_pages > 0) && migrate_allow) {
1538 drain_allow = true;
1539 goto check_again;
1540 }
1541 }
1542
1543 return nr_pages;
1544 }
1545 #else
check_and_migrate_cma_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1546 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1547 struct mm_struct *mm,
1548 unsigned long start,
1549 unsigned long nr_pages,
1550 struct page **pages,
1551 struct vm_area_struct **vmas,
1552 unsigned int gup_flags)
1553 {
1554 return nr_pages;
1555 }
1556 #endif /* CONFIG_CMA */
1557
1558 /*
1559 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1560 * allows us to process the FOLL_LONGTERM flag.
1561 */
__gup_longterm_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1562 static long __gup_longterm_locked(struct task_struct *tsk,
1563 struct mm_struct *mm,
1564 unsigned long start,
1565 unsigned long nr_pages,
1566 struct page **pages,
1567 struct vm_area_struct **vmas,
1568 unsigned int gup_flags)
1569 {
1570 struct vm_area_struct **vmas_tmp = vmas;
1571 unsigned long flags = 0;
1572 long rc, i;
1573
1574 if (gup_flags & FOLL_LONGTERM) {
1575 if (!pages)
1576 return -EINVAL;
1577
1578 if (!vmas_tmp) {
1579 vmas_tmp = kcalloc(nr_pages,
1580 sizeof(struct vm_area_struct *),
1581 GFP_KERNEL);
1582 if (!vmas_tmp)
1583 return -ENOMEM;
1584 }
1585 flags = memalloc_nocma_save();
1586 }
1587
1588 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1589 vmas_tmp, NULL, gup_flags);
1590
1591 if (gup_flags & FOLL_LONGTERM) {
1592 memalloc_nocma_restore(flags);
1593 if (rc < 0)
1594 goto out;
1595
1596 if (check_dax_vmas(vmas_tmp, rc)) {
1597 for (i = 0; i < rc; i++)
1598 put_page(pages[i]);
1599 rc = -EOPNOTSUPP;
1600 goto out;
1601 }
1602
1603 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1604 vmas_tmp, gup_flags);
1605 }
1606
1607 out:
1608 if (vmas_tmp != vmas)
1609 kfree(vmas_tmp);
1610 return rc;
1611 }
1612 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
__gup_longterm_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int flags)1613 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1614 struct mm_struct *mm,
1615 unsigned long start,
1616 unsigned long nr_pages,
1617 struct page **pages,
1618 struct vm_area_struct **vmas,
1619 unsigned int flags)
1620 {
1621 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1622 NULL, flags);
1623 }
1624 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1625
1626 /*
1627 * This is the same as get_user_pages_remote(), just with a
1628 * less-flexible calling convention where we assume that the task
1629 * and mm being operated on are the current task's and don't allow
1630 * passing of a locked parameter. We also obviously don't pass
1631 * FOLL_REMOTE in here.
1632 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1633 long get_user_pages(unsigned long start, unsigned long nr_pages,
1634 unsigned int gup_flags, struct page **pages,
1635 struct vm_area_struct **vmas)
1636 {
1637 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1638 pages, vmas, gup_flags | FOLL_TOUCH);
1639 }
1640 EXPORT_SYMBOL(get_user_pages);
1641
1642 /*
1643 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1644 * paths better by using either get_user_pages_locked() or
1645 * get_user_pages_unlocked().
1646 *
1647 * get_user_pages_locked() is suitable to replace the form:
1648 *
1649 * down_read(&mm->mmap_sem);
1650 * do_something()
1651 * get_user_pages(tsk, mm, ..., pages, NULL);
1652 * up_read(&mm->mmap_sem);
1653 *
1654 * to:
1655 *
1656 * int locked = 1;
1657 * down_read(&mm->mmap_sem);
1658 * do_something()
1659 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1660 * if (locked)
1661 * up_read(&mm->mmap_sem);
1662 */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1663 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1664 unsigned int gup_flags, struct page **pages,
1665 int *locked)
1666 {
1667 /*
1668 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1669 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1670 * vmas. As there are no users of this flag in this call we simply
1671 * disallow this option for now.
