1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static void generic_online_page(struct page *page, unsigned int order);
53
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58
get_online_mems(void)59 void get_online_mems(void)
60 {
61 percpu_down_read(&mem_hotplug_lock);
62 }
63
put_online_mems(void)64 void put_online_mems(void)
65 {
66 percpu_up_read(&mem_hotplug_lock);
67 }
68
69 bool movable_node_enabled = false;
70
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77
setup_memhp_default_state(char * str)78 static int __init setup_memhp_default_state(char *str)
79 {
80 if (!strcmp(str, "online"))
81 memhp_auto_online = true;
82 else if (!strcmp(str, "offline"))
83 memhp_auto_online = false;
84
85 return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88
mem_hotplug_begin(void)89 void mem_hotplug_begin(void)
90 {
91 cpus_read_lock();
92 percpu_down_write(&mem_hotplug_lock);
93 }
94
mem_hotplug_done(void)95 void mem_hotplug_done(void)
96 {
97 percpu_up_write(&mem_hotplug_lock);
98 cpus_read_unlock();
99 }
100
101 u64 max_mem_size = U64_MAX;
102
103 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size)104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 struct resource *res;
107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 char *resource_name = "System RAM";
109
110 if (start + size > max_mem_size)
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Request ownership of the new memory range. This might be
115 * a child of an existing resource that was present but
116 * not marked as busy.
117 */
118 res = __request_region(&iomem_resource, start, size,
119 resource_name, flags);
120
121 if (!res) {
122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 start, start + size);
124 return ERR_PTR(-EEXIST);
125 }
126 return res;
127 }
128
release_memory_resource(struct resource * res)129 static void release_memory_resource(struct resource *res)
130 {
131 if (!res)
132 return;
133 release_resource(res);
134 kfree(res);
135 }
136
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
get_page_bootmem(unsigned long info,struct page * page,unsigned long type)138 void get_page_bootmem(unsigned long info, struct page *page,
139 unsigned long type)
140 {
141 page->freelist = (void *)type;
142 SetPagePrivate(page);
143 set_page_private(page, info);
144 page_ref_inc(page);
145 }
146
put_page_bootmem(struct page * page)147 void put_page_bootmem(struct page *page)
148 {
149 unsigned long type;
150
151 type = (unsigned long) page->freelist;
152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154
155 if (page_ref_dec_return(page) == 1) {
156 page->freelist = NULL;
157 ClearPagePrivate(page);
158 set_page_private(page, 0);
159 INIT_LIST_HEAD(&page->lru);
160 free_reserved_page(page);
161 }
162 }
163
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
register_page_bootmem_info_section(unsigned long start_pfn)166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 unsigned long mapsize, section_nr, i;
169 struct mem_section *ms;
170 struct page *page, *memmap;
171 struct mem_section_usage *usage;
172
173 section_nr = pfn_to_section_nr(start_pfn);
174 ms = __nr_to_section(section_nr);
175
176 /* Get section's memmap address */
177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178
179 /*
180 * Get page for the memmap's phys address
181 * XXX: need more consideration for sparse_vmemmap...
182 */
183 page = virt_to_page(memmap);
184 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186
187 /* remember memmap's page */
188 for (i = 0; i < mapsize; i++, page++)
189 get_page_bootmem(section_nr, page, SECTION_INFO);
190
191 usage = ms->usage;
192 page = virt_to_page(usage);
193
194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195
196 for (i = 0; i < mapsize; i++, page++)
197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
register_page_bootmem_info_section(unsigned long start_pfn)201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 unsigned long mapsize, section_nr, i;
204 struct mem_section *ms;
205 struct page *page, *memmap;
206 struct mem_section_usage *usage;
207
208 section_nr = pfn_to_section_nr(start_pfn);
209 ms = __nr_to_section(section_nr);
210
211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212
213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214
215 usage = ms->usage;
216 page = virt_to_page(usage);
217
218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224
register_page_bootmem_info_node(struct pglist_data * pgdat)225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 unsigned long i, pfn, end_pfn, nr_pages;
228 int node = pgdat->node_id;
229 struct page *page;
230
231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 page = virt_to_page(pgdat);
233
234 for (i = 0; i < nr_pages; i++, page++)
235 get_page_bootmem(node, page, NODE_INFO);
236
237 pfn = pgdat->node_start_pfn;
238 end_pfn = pgdat_end_pfn(pgdat);
239
240 /* register section info */
241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 /*
243 * Some platforms can assign the same pfn to multiple nodes - on
244 * node0 as well as nodeN. To avoid registering a pfn against
245 * multiple nodes we check that this pfn does not already
246 * reside in some other nodes.
247 */
248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 register_page_bootmem_info_section(pfn);
250 }
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253
check_pfn_span(unsigned long pfn,unsigned long nr_pages,const char * reason)254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 const char *reason)
256 {
257 /*
258 * Disallow all operations smaller than a sub-section and only
259 * allow operations smaller than a section for
260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 * enforces a larger memory_block_size_bytes() granularity for
262 * memory that will be marked online, so this check should only
263 * fire for direct arch_{add,remove}_memory() users outside of
264 * add_memory_resource().
