• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 unsigned long huge_zero_pfn __read_mostly = ~0UL;
65 
transparent_hugepage_enabled(struct vm_area_struct * vma)66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 	/* The addr is used to check if the vma size fits */
69 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 
71 	if (!transhuge_vma_suitable(vma, addr))
72 		return false;
73 	if (vma_is_anonymous(vma))
74 		return __transparent_hugepage_enabled(vma);
75 	if (vma_is_shmem(vma))
76 		return shmem_huge_enabled(vma);
77 
78 	return false;
79 }
80 
get_huge_zero_page(void)81 static struct page *get_huge_zero_page(void)
82 {
83 	struct page *zero_page;
84 retry:
85 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
86 		return READ_ONCE(huge_zero_page);
87 
88 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
89 			HPAGE_PMD_ORDER);
90 	if (!zero_page) {
91 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
92 		return NULL;
93 	}
94 	count_vm_event(THP_ZERO_PAGE_ALLOC);
95 	preempt_disable();
96 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 		preempt_enable();
98 		__free_pages(zero_page, compound_order(zero_page));
99 		goto retry;
100 	}
101 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
102 
103 	/* We take additional reference here. It will be put back by shrinker */
104 	atomic_set(&huge_zero_refcount, 2);
105 	preempt_enable();
106 	return READ_ONCE(huge_zero_page);
107 }
108 
put_huge_zero_page(void)109 static void put_huge_zero_page(void)
110 {
111 	/*
112 	 * Counter should never go to zero here. Only shrinker can put
113 	 * last reference.
114 	 */
115 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 }
117 
mm_get_huge_zero_page(struct mm_struct * mm)118 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
119 {
120 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 		return READ_ONCE(huge_zero_page);
122 
123 	if (!get_huge_zero_page())
124 		return NULL;
125 
126 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
127 		put_huge_zero_page();
128 
129 	return READ_ONCE(huge_zero_page);
130 }
131 
mm_put_huge_zero_page(struct mm_struct * mm)132 void mm_put_huge_zero_page(struct mm_struct *mm)
133 {
134 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 		put_huge_zero_page();
136 }
137 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)138 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
139 					struct shrink_control *sc)
140 {
141 	/* we can free zero page only if last reference remains */
142 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 }
144 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)145 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
146 				       struct shrink_control *sc)
147 {
148 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
149 		struct page *zero_page = xchg(&huge_zero_page, NULL);
150 		BUG_ON(zero_page == NULL);
151 		WRITE_ONCE(huge_zero_pfn, ~0UL);
152 		__free_pages(zero_page, compound_order(zero_page));
153 		return HPAGE_PMD_NR;
154 	}
155 
156 	return 0;
157 }
158 
159 static struct shrinker huge_zero_page_shrinker = {
160 	.count_objects = shrink_huge_zero_page_count,
161 	.scan_objects = shrink_huge_zero_page_scan,
162 	.seeks = DEFAULT_SEEKS,
163 };
164 
165 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t enabled_show(struct kobject *kobj,
167 			    struct kobj_attribute *attr, char *buf)
168 {
169 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
170 		return sprintf(buf, "[always] madvise never\n");
171 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
172 		return sprintf(buf, "always [madvise] never\n");
173 	else
174 		return sprintf(buf, "always madvise [never]\n");
175 }
176 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)177 static ssize_t enabled_store(struct kobject *kobj,
178 			     struct kobj_attribute *attr,
179 			     const char *buf, size_t count)
180 {
181 	ssize_t ret = count;
182 
183 	if (sysfs_streq(buf, "always")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "madvise")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else if (sysfs_streq(buf, "never")) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 	} else
193 		ret = -EINVAL;
194 
195 	if (ret > 0) {
196 		int err = start_stop_khugepaged();
197 		if (err)
198 			ret = err;
199 	}
200 	return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 	__ATTR(enabled, 0644, enabled_show, enabled_store);
204 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 				struct kobj_attribute *attr, char *buf,
207 				enum transparent_hugepage_flag flag)
208 {
209 	return sprintf(buf, "%d\n",
210 		       !!test_bit(flag, &transparent_hugepage_flags));
211 }
212 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 				 struct kobj_attribute *attr,
215 				 const char *buf, size_t count,
216 				 enum transparent_hugepage_flag flag)
217 {
218 	unsigned long value;
219 	int ret;
220 
221 	ret = kstrtoul(buf, 10, &value);
222 	if (ret < 0)
223 		return ret;
224 	if (value > 1)
225 		return -EINVAL;
226 
227 	if (value)
228 		set_bit(flag, &transparent_hugepage_flags);
229 	else
230 		clear_bit(flag, &transparent_hugepage_flags);
231 
232 	return count;
233 }
234 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)235 static ssize_t defrag_show(struct kobject *kobj,
236 			   struct kobj_attribute *attr, char *buf)
237 {
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)249 static ssize_t defrag_store(struct kobject *kobj,
250 			    struct kobj_attribute *attr,
251 			    const char *buf, size_t count)
252 {
253 	if (sysfs_streq(buf, "always")) {
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 	} else if (sysfs_streq(buf, "defer+madvise")) {
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 	} else if (sysfs_streq(buf, "defer")) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 	} else if (sysfs_streq(buf, "madvise")) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 	} else if (sysfs_streq(buf, "never")) {
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 	} else
279 		return -EINVAL;
280 
281 	return count;
282 }
283 static struct kobj_attribute defrag_attr =
284 	__ATTR(defrag, 0644, defrag_show, defrag_store);
285 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)286 static ssize_t use_zero_page_show(struct kobject *kobj,
287 		struct kobj_attribute *attr, char *buf)
288 {
289 	return single_hugepage_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
291 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)292 static ssize_t use_zero_page_store(struct kobject *kobj,
293 		struct kobj_attribute *attr, const char *buf, size_t count)
294 {
295 	return single_hugepage_flag_store(kobj, attr, buf, count,
296 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297 }
298 static struct kobj_attribute use_zero_page_attr =
299 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
300 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)301 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 		struct kobj_attribute *attr, char *buf)
303 {
304 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
305 }
306 static struct kobj_attribute hpage_pmd_size_attr =
307 	__ATTR_RO(hpage_pmd_size);
308 
309 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)310 static ssize_t debug_cow_show(struct kobject *kobj,
311 				struct kobj_attribute *attr, char *buf)
312 {
313 	return single_hugepage_flag_show(kobj, attr, buf,
314 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
315 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)316 static ssize_t debug_cow_store(struct kobject *kobj,
317 			       struct kobj_attribute *attr,
318 			       const char *buf, size_t count)
319 {
320 	return single_hugepage_flag_store(kobj, attr, buf, count,
321 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
322 }
323 static struct kobj_attribute debug_cow_attr =
324 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325 #endif /* CONFIG_DEBUG_VM */
326 
327 static struct attribute *hugepage_attr[] = {
328 	&enabled_attr.attr,
329 	&defrag_attr.attr,
330 	&use_zero_page_attr.attr,
331 	&hpage_pmd_size_attr.attr,
332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 	&shmem_enabled_attr.attr,
334 #endif
335 #ifdef CONFIG_DEBUG_VM
336 	&debug_cow_attr.attr,
337 #endif
338 	NULL,
339 };
340 
341 static const struct attribute_group hugepage_attr_group = {
342 	.attrs = hugepage_attr,
343 };
344 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)345 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
346 {
347 	int err;
348 
349 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 	if (unlikely(!*hugepage_kobj)) {
351 		pr_err("failed to create transparent hugepage kobject\n");
352 		return -ENOMEM;
353 	}
354 
355 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
356 	if (err) {
357 		pr_err("failed to register transparent hugepage group\n");
358 		goto delete_obj;
359 	}
360 
361 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
362 	if (err) {
363 		pr_err("failed to register transparent hugepage group\n");
364 		goto remove_hp_group;
365 	}
366 
367 	return 0;
368 
369 remove_hp_group:
370 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371 delete_obj:
372 	kobject_put(*hugepage_kobj);
373 	return err;
374 }
375 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)376 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 	kobject_put(hugepage_kobj);
381 }
382 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)383 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384 {
385 	return 0;
386 }
387 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)388 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
389 {
390 }
391 #endif /* CONFIG_SYSFS */
392 
hugepage_init(void)393 static int __init hugepage_init(void)
394 {
395 	int err;
396 	struct kobject *hugepage_kobj;
397 
398 	if (!has_transparent_hugepage()) {
399 		transparent_hugepage_flags = 0;
400 		return -EINVAL;
401 	}
402 
403 	/*
404 	 * hugepages can't be allocated by the buddy allocator
405 	 */
406 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
407 	/*
408 	 * we use page->mapping and page->index in second tail page
409 	 * as list_head: assuming THP order >= 2
410 	 */
411 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
412 
413 	err = hugepage_init_sysfs(&hugepage_kobj);
414 	if (err)
415 		goto err_sysfs;
416 
417 	err = khugepaged_init();
418 	if (err)
419 		goto err_slab;
420 
421 	err = register_shrinker(&huge_zero_page_shrinker);
422 	if (err)
423 		goto err_hzp_shrinker;
424 	err = register_shrinker(&deferred_split_shrinker);
425 	if (err)
426 		goto err_split_shrinker;
427 
428 	/*
429 	 * By default disable transparent hugepages on smaller systems,
430 	 * where the extra memory used could hurt more than TLB overhead
431 	 * is likely to save.  The admin can still enable it through /sys.
432 	 */
433 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
434 		transparent_hugepage_flags = 0;
435 		return 0;
436 	}
437 
438 	err = start_stop_khugepaged();
439 	if (err)
440 		goto err_khugepaged;
441 
442 	return 0;
443 err_khugepaged:
444 	unregister_shrinker(&deferred_split_shrinker);
445 err_split_shrinker:
446 	unregister_shrinker(&huge_zero_page_shrinker);
447 err_hzp_shrinker:
448 	khugepaged_destroy();
449 err_slab:
450 	hugepage_exit_sysfs(hugepage_kobj);
451 err_sysfs:
452 	return err;
453 }
454 subsys_initcall(hugepage_init);
455 
setup_transparent_hugepage(char * str)456 static int __init setup_transparent_hugepage(char *str)
457 {
458 	int ret = 0;
459 	if (!str)
460 		goto out;
461 	if (!strcmp(str, "always")) {
462 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 			&transparent_hugepage_flags);
464 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 			  &transparent_hugepage_flags);
466 		ret = 1;
467 	} else if (!strcmp(str, "madvise")) {
468 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 			  &transparent_hugepage_flags);
470 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 			&transparent_hugepage_flags);
472 		ret = 1;
473 	} else if (!strcmp(str, "never")) {
474 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 			  &transparent_hugepage_flags);
476 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 			  &transparent_hugepage_flags);
478 		ret = 1;
479 	}
480 out:
481 	if (!ret)
482 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 	return ret;
484 }
485 __setup("transparent_hugepage=", setup_transparent_hugepage);
486 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)487 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
488 {
489 	if (likely(vma->vm_flags & VM_WRITE))
490 		pmd = pmd_mkwrite(pmd);
491 	return pmd;
492 }
493 
494 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)495 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
496 {
497 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
498 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499 
500 	if (memcg)
501 		return &memcg->deferred_split_queue;
502 	else
503 		return &pgdat->deferred_split_queue;
504 }
505 #else
get_deferred_split_queue(struct page * page)506 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507 {
508 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
509 
510 	return &pgdat->deferred_split_queue;
511 }
512 #endif
513 
prep_transhuge_page(struct page * page)514 void prep_transhuge_page(struct page *page)
515 {
516 	/*
517 	 * we use page->mapping and page->indexlru in second tail page
518 	 * as list_head: assuming THP order >= 2
519 	 */
520 
521 	INIT_LIST_HEAD(page_deferred_list(page));
522 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
523 }
524 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)525 static unsigned long __thp_get_unmapped_area(struct file *filp,
526 		unsigned long addr, unsigned long len,
527 		loff_t off, unsigned long flags, unsigned long size)
528 {
529 	loff_t off_end = off + len;
530 	loff_t off_align = round_up(off, size);
531 	unsigned long len_pad, ret;
532 
533 	if (off_end <= off_align || (off_end - off_align) < size)
534 		return 0;
535 
536 	len_pad = len + size;
537 	if (len_pad < len || (off + len_pad) < off)
538 		return 0;
539 
540 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
541 					      off >> PAGE_SHIFT, flags);
542 
543 	/*
544 	 * The failure might be due to length padding. The caller will retry
545 	 * without the padding.