1672 */
1673 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1674 return -EINVAL;
1675
1676 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1677 pages, NULL, locked,
1678 gup_flags | FOLL_TOUCH);
1679 }
1680 EXPORT_SYMBOL(get_user_pages_locked);
1681
1682 /*
1683 * get_user_pages_unlocked() is suitable to replace the form:
1684 *
1685 * down_read(&mm->mmap_sem);
1686 * get_user_pages(tsk, mm, ..., pages, NULL);
1687 * up_read(&mm->mmap_sem);
1688 *
1689 * with:
1690 *
1691 * get_user_pages_unlocked(tsk, mm, ..., pages);
1692 *
1693 * It is functionally equivalent to get_user_pages_fast so
1694 * get_user_pages_fast should be used instead if specific gup_flags
1695 * (e.g. FOLL_FORCE) are not required.
1696 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1697 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1698 struct page **pages, unsigned int gup_flags)
1699 {
1700 struct mm_struct *mm = current->mm;
1701 int locked = 1;
1702 long ret;
1703
1704 /*
1705 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1706 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1707 * vmas. As there are no users of this flag in this call we simply
1708 * disallow this option for now.
1709 */
1710 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1711 return -EINVAL;
1712
1713 down_read(&mm->mmap_sem);
1714 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1715 &locked, gup_flags | FOLL_TOUCH);
1716 if (locked)
1717 up_read(&mm->mmap_sem);
1718 return ret;
1719 }
1720 EXPORT_SYMBOL(get_user_pages_unlocked);
1721
1722 /*
1723 * Fast GUP
1724 *
1725 * get_user_pages_fast attempts to pin user pages by walking the page
1726 * tables directly and avoids taking locks. Thus the walker needs to be
1727 * protected from page table pages being freed from under it, and should
1728 * block any THP splits.
1729 *
1730 * One way to achieve this is to have the walker disable interrupts, and
1731 * rely on IPIs from the TLB flushing code blocking before the page table
1732 * pages are freed. This is unsuitable for architectures that do not need
1733 * to broadcast an IPI when invalidating TLBs.
1734 *
1735 * Another way to achieve this is to batch up page table containing pages
1736 * belonging to more than one mm_user, then rcu_sched a callback to free those
1737 * pages. Disabling interrupts will allow the fast_gup walker to both block
1738 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1739 * (which is a relatively rare event). The code below adopts this strategy.
1740 *
1741 * Before activating this code, please be aware that the following assumptions
1742 * are currently made:
1743 *
1744 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1745 * free pages containing page tables or TLB flushing requires IPI broadcast.
1746 *
1747 * *) ptes can be read atomically by the architecture.
1748 *
1749 * *) access_ok is sufficient to validate userspace address ranges.
1750 *
1751 * The last two assumptions can be relaxed by the addition of helper functions.
1752 *
1753 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1754 */
1755 #ifdef CONFIG_HAVE_FAST_GUP
1756 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1757 /*
1758 * WARNING: only to be used in the get_user_pages_fast() implementation.
1759 *
1760 * With get_user_pages_fast(), we walk down the pagetables without taking any
1761 * locks. For this we would like to load the pointers atomically, but sometimes
1762 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1763 * we do have is the guarantee that a PTE will only either go from not present
1764 * to present, or present to not present or both -- it will not switch to a
1765 * completely different present page without a TLB flush in between; something
1766 * that we are blocking by holding interrupts off.