265 */
266 unsigned long min_align;
267
268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 min_align = PAGES_PER_SUBSECTION;
270 else
271 min_align = PAGES_PER_SECTION;
272 if (!IS_ALIGNED(pfn, min_align)
273 || !IS_ALIGNED(nr_pages, min_align)) {
274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 reason, pfn, pfn + nr_pages - 1);
276 return -EINVAL;
277 }
278 return 0;
279 }
280
281 /*
282 * Reasonably generic function for adding memory. It is
283 * expected that archs that support memory hotplug will
284 * call this function after deciding the zone to which to
285 * add the new pages.
286 */
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_restrictions * restrictions)287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 struct mhp_restrictions *restrictions)
289 {
290 int err;
291 unsigned long nr, start_sec, end_sec;
292 struct vmem_altmap *altmap = restrictions->altmap;
293
294 if (altmap) {
295 /*
296 * Validate altmap is within bounds of the total request
297 */
298 if (altmap->base_pfn != pfn
299 || vmem_altmap_offset(altmap) > nr_pages) {
300 pr_warn_once("memory add fail, invalid altmap\n");
301 return -EINVAL;
302 }
303 altmap->alloc = 0;
304 }
305
306 err = check_pfn_span(pfn, nr_pages, "add");
307 if (err)
308 return err;
309
310 start_sec = pfn_to_section_nr(pfn);
311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 for (nr = start_sec; nr <= end_sec; nr++) {
313 unsigned long pfns;
314
315 pfns = min(nr_pages, PAGES_PER_SECTION
316 - (pfn & ~PAGE_SECTION_MASK));
317 err = sparse_add_section(nid, pfn, pfns, altmap);
318 if (err)
319 break;
320 pfn += pfns;
321 nr_pages -= pfns;
322 cond_resched();
323 }
324 vmemmap_populate_print_last();
325 return err;
326 }
327
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 unsigned long start_pfn,
331 unsigned long end_pfn)
332 {
333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 if (unlikely(!pfn_to_online_page(start_pfn)))
335 continue;
336
337 if (unlikely(pfn_to_nid(start_pfn) != nid))
338 continue;
339
340 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 continue;
342
343 return start_pfn;
344 }
345
346 return 0;
347 }
348
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 unsigned long start_pfn,
352 unsigned long end_pfn)
353 {
354 unsigned long pfn;
355
356 /* pfn is the end pfn of a memory section. */
357 pfn = end_pfn - 1;
358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_to_online_page(pfn)))
360 continue;
361
362 if (unlikely(pfn_to_nid(pfn) != nid))
363 continue;
364
365 if (zone && zone != page_zone(pfn_to_page(pfn)))
366 continue;
367
368 return pfn;
369 }
370
371 return 0;
372 }
373
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 unsigned long end_pfn)
376 {
377 unsigned long zone_start_pfn = zone->zone_start_pfn;
378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 unsigned long zone_end_pfn = z;
380 unsigned long pfn;
381 int nid = zone_to_nid(zone);
382
383 zone_span_writelock(zone);
384 if (zone_start_pfn == start_pfn) {
385 /*
386 * If the section is smallest section in the zone, it need
387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 * In this case, we find second smallest valid mem_section
389 * for shrinking zone.
390 */
391 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 zone_end_pfn);
393 if (pfn) {
394 zone->zone_start_pfn = pfn;
395 zone->spanned_pages = zone_end_pfn - pfn;
396 }
397 } else if (zone_end_pfn == end_pfn) {
398 /*
399 * If the section is biggest section in the zone, it need
400 * shrink zone->spanned_pages.
401 * In this case, we find second biggest valid mem_section for
402 * shrinking zone.
403 */
404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 start_pfn);
406 if (pfn)
407 zone->spanned_pages = pfn - zone_start_pfn + 1;
408 }
409
410 /*
411 * The section is not biggest or smallest mem_section in the zone, it
412 * only creates a hole in the zone. So in this case, we need not
413 * change the zone. But perhaps, the zone has only hole data. Thus
414 * it check the zone has only hole or not.