546 	 */
547 	if (IS_ERR_VALUE(ret))
548 		return 0;
549 
550 	/*
551 	 * Do not try to align to THP boundary if allocation at the address
552 	 * hint succeeds.
553 	 */
554 	if (ret == addr)
555 		return addr;
556 
557 	ret += (off - ret) & (size - 1);
558 	return ret;
559 }
560 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)561 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
562 		unsigned long len, unsigned long pgoff, unsigned long flags)
563 {
564 	unsigned long ret;
565 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
566 
567 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
568 		goto out;
569 
570 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
571 	if (ret)
572 		return ret;
573 out:
574 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
575 }
576 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
577 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)578 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
579 			struct page *page, gfp_t gfp)
580 {
581 	struct vm_area_struct *vma = vmf->vma;
582 	struct mem_cgroup *memcg;
583 	pgtable_t pgtable;
584 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585 	vm_fault_t ret = 0;
586 
587 	VM_BUG_ON_PAGE(!PageCompound(page), page);
588 
589 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
590 		put_page(page);
591 		count_vm_event(THP_FAULT_FALLBACK);
592 		return VM_FAULT_FALLBACK;
593 	}
594 
595 	pgtable = pte_alloc_one(vma->vm_mm);
596 	if (unlikely(!pgtable)) {
597 		ret = VM_FAULT_OOM;
598 		goto release;
599 	}
600 
601 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
602 	/*
603 	 * The memory barrier inside __SetPageUptodate makes sure that
604 	 * clear_huge_page writes become visible before the set_pmd_at()
605 	 * write.
606 	 */
607 	__SetPageUptodate(page);
608 
609 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
610 	if (unlikely(!pmd_none(*vmf->pmd))) {
611 		goto unlock_release;
612 	} else {
613 		pmd_t entry;
614 
615 		ret = check_stable_address_space(vma->vm_mm);
616 		if (ret)
617 			goto unlock_release;
618 
619 		/* Deliver the page fault to userland */
620 		if (userfaultfd_missing(vma)) {
621 			vm_fault_t ret2;
622 
623 			spin_unlock(vmf->ptl);
624 			mem_cgroup_cancel_charge(page, memcg, true);
625 			put_page(page);
626 			pte_free(vma->vm_mm, pgtable);
627 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
628 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
629 			return ret2;
630 		}
631 
632 		entry = mk_huge_pmd(page, vma->vm_page_prot);
633 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 		page_add_new_anon_rmap(page, vma, haddr, true);
635 		mem_cgroup_commit_charge(page, memcg, false, true);
636 		lru_cache_add_active_or_unevictable(page, vma);
637 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
639 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 		mm_inc_nr_ptes(vma->vm_mm);
641 		spin_unlock(vmf->ptl);
642 		count_vm_event(THP_FAULT_ALLOC);
643 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
644 	}
645 
646 	return 0;
647 unlock_release:
648 	spin_unlock(vmf->ptl);
649 release:
650 	if (pgtable)
651 		pte_free(vma->vm_mm, pgtable);
652 	mem_cgroup_cancel_charge(page, memcg, true);
653 	put_page(page);
654 	return ret;
655 
656 }
657 
658 /*
659  * always: directly stall for all thp allocations
660  * defer: wake kswapd and fail if not immediately available
661  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
662  *		  fail if not immediately available
663  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664  *	    available
665  * never: never stall for any thp allocation
666  */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)667 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
668 {
669 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
670 
671 	/* Always do synchronous compaction */
672 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
673 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
674 
675 	/* Kick kcompactd and fail quickly */
676 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
677 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
678 
679 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
680 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
681 		return GFP_TRANSHUGE_LIGHT |
682 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
683 					__GFP_KSWAPD_RECLAIM);
684 
685 	/* Only do synchronous compaction if madvised */
686 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
687 		return GFP_TRANSHUGE_LIGHT |
688 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
689 
690 	return GFP_TRANSHUGE_LIGHT;
691 }
692 
693 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)694 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
695 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
696 		struct page *zero_page)
697 {
698 	pmd_t entry;
699 	if (!pmd_none(*pmd))
700 		return false;
701 	entry = mk_pmd(zero_page, vma->vm_page_prot);
702 	entry = pmd_mkhuge(entry);
703 	if (pgtable)
704 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
705 	set_pmd_at(mm, haddr, pmd, entry);
706 	mm_inc_nr_ptes(mm);
707 	return true;
708 }
709 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)710 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
711 {
712 	struct vm_area_struct *vma = vmf->vma;
713 	gfp_t gfp;
714 	struct page *page;
715 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
716 
717 	if (!transhuge_vma_suitable(vma, haddr))
718 		return VM_FAULT_FALLBACK;
719 	if (unlikely(anon_vma_prepare(vma)))
720 		return VM_FAULT_OOM;
721 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
722 		return VM_FAULT_OOM;
723 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
724 			!mm_forbids_zeropage(vma->vm_mm) &&
725 			transparent_hugepage_use_zero_page()) {
726 		pgtable_t pgtable;
727 		struct page *zero_page;
728 		vm_fault_t ret;
729 		pgtable = pte_alloc_one(vma->vm_mm);
730 		if (unlikely(!pgtable))
731 			return VM_FAULT_OOM;
732 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
733 		if (unlikely(!zero_page)) {
734 			pte_free(vma->vm_mm, pgtable);
735 			count_vm_event(THP_FAULT_FALLBACK);
736 			return VM_FAULT_FALLBACK;
737 		}
738 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
739 		ret = 0;
740 		if (pmd_none(*vmf->pmd)) {
741 			ret = check_stable_address_space(vma->vm_mm);
742 			if (ret) {
743 				spin_unlock(vmf->ptl);
744 				pte_free(vma->vm_mm, pgtable);
745 			} else if (userfaultfd_missing(vma)) {
746 				spin_unlock(vmf->ptl);
747 				pte_free(vma->vm_mm, pgtable);
748 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
749 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
750 			} else {
751 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
752 						   haddr, vmf->pmd, zero_page);
753 				spin_unlock(vmf->ptl);
754 			}
755 		} else {
756 			spin_unlock(vmf->ptl);
757 			pte_free(vma->vm_mm, pgtable);
758 		}
759 		return ret;
760 	}
761 	gfp = alloc_hugepage_direct_gfpmask(vma);
762 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
763 	if (unlikely(!page)) {
764 		count_vm_event(THP_FAULT_FALLBACK);
765 		return VM_FAULT_FALLBACK;
766 	}
767 	prep_transhuge_page(page);
768 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
769 }
770 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)771 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
772 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
773 		pgtable_t pgtable)
774 {
775 	struct mm_struct *mm = vma->vm_mm;
776 	pmd_t entry;
777 	spinlock_t *ptl;
778 
779 	ptl = pmd_lock(mm, pmd);
780 	if (!pmd_none(*pmd)) {
781 		if (write) {
782 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
783 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
784 				goto out_unlock;
785 			}
786 			entry = pmd_mkyoung(*pmd);
787 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
788 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
789 				update_mmu_cache_pmd(vma, addr, pmd);
790 		}
791 
792 		goto out_unlock;
793 	}
794 
795 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
796 	if (pfn_t_devmap(pfn))
797 		entry = pmd_mkdevmap(entry);
798 	if (write) {
799 		entry = pmd_mkyoung(pmd_mkdirty(entry));
800 		entry = maybe_pmd_mkwrite(entry, vma);
801 	}
802 
803 	if (pgtable) {
804 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 		mm_inc_nr_ptes(mm);
806 		pgtable = NULL;
807 	}
808 
809 	set_pmd_at(mm, addr, pmd, entry);
810 	update_mmu_cache_pmd(vma, addr, pmd);
811 
812 out_unlock:
813 	spin_unlock(ptl);
814 	if (pgtable)
815 		pte_free(mm, pgtable);
816 }
817 
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)818 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
819 {
820 	unsigned long addr = vmf->address & PMD_MASK;
821 	struct vm_area_struct *vma = vmf->vma;
822 	pgprot_t pgprot = vma->vm_page_prot;
823 	pgtable_t pgtable = NULL;
824 
825 	/*
826 	 * If we had pmd_special, we could avoid all these restrictions,
827 	 * but we need to be consistent with PTEs and architectures that
828 	 * can't support a 'special' bit.
829 	 */
830 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
831 			!pfn_t_devmap(pfn));
832 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
833 						(VM_PFNMAP|VM_MIXEDMAP));
834 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
835 
836 	if (addr < vma->vm_start || addr >= vma->vm_end)
837 		return VM_FAULT_SIGBUS;
838 
839 	if (arch_needs_pgtable_deposit()) {
840 		pgtable = pte_alloc_one(vma->vm_mm);
841 		if (!pgtable)
842 			return VM_FAULT_OOM;
843 	}
844 
845 	track_pfn_insert(vma, &pgprot, pfn);
846 
847 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
848 	return VM_FAULT_NOPAGE;
849 }
850 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
851 
852 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)853 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
854 {
855 	if (likely(vma->vm_flags & VM_WRITE))
856 		pud = pud_mkwrite(pud);
857 	return pud;
858 }
859 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)860 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
861 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
862 {
863 	struct mm_struct *mm = vma->vm_mm;
864 	pud_t entry;
865 	spinlock_t *ptl;
866 
867 	ptl = pud_lock(mm, pud);
868 	if (!pud_none(*pud)) {
869 		if (write) {
870 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
871 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
872 				goto out_unlock;
873 			}
874 			entry = pud_mkyoung(*pud);
875 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
876 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
877 				update_mmu_cache_pud(vma, addr, pud);
878 		}
879 		goto out_unlock;
880 	}
881 
882 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
883 	if (pfn_t_devmap(pfn))
884 		entry = pud_mkdevmap(entry);
885 	if (write) {
886 		entry = pud_mkyoung(pud_mkdirty(entry));
887 		entry = maybe_pud_mkwrite(entry, vma);
888 	}
889 	set_pud_at(mm, addr, pud, entry);
890 	update_mmu_cache_pud(vma, addr, pud);
891 
892 out_unlock:
893 	spin_unlock(ptl);
894 }
895 
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)896 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
897 {
898 	unsigned long addr = vmf->address & PUD_MASK;
899 	struct vm_area_struct *vma = vmf->vma;
900 	pgprot_t pgprot = vma->vm_page_prot;
901 
902 	/*
903 	 * If we had pud_special, we could avoid all these restrictions,
904 	 * but we need to be consistent with PTEs and architectures that
905 	 * can't support a 'special' bit.