1767 *
1768 * Setting ptes from not present to present goes:
1769 *
1770 * ptep->pte_high = h;
1771 * smp_wmb();
1772 * ptep->pte_low = l;
1773 *
1774 * And present to not present goes:
1775 *
1776 * ptep->pte_low = 0;
1777 * smp_wmb();
1778 * ptep->pte_high = 0;
1779 *
1780 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1781 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1782 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1783 * picked up a changed pte high. We might have gotten rubbish values from
1784 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1785 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1786 * operates on present ptes we're safe.
1787 */
gup_get_pte(pte_t * ptep)1788 static inline pte_t gup_get_pte(pte_t *ptep)
1789 {
1790 pte_t pte;
1791
1792 do {
1793 pte.pte_low = ptep->pte_low;
1794 smp_rmb();
1795 pte.pte_high = ptep->pte_high;
1796 smp_rmb();
1797 } while (unlikely(pte.pte_low != ptep->pte_low));
1798
1799 return pte;
1800 }
1801 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1802 /*
1803 * We require that the PTE can be read atomically.
1804 */
gup_get_pte(pte_t * ptep)1805 static inline pte_t gup_get_pte(pte_t *ptep)
1806 {
1807 return READ_ONCE(*ptep);
1808 }
1809 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1810
undo_dev_pagemap(int * nr,int nr_start,struct page ** pages)1811 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1812 struct page **pages)
1813 {
1814 while ((*nr) - nr_start) {
1815 struct page *page = pages[--(*nr)];
1816
1817 ClearPageReferenced(page);
1818 put_page(page);
1819 }
1820 }
1821
1822 /*
1823 * Return the compund head page with ref appropriately incremented,
1824 * or NULL if that failed.
1825 */
try_get_compound_head(struct page * page,int refs)1826 static inline struct page *try_get_compound_head(struct page *page, int refs)
1827 {
1828 struct page *head = compound_head(page);
1829 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1830 return NULL;
1831 if (unlikely(!page_cache_add_speculative(head, refs)))
1832 return NULL;
1833 return head;
1834 }
1835
1836 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)1837 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1838 unsigned int flags, struct page **pages, int *nr)
1839 {
1840 struct dev_pagemap *pgmap = NULL;
1841 int nr_start = *nr, ret = 0;
1842 pte_t *ptep, *ptem;
1843
1844 ptem = ptep = pte_offset_map(&pmd, addr);
1845 do {
1846 pte_t pte = gup_get_pte(ptep);
1847 struct page *head, *page;
1848
1849 /*
1850 * Similar to the PMD case below, NUMA hinting must take slow
1851 * path using the pte_protnone check.
1852 */
1853 if (pte_protnone(pte))
1854 goto pte_unmap;
1855
1856 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1857 goto pte_unmap;
1858
1859 if (pte_devmap(pte)) {
1860 if (unlikely(flags & FOLL_LONGTERM))
1861 goto pte_unmap;
1862
1863 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1864 if (unlikely(!pgmap)) {
1865 undo_dev_pagemap(nr, nr_start, pages);
1866 goto pte_unmap;
1867 }
1868 } else if (pte_special(pte))
1869 goto pte_unmap;
1870
1871 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1872 page = pte_page(pte);
1873
1874 head = try_get_compound_head(page, 1);
1875 if (!head)
1876 goto pte_unmap;
1877
1878 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1879 put_page(head);
1880 goto pte_unmap;
1881 }
1882
1883 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1884
1885 SetPageReferenced(page);
1886 pages[*nr] = page;
1887 (*nr)++;
1888
1889 } while (ptep++, addr += PAGE_SIZE, addr != end);
1890
1891 ret = 1;
1892
1893 pte_unmap:
1894 if (pgmap)
1895 put_dev_pagemap(pgmap);
1896 pte_unmap(ptem);
1897 return ret;
1898 }
1899 #else
1900
1901 /*
1902 * If we can't determine whether or not a pte is special, then fail immediately
1903 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1904 * to be special.
1905 *
1906 * For a futex to be placed on a THP tail page, get_futex_key requires a
1907 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1908 * useful to have gup_huge_pmd even if we can't operate on ptes.