415 */
416 pfn = zone_start_pfn;
417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 if (unlikely(!pfn_to_online_page(pfn)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* Skip range to be removed */
425 if (pfn >= start_pfn && pfn < end_pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437 }
438
update_pgdat_span(struct pglist_data * pgdat)439 static void update_pgdat_span(struct pglist_data *pgdat)
440 {
441 unsigned long node_start_pfn = 0, node_end_pfn = 0;
442 struct zone *zone;
443
444 for (zone = pgdat->node_zones;
445 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
446 unsigned long zone_end_pfn = zone->zone_start_pfn +
447 zone->spanned_pages;
448
449 /* No need to lock the zones, they can't change. */
450 if (!zone->spanned_pages)
451 continue;
452 if (!node_end_pfn) {
453 node_start_pfn = zone->zone_start_pfn;
454 node_end_pfn = zone_end_pfn;
455 continue;
456 }
457
458 if (zone_end_pfn > node_end_pfn)
459 node_end_pfn = zone_end_pfn;
460 if (zone->zone_start_pfn < node_start_pfn)
461 node_start_pfn = zone->zone_start_pfn;
462 }
463
464 pgdat->node_start_pfn = node_start_pfn;
465 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
466 }
467
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)468 void __ref remove_pfn_range_from_zone(struct zone *zone,
469 unsigned long start_pfn,
470 unsigned long nr_pages)
471 {
472 struct pglist_data *pgdat = zone->zone_pgdat;
473 unsigned long flags;
474
475 #ifdef CONFIG_ZONE_DEVICE
476 /*
477 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
478 * we will not try to shrink the zones - which is okay as
479 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
480 */
481 if (zone_idx(zone) == ZONE_DEVICE)
482 return;
483 #endif
484
485 clear_zone_contiguous(zone);
486
487 pgdat_resize_lock(zone->zone_pgdat, &flags);
488 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
489 update_pgdat_span(pgdat);
490 pgdat_resize_unlock(zone->zone_pgdat, &flags);
491
492 set_zone_contiguous(zone);
493 }
494
__remove_section(unsigned long pfn,unsigned long nr_pages,unsigned long map_offset,struct vmem_altmap * altmap)495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496 unsigned long map_offset,
497 struct vmem_altmap *altmap)
498 {
499 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
500
501 if (WARN_ON_ONCE(!valid_section(ms)))
502 return;
503
504 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505 }
506
507 /**
508 * __remove_pages() - remove sections of pages
509 * @pfn: starting pageframe (must be aligned to start of a section)
510 * @nr_pages: number of pages to remove (must be multiple of section size)
511 * @altmap: alternative device page map or %NULL if default memmap is used
512 *
513 * Generic helper function to remove section mappings and sysfs entries
514 * for the section of the memory we are removing. Caller needs to make
515 * sure that pages are marked reserved and zones are adjust properly by
516 * calling offline_pages().
517 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519 struct vmem_altmap *altmap)
520 {
521 unsigned long map_offset = 0;
522 unsigned long nr, start_sec, end_sec;
523
524 map_offset = vmem_altmap_offset(altmap);
525
526 if (check_pfn_span(pfn, nr_pages, "remove"))
527 return;
528
529 start_sec = pfn_to_section_nr(pfn);
530 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
531 for (nr = start_sec; nr <= end_sec; nr++) {
532 unsigned long pfns;
533
534 cond_resched();
535 pfns = min(nr_pages, PAGES_PER_SECTION
536 - (pfn & ~PAGE_SECTION_MASK));
537 __remove_section(pfn, pfns, map_offset, altmap);
538 pfn += pfns;
539 nr_pages -= pfns;
540 map_offset = 0;
541 }
542 }
543
set_online_page_callback(online_page_callback_t callback)544 int set_online_page_callback(online_page_callback_t callback)
545 {
546 int rc = -EINVAL;
547
548 get_online_mems();
549 mutex_lock(&online_page_callback_lock);
550
551 if (online_page_callback == generic_online_page) {
552 online_page_callback = callback;
553 rc = 0;
554 }
555
556 mutex_unlock(&online_page_callback_lock);
557 put_online_mems();
558
559 return rc;
560 }
561 EXPORT_SYMBOL_GPL(set_online_page_callback);
562
restore_online_page_callback(online_page_callback_t callback)563 int restore_online_page_callback(online_page_callback_t callback)
564 {
565 int rc = -EINVAL;
566
567 get_online_mems();
568 mutex_lock(&online_page_callback_lock);
569
570 if (online_page_callback == callback) {
571 online_page_callback = generic_online_page;
572 rc = 0;
573 }
574
575 mutex_unlock(&online_page_callback_lock);
576 put_online_mems();
577
578 return rc;
579 }
580 EXPORT_SYMBOL_GPL(restore_online_page_callback);
581
__online_page_set_limits(struct page * page)582 void __online_page_set_limits(struct page *page)
583 {
584 }
585 EXPORT_SYMBOL_GPL(__online_page_set_limits);
586
__online_page_increment_counters(struct page * page)587 void __online_page_increment_counters(struct page *page)
588 {
589 adjust_managed_page_count(page, 1);
590 }
591 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
592
__online_page_free(struct page * page)593 void __online_page_free(struct page *page)
594 {
595 __free_reserved_page(page);
596 }
597 EXPORT_SYMBOL_GPL(__online_page_free);
598
generic_online_page(struct page * page,unsigned int order)599 static void generic_online_page(struct page *page, unsigned int order)
600 {
601 /*
602 * Freeing the page with debug_pagealloc enabled will try to unmap it,
603 * so we should map it first. This is better than introducing a special
604 * case in page freeing fast path.
605 */
606 if (debug_pagealloc_enabled_static())
607 kernel_map_pages(page, 1 << order, 1);
608 __free_pages_core(page, order);
609 totalram_pages_add(1UL << order);
610 #ifdef CONFIG_HIGHMEM
611 if (PageHighMem(page))
612 totalhigh_pages_add(1UL << order);
613 #endif
614 }
615
online_pages_range(unsigned long start_pfn,unsigned long nr_pages,void * arg)616 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
617 void *arg)
618 {
619 const unsigned long end_pfn = start_pfn + nr_pages;
620 unsigned long pfn;
621 int order;
622
623 /*
624 * Online the pages. The callback might decide to keep some pages
625 * PG_reserved (to add them to the buddy later), but we still account
626 * them as being online/belonging to this zone ("present").