906 	 */
907 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
908 			!pfn_t_devmap(pfn));
909 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
910 						(VM_PFNMAP|VM_MIXEDMAP));
911 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
912 
913 	if (addr < vma->vm_start || addr >= vma->vm_end)
914 		return VM_FAULT_SIGBUS;
915 
916 	track_pfn_insert(vma, &pgprot, pfn);
917 
918 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
919 	return VM_FAULT_NOPAGE;
920 }
921 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
923 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)924 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
925 		pmd_t *pmd, int flags)
926 {
927 	pmd_t _pmd;
928 
929 	_pmd = pmd_mkyoung(*pmd);
930 	if (flags & FOLL_WRITE)
931 		_pmd = pmd_mkdirty(_pmd);
932 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
933 				pmd, _pmd, flags & FOLL_WRITE))
934 		update_mmu_cache_pmd(vma, addr, pmd);
935 }
936 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)937 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
938 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
939 {
940 	unsigned long pfn = pmd_pfn(*pmd);
941 	struct mm_struct *mm = vma->vm_mm;
942 	struct page *page;
943 
944 	assert_spin_locked(pmd_lockptr(mm, pmd));
945 
946 	/*
947 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
948 	 * not be in this function with `flags & FOLL_COW` set.
949 	 */
950 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
951 
952 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
953 		return NULL;
954 
955 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
956 		/* pass */;
957 	else
958 		return NULL;
959 
960 	if (flags & FOLL_TOUCH)
961 		touch_pmd(vma, addr, pmd, flags);
962 
963 	/*
964 	 * device mapped pages can only be returned if the
965 	 * caller will manage the page reference count.
966 	 */
967 	if (!(flags & FOLL_GET))
968 		return ERR_PTR(-EEXIST);
969 
970 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
971 	*pgmap = get_dev_pagemap(pfn, *pgmap);
972 	if (!*pgmap)
973 		return ERR_PTR(-EFAULT);
974 	page = pfn_to_page(pfn);
975 	get_page(page);
976 
977 	return page;
978 }
979 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)980 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
982 		  struct vm_area_struct *vma)
983 {
984 	spinlock_t *dst_ptl, *src_ptl;
985 	struct page *src_page;
986 	pmd_t pmd;
987 	pgtable_t pgtable = NULL;
988 	int ret = -ENOMEM;
989 
990 	/* Skip if can be re-fill on fault */
991 	if (!vma_is_anonymous(vma))
992 		return 0;
993 
994 	pgtable = pte_alloc_one(dst_mm);
995 	if (unlikely(!pgtable))
996 		goto out;
997 
998 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
999 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1000 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1001 
1002 	ret = -EAGAIN;
1003 	pmd = *src_pmd;
1004 
1005 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1006 	if (unlikely(is_swap_pmd(pmd))) {
1007 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1008 
1009 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1010 		if (is_write_migration_entry(entry)) {
1011 			make_migration_entry_read(&entry);
1012 			pmd = swp_entry_to_pmd(entry);
1013 			if (pmd_swp_soft_dirty(*src_pmd))
1014 				pmd = pmd_swp_mksoft_dirty(pmd);
1015 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1016 		}
1017 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1018 		mm_inc_nr_ptes(dst_mm);
1019 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1020 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1021 		ret = 0;
1022 		goto out_unlock;
1023 	}
1024 #endif
1025 
1026 	if (unlikely(!pmd_trans_huge(pmd))) {
1027 		pte_free(dst_mm, pgtable);
1028 		goto out_unlock;
1029 	}
1030 	/*
1031 	 * When page table lock is held, the huge zero pmd should not be
1032 	 * under splitting since we don't split the page itself, only pmd to
1033 	 * a page table.
1034 	 */
1035 	if (is_huge_zero_pmd(pmd)) {
1036 		struct page *zero_page;
1037 		/*
1038 		 * get_huge_zero_page() will never allocate a new page here,
1039 		 * since we already have a zero page to copy. It just takes a
1040 		 * reference.
1041 		 */
1042 		zero_page = mm_get_huge_zero_page(dst_mm);
1043 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1044 				zero_page);
1045 		ret = 0;
1046 		goto out_unlock;
1047 	}
1048 
1049 	src_page = pmd_page(pmd);
1050 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1051 	get_page(src_page);
1052 	page_dup_rmap(src_page, true);
1053 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1054 	mm_inc_nr_ptes(dst_mm);
1055 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1056 
1057 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1058 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1059 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1060 
1061 	ret = 0;
1062 out_unlock:
1063 	spin_unlock(src_ptl);
1064 	spin_unlock(dst_ptl);
1065 out:
1066 	return ret;
1067 }
1068 
1069 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1070 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1071 		pud_t *pud, int flags)
1072 {
1073 	pud_t _pud;
1074 
1075 	_pud = pud_mkyoung(*pud);
1076 	if (flags & FOLL_WRITE)
1077 		_pud = pud_mkdirty(_pud);
1078 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1079 				pud, _pud, flags & FOLL_WRITE))
1080 		update_mmu_cache_pud(vma, addr, pud);
1081 }
1082 
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1083 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1084 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1085 {
1086 	unsigned long pfn = pud_pfn(*pud);
1087 	struct mm_struct *mm = vma->vm_mm;
1088 	struct page *page;
1089 
1090 	assert_spin_locked(pud_lockptr(mm, pud));
1091 
1092 	if (flags & FOLL_WRITE && !pud_write(*pud))
1093 		return NULL;
1094 
1095 	if (pud_present(*pud) && pud_devmap(*pud))
1096 		/* pass */;
1097 	else
1098 		return NULL;
1099 
1100 	if (flags & FOLL_TOUCH)
1101 		touch_pud(vma, addr, pud, flags);
1102 
1103 	/*
1104 	 * device mapped pages can only be returned if the
1105 	 * caller will manage the page reference count.
1106 	 */
1107 	if (!(flags & FOLL_GET))
1108 		return ERR_PTR(-EEXIST);
1109 
1110 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1111 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1112 	if (!*pgmap)
1113 		return ERR_PTR(-EFAULT);
1114 	page = pfn_to_page(pfn);
1115 	get_page(page);
1116 
1117 	return page;
1118 }
1119 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1120 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1121 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1122 		  struct vm_area_struct *vma)
1123 {
1124 	spinlock_t *dst_ptl, *src_ptl;
1125 	pud_t pud;
1126 	int ret;
1127 
1128 	dst_ptl = pud_lock(dst_mm, dst_pud);
1129 	src_ptl = pud_lockptr(src_mm, src_pud);
1130 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1131 
1132 	ret = -EAGAIN;
1133 	pud = *src_pud;
1134 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1135 		goto out_unlock;
1136 
1137 	/*
1138 	 * When page table lock is held, the huge zero pud should not be
1139 	 * under splitting since we don't split the page itself, only pud to
1140 	 * a page table.
1141 	 */
1142 	if (is_huge_zero_pud(pud)) {
1143 		/* No huge zero pud yet */
1144 	}
1145 
1146 	pudp_set_wrprotect(src_mm, addr, src_pud);
1147 	pud = pud_mkold(pud_wrprotect(pud));
1148 	set_pud_at(dst_mm, addr, dst_pud, pud);
1149 
1150 	ret = 0;
1151 out_unlock:
1152 	spin_unlock(src_ptl);
1153 	spin_unlock(dst_ptl);
1154 	return ret;
1155 }
1156 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1157 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1158 {
1159 	pud_t entry;
1160 	unsigned long haddr;
1161 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1162 
1163 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1164 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1165 		goto unlock;
1166 
1167 	entry = pud_mkyoung(orig_pud);
1168 	if (write)
1169 		entry = pud_mkdirty(entry);
1170 	haddr = vmf->address & HPAGE_PUD_MASK;
1171 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1172 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1173 
1174 unlock:
1175 	spin_unlock(vmf->ptl);
1176 }
1177 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1178 
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1179 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1180 {
1181 	pmd_t entry;
1182 	unsigned long haddr;
1183 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1184 
1185 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1186 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1187 		goto unlock;
1188 
1189 	entry = pmd_mkyoung(orig_pmd);
1190 	if (write)
1191 		entry = pmd_mkdirty(entry);
1192 	haddr = vmf->address & HPAGE_PMD_MASK;
1193 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1194 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1195 
1196 unlock:
1197 	spin_unlock(vmf->ptl);
1198 }
1199 
do_huge_pmd_wp_page_fallback(struct vm_fault * vmf,pmd_t orig_pmd,struct page * page)1200 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1201 			pmd_t orig_pmd, struct page *page)
1202 {
1203 	struct vm_area_struct *vma = vmf->vma;
1204 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1205 	struct mem_cgroup *memcg;
1206 	pgtable_t pgtable;
1207 	pmd_t _pmd;
1208 	int i;
1209 	vm_fault_t ret = 0;
1210 	struct page **pages;
1211 	struct mmu_notifier_range range;
1212 
1213 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1214 			      GFP_KERNEL);
1215 	if (unlikely(!pages)) {
1216 		ret |= VM_FAULT_OOM;
1217 		goto out;
1218 	}
1219 
1220 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1222 					       vmf->address, page_to_nid(page));
1223 		if (unlikely(!pages[i] ||
1224 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1225 				     GFP_KERNEL, &memcg, false))) {
1226 			if (pages[i])
1227 				put_page(pages[i]);
1228 			while (--i >= 0) {
1229 				memcg = (void *)page_private(pages[i]);
1230 				set_page_private(pages[i], 0);
1231 				mem_cgroup_cancel_charge(pages[i], memcg,
1232 						false);
1233 				put_page(pages[i]);
1234 			}
1235 			kfree(pages);
1236 			ret |= VM_FAULT_OOM;
1237 			goto out;
1238 		}
1239 		set_page_private(pages[i], (unsigned long)memcg);
1240 	}
1241 
1242 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1243 		copy_user_highpage(pages[i], page + i,
1244 				   haddr + PAGE_SIZE * i, vma);
1245 		__SetPageUptodate(pages[i]);
1246 		cond_resched();
1247 	}
1248 
1249 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1250 				haddr, haddr + HPAGE_PMD_SIZE);
1251 	mmu_notifier_invalidate_range_start(&range);
1252 
1253 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1254 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1255 		goto out_free_pages;
1256 	VM_BUG_ON_PAGE(!PageHead(page), page);
1257 
1258 	/*
1259 	 * Leave pmd empty until pte is filled note we must notify here as
1260 	 * concurrent CPU thread might write to new page before the call to
1261 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1262 	 * device seeing memory write in different order than CPU.
1263 	 *
1264 	 * See Documentation/vm/mmu_notifier.rst
1265 	 */
1266 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1267 
1268 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1269 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1270 
1271 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1272 		pte_t entry;
1273 		entry = mk_pte(pages[i], vma->vm_page_prot);
1274 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275 		memcg = (void *)page_private(pages[i]);
1276 		set_page_private(pages[i], 0);
1277 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1278 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1279 		lru_cache_add_active_or_unevictable(pages[i], vma);
1280 		vmf->pte = pte_offset_map(&_pmd, haddr);
1281 		VM_BUG_ON(!pte_none(*vmf->pte));
1282 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1283 		pte_unmap(vmf->pte);
1284 	}
1285 	kfree(pages);
1286 
1287 	smp_wmb(); /* make pte visible before pmd */
1288 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1289 	page_remove_rmap(page, true);
1290 	spin_unlock(vmf->ptl);
1291 
1292 	/*
1293 	 * No need to double call mmu_notifier->invalidate_range() callback as
1294 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1295 	 */
1296 	mmu_notifier_invalidate_range_only_end(&range);
1297 
1298 	ret |= VM_FAULT_WRITE;
1299 	put_page(page);
1300 
1301 out:
1302 	return ret;
1303 
1304 out_free_pages:
1305 	spin_unlock(vmf->ptl);
1306 	mmu_notifier_invalidate_range_end(&range);
1307 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1308 		memcg = (void *)page_private(pages[i]);
1309 		set_page_private(pages[i], 0);
1310 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1311 		put_page(pages[i]);
1312 	}
1313 	kfree(pages);
1314 	goto out;
1315 }
1316 
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1317 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1318 {
1319 	struct vm_area_struct *vma = vmf->vma;
1320 	struct page *page = NULL, *new_page;
1321 	struct mem_cgroup *memcg;
1322 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 	struct mmu_notifier_range range;
1324 	gfp_t huge_gfp;			/* for allocation and charge */
1325 	vm_fault_t ret = 0;
1326 
1327 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1328 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1329 	if (is_huge_zero_pmd(orig_pmd))
1330 		goto alloc;
1331 	spin_lock(vmf->ptl);
1332 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1333 		goto out_unlock;
1334 
1335 	page = pmd_page(orig_pmd);
1336 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1337 	/*
1338 	 * We can only reuse the page if nobody else maps the huge page or it's
1339 	 * part.