1909 */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)1910 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1911 unsigned int flags, struct page **pages, int *nr)
1912 {
1913 return 0;
1914 }
1915 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1916
1917 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1918 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1919 unsigned long end, struct page **pages, int *nr)
1920 {
1921 int nr_start = *nr;
1922 struct dev_pagemap *pgmap = NULL;
1923
1924 do {
1925 struct page *page = pfn_to_page(pfn);
1926
1927 pgmap = get_dev_pagemap(pfn, pgmap);
1928 if (unlikely(!pgmap)) {
1929 undo_dev_pagemap(nr, nr_start, pages);
1930 return 0;
1931 }
1932 SetPageReferenced(page);
1933 pages[*nr] = page;
1934 get_page(page);
1935 (*nr)++;
1936 pfn++;
1937 } while (addr += PAGE_SIZE, addr != end);
1938
1939 if (pgmap)
1940 put_dev_pagemap(pgmap);
1941 return 1;
1942 }
1943
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1944 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1945 unsigned long end, struct page **pages, int *nr)
1946 {
1947 unsigned long fault_pfn;
1948 int nr_start = *nr;
1949
1950 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1951 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1952 return 0;
1953
1954 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1955 undo_dev_pagemap(nr, nr_start, pages);
1956 return 0;
1957 }
1958 return 1;
1959 }
1960
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1961 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1962 unsigned long end, struct page **pages, int *nr)
1963 {
1964 unsigned long fault_pfn;
1965 int nr_start = *nr;
1966
1967 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1968 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1969 return 0;
1970
1971 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1972 undo_dev_pagemap(nr, nr_start, pages);
1973 return 0;
1974 }
1975 return 1;
1976 }
1977 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1978 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1979 unsigned long end, struct page **pages, int *nr)
1980 {
1981 BUILD_BUG();
1982 return 0;
1983 }
1984
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1985 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1986 unsigned long end, struct page **pages, int *nr)
1987 {
1988 BUILD_BUG();
1989 return 0;
1990 }
1991 #endif
1992
1993 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)1994 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1995 unsigned long sz)
1996 {
1997 unsigned long __boundary = (addr + sz) & ~(sz-1);
1998 return (__boundary - 1 < end - 1) ? __boundary : end;
1999 }
2000
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2001 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2002 unsigned long end, unsigned int flags,
2003 struct page **pages, int *nr)
2004 {
2005 unsigned long pte_end;
2006 struct page *head, *page;
2007 pte_t pte;
2008 int refs;
2009
2010 pte_end = (addr + sz) & ~(sz-1);
2011 if (pte_end < end)
2012 end = pte_end;
2013
2014 pte = READ_ONCE(*ptep);
2015
2016 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2017 return 0;
2018
2019 /* hugepages are never "special" */
2020 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2021
2022 refs = 0;
2023 head = pte_page(pte);
2024
2025 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2026 do {
2027 VM_BUG_ON(compound_head(page) != head);
2028 pages[*nr] = page;
2029 (*nr)++;
2030 page++;
2031 refs++;
2032 } while (addr += PAGE_SIZE, addr != end);
2033
2034 head = try_get_compound_head(head, refs);
2035 if (!head) {
2036 *nr -= refs;
2037 return 0;
2038 }
2039
2040 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2041 /* Could be optimized better */
2042 *nr -= refs;
2043 while (refs--)
2044 put_page(head);
2045 return 0;
2046 }
2047
2048 SetPageReferenced(head);
2049 return 1;
2050 }
2051
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2052 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2053 unsigned int pdshift, unsigned long end, unsigned int flags,
2054 struct page **pages, int *nr)
2055 {
2056 pte_t *ptep;