627 */
628 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
629 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
630 /* __free_pages_core() wants pfns to be aligned to the order */
631 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
632 order = 0;
633 (*online_page_callback)(pfn_to_page(pfn), order);
634 }
635
636 /* mark all involved sections as online */
637 online_mem_sections(start_pfn, end_pfn);
638
639 *(unsigned long *)arg += nr_pages;
640 return 0;
641 }
642
643 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)644 static void node_states_check_changes_online(unsigned long nr_pages,
645 struct zone *zone, struct memory_notify *arg)
646 {
647 int nid = zone_to_nid(zone);
648
649 arg->status_change_nid = NUMA_NO_NODE;
650 arg->status_change_nid_normal = NUMA_NO_NODE;
651 arg->status_change_nid_high = NUMA_NO_NODE;
652
653 if (!node_state(nid, N_MEMORY))
654 arg->status_change_nid = nid;
655 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
656 arg->status_change_nid_normal = nid;
657 #ifdef CONFIG_HIGHMEM
658 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
659 arg->status_change_nid_high = nid;
660 #endif
661 }
662
node_states_set_node(int node,struct memory_notify * arg)663 static void node_states_set_node(int node, struct memory_notify *arg)
664 {
665 if (arg->status_change_nid_normal >= 0)
666 node_set_state(node, N_NORMAL_MEMORY);
667
668 if (arg->status_change_nid_high >= 0)
669 node_set_state(node, N_HIGH_MEMORY);
670
671 if (arg->status_change_nid >= 0)
672 node_set_state(node, N_MEMORY);
673 }
674
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)675 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
676 unsigned long nr_pages)
677 {
678 unsigned long old_end_pfn = zone_end_pfn(zone);
679
680 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
681 zone->zone_start_pfn = start_pfn;
682
683 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
684 }
685
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)686 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
687 unsigned long nr_pages)
688 {
689 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
690
691 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
692 pgdat->node_start_pfn = start_pfn;
693
694 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
695
696 }
697 /*
698 * Associate the pfn range with the given zone, initializing the memmaps
699 * and resizing the pgdat/zone data to span the added pages. After this
700 * call, all affected pages are PG_reserved.
701 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap)702 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
703 unsigned long nr_pages, struct vmem_altmap *altmap)
704 {
705 struct pglist_data *pgdat = zone->zone_pgdat;
706 int nid = pgdat->node_id;
707 unsigned long flags;
708
709 clear_zone_contiguous(zone);
710
711 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
712 pgdat_resize_lock(pgdat, &flags);
713 zone_span_writelock(zone);
714 if (zone_is_empty(zone))
715 init_currently_empty_zone(zone, start_pfn, nr_pages);
716 resize_zone_range(zone, start_pfn, nr_pages);
717 zone_span_writeunlock(zone);
718 resize_pgdat_range(pgdat, start_pfn, nr_pages);
719 pgdat_resize_unlock(pgdat, &flags);
720
721 /*
722 * TODO now we have a visible range of pages which are not associated
723 * with their zone properly. Not nice but set_pfnblock_flags_mask
724 * expects the zone spans the pfn range. All the pages in the range
725 * are reserved so nobody should be touching them so we should be safe
726 */
727 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
728 MEMINIT_HOTPLUG, altmap);
729
730 set_zone_contiguous(zone);
731 }
732
733 /*
734 * Returns a default kernel memory zone for the given pfn range.
735 * If no kernel zone covers this pfn range it will automatically go
736 * to the ZONE_NORMAL.
737 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)738 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
739 unsigned long nr_pages)
740 {
741 struct pglist_data *pgdat = NODE_DATA(nid);
742 int zid;
743
744 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
745 struct zone *zone = &pgdat->node_zones[zid];
746
747 if (zone_intersects(zone, start_pfn, nr_pages))
748 return zone;
749 }
750
751 return &pgdat->node_zones[ZONE_NORMAL];
752 }
753
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)754 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
755 unsigned long nr_pages)
756 {
757 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
758 nr_pages);
759 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
760 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
761 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
762
763 /*
764 * We inherit the existing zone in a simple case where zones do not
765 * overlap in the given range
766 */
767 if (in_kernel ^ in_movable)
768 return (in_kernel) ? kernel_zone : movable_zone;
769
770 /*
771 * If the range doesn't belong to any zone or two zones overlap in the
772 * given range then we use movable zone only if movable_node is
773 * enabled because we always online to a kernel zone by default.
774 */
775 return movable_node_enabled ? movable_zone : kernel_zone;
776 }
777
zone_for_pfn_range(int online_type,int nid,unsigned long start_pfn,unsigned long nr_pages)778 struct zone *zone_for_pfn_range(int online_type, int nid,
779 unsigned long start_pfn, unsigned long nr_pages)
780 {
781 if (online_type == MMOP_ONLINE_KERNEL)
782 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
783
784 if (online_type == MMOP_ONLINE_MOVABLE)
785 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
786
787 return default_zone_for_pfn(nid, start_pfn, nr_pages);
788 }
789
online_pages(unsigned long pfn,unsigned long nr_pages,int online_type)790 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
791 {
792 unsigned long flags;
793 unsigned long onlined_pages = 0;
794 struct zone *zone;
795 int need_zonelists_rebuild = 0;
796 int nid;
797 int ret;
798 struct memory_notify arg;
799 struct memory_block *mem;
800
801 mem_hotplug_begin();
802
803 /*
804 * We can't use pfn_to_nid() because nid might be stored in struct page
805 * which is not yet initialized. Instead, we find nid from memory block.