1340 	 */
1341 	if (!trylock_page(page)) {
1342 		get_page(page);
1343 		spin_unlock(vmf->ptl);
1344 		lock_page(page);
1345 		spin_lock(vmf->ptl);
1346 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1347 			unlock_page(page);
1348 			put_page(page);
1349 			goto out_unlock;
1350 		}
1351 		put_page(page);
1352 	}
1353 	if (reuse_swap_page(page, NULL)) {
1354 		pmd_t entry;
1355 		entry = pmd_mkyoung(orig_pmd);
1356 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1357 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1358 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359 		ret |= VM_FAULT_WRITE;
1360 		unlock_page(page);
1361 		goto out_unlock;
1362 	}
1363 	unlock_page(page);
1364 	get_page(page);
1365 	spin_unlock(vmf->ptl);
1366 alloc:
1367 	if (__transparent_hugepage_enabled(vma) &&
1368 	    !transparent_hugepage_debug_cow()) {
1369 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1370 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1371 	} else
1372 		new_page = NULL;
1373 
1374 	if (likely(new_page)) {
1375 		prep_transhuge_page(new_page);
1376 	} else {
1377 		if (!page) {
1378 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1379 			ret |= VM_FAULT_FALLBACK;
1380 		} else {
1381 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1382 			if (ret & VM_FAULT_OOM) {
1383 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1384 				ret |= VM_FAULT_FALLBACK;
1385 			}
1386 			put_page(page);
1387 		}
1388 		count_vm_event(THP_FAULT_FALLBACK);
1389 		goto out;
1390 	}
1391 
1392 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1393 					huge_gfp, &memcg, true))) {
1394 		put_page(new_page);
1395 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1396 		if (page)
1397 			put_page(page);
1398 		ret |= VM_FAULT_FALLBACK;
1399 		count_vm_event(THP_FAULT_FALLBACK);
1400 		goto out;
1401 	}
1402 
1403 	count_vm_event(THP_FAULT_ALLOC);
1404 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1405 
1406 	if (!page)
1407 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1408 	else
1409 		copy_user_huge_page(new_page, page, vmf->address,
1410 				    vma, HPAGE_PMD_NR);
1411 	__SetPageUptodate(new_page);
1412 
1413 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1414 				haddr, haddr + HPAGE_PMD_SIZE);
1415 	mmu_notifier_invalidate_range_start(&range);
1416 
1417 	spin_lock(vmf->ptl);
1418 	if (page)
1419 		put_page(page);
1420 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1421 		spin_unlock(vmf->ptl);
1422 		mem_cgroup_cancel_charge(new_page, memcg, true);
1423 		put_page(new_page);
1424 		goto out_mn;
1425 	} else {
1426 		pmd_t entry;
1427 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1428 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1429 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1430 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1431 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1432 		lru_cache_add_active_or_unevictable(new_page, vma);
1433 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1434 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1435 		if (!page) {
1436 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1437 		} else {
1438 			VM_BUG_ON_PAGE(!PageHead(page), page);
1439 			page_remove_rmap(page, true);
1440 			put_page(page);
1441 		}
1442 		ret |= VM_FAULT_WRITE;
1443 	}
1444 	spin_unlock(vmf->ptl);
1445 out_mn:
1446 	/*
1447 	 * No need to double call mmu_notifier->invalidate_range() callback as
1448 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1449 	 */
1450 	mmu_notifier_invalidate_range_only_end(&range);
1451 out:
1452 	return ret;
1453 out_unlock:
1454 	spin_unlock(vmf->ptl);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1460  * but only after we've gone through a COW cycle and they are dirty.
1461  */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1462 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1463 {
1464 	return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1465 }
1466 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1467 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1468 				   unsigned long addr,
1469 				   pmd_t *pmd,
1470 				   unsigned int flags)
1471 {
1472 	struct mm_struct *mm = vma->vm_mm;
1473 	struct page *page = NULL;
1474 
1475 	assert_spin_locked(pmd_lockptr(mm, pmd));
1476 
1477 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1478 		goto out;
1479 
1480 	/* Avoid dumping huge zero page */
1481 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1482 		return ERR_PTR(-EFAULT);
1483 
1484 	/* Full NUMA hinting faults to serialise migration in fault paths */
1485 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1486 		goto out;
1487 
1488 	page = pmd_page(*pmd);
1489 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1490 	if (flags & FOLL_TOUCH)
1491 		touch_pmd(vma, addr, pmd, flags);
1492 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1493 		/*
1494 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1495 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1496 		 *
1497 		 * For anon THP:
1498 		 *
1499 		 * In most cases the pmd is the only mapping of the page as we
1500 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1501 		 * writable private mappings in populate_vma_page_range().
1502 		 *
1503 		 * The only scenario when we have the page shared here is if we
1504 		 * mlocking read-only mapping shared over fork(). We skip
1505 		 * mlocking such pages.
1506 		 *
1507 		 * For file THP:
1508 		 *
1509 		 * We can expect PageDoubleMap() to be stable under page lock:
1510 		 * for file pages we set it in page_add_file_rmap(), which
1511 		 * requires page to be locked.
1512 		 */
1513 
1514 		if (PageAnon(page) && compound_mapcount(page) != 1)
1515 			goto skip_mlock;
1516 		if (PageDoubleMap(page) || !page->mapping)
1517 			goto skip_mlock;
1518 		if (!trylock_page(page))
1519 			goto skip_mlock;
1520 		lru_add_drain();
1521 		if (page->mapping && !PageDoubleMap(page))
1522 			mlock_vma_page(page);
1523 		unlock_page(page);
1524 	}
1525 skip_mlock:
1526 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1527 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1528 	if (flags & FOLL_GET)
1529 		get_page(page);
1530 
1531 out:
1532 	return page;
1533 }
1534 
1535 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1536 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1537 {
1538 	struct vm_area_struct *vma = vmf->vma;
1539 	struct anon_vma *anon_vma = NULL;
1540 	struct page *page;
1541 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1542 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1543 	int target_nid, last_cpupid = -1;
1544 	bool page_locked;
1545 	bool migrated = false;
1546 	bool was_writable;
1547 	int flags = 0;
1548 
1549 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1550 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1551 		goto out_unlock;
1552 
1553 	/*
1554 	 * If there are potential migrations, wait for completion and retry
1555 	 * without disrupting NUMA hinting information. Do not relock and
1556 	 * check_same as the page may no longer be mapped.
1557 	 */
1558 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1559 		page = pmd_page(*vmf->pmd);
1560 		if (!get_page_unless_zero(page))
1561 			goto out_unlock;
1562 		spin_unlock(vmf->ptl);
1563 		put_and_wait_on_page_locked(page);
1564 		goto out;
1565 	}
1566 
1567 	page = pmd_page(pmd);
1568 	BUG_ON(is_huge_zero_page(page));
1569 	page_nid = page_to_nid(page);
1570 	last_cpupid = page_cpupid_last(page);
1571 	count_vm_numa_event(NUMA_HINT_FAULTS);
1572 	if (page_nid == this_nid) {
1573 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1574 		flags |= TNF_FAULT_LOCAL;
1575 	}
1576 
1577 	/* See similar comment in do_numa_page for explanation */
1578 	if (!pmd_savedwrite(pmd))
1579 		flags |= TNF_NO_GROUP;
1580 
1581 	/*
1582 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1583 	 * page_table_lock if at all possible
1584 	 */
1585 	page_locked = trylock_page(page);
1586 	target_nid = mpol_misplaced(page, vma, haddr);
1587 	if (target_nid == NUMA_NO_NODE) {
1588 		/* If the page was locked, there are no parallel migrations */
1589 		if (page_locked)
1590 			goto clear_pmdnuma;
1591 	}
1592 
1593 	/* Migration could have started since the pmd_trans_migrating check */
1594 	if (!page_locked) {
1595 		page_nid = NUMA_NO_NODE;
1596 		if (!get_page_unless_zero(page))
1597 			goto out_unlock;
1598 		spin_unlock(vmf->ptl);
1599 		put_and_wait_on_page_locked(page);
1600 		goto out;
1601 	}
1602 
1603 	/*
1604 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1605 	 * to serialises splits
1606 	 */
1607 	get_page(page);
1608 	spin_unlock(vmf->ptl);
1609 	anon_vma = page_lock_anon_vma_read(page, NULL);
1610 
1611 	/* Confirm the PMD did not change while page_table_lock was released */
1612 	spin_lock(vmf->ptl);
1613 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1614 		unlock_page(page);
1615 		put_page(page);
1616 		page_nid = NUMA_NO_NODE;
1617 		goto out_unlock;
1618 	}
1619 
1620 	/* Bail if we fail to protect against THP splits for any reason */
1621 	if (unlikely(!anon_vma)) {
1622 		put_page(page);
1623 		page_nid = NUMA_NO_NODE;
1624 		goto clear_pmdnuma;
1625 	}
1626 
1627 	/*
1628 	 * Since we took the NUMA fault, we must have observed the !accessible
1629 	 * bit. Make sure all other CPUs agree with that, to avoid them
1630 	 * modifying the page we're about to migrate.
1631 	 *
1632 	 * Must be done under PTL such that we'll observe the relevant
1633 	 * inc_tlb_flush_pending().
1634 	 *
1635 	 * We are not sure a pending tlb flush here is for a huge page
1636 	 * mapping or not. Hence use the tlb range variant
1637 	 */
1638 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1639 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1640 		/*
1641 		 * change_huge_pmd() released the pmd lock before
1642 		 * invalidating the secondary MMUs sharing the primary
1643 		 * MMU pagetables (with ->invalidate_range()). The
1644 		 * mmu_notifier_invalidate_range_end() (which
1645 		 * internally calls ->invalidate_range()) in
1646 		 * change_pmd_range() will run after us, so we can't
1647 		 * rely on it here and we need an explicit invalidate.
1648 		 */
1649 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1650 					      haddr + HPAGE_PMD_SIZE);
1651 	}
1652 
1653 	/*
1654 	 * Migrate the THP to the requested node, returns with page unlocked
1655 	 * and access rights restored.
1656 	 */
1657 	spin_unlock(vmf->ptl);
1658 
1659 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1660 				vmf->pmd, pmd, vmf->address, page, target_nid);
1661 	if (migrated) {
1662 		flags |= TNF_MIGRATED;
1663 		page_nid = target_nid;
1664 	} else
1665 		flags |= TNF_MIGRATE_FAIL;
1666 
1667 	goto out;
1668 clear_pmdnuma:
1669 	BUG_ON(!PageLocked(page));
1670 	was_writable = pmd_savedwrite(pmd);
1671 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1672 	pmd = pmd_mkyoung(pmd);
1673 	if (was_writable)
1674 		pmd = pmd_mkwrite(pmd);
1675 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1676 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1677 	unlock_page(page);
1678 out_unlock:
1679 	spin_unlock(vmf->ptl);
1680 
1681 out:
1682 	if (anon_vma)
1683 		page_unlock_anon_vma_read(anon_vma);
1684 
1685 	if (page_nid != NUMA_NO_NODE)
1686 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1687 				flags);
1688 
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Return true if we do MADV_FREE successfully on entire pmd page.
1694  * Otherwise, return false.