2057 unsigned long sz = 1UL << hugepd_shift(hugepd);
2058 unsigned long next;
2059
2060 ptep = hugepte_offset(hugepd, addr, pdshift);
2061 do {
2062 next = hugepte_addr_end(addr, end, sz);
2063 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2064 return 0;
2065 } while (ptep++, addr = next, addr != end);
2066
2067 return 1;
2068 }
2069 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2070 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2071 unsigned int pdshift, unsigned long end, unsigned int flags,
2072 struct page **pages, int *nr)
2073 {
2074 return 0;
2075 }
2076 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2077
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2078 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2079 unsigned long end, unsigned int flags,
2080 struct page **pages, int *nr)
2081 {
2082 struct page *head, *page;
2083 int refs;
2084
2085 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2086 return 0;
2087
2088 if (pmd_devmap(orig)) {
2089 if (unlikely(flags & FOLL_LONGTERM))
2090 return 0;
2091 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2092 }
2093
2094 refs = 0;
2095 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2096 do {
2097 pages[*nr] = page;
2098 (*nr)++;
2099 page++;
2100 refs++;
2101 } while (addr += PAGE_SIZE, addr != end);
2102
2103 head = try_get_compound_head(pmd_page(orig), refs);
2104 if (!head) {
2105 *nr -= refs;
2106 return 0;
2107 }
2108
2109 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2110 *nr -= refs;
2111 while (refs--)
2112 put_page(head);
2113 return 0;
2114 }
2115
2116 SetPageReferenced(head);
2117 return 1;
2118 }
2119
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2120 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2121 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2122 {
2123 struct page *head, *page;
2124 int refs;
2125
2126 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2127 return 0;
2128
2129 if (pud_devmap(orig)) {
2130 if (unlikely(flags & FOLL_LONGTERM))
2131 return 0;
2132 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2133 }
2134
2135 refs = 0;
2136 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2137 do {
2138 pages[*nr] = page;
2139 (*nr)++;
2140 page++;
2141 refs++;
2142 } while (addr += PAGE_SIZE, addr != end);
2143
2144 head = try_get_compound_head(pud_page(orig), refs);
2145 if (!head) {
2146 *nr -= refs;
2147 return 0;
2148 }
2149
2150 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2151 *nr -= refs;
2152 while (refs--)
2153 put_page(head);
2154 return 0;
2155 }
2156
2157 SetPageReferenced(head);
2158 return 1;
2159 }
2160
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2161 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2162 unsigned long end, unsigned int flags,
2163 struct page **pages, int *nr)
2164 {
2165 int refs;
2166 struct page *head, *page;
2167
2168 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2169 return 0;
2170
2171 BUILD_BUG_ON(pgd_devmap(orig));
2172 refs = 0;
2173 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2174 do {
2175 pages[*nr] = page;
2176 (*nr)++;
2177 page++;
2178 refs++;
2179 } while (addr += PAGE_SIZE, addr != end);
2180
2181 head = try_get_compound_head(pgd_page(orig), refs);
2182 if (!head) {
2183 *nr -= refs;
2184 return 0;
2185 }
2186
2187 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2188 *nr -= refs;
2189 while (refs--)
2190 put_page(head);
2191 return 0;
2192 }
2193
2194 SetPageReferenced(head);
2195 return 1;
2196 }
2197
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2198 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2199 unsigned int flags, struct page **pages, int *nr)
2200 {
2201 unsigned long next;
2202 pmd_t *pmdp;
2203
2204 pmdp = pmd_offset_lockless(pudp, pud, addr);
2205 do {
2206 pmd_t pmd = READ_ONCE(*pmdp);
2207
2208 next = pmd_addr_end(addr, end);
2209 if (!pmd_present(pmd))
2210 return 0;
2211
2212 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2213 pmd_devmap(pmd))) {
2214 /*
2215 * NUMA hinting faults need to be handled in the GUP
2216 * slowpath for accounting purposes and so that they
2217 * can be serialised against THP migration.