806 */
807 mem = find_memory_block(__pfn_to_section(pfn));
808 nid = mem->nid;
809 put_device(&mem->dev);
810
811 /* associate pfn range with the zone */
812 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
813 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
814
815 arg.start_pfn = pfn;
816 arg.nr_pages = nr_pages;
817 node_states_check_changes_online(nr_pages, zone, &arg);
818
819 ret = memory_notify(MEM_GOING_ONLINE, &arg);
820 ret = notifier_to_errno(ret);
821 if (ret)
822 goto failed_addition;
823
824 /*
825 * If this zone is not populated, then it is not in zonelist.
826 * This means the page allocator ignores this zone.
827 * So, zonelist must be updated after online.
828 */
829 if (!populated_zone(zone)) {
830 need_zonelists_rebuild = 1;
831 setup_zone_pageset(zone);
832 }
833
834 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
835 online_pages_range);
836 if (ret) {
837 /* not a single memory resource was applicable */
838 if (need_zonelists_rebuild)
839 zone_pcp_reset(zone);
840 goto failed_addition;
841 }
842
843 zone->present_pages += onlined_pages;
844
845 pgdat_resize_lock(zone->zone_pgdat, &flags);
846 zone->zone_pgdat->node_present_pages += onlined_pages;
847 pgdat_resize_unlock(zone->zone_pgdat, &flags);
848
849 shuffle_zone(zone);
850
851 node_states_set_node(nid, &arg);
852 if (need_zonelists_rebuild)
853 build_all_zonelists(NULL);
854 else
855 zone_pcp_update(zone);
856
857 init_per_zone_wmark_min();
858
859 kswapd_run(nid);
860 kcompactd_run(nid);
861
862 vm_total_pages = nr_free_pagecache_pages();
863
864 writeback_set_ratelimit();
865
866 memory_notify(MEM_ONLINE, &arg);
867 mem_hotplug_done();
868 return 0;
869
870 failed_addition:
871 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
872 (unsigned long long) pfn << PAGE_SHIFT,
873 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
874 memory_notify(MEM_CANCEL_ONLINE, &arg);
875 remove_pfn_range_from_zone(zone, pfn, nr_pages);
876 mem_hotplug_done();
877 return ret;
878 }
879 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
880
reset_node_present_pages(pg_data_t * pgdat)881 static void reset_node_present_pages(pg_data_t *pgdat)
882 {
883 struct zone *z;
884
885 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
886 z->present_pages = 0;
887
888 pgdat->node_present_pages = 0;
889 }
890
891 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_new_pgdat(int nid,u64 start)892 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
893 {
894 struct pglist_data *pgdat;
895 unsigned long start_pfn = PFN_DOWN(start);
896
897 pgdat = NODE_DATA(nid);
898 if (!pgdat) {
899 pgdat = arch_alloc_nodedata(nid);
900 if (!pgdat)
901 return NULL;
902
903 pgdat->per_cpu_nodestats =
904 alloc_percpu(struct per_cpu_nodestat);
905 arch_refresh_nodedata(nid, pgdat);
906 } else {
907 int cpu;
908 /*
909 * Reset the nr_zones, order and classzone_idx before reuse.
910 * Note that kswapd will init kswapd_classzone_idx properly
911 * when it starts in the near future.
912 */
913 pgdat->nr_zones = 0;
914 pgdat->kswapd_order = 0;
915 pgdat->kswapd_classzone_idx = 0;
916 for_each_online_cpu(cpu) {
917 struct per_cpu_nodestat *p;
918
919 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
920 memset(p, 0, sizeof(*p));
921 }
922 }
923
924 /* we can use NODE_DATA(nid) from here */
925
926 pgdat->node_id = nid;
927 pgdat->node_start_pfn = start_pfn;
928
929 /* init node's zones as empty zones, we don't have any present pages.*/
930 free_area_init_core_hotplug(nid);
931
932 /*
933 * The node we allocated has no zone fallback lists. For avoiding
934 * to access not-initialized zonelist, build here.
935 */
936 build_all_zonelists(pgdat);
937
938 /*
939 * When memory is hot-added, all the memory is in offline state. So
940 * clear all zones' present_pages because they will be updated in
941 * online_pages() and offline_pages().
942 */
943 reset_node_managed_pages(pgdat);
944 reset_node_present_pages(pgdat);
945
946 return pgdat;
947 }
948
rollback_node_hotadd(int nid)949 static void rollback_node_hotadd(int nid)
950 {
951 pg_data_t *pgdat = NODE_DATA(nid);
952
953 arch_refresh_nodedata(nid, NULL);
954 free_percpu(pgdat->per_cpu_nodestats);
955 arch_free_nodedata(pgdat);
956 }
957
958
959 /**
960 * try_online_node - online a node if offlined
961 * @nid: the node ID
962 * @start: start addr of the node
963 * @set_node_online: Whether we want to online the node
964 * called by cpu_up() to online a node without onlined memory.