1695  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1696 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1697 		pmd_t *pmd, unsigned long addr, unsigned long next)
1698 {
1699 	spinlock_t *ptl;
1700 	pmd_t orig_pmd;
1701 	struct page *page;
1702 	struct mm_struct *mm = tlb->mm;
1703 	bool ret = false;
1704 
1705 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1706 
1707 	ptl = pmd_trans_huge_lock(pmd, vma);
1708 	if (!ptl)
1709 		goto out_unlocked;
1710 
1711 	orig_pmd = *pmd;
1712 	if (is_huge_zero_pmd(orig_pmd))
1713 		goto out;
1714 
1715 	if (unlikely(!pmd_present(orig_pmd))) {
1716 		VM_BUG_ON(thp_migration_supported() &&
1717 				  !is_pmd_migration_entry(orig_pmd));
1718 		goto out;
1719 	}
1720 
1721 	page = pmd_page(orig_pmd);
1722 	/*
1723 	 * If other processes are mapping this page, we couldn't discard
1724 	 * the page unless they all do MADV_FREE so let's skip the page.
1725 	 */
1726 	if (total_mapcount(page) != 1)
1727 		goto out;
1728 
1729 	if (!trylock_page(page))
1730 		goto out;
1731 
1732 	/*
1733 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1734 	 * will deactivate only them.
1735 	 */
1736 	if (next - addr != HPAGE_PMD_SIZE) {
1737 		get_page(page);
1738 		spin_unlock(ptl);
1739 		split_huge_page(page);
1740 		unlock_page(page);
1741 		put_page(page);
1742 		goto out_unlocked;
1743 	}
1744 
1745 	if (PageDirty(page))
1746 		ClearPageDirty(page);
1747 	unlock_page(page);
1748 
1749 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1750 		pmdp_invalidate(vma, addr, pmd);
1751 		orig_pmd = pmd_mkold(orig_pmd);
1752 		orig_pmd = pmd_mkclean(orig_pmd);
1753 
1754 		set_pmd_at(mm, addr, pmd, orig_pmd);
1755 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1756 	}
1757 
1758 	mark_page_lazyfree(page);
1759 	ret = true;
1760 out:
1761 	spin_unlock(ptl);
1762 out_unlocked:
1763 	return ret;
1764 }
1765 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1766 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1767 {
1768 	pgtable_t pgtable;
1769 
1770 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1771 	pte_free(mm, pgtable);
1772 	mm_dec_nr_ptes(mm);
1773 }
1774 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1775 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1776 		 pmd_t *pmd, unsigned long addr)
1777 {
1778 	pmd_t orig_pmd;
1779 	spinlock_t *ptl;
1780 
1781 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1782 
1783 	ptl = __pmd_trans_huge_lock(pmd, vma);
1784 	if (!ptl)
1785 		return 0;
1786 	/*
1787 	 * For architectures like ppc64 we look at deposited pgtable
1788 	 * when calling pmdp_huge_get_and_clear. So do the
1789 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1790 	 * operations.
1791 	 */
1792 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1793 			tlb->fullmm);
1794 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1795 	if (vma_is_dax(vma)) {
1796 		if (arch_needs_pgtable_deposit())
1797 			zap_deposited_table(tlb->mm, pmd);
1798 		spin_unlock(ptl);
1799 		if (is_huge_zero_pmd(orig_pmd))
1800 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1801 	} else if (is_huge_zero_pmd(orig_pmd)) {
1802 		zap_deposited_table(tlb->mm, pmd);
1803 		spin_unlock(ptl);
1804 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1805 	} else {
1806 		struct page *page = NULL;
1807 		int flush_needed = 1;
1808 
1809 		if (pmd_present(orig_pmd)) {
1810 			page = pmd_page(orig_pmd);
1811 			page_remove_rmap(page, true);
1812 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1813 			VM_BUG_ON_PAGE(!PageHead(page), page);
1814 		} else if (thp_migration_supported()) {
1815 			swp_entry_t entry;
1816 
1817 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1818 			entry = pmd_to_swp_entry(orig_pmd);
1819 			page = pfn_to_page(swp_offset(entry));
1820 			flush_needed = 0;
1821 		} else
1822 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1823 
1824 		if (PageAnon(page)) {
1825 			zap_deposited_table(tlb->mm, pmd);
1826 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1827 		} else {
1828 			if (arch_needs_pgtable_deposit())
1829 				zap_deposited_table(tlb->mm, pmd);
1830 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1831 		}
1832 
1833 		spin_unlock(ptl);
1834 		if (flush_needed)
1835 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1836 	}
1837 	return 1;
1838 }
1839 
1840 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1841 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1842 					 spinlock_t *old_pmd_ptl,
1843 					 struct vm_area_struct *vma)
1844 {
1845 	/*
1846 	 * With split pmd lock we also need to move preallocated
1847 	 * PTE page table if new_pmd is on different PMD page table.
1848 	 *
1849 	 * We also don't deposit and withdraw tables for file pages.
1850 	 */
1851 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1852 }
1853 #endif
1854 
move_soft_dirty_pmd(pmd_t pmd)1855 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1856 {
1857 #ifdef CONFIG_MEM_SOFT_DIRTY
1858 	if (unlikely(is_pmd_migration_entry(pmd)))
1859 		pmd = pmd_swp_mksoft_dirty(pmd);
1860 	else if (pmd_present(pmd))
1861 		pmd = pmd_mksoft_dirty(pmd);
1862 #endif
1863 	return pmd;
1864 }
1865 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1866 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1867 		  unsigned long new_addr, unsigned long old_end,
1868 		  pmd_t *old_pmd, pmd_t *new_pmd)
1869 {
1870 	spinlock_t *old_ptl, *new_ptl;
1871 	pmd_t pmd;
1872 	struct mm_struct *mm = vma->vm_mm;
1873 	bool force_flush = false;
1874 
1875 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1876 	    (new_addr & ~HPAGE_PMD_MASK) ||
1877 	    old_end - old_addr < HPAGE_PMD_SIZE)
1878 		return false;
1879 
1880 	/*
1881 	 * The destination pmd shouldn't be established, free_pgtables()
1882 	 * should have release it.
1883 	 */
1884 	if (WARN_ON(!pmd_none(*new_pmd))) {
1885 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1886 		return false;
1887 	}
1888 
1889 	/*
1890 	 * We don't have to worry about the ordering of src and dst
1891 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1892 	 */
1893 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1894 	if (old_ptl) {
1895 		new_ptl = pmd_lockptr(mm, new_pmd);
1896 		if (new_ptl != old_ptl)
1897 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1898 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1899 		if (pmd_present(pmd))
1900 			force_flush = true;
1901 		VM_BUG_ON(!pmd_none(*new_pmd));
1902 
1903 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1904 			pgtable_t pgtable;
1905 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1906 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1907 		}
1908 		pmd = move_soft_dirty_pmd(pmd);
1909 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1910 		if (force_flush)
1911 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1912 		if (new_ptl != old_ptl)
1913 			spin_unlock(new_ptl);
1914 		spin_unlock(old_ptl);
1915 		return true;
1916 	}
1917 	return false;
1918 }
1919 
1920 /*
1921  * Returns
1922  *  - 0 if PMD could not be locked
1923  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1924  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1925  */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1926 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1927 		unsigned long addr, pgprot_t newprot, int prot_numa)
1928 {
1929 	struct mm_struct *mm = vma->vm_mm;
1930 	spinlock_t *ptl;
1931 	pmd_t entry;
1932 	bool preserve_write;
1933 	int ret;
1934 
1935 	ptl = __pmd_trans_huge_lock(pmd, vma);
1936 	if (!ptl)
1937 		return 0;
1938 
1939 	preserve_write = prot_numa && pmd_write(*pmd);
1940 	ret = 1;
1941 
1942 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1943 	if (is_swap_pmd(*pmd)) {
1944 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1945 
1946 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1947 		if (is_write_migration_entry(entry)) {
1948 			pmd_t newpmd;
1949 			/*
1950 			 * A protection check is difficult so
1951 			 * just be safe and disable write
1952 			 */
1953 			make_migration_entry_read(&entry);
1954 			newpmd = swp_entry_to_pmd(entry);
1955 			if (pmd_swp_soft_dirty(*pmd))
1956 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1957 			set_pmd_at(mm, addr, pmd, newpmd);
1958 		}
1959 		goto unlock;
1960 	}
1961 #endif
1962 
1963 	/*
1964 	 * Avoid trapping faults against the zero page. The read-only
1965 	 * data is likely to be read-cached on the local CPU and
1966 	 * local/remote hits to the zero page are not interesting.
1967 	 */
1968 	if (prot_numa && is_huge_zero_pmd(*pmd))
1969 		goto unlock;
1970 
1971 	if (prot_numa && pmd_protnone(*pmd))
1972 		goto unlock;
1973 
1974 	/*
1975 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1976 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1977 	 * which is also under down_read(mmap_sem):
1978 	 *
1979 	 *	CPU0:				CPU1:
1980 	 *				change_huge_pmd(prot_numa=1)
1981 	 *				 pmdp_huge_get_and_clear_notify()
1982 	 * madvise_dontneed()
1983 	 *  zap_pmd_range()
1984 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1985 	 *   // skip the pmd
1986 	 *				 set_pmd_at();
1987 	 *				 // pmd is re-established
1988 	 *
1989 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1990 	 * which may break userspace.
1991 	 *
1992 	 * pmdp_invalidate() is required to make sure we don't miss
1993 	 * dirty/young flags set by hardware.
1994 	 */
1995 	entry = pmdp_invalidate(vma, addr, pmd);
1996 
1997 	entry = pmd_modify(entry, newprot);
1998 	if (preserve_write)
1999 		entry = pmd_mk_savedwrite(entry);
2000 	ret = HPAGE_PMD_NR;
2001 	set_pmd_at(mm, addr, pmd, entry);
2002 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2003 unlock:
2004 	spin_unlock(ptl);
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2010  *
2011  * Note that if it returns page table lock pointer, this routine returns without
2012  * unlocking page table lock. So callers must unlock it.
2013  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2014 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2015 {
2016 	spinlock_t *ptl;
2017 	ptl = pmd_lock(vma->vm_mm, pmd);
2018 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2019 			pmd_devmap(*pmd)))
2020 		return ptl;
2021 	spin_unlock(ptl);
2022 	return NULL;
2023 }
2024 
2025 /*
2026  * Returns true if a given pud maps a thp, false otherwise.
2027  *
2028  * Note that if it returns true, this routine returns without unlocking page
2029  * table lock. So callers must unlock it.
2030  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2031 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2032 {
2033 	spinlock_t *ptl;
2034 
2035 	ptl = pud_lock(vma->vm_mm, pud);
2036 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2037 		return ptl;
2038 	spin_unlock(ptl);
2039 	return NULL;
2040 }
2041 
2042 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2043 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2044 		 pud_t *pud, unsigned long addr)
2045 {
2046 	spinlock_t *ptl;
2047 
2048 	ptl = __pud_trans_huge_lock(pud, vma);
2049 	if (!ptl)
2050 		return 0;
2051 	/*
2052 	 * For architectures like ppc64 we look at deposited pgtable
2053 	 * when calling pudp_huge_get_and_clear. So do the
2054 	 * pgtable_trans_huge_withdraw after finishing pudp related
2055 	 * operations.