2218 */
2219 if (pmd_protnone(pmd))
2220 return 0;
2221
2222 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2223 pages, nr))
2224 return 0;
2225
2226 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2227 /*
2228 * architecture have different format for hugetlbfs
2229 * pmd format and THP pmd format
2230 */
2231 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2232 PMD_SHIFT, next, flags, pages, nr))
2233 return 0;
2234 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2235 return 0;
2236 } while (pmdp++, addr = next, addr != end);
2237
2238 return 1;
2239 }
2240
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2241 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2242 unsigned int flags, struct page **pages, int *nr)
2243 {
2244 unsigned long next;
2245 pud_t *pudp;
2246
2247 pudp = pud_offset_lockless(p4dp, p4d, addr);
2248 do {
2249 pud_t pud = READ_ONCE(*pudp);
2250
2251 next = pud_addr_end(addr, end);
2252 if (pud_none(pud))
2253 return 0;
2254 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2255 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2256 pages, nr))
2257 return 0;
2258 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2259 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2260 PUD_SHIFT, next, flags, pages, nr))
2261 return 0;
2262 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2263 return 0;
2264 } while (pudp++, addr = next, addr != end);
2265
2266 return 1;
2267 }
2268
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2269 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2270 unsigned int flags, struct page **pages, int *nr)
2271 {
2272 unsigned long next;
2273 p4d_t *p4dp;
2274
2275 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2276 do {
2277 p4d_t p4d = READ_ONCE(*p4dp);
2278
2279 next = p4d_addr_end(addr, end);
2280 if (p4d_none(p4d))
2281 return 0;
2282 BUILD_BUG_ON(p4d_huge(p4d));
2283 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2284 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2285 P4D_SHIFT, next, flags, pages, nr))
2286 return 0;
2287 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2288 return 0;
2289 } while (p4dp++, addr = next, addr != end);
2290
2291 return 1;
2292 }
2293
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2294 static void gup_pgd_range(unsigned long addr, unsigned long end,
2295 unsigned int flags, struct page **pages, int *nr)
2296 {
2297 unsigned long next;
2298 pgd_t *pgdp;
2299
2300 pgdp = pgd_offset(current->mm, addr);
2301 do {
2302 pgd_t pgd = READ_ONCE(*pgdp);
2303
2304 next = pgd_addr_end(addr, end);
2305 if (pgd_none(pgd))
2306 return;
2307 if (unlikely(pgd_huge(pgd))) {
2308 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2309 pages, nr))
2310 return;
2311 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2312 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2313 PGDIR_SHIFT, next, flags, pages, nr))
2314 return;
2315 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2316 return;
2317 } while (pgdp++, addr = next, addr != end);
2318 }
2319 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2320 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2321 unsigned int flags, struct page **pages, int *nr)
2322 {
2323 }
2324 #endif /* CONFIG_HAVE_FAST_GUP */
2325
2326 #ifndef gup_fast_permitted
2327 /*
2328 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2329 * we need to fall back to the slow version:
2330 */
gup_fast_permitted(unsigned long start,unsigned long end)2331 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2332 {
2333 return true;
2334 }
2335 #endif
2336
2337 /*
2338 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2339 * the regular GUP.
2340 * Note a difference with get_user_pages_fast: this always returns the
2341 * number of pages pinned, 0 if no pages were pinned.
2342 *
2343 * If the architecture does not support this function, simply return with no
2344 * pages pinned.
2345 *
2346 * Careful, careful! COW breaking can go either way, so a non-write
2347 * access can get ambiguous page results. If you call this function without
2348 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2349 */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)2350 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2351 struct page **pages)
2352 {
2353 unsigned long len, end;
2354 unsigned long flags;
2355 int nr = 0;
2356
2357 start = untagged_addr(start) & PAGE_MASK;
2358 len = (unsigned long) nr_pages << PAGE_SHIFT;
2359 end = start + len;
2360
2361 if (end <= start)
2362 return 0;
2363 if (unlikely(!access_ok((void __user *)start, len)))
2364 return 0;
2365
2366 /*
2367 * Disable interrupts. We use the nested form as we can already have
2368 * interrupts disabled by get_futex_key.