965 *
966 * Returns:
967 * 1 -> a new node has been allocated
968 * 0 -> the node is already online
969 * -ENOMEM -> the node could not be allocated
970 */
__try_online_node(int nid,u64 start,bool set_node_online)971 static int __try_online_node(int nid, u64 start, bool set_node_online)
972 {
973 pg_data_t *pgdat;
974 int ret = 1;
975
976 if (node_online(nid))
977 return 0;
978
979 pgdat = hotadd_new_pgdat(nid, start);
980 if (!pgdat) {
981 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
982 ret = -ENOMEM;
983 goto out;
984 }
985
986 if (set_node_online) {
987 node_set_online(nid);
988 ret = register_one_node(nid);
989 BUG_ON(ret);
990 }
991 out:
992 return ret;
993 }
994
995 /*
996 * Users of this function always want to online/register the node
997 */
try_online_node(int nid)998 int try_online_node(int nid)
999 {
1000 int ret;
1001
1002 mem_hotplug_begin();
1003 ret = __try_online_node(nid, 0, true);
1004 mem_hotplug_done();
1005 return ret;
1006 }
1007
check_hotplug_memory_range(u64 start,u64 size)1008 static int check_hotplug_memory_range(u64 start, u64 size)
1009 {
1010 /* memory range must be block size aligned */
1011 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1012 !IS_ALIGNED(size, memory_block_size_bytes())) {
1013 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1014 memory_block_size_bytes(), start, size);
1015 return -EINVAL;
1016 }
1017
1018 return 0;
1019 }
1020
online_memory_block(struct memory_block * mem,void * arg)1021 static int online_memory_block(struct memory_block *mem, void *arg)
1022 {
1023 return device_online(&mem->dev);
1024 }
1025
1026 /*
1027 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1028 * and online/offline operations (triggered e.g. by sysfs).
1029 *
1030 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1031 */
add_memory_resource(int nid,struct resource * res)1032 int __ref add_memory_resource(int nid, struct resource *res)
1033 {
1034 struct mhp_restrictions restrictions = {};
1035 u64 start, size;
1036 bool new_node = false;
1037 int ret;
1038
1039 start = res->start;
1040 size = resource_size(res);
1041
1042 ret = check_hotplug_memory_range(start, size);
1043 if (ret)
1044 return ret;
1045
1046 mem_hotplug_begin();
1047
1048 /*
1049 * Add new range to memblock so that when hotadd_new_pgdat() is called
1050 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1051 * this new range and calculate total pages correctly. The range will
1052 * be removed at hot-remove time.
1053 */
1054 memblock_add_node(start, size, nid);
1055
1056 ret = __try_online_node(nid, start, false);
1057 if (ret < 0)
1058 goto error;
1059 new_node = ret;
1060
1061 /* call arch's memory hotadd */
1062 ret = arch_add_memory(nid, start, size, &restrictions);
1063 if (ret < 0)
1064 goto error;
1065
1066 /* create memory block devices after memory was added */
1067 ret = create_memory_block_devices(start, size);
1068 if (ret) {
1069 arch_remove_memory(nid, start, size, NULL);
1070 goto error;
1071 }
1072
1073 if (new_node) {
1074 /* If sysfs file of new node can't be created, cpu on the node
1075 * can't be hot-added. There is no rollback way now.
1076 * So, check by BUG_ON() to catch it reluctantly..
1077 * We online node here. We can't roll back from here.
1078 */
1079 node_set_online(nid);
1080 ret = __register_one_node(nid);
1081 BUG_ON(ret);
1082 }
1083
1084 /* link memory sections under this node.*/
1085 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1086 MEMINIT_HOTPLUG);
1087 BUG_ON(ret);
1088
1089 /* create new memmap entry */
1090 firmware_map_add_hotplug(start, start + size, "System RAM");
1091
1092 /* device_online() will take the lock when calling online_pages() */
1093 mem_hotplug_done();
1094
1095 /* online pages if requested */
1096 if (memhp_auto_online)
1097 walk_memory_blocks(start, size, NULL, online_memory_block);
1098
1099 return ret;
1100 error:
1101 /* rollback pgdat allocation and others */
1102 if (new_node)
1103 rollback_node_hotadd(nid);
1104 memblock_remove(start, size);
1105 mem_hotplug_done();
1106 return ret;
1107 }
1108
1109 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size)1110 int __ref __add_memory(int nid, u64 start, u64 size)
1111 {
1112 struct resource *res;
1113 int ret;
1114
1115 res = register_memory_resource(start, size);
1116 if (IS_ERR(res))
1117 return PTR_ERR(res);
1118
1119 ret = add_memory_resource(nid, res);
1120 if (ret < 0)
1121 release_memory_resource(res);
1122 return ret;
1123 }
1124
add_memory(int nid,u64 start,u64 size)1125 int add_memory(int nid, u64 start, u64 size)
1126 {
1127 int rc;
1128
1129 lock_device_hotplug();
1130 rc = __add_memory(nid, start, size);
1131 unlock_device_hotplug();
1132
1133 return rc;
1134 }
1135 EXPORT_SYMBOL_GPL(add_memory);
1136
1137 #ifdef CONFIG_MEMORY_HOTREMOVE
1138 /*
1139 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1140 * set and the size of the free page is given by page_order(). Using this,
1141 * the function determines if the pageblock contains only free pages.