2056 	 */
2057 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2058 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2059 	if (vma_is_dax(vma)) {
2060 		spin_unlock(ptl);
2061 		/* No zero page support yet */
2062 	} else {
2063 		/* No support for anonymous PUD pages yet */
2064 		BUG();
2065 	}
2066 	return 1;
2067 }
2068 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2069 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2070 		unsigned long haddr)
2071 {
2072 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2073 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2074 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2075 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2076 
2077 	count_vm_event(THP_SPLIT_PUD);
2078 
2079 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2080 }
2081 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2082 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2083 		unsigned long address)
2084 {
2085 	spinlock_t *ptl;
2086 	struct mmu_notifier_range range;
2087 
2088 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2089 				address & HPAGE_PUD_MASK,
2090 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2091 	mmu_notifier_invalidate_range_start(&range);
2092 	ptl = pud_lock(vma->vm_mm, pud);
2093 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2094 		goto out;
2095 	__split_huge_pud_locked(vma, pud, range.start);
2096 
2097 out:
2098 	spin_unlock(ptl);
2099 	/*
2100 	 * No need to double call mmu_notifier->invalidate_range() callback as
2101 	 * the above pudp_huge_clear_flush_notify() did already call it.
2102 	 */
2103 	mmu_notifier_invalidate_range_only_end(&range);
2104 }
2105 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2106 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2107 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2108 		unsigned long haddr, pmd_t *pmd)
2109 {
2110 	struct mm_struct *mm = vma->vm_mm;
2111 	pgtable_t pgtable;
2112 	pmd_t _pmd;
2113 	int i;
2114 
2115 	/*
2116 	 * Leave pmd empty until pte is filled note that it is fine to delay
2117 	 * notification until mmu_notifier_invalidate_range_end() as we are
2118 	 * replacing a zero pmd write protected page with a zero pte write
2119 	 * protected page.
2120 	 *
2121 	 * See Documentation/vm/mmu_notifier.rst
2122 	 */
2123 	pmdp_huge_clear_flush(vma, haddr, pmd);
2124 
2125 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2126 	pmd_populate(mm, &_pmd, pgtable);
2127 
2128 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2129 		pte_t *pte, entry;
2130 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2131 		entry = pte_mkspecial(entry);
2132 		pte = pte_offset_map(&_pmd, haddr);
2133 		VM_BUG_ON(!pte_none(*pte));
2134 		set_pte_at(mm, haddr, pte, entry);
2135 		pte_unmap(pte);
2136 	}
2137 	smp_wmb(); /* make pte visible before pmd */
2138 	pmd_populate(mm, pmd, pgtable);
2139 }
2140 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2141 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2142 		unsigned long haddr, bool freeze)
2143 {
2144 	struct mm_struct *mm = vma->vm_mm;
2145 	struct page *page;
2146 	pgtable_t pgtable;
2147 	pmd_t old_pmd, _pmd;
2148 	bool young, write, soft_dirty, pmd_migration = false;
2149 	unsigned long addr;
2150 	int i;
2151 
2152 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2153 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2154 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2155 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2156 				&& !pmd_devmap(*pmd));
2157 
2158 	count_vm_event(THP_SPLIT_PMD);
2159 
2160 	if (!vma_is_anonymous(vma)) {
2161 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2162 		/*
2163 		 * We are going to unmap this huge page. So
2164 		 * just go ahead and zap it
2165 		 */
2166 		if (arch_needs_pgtable_deposit())
2167 			zap_deposited_table(mm, pmd);
2168 		if (vma_is_dax(vma))
2169 			return;
2170 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2171 			swp_entry_t entry;
2172 
2173 			entry = pmd_to_swp_entry(old_pmd);
2174 			page = migration_entry_to_page(entry);
2175 		} else {
2176 			page = pmd_page(old_pmd);
2177 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2178 				set_page_dirty(page);
2179 			if (!PageReferenced(page) && pmd_young(old_pmd))
2180 				SetPageReferenced(page);
2181 			page_remove_rmap(page, true);
2182 			put_page(page);
2183 		}
2184 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2185 		return;
2186 	}
2187 
2188 	if (is_huge_zero_pmd(*pmd)) {
2189 		/*
2190 		 * FIXME: Do we want to invalidate secondary mmu by calling
2191 		 * mmu_notifier_invalidate_range() see comments below inside
2192 		 * __split_huge_pmd() ?
2193 		 *
2194 		 * We are going from a zero huge page write protected to zero
2195 		 * small page also write protected so it does not seems useful
2196 		 * to invalidate secondary mmu at this time.
2197 		 */
2198 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2199 	}
2200 
2201 	/*
2202 	 * Up to this point the pmd is present and huge and userland has the
2203 	 * whole access to the hugepage during the split (which happens in
2204 	 * place). If we overwrite the pmd with the not-huge version pointing
2205 	 * to the pte here (which of course we could if all CPUs were bug
2206 	 * free), userland could trigger a small page size TLB miss on the
2207 	 * small sized TLB while the hugepage TLB entry is still established in
2208 	 * the huge TLB. Some CPU doesn't like that.
2209 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2210 	 * 383 on page 93. Intel should be safe but is also warns that it's
2211 	 * only safe if the permission and cache attributes of the two entries
2212 	 * loaded in the two TLB is identical (which should be the case here).
2213 	 * But it is generally safer to never allow small and huge TLB entries
2214 	 * for the same virtual address to be loaded simultaneously. So instead
2215 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2216 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2217 	 * must remain set at all times on the pmd until the split is complete
2218 	 * for this pmd), then we flush the SMP TLB and finally we write the
2219 	 * non-huge version of the pmd entry with pmd_populate.
2220 	 */
2221 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2222 
2223 	pmd_migration = is_pmd_migration_entry(old_pmd);
2224 	if (unlikely(pmd_migration)) {
2225 		swp_entry_t entry;
2226 
2227 		entry = pmd_to_swp_entry(old_pmd);
2228 		page = pfn_to_page(swp_offset(entry));
2229 		write = is_write_migration_entry(entry);
2230 		young = false;
2231 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2232 	} else {
2233 		page = pmd_page(old_pmd);
2234 		if (pmd_dirty(old_pmd))
2235 			SetPageDirty(page);
2236 		write = pmd_write(old_pmd);
2237 		young = pmd_young(old_pmd);
2238 		soft_dirty = pmd_soft_dirty(old_pmd);
2239 	}
2240 	VM_BUG_ON_PAGE(!page_count(page), page);
2241 	page_ref_add(page, HPAGE_PMD_NR - 1);
2242 
2243 	/*
2244 	 * Withdraw the table only after we mark the pmd entry invalid.
2245 	 * This's critical for some architectures (Power).
2246 	 */
2247 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2248 	pmd_populate(mm, &_pmd, pgtable);
2249 
2250 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2251 		pte_t entry, *pte;
2252 		/*
2253 		 * Note that NUMA hinting access restrictions are not
2254 		 * transferred to avoid any possibility of altering
2255 		 * permissions across VMAs.
2256 		 */
2257 		if (freeze || pmd_migration) {
2258 			swp_entry_t swp_entry;
2259 			swp_entry = make_migration_entry(page + i, write);
2260 			entry = swp_entry_to_pte(swp_entry);
2261 			if (soft_dirty)
2262 				entry = pte_swp_mksoft_dirty(entry);
2263 		} else {
2264 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2265 			entry = maybe_mkwrite(entry, vma);
2266 			if (!write)
2267 				entry = pte_wrprotect(entry);
2268 			if (!young)
2269 				entry = pte_mkold(entry);
2270 			if (soft_dirty)
2271 				entry = pte_mksoft_dirty(entry);
2272 		}
2273 		pte = pte_offset_map(&_pmd, addr);
2274 		BUG_ON(!pte_none(*pte));
2275 		set_pte_at(mm, addr, pte, entry);
2276 		if (!pmd_migration)
2277 			atomic_inc(&page[i]._mapcount);
2278 		pte_unmap(pte);
2279 	}
2280 
2281 	if (!pmd_migration) {
2282 		/*
2283 		 * Set PG_double_map before dropping compound_mapcount to avoid
2284 		 * false-negative page_mapped().
2285 		 */
2286 		if (compound_mapcount(page) > 1 &&
2287 		    !TestSetPageDoubleMap(page)) {
2288 			for (i = 0; i < HPAGE_PMD_NR; i++)
2289 				atomic_inc(&page[i]._mapcount);
2290 		}
2291 
2292 		lock_page_memcg(page);
2293 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2294 			/* Last compound_mapcount is gone. */
2295 			__dec_lruvec_page_state(page, NR_ANON_THPS);
2296 			if (TestClearPageDoubleMap(page)) {
2297 				/* No need in mapcount reference anymore */
2298 				for (i = 0; i < HPAGE_PMD_NR; i++)
2299 					atomic_dec(&page[i]._mapcount);
2300 			}
2301 		}
2302 		unlock_page_memcg(page);
2303 	}
2304 
2305 	smp_wmb(); /* make pte visible before pmd */
2306 	pmd_populate(mm, pmd, pgtable);
2307 
2308 	if (freeze) {
2309 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2310 			page_remove_rmap(page + i, false);
2311 			put_page(page + i);
2312 		}
2313 	}
2314 }
2315 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2316 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2317 		unsigned long address, bool freeze, struct page *page)
2318 {
2319 	spinlock_t *ptl;
2320 	struct mmu_notifier_range range;
2321 	bool do_unlock_page = false;
2322 	pmd_t _pmd;
2323 
2324 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2325 				address & HPAGE_PMD_MASK,
2326 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2327 	mmu_notifier_invalidate_range_start(&range);
2328 	ptl = pmd_lock(vma->vm_mm, pmd);
2329 
2330 	/*
2331 	 * If caller asks to setup a migration entries, we need a page to check
2332 	 * pmd against. Otherwise we can end up replacing wrong page.
2333 	 */
2334 	VM_BUG_ON(freeze && !page);
2335 	if (page) {
2336 		VM_WARN_ON_ONCE(!PageLocked(page));
2337 		if (page != pmd_page(*pmd))
2338 			goto out;
2339 	}
2340 
2341 repeat:
2342 	if (pmd_trans_huge(*pmd)) {
2343 		if (!page) {
2344 			page = pmd_page(*pmd);
2345 			/*
2346 			 * An anonymous page must be locked, to ensure that a
2347 			 * concurrent reuse_swap_page() sees stable mapcount;
2348 			 * but reuse_swap_page() is not used on shmem or file,
2349 			 * and page lock must not be taken when zap_pmd_range()
2350 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2351 			 */
2352 			if (PageAnon(page)) {
2353 				if (unlikely(!trylock_page(page))) {
2354 					get_page(page);
2355 					_pmd = *pmd;
2356 					spin_unlock(ptl);
2357 					lock_page(page);
2358 					spin_lock(ptl);
2359 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2360 						unlock_page(page);
2361 						put_page(page);
2362 						page = NULL;
2363 						goto repeat;
2364 					}
2365 					put_page(page);
2366 				}
2367 				do_unlock_page = true;
2368 			}
2369 		}
2370 		if (PageMlocked(page))
2371 			clear_page_mlock(page);
2372 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2373 		goto out;
2374 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2375 out:
2376 	spin_unlock(ptl);
2377 	if (do_unlock_page)
2378 		unlock_page(page);
2379 	/*
2380 	 * No need to double call mmu_notifier->invalidate_range() callback.
2381 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2382 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2383 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2384 	 *    fault will trigger a flush_notify before pointing to a new page
2385 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2386 	 *    page in the meantime)
2387 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2388 	 *     to invalidate secondary tlb entry they are all still valid.
2389 	 *     any further changes to individual pte will notify. So no need
2390 	 *     to call mmu_notifier->invalidate_range()
2391 	 */
2392 	mmu_notifier_invalidate_range_only_end(&range);
2393 }
2394 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2395 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2396 		bool freeze, struct page *page)
2397 {
2398 	pgd_t *pgd;
2399 	p4d_t *p4d;
2400 	pud_t *pud;
2401 	pmd_t *pmd;
2402 
2403 	pgd = pgd_offset(vma->vm_mm, address);
2404 	if (!pgd_present(*pgd))
2405 		return;
2406 
2407 	p4d = p4d_offset(pgd, address);
2408 	if (!p4d_present(*p4d))
2409 		return;
2410 
2411 	pud = pud_offset(p4d, address);
2412 	if (!pud_present(*pud))
2413 		return;
2414 
2415 	pmd = pmd_offset(pud, address);
2416 
2417 	__split_huge_pmd(vma, pmd, address, freeze, page);
2418 }
2419 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2420 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2421 			     unsigned long start,
2422 			     unsigned long end,
2423 			     long adjust_next)
2424 {
2425 	/*
2426 	 * If the new start address isn't hpage aligned and it could
2427 	 * previously contain an hugepage: check if we need to split
2428 	 * an huge pmd.