2369 *
2370 * With interrupts disabled, we block page table pages from being
2371 * freed from under us. See struct mmu_table_batch comments in
2372 * include/asm-generic/tlb.h for more details.
2373 *
2374 * We do not adopt an rcu_read_lock(.) here as we also want to
2375 * block IPIs that come from THPs splitting.
2376 *
2377 * NOTE! We allow read-only gup_fast() here, but you'd better be
2378 * careful about possible COW pages. You'll get _a_ COW page, but
2379 * not necessarily the one you intended to get depending on what
2380 * COW event happens after this. COW may break the page copy in a
2381 * random direction.
2382 */
2383
2384 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2385 gup_fast_permitted(start, end)) {
2386 local_irq_save(flags);
2387 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2388 local_irq_restore(flags);
2389 }
2390
2391 return nr;
2392 }
2393 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2394
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2395 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2396 unsigned int gup_flags, struct page **pages)
2397 {
2398 int ret;
2399
2400 /*
2401 * FIXME: FOLL_LONGTERM does not work with
2402 * get_user_pages_unlocked() (see comments in that function)
2403 */
2404 if (gup_flags & FOLL_LONGTERM) {
2405 down_read(¤t->mm->mmap_sem);
2406 ret = __gup_longterm_locked(current, current->mm,
2407 start, nr_pages,
2408 pages, NULL, gup_flags);
2409 up_read(¤t->mm->mmap_sem);
2410 } else {
2411 ret = get_user_pages_unlocked(start, nr_pages,
2412 pages, gup_flags);
2413 }
2414
2415 return ret;
2416 }
2417
2418 /**
2419 * get_user_pages_fast() - pin user pages in memory
2420 * @start: starting user address
2421 * @nr_pages: number of pages from start to pin
2422 * @gup_flags: flags modifying pin behaviour
2423 * @pages: array that receives pointers to the pages pinned.
2424 * Should be at least nr_pages long.
2425 *
2426 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2427 * If not successful, it will fall back to taking the lock and
2428 * calling get_user_pages().
2429 *
2430 * Returns number of pages pinned. This may be fewer than the number
2431 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2432 * were pinned, returns -errno.
2433 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2434 int get_user_pages_fast(unsigned long start, int nr_pages,
2435 unsigned int gup_flags, struct page **pages)
2436 {
2437 unsigned long addr, len, end;
2438 int nr = 0, ret = 0;
2439
2440 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2441 FOLL_FORCE)))
2442 return -EINVAL;
2443
2444 start = untagged_addr(start) & PAGE_MASK;
2445 addr = start;
2446 len = (unsigned long) nr_pages << PAGE_SHIFT;
2447 end = start + len;
2448
2449 if (end <= start)
2450 return 0;
2451 if (unlikely(!access_ok((void __user *)start, len)))
2452 return -EFAULT;
2453
2454 /*
2455 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2456 * because get_user_pages() may need to cause an early COW in
2457 * order to avoid confusing the normal COW routines. So only
2458 * targets that are already writable are safe to do by just
2459 * looking at the page tables.
2460 */
2461 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2462 gup_fast_permitted(start, end)) {
2463 local_irq_disable();
2464 gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr);
2465 local_irq_enable();
2466 ret = nr;
2467 }
2468
2469 if (nr < nr_pages) {
2470 /* Try to get the remaining pages with get_user_pages */
2471 start += nr << PAGE_SHIFT;
2472 pages += nr;
2473
2474 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2475 gup_flags, pages);
2476
2477 /* Have to be a bit careful with return values */
2478 if (nr > 0) {
2479 if (ret < 0)
2480 ret = nr;
2481 else
2482 ret += nr;
2483 }
2484 }
2485
2486 return ret;
2487 }
2488 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2489