1142 * Due to buddy contraints, a free page at least the size of a pageblock will
1143 * be located at the start of the pageblock
1144 */
pageblock_free(struct page * page)1145 static inline int pageblock_free(struct page *page)
1146 {
1147 return PageBuddy(page) && page_order(page) >= pageblock_order;
1148 }
1149
1150 /* Return the pfn of the start of the next active pageblock after a given pfn */
next_active_pageblock(unsigned long pfn)1151 static unsigned long next_active_pageblock(unsigned long pfn)
1152 {
1153 struct page *page = pfn_to_page(pfn);
1154
1155 /* Ensure the starting page is pageblock-aligned */
1156 BUG_ON(pfn & (pageblock_nr_pages - 1));
1157
1158 /* If the entire pageblock is free, move to the end of free page */
1159 if (pageblock_free(page)) {
1160 int order;
1161 /* be careful. we don't have locks, page_order can be changed.*/
1162 order = page_order(page);
1163 if ((order < MAX_ORDER) && (order >= pageblock_order))
1164 return pfn + (1 << order);
1165 }
1166
1167 return pfn + pageblock_nr_pages;
1168 }
1169
is_pageblock_removable_nolock(unsigned long pfn)1170 static bool is_pageblock_removable_nolock(unsigned long pfn)
1171 {
1172 struct page *page = pfn_to_page(pfn);
1173 struct zone *zone;
1174
1175 /*
1176 * We have to be careful here because we are iterating over memory
1177 * sections which are not zone aware so we might end up outside of
1178 * the zone but still within the section.
1179 * We have to take care about the node as well. If the node is offline
1180 * its NODE_DATA will be NULL - see page_zone.
1181 */
1182 if (!node_online(page_to_nid(page)))
1183 return false;
1184
1185 zone = page_zone(page);
1186 pfn = page_to_pfn(page);
1187 if (!zone_spans_pfn(zone, pfn))
1188 return false;
1189
1190 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1191 }
1192
1193 /* Checks if this range of memory is likely to be hot-removable. */
is_mem_section_removable(unsigned long start_pfn,unsigned long nr_pages)1194 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1195 {
1196 unsigned long end_pfn, pfn;
1197
1198 end_pfn = min(start_pfn + nr_pages,
1199 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1200
1201 /* Check the starting page of each pageblock within the range */
1202 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1203 if (!is_pageblock_removable_nolock(pfn))
1204 return false;
1205 cond_resched();
1206 }
1207
1208 /* All pageblocks in the memory block are likely to be hot-removable */
1209 return true;
1210 }
1211
1212 /*
1213 * Confirm all pages in a range [start, end) belong to the same zone.
1214 * When true, return its valid [start, end).
1215 */
test_pages_in_a_zone(unsigned long start_pfn,unsigned long end_pfn,unsigned long * valid_start,unsigned long * valid_end)1216 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1217 unsigned long *valid_start, unsigned long *valid_end)
1218 {
1219 unsigned long pfn, sec_end_pfn;
1220 unsigned long start, end;
1221 struct zone *zone = NULL;
1222 struct page *page;
1223 int i;
1224 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1225 pfn < end_pfn;
1226 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1227 /* Make sure the memory section is present first */
1228 if (!present_section_nr(pfn_to_section_nr(pfn)))
1229 continue;
1230 for (; pfn < sec_end_pfn && pfn < end_pfn;
1231 pfn += MAX_ORDER_NR_PAGES) {
1232 i = 0;
1233 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1234 while ((i < MAX_ORDER_NR_PAGES) &&
1235 !pfn_valid_within(pfn + i))
1236 i++;
1237 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1238 continue;
1239 /* Check if we got outside of the zone */
1240 if (zone && !zone_spans_pfn(zone, pfn + i))
1241 return 0;
1242 page = pfn_to_page(pfn + i);
1243 if (zone && page_zone(page) != zone)
1244 return 0;
1245 if (!zone)
1246 start = pfn + i;
1247 zone = page_zone(page);
1248 end = pfn + MAX_ORDER_NR_PAGES;
1249 }
1250 }
1251
1252 if (zone) {
1253 *valid_start = start;
1254 *valid_end = min(end, end_pfn);
1255 return 1;
1256 } else {
1257 return 0;
1258 }
1259 }
1260
1261 /*
1262 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1263 * non-lru movable pages and hugepages). We scan pfn because it's much
1264 * easier than scanning over linked list. This function returns the pfn
1265 * of the first found movable page if it's found, otherwise 0.