2429 	 */
2430 	if (start & ~HPAGE_PMD_MASK &&
2431 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2432 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2433 		split_huge_pmd_address(vma, start, false, NULL);
2434 
2435 	/*
2436 	 * If the new end address isn't hpage aligned and it could
2437 	 * previously contain an hugepage: check if we need to split
2438 	 * an huge pmd.
2439 	 */
2440 	if (end & ~HPAGE_PMD_MASK &&
2441 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2442 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2443 		split_huge_pmd_address(vma, end, false, NULL);
2444 
2445 	/*
2446 	 * If we're also updating the vma->vm_next->vm_start, if the new
2447 	 * vm_next->vm_start isn't page aligned and it could previously
2448 	 * contain an hugepage: check if we need to split an huge pmd.
2449 	 */
2450 	if (adjust_next > 0) {
2451 		struct vm_area_struct *next = vma->vm_next;
2452 		unsigned long nstart = next->vm_start;
2453 		nstart += adjust_next << PAGE_SHIFT;
2454 		if (nstart & ~HPAGE_PMD_MASK &&
2455 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2456 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2457 			split_huge_pmd_address(next, nstart, false, NULL);
2458 	}
2459 }
2460 
unmap_page(struct page * page)2461 static void unmap_page(struct page *page)
2462 {
2463 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2464 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | TTU_SYNC;
2465 
2466 	VM_BUG_ON_PAGE(!PageHead(page), page);
2467 
2468 	if (PageAnon(page))
2469 		ttu_flags |= TTU_SPLIT_FREEZE;
2470 
2471 	try_to_unmap(page, ttu_flags);
2472 
2473 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2474 }
2475 
remap_page(struct page * page)2476 static void remap_page(struct page *page)
2477 {
2478 	int i;
2479 	if (PageTransHuge(page)) {
2480 		remove_migration_ptes(page, page, true);
2481 	} else {
2482 		for (i = 0; i < HPAGE_PMD_NR; i++)
2483 			remove_migration_ptes(page + i, page + i, true);
2484 	}
2485 }
2486 
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2487 static void __split_huge_page_tail(struct page *head, int tail,
2488 		struct lruvec *lruvec, struct list_head *list)
2489 {
2490 	struct page *page_tail = head + tail;
2491 
2492 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2493 
2494 	/*
2495 	 * Clone page flags before unfreezing refcount.
2496 	 *
2497 	 * After successful get_page_unless_zero() might follow flags change,
2498 	 * for exmaple lock_page() which set PG_waiters.
2499 	 */
2500 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2501 	page_tail->flags |= (head->flags &
2502 			((1L << PG_referenced) |
2503 			 (1L << PG_swapbacked) |
2504 			 (1L << PG_swapcache) |
2505 			 (1L << PG_mlocked) |
2506 			 (1L << PG_uptodate) |
2507 			 (1L << PG_active) |
2508 			 (1L << PG_workingset) |
2509 			 (1L << PG_locked) |
2510 			 (1L << PG_unevictable) |
2511 			 (1L << PG_dirty)));
2512 
2513 	/* ->mapping in first tail page is compound_mapcount */
2514 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2515 			page_tail);
2516 	page_tail->mapping = head->mapping;
2517 	page_tail->index = head->index + tail;
2518 
2519 	/* Page flags must be visible before we make the page non-compound. */
2520 	smp_wmb();
2521 
2522 	/*
2523 	 * Clear PageTail before unfreezing page refcount.
2524 	 *
2525 	 * After successful get_page_unless_zero() might follow put_page()
2526 	 * which needs correct compound_head().
2527 	 */
2528 	clear_compound_head(page_tail);
2529 
2530 	/* Finally unfreeze refcount. Additional reference from page cache. */
2531 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2532 					  PageSwapCache(head)));
2533 
2534 	if (page_is_young(head))
2535 		set_page_young(page_tail);
2536 	if (page_is_idle(head))
2537 		set_page_idle(page_tail);
2538 
2539 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2540 
2541 	/*
2542 	 * always add to the tail because some iterators expect new
2543 	 * pages to show after the currently processed elements - e.g.
2544 	 * migrate_pages
2545 	 */
2546 	lru_add_page_tail(head, page_tail, lruvec, list);
2547 }
2548 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2549 static void __split_huge_page(struct page *page, struct list_head *list,
2550 		pgoff_t end, unsigned long flags)
2551 {
2552 	struct page *head = compound_head(page);
2553 	pg_data_t *pgdat = page_pgdat(head);
2554 	struct lruvec *lruvec;
2555 	struct address_space *swap_cache = NULL;
2556 	unsigned long offset = 0;
2557 	int i;
2558 
2559 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2560 
2561 	/* complete memcg works before add pages to LRU */
2562 	mem_cgroup_split_huge_fixup(head);
2563 
2564 	if (PageAnon(head) && PageSwapCache(head)) {
2565 		swp_entry_t entry = { .val = page_private(head) };
2566 
2567 		offset = swp_offset(entry);
2568 		swap_cache = swap_address_space(entry);
2569 		xa_lock(&swap_cache->i_pages);
2570 	}
2571 
2572 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2573 		__split_huge_page_tail(head, i, lruvec, list);
2574 		/* Some pages can be beyond i_size: drop them from page cache */
2575 		if (head[i].index >= end) {
2576 			ClearPageDirty(head + i);
2577 			__delete_from_page_cache(head + i, NULL);
2578 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2579 				shmem_uncharge(head->mapping->host, 1);
2580 			put_page(head + i);
2581 		} else if (!PageAnon(page)) {
2582 			__xa_store(&head->mapping->i_pages, head[i].index,
2583 					head + i, 0);
2584 		} else if (swap_cache) {
2585 			__xa_store(&swap_cache->i_pages, offset + i,
2586 					head + i, 0);
2587 		}
2588 	}
2589 
2590 	ClearPageCompound(head);
2591 
2592 	split_page_owner(head, HPAGE_PMD_NR);
2593 
2594 	/* See comment in __split_huge_page_tail() */
2595 	if (PageAnon(head)) {
2596 		/* Additional pin to swap cache */
2597 		if (PageSwapCache(head)) {
2598 			page_ref_add(head, 2);
2599 			xa_unlock(&swap_cache->i_pages);
2600 		} else {
2601 			page_ref_inc(head);
2602 		}
2603 	} else {
2604 		/* Additional pin to page cache */
2605 		page_ref_add(head, 2);
2606 		xa_unlock(&head->mapping->i_pages);
2607 	}
2608 
2609 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2610 
2611 	remap_page(head);
2612 
2613 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2614 		struct page *subpage = head + i;
2615 		if (subpage == page)
2616 			continue;
2617 		unlock_page(subpage);
2618 
2619 		/*
2620 		 * Subpages may be freed if there wasn't any mapping
2621 		 * like if add_to_swap() is running on a lru page that
2622 		 * had its mapping zapped. And freeing these pages
2623 		 * requires taking the lru_lock so we do the put_page
2624 		 * of the tail pages after the split is complete.
2625 		 */
2626 		put_page(subpage);
2627 	}
2628 }
2629 
total_mapcount(struct page * page)2630 int total_mapcount(struct page *page)
2631 {
2632 	int i, compound, ret;
2633 
2634 	VM_BUG_ON_PAGE(PageTail(page), page);
2635 
2636 	if (likely(!PageCompound(page)))
2637 		return atomic_read(&page->_mapcount) + 1;
2638 
2639 	compound = compound_mapcount(page);
2640 	if (PageHuge(page))
2641 		return compound;
2642 	ret = compound;
2643 	for (i = 0; i < HPAGE_PMD_NR; i++)
2644 		ret += atomic_read(&page[i]._mapcount) + 1;
2645 	/* File pages has compound_mapcount included in _mapcount */
2646 	if (!PageAnon(page))
2647 		return ret - compound * HPAGE_PMD_NR;
2648 	if (PageDoubleMap(page))
2649 		ret -= HPAGE_PMD_NR;
2650 	return ret;
2651 }
2652 
2653 /*
2654  * This calculates accurately how many mappings a transparent hugepage
2655  * has (unlike page_mapcount() which isn't fully accurate). This full
2656  * accuracy is primarily needed to know if copy-on-write faults can
2657  * reuse the page and change the mapping to read-write instead of
2658  * copying them. At the same time this returns the total_mapcount too.
2659  *
2660  * The function returns the highest mapcount any one of the subpages
2661  * has. If the return value is one, even if different processes are
2662  * mapping different subpages of the transparent hugepage, they can
2663  * all reuse it, because each process is reusing a different subpage.
2664  *
2665  * The total_mapcount is instead counting all virtual mappings of the
2666  * subpages. If the total_mapcount is equal to "one", it tells the
2667  * caller all mappings belong to the same "mm" and in turn the
2668  * anon_vma of the transparent hugepage can become the vma->anon_vma
2669  * local one as no other process may be mapping any of the subpages.
2670  *
2671  * It would be more accurate to replace page_mapcount() with
2672  * page_trans_huge_mapcount(), however we only use
2673  * page_trans_huge_mapcount() in the copy-on-write faults where we
2674  * need full accuracy to avoid breaking page pinning, because
2675  * page_trans_huge_mapcount() is slower than page_mapcount().
2676  */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2677 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2678 {
2679 	int i, ret, _total_mapcount, mapcount;
2680 
2681 	/* hugetlbfs shouldn't call it */
2682 	VM_BUG_ON_PAGE(PageHuge(page), page);
2683 
2684 	if (likely(!PageTransCompound(page))) {
2685 		mapcount = atomic_read(&page->_mapcount) + 1;
2686 		if (total_mapcount)
2687 			*total_mapcount = mapcount;
2688 		return mapcount;
2689 	}
2690 
2691 	page = compound_head(page);
2692 
2693 	_total_mapcount = ret = 0;
2694 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2695 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2696 		ret = max(ret, mapcount);
2697 		_total_mapcount += mapcount;
2698 	}
2699 	if (PageDoubleMap(page)) {
2700 		ret -= 1;
2701 		_total_mapcount -= HPAGE_PMD_NR;
2702 	}
2703 	mapcount = compound_mapcount(page);
2704 	ret += mapcount;
2705 	_total_mapcount += mapcount;
2706 	if (total_mapcount)
2707 		*total_mapcount = _total_mapcount;
2708 	return ret;
2709 }
2710 
2711 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2712 bool can_split_huge_page(struct page *page, int *pextra_pins)
2713 {
2714 	int extra_pins;
2715 
2716 	/* Additional pins from page cache */
2717 	if (PageAnon(page))
2718 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2719 	else
2720 		extra_pins = HPAGE_PMD_NR;
2721 	if (pextra_pins)
2722 		*pextra_pins = extra_pins;
2723 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2724 }
2725 
2726 /*
2727  * This function splits huge page into normal pages. @page can point to any
2728  * subpage of huge page to split. Split doesn't change the position of @page.
2729  *
2730  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2731  * The huge page must be locked.
2732  *
2733  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2734  *
2735  * Both head page and tail pages will inherit mapping, flags, and so on from
2736  * the hugepage.
2737  *
2738  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2739  * they are not mapped.
2740  *
2741  * Returns 0 if the hugepage is split successfully.
2742  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2743  * us.
2744  */
split_huge_page_to_list(struct page * page,struct list_head * list)2745 int split_huge_page_to_list(struct page *page, struct list_head *list)
2746 {
2747 	struct page *head = compound_head(page);
2748 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2749 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2750 	struct anon_vma *anon_vma = NULL;
2751 	struct address_space *mapping = NULL;
2752 	int extra_pins, ret;
2753 	bool mlocked;
2754 	unsigned long flags;
2755 	pgoff_t end;
2756 
2757 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2758 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2759 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2760 
2761 	if (PageWriteback(page))
2762 		return -EBUSY;
2763 
2764 	if (PageAnon(head)) {
2765 		/*
2766 		 * The caller does not necessarily hold an mmap_sem that would
2767 		 * prevent the anon_vma disappearing so we first we take a
2768 		 * reference to it and then lock the anon_vma for write. This
2769 		 * is similar to page_lock_anon_vma_read except the write lock
2770 		 * is taken to serialise against parallel split or collapse
2771 		 * operations.
2772 		 */
2773 		anon_vma = page_get_anon_vma(head);
2774 		if (!anon_vma) {
2775 			ret = -EBUSY;
2776 			goto out;
2777 		}
2778 		end = -1;
2779 		mapping = NULL;
2780 		anon_vma_lock_write(anon_vma);
2781 	} else {
2782 		mapping = head->mapping;
2783 
2784 		/* Truncated ? */
2785 		if (!mapping) {
2786 			ret = -EBUSY;
2787 			goto out;
2788 		}
2789 
2790 		anon_vma = NULL;
2791 		i_mmap_lock_read(mapping);
2792 
2793 		/*
2794 		 *__split_huge_page() may need to trim off pages beyond EOF:
2795 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2796 		 * which cannot be nested inside the page tree lock. So note
2797 		 * end now: i_size itself may be changed at any moment, but
2798 		 * head page lock is good enough to serialize the trimming.
2799 		 */
2800 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2801 	}
2802 
2803 	/*
2804 	 * Racy check if we can split the page, before unmap_page() will
2805 	 * split PMDs
2806 	 */
2807 	if (!can_split_huge_page(head, &extra_pins)) {
2808 		ret = -EBUSY;
2809 		goto out_unlock;
2810 	}
2811 
2812 	mlocked = PageMlocked(page);
2813 	unmap_page(head);
2814 
2815 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2816 	if (mlocked)
2817 		lru_add_drain();
2818 
2819 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2820 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2821 
2822 	if (mapping) {
2823 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2824 
2825 		/*
2826 		 * Check if the head page is present in page cache.
2827 		 * We assume all tail are present too, if head is there.
2828 		 */
2829 		xa_lock(&mapping->i_pages);
2830 		if (xas_load(&xas) != head)
2831 			goto fail;
2832 	}
2833 
2834 	/* Prevent deferred_split_scan() touching ->_refcount */
2835 	spin_lock(&ds_queue->split_queue_lock);
2836 	if (page_ref_freeze(head, 1 + extra_pins)) {
2837 		if (!list_empty(page_deferred_list(head))) {
2838 			ds_queue->split_queue_len--;
2839 			list_del(page_deferred_list(head));
2840 		}
2841 		if (mapping) {
2842 			if (PageSwapBacked(page))
2843 				__dec_node_page_state(page, NR_SHMEM_THPS);
2844 			else
2845 				__dec_node_page_state(page, NR_FILE_THPS);
2846 		}
2847 
2848 		spin_unlock(&ds_queue->split_queue_lock);
2849 		__split_huge_page(page, list, end, flags);
2850 		if (PageSwapCache(head)) {
2851 			swp_entry_t entry = { .val = page_private(head) };
2852 
2853 			ret = split_swap_cluster(entry);
2854 		} else
2855 			ret = 0;
2856 	} else {
2857 		spin_unlock(&ds_queue->split_queue_lock);
2858 fail:
2859 		if (mapping)
2860 			xa_unlock(&mapping->i_pages);
2861 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2862 		remap_page(head);
2863 		ret = -EBUSY;
2864 	}
2865 
2866 out_unlock:
2867 	if (anon_vma) {
2868 		anon_vma_unlock_write(anon_vma);
2869 		put_anon_vma(anon_vma);
2870 	}
2871 	if (mapping)
2872 		i_mmap_unlock_read(mapping);
2873 out:
2874 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2875 	return ret;
2876 }
2877 
free_transhuge_page(struct page * page)2878 void free_transhuge_page(struct page *page)
2879 {
2880 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2881 	unsigned long flags;
2882 
2883 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2884 	if (!list_empty(page_deferred_list(page))) {
2885 		ds_queue->split_queue_len--;
2886 		list_del(page_deferred_list(page));
2887 	}
2888 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2889 	free_compound_page(page);
2890 }
2891 
deferred_split_huge_page(struct page * page)2892 void deferred_split_huge_page(struct page *page)
2893 {
2894 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2895 #ifdef CONFIG_MEMCG
2896 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2897 #endif
2898 	unsigned long flags;
2899 
2900 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2901 
2902 	/*
2903 	 * The try_to_unmap() in page reclaim path might reach here too,
2904 	 * this may cause a race condition to corrupt deferred split queue.
2905 	 * And, if page reclaim is already handling the same page, it is
2906 	 * unnecessary to handle it again in shrinker.
2907 	 *
2908 	 * Check PageSwapCache to determine if the page is being
2909 	 * handled by page reclaim since THP swap would add the page into
2910 	 * swap cache before calling try_to_unmap().
2911 	 */
2912 	if (PageSwapCache(page))
2913 		return;
2914 
2915 	if (!list_empty(page_deferred_list(page)))
2916 		return;
2917 
2918 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2919 	if (list_empty(page_deferred_list(page))) {
2920 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2921 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2922 		ds_queue->split_queue_len++;
2923 #ifdef CONFIG_MEMCG
2924 		if (memcg)
2925 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2926 					       deferred_split_shrinker.id);
2927 #endif
2928 	}
2929 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2930 }
2931 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2932 static unsigned long deferred_split_count(struct shrinker *shrink,
2933 		struct shrink_control *sc)
2934 {
2935 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2936 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2937 
2938 #ifdef CONFIG_MEMCG
2939 	if (sc->memcg)
2940 		ds_queue = &sc->memcg->deferred_split_queue;
2941 #endif
2942 	return READ_ONCE(ds_queue->split_queue_len);
2943 }
2944 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2945 static unsigned long deferred_split_scan(struct shrinker *shrink,
2946 		struct shrink_control *sc)
2947 {
2948 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2949 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2950 	unsigned long flags;
2951 	LIST_HEAD(list), *pos, *next;
2952 	struct page *page;
2953 	int split = 0;
2954 
2955 #ifdef CONFIG_MEMCG
2956 	if (sc->memcg)
2957 		ds_queue = &sc->memcg->deferred_split_queue;
2958 #endif
2959 
2960 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2961 	/* Take pin on all head pages to avoid freeing them under us */
2962 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2963 		page = list_entry((void *)pos, struct page, mapping);
2964 		page = compound_head(page);
2965 		if (get_page_unless_zero(page)) {
2966 			list_move(page_deferred_list(page), &list);
2967 		} else {
2968 			/* We lost race with put_compound_page() */
2969 			list_del_init(page_deferred_list(page));
2970 			ds_queue->split_queue_len--;
2971 		}
2972 		if (!--sc->nr_to_scan)
2973 			break;
2974 	}
2975 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2976 
2977 	list_for_each_safe(pos, next, &list) {
2978 		page = list_entry((void *)pos, struct page, mapping);
2979 		if (!trylock_page(page))
2980 			goto next;
2981 		/* split_huge_page() removes page from list on success */
2982 		if (!split_huge_page(page))
2983 			split++;
2984 		unlock_page(page);
2985 next:
2986 		put_page(page);
2987 	}
2988 
2989 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2990 	list_splice_tail(&list, &ds_queue->split_queue);
2991 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2992 
2993 	/*
2994 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2995 	 * This can happen if pages were freed under us.
2996 	 */
2997 	if (!split && list_empty(&ds_queue->split_queue))
2998 		return SHRINK_STOP;
2999 	return split;
3000 }
3001 
3002 static struct shrinker deferred_split_shrinker = {
3003 	.count_objects = deferred_split_count,
3004 	.scan_objects = deferred_split_scan,
3005 	.seeks = DEFAULT_SEEKS,
3006 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3007 		 SHRINKER_NONSLAB,
3008 };
3009 
3010 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)3011 static int split_huge_pages_set(void *data, u64 val)
3012 {
3013 	struct zone *zone;
3014 	struct page *page;
3015 	unsigned long pfn, max_zone_pfn;
3016 	unsigned long total = 0, split = 0;
3017 
3018 	if (val != 1)
3019 		return -EINVAL;
3020 
3021 	for_each_populated_zone(zone) {
3022 		max_zone_pfn = zone_end_pfn(zone);
3023 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3024 			if (!pfn_valid(pfn))
3025 				continue;
3026 
3027 			page = pfn_to_page(pfn);
3028 			if (!get_page_unless_zero(page))
3029 				continue;
3030 
3031 			if (zone != page_zone(page))
3032 				goto next;
3033 
3034 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3035 				goto next;
3036 
3037 			total++;
3038 			lock_page(page);
3039 			if (!split_huge_page(page))
3040 				split++;
3041 			unlock_page(page);
3042 next:
3043 			put_page(page);
3044 		}
3045 	}
3046 
3047 	pr_info("%lu of %lu THP split\n", split, total);
3048 
3049 	return 0;
3050 }
3051 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3052 		"%llu\n");
3053 
split_huge_pages_debugfs(void)3054 static int __init split_huge_pages_debugfs(void)
3055 {
3056 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3057 			    &split_huge_pages_fops);
3058 	return 0;
3059 }
3060 late_initcall(split_huge_pages_debugfs);
3061 #endif
3062 
3063 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3064 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3065 		struct page *page)
3066 {
3067 	struct vm_area_struct *vma = pvmw->vma;
3068 	struct mm_struct *mm = vma->vm_mm;
3069 	unsigned long address = pvmw->address;
3070 	pmd_t pmdval;
3071 	swp_entry_t entry;
3072 	pmd_t pmdswp;
3073 
3074 	if (!(pvmw->pmd && !pvmw->pte))
3075 		return;
3076 
3077 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3078 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3079 	if (pmd_dirty(pmdval))
3080 		set_page_dirty(page);
3081 	entry = make_migration_entry(page, pmd_write(pmdval));
3082 	pmdswp = swp_entry_to_pmd(entry);
3083 	if (pmd_soft_dirty(pmdval))
3084 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3085 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3086 	page_remove_rmap(page, true);
3087 	put_page(page);
3088 }
3089 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3090 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3091 {
3092 	struct vm_area_struct *vma = pvmw->vma;
3093 	struct mm_struct *mm = vma->vm_mm;
3094 	unsigned long address = pvmw->address;
3095 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3096 	pmd_t pmde;
3097 	swp_entry_t entry;
3098 
3099 	if (!(pvmw->pmd && !pvmw->pte))
3100 		return;
3101 
3102 	entry = pmd_to_swp_entry(*pvmw->pmd);
3103 	get_page(new);
3104 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3105 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3106 		pmde = pmd_mksoft_dirty(pmde);
3107 	if (is_write_migration_entry(entry))
3108 		pmde = maybe_pmd_mkwrite(pmde, vma);
3109 
3110 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3111 	if (PageAnon(new))
3112 		page_add_anon_rmap(new, vma, mmun_start, true);
3113 	else
3114 		page_add_file_rmap(new, true);
3115 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3116 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3117 		mlock_vma_page(new);
3118 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3119 }
3120 #endif
3121