1266 */
scan_movable_pages(unsigned long start,unsigned long end)1267 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1268 {
1269 unsigned long pfn;
1270
1271 for (pfn = start; pfn < end; pfn++) {
1272 struct page *page, *head;
1273 unsigned long skip;
1274
1275 if (!pfn_valid(pfn))
1276 continue;
1277 page = pfn_to_page(pfn);
1278 if (PageLRU(page))
1279 return pfn;
1280 if (__PageMovable(page))
1281 return pfn;
1282
1283 if (!PageHuge(page))
1284 continue;
1285 head = compound_head(page);
1286 if (page_huge_active(head))
1287 return pfn;
1288 skip = compound_nr(head) - (page - head);
1289 pfn += skip - 1;
1290 }
1291 return 0;
1292 }
1293
new_node_page(struct page * page,unsigned long private)1294 static struct page *new_node_page(struct page *page, unsigned long private)
1295 {
1296 int nid = page_to_nid(page);
1297 nodemask_t nmask = node_states[N_MEMORY];
1298
1299 /*
1300 * try to allocate from a different node but reuse this node if there
1301 * are no other online nodes to be used (e.g. we are offlining a part
1302 * of the only existing node)
1303 */
1304 node_clear(nid, nmask);
1305 if (nodes_empty(nmask))
1306 node_set(nid, nmask);
1307
1308 return new_page_nodemask(page, nid, &nmask);
1309 }
1310
1311 static int
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1312 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1313 {
1314 unsigned long pfn;
1315 struct page *page;
1316 int ret = 0;
1317 LIST_HEAD(source);
1318
1319 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1320 if (!pfn_valid(pfn))
1321 continue;
1322 page = pfn_to_page(pfn);
1323
1324 if (PageHuge(page)) {
1325 struct page *head = compound_head(page);
1326 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1327 isolate_huge_page(head, &source);
1328 continue;
1329 } else if (PageTransHuge(page))
1330 pfn = page_to_pfn(compound_head(page))
1331 + hpage_nr_pages(page) - 1;
1332
1333 /*
1334 * HWPoison pages have elevated reference counts so the migration would
1335 * fail on them. It also doesn't make any sense to migrate them in the
1336 * first place. Still try to unmap such a page in case it is still mapped
1337 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1338 * the unmap as the catch all safety net).
1339 */
1340 if (PageHWPoison(page)) {
1341 if (WARN_ON(PageLRU(page)))
1342 isolate_lru_page(page);
1343 if (page_mapped(page))
1344 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1345 continue;
1346 }
1347
1348 if (!get_page_unless_zero(page))
1349 continue;
1350 /*
1351 * We can skip free pages. And we can deal with pages on
1352 * LRU and non-lru movable pages.
1353 */
1354 if (PageLRU(page))
1355 ret = isolate_lru_page(page);
1356 else
1357 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1358 if (!ret) { /* Success */
1359 list_add_tail(&page->lru, &source);
1360 if (!__PageMovable(page))
1361 inc_node_page_state(page, NR_ISOLATED_ANON +
1362 page_is_file_cache(page));
1363
1364 } else {
1365 pr_warn("failed to isolate pfn %lx\n", pfn);
1366 dump_page(page, "isolation failed");
1367 }
1368 put_page(page);
1369 }
1370 if (!list_empty(&source)) {
1371 /* Allocate a new page from the nearest neighbor node */
1372 ret = migrate_pages(&source, new_node_page, NULL, 0,
1373 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1374 if (ret) {
1375 list_for_each_entry(page, &source, lru) {
1376 pr_warn("migrating pfn %lx failed ret:%d ",
1377 page_to_pfn(page), ret);
1378 dump_page(page, "migration failure");
1379 }
1380 putback_movable_pages(&source);
1381 }
1382 }
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * remove from free_area[] and mark all as Reserved.
1389 */
1390 static int
offline_isolated_pages_cb(unsigned long start,unsigned long nr_pages,void * data)1391 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1392 void *data)
1393 {
1394 unsigned long *offlined_pages = (unsigned long *)data;
1395
1396 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1397 return 0;
1398 }
1399
1400 /*
1401 * Check all pages in range, recoreded as memory resource, are isolated.
1402 */
1403 static int
check_pages_isolated_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1404 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1405 void *data)
1406 {
1407 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1408 }
1409
cmdline_parse_movable_node(char * p)1410 static int __init cmdline_parse_movable_node(char *p)
1411 {
1412 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1413 movable_node_enabled = true;
1414 #else
1415 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1416 #endif
1417 return 0;
1418 }
1419 early_param("movable_node", cmdline_parse_movable_node);
1420
1421 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1422 static void node_states_check_changes_offline(unsigned long nr_pages,
1423 struct zone *zone, struct memory_notify *arg)
1424 {
1425 struct pglist_data *pgdat = zone->zone_pgdat;
1426 unsigned long present_pages = 0;
1427 enum zone_type zt;
1428
1429 arg->status_change_nid = NUMA_NO_NODE;
1430 arg->status_change_nid_normal = NUMA_NO_NODE;
1431 arg->status_change_nid_high = NUMA_NO_NODE;
1432
1433 /*
1434 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1435 * If the memory to be offline is within the range
1436 * [0..ZONE_NORMAL], and it is the last present memory there,
1437 * the zones in that range will become empty after the offlining,
1438 * thus we can determine that we need to clear the node from
1439 * node_states[N_NORMAL_MEMORY].
1440 */
1441 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1442 present_pages += pgdat->node_zones[zt].present_pages;
1443 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1444 arg->status_change_nid_normal = zone_to_nid(zone);
1445
1446 #ifdef CONFIG_HIGHMEM
1447 /*
1448 * node_states[N_HIGH_MEMORY] contains nodes which
1449 * have normal memory or high memory.
1450 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1451 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1452 * we determine that the zones in that range become empty,
1453 * we need to clear the node for N_HIGH_MEMORY.
1454 */
1455 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1456 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1457 arg->status_change_nid_high = zone_to_nid(zone);
1458 #endif
1459
1460 /*
1461 * We have accounted the pages from [0..ZONE_NORMAL), and
1462 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1463 * as well.
1464 * Here we count the possible pages from ZONE_MOVABLE.
1465 * If after having accounted all the pages, we see that the nr_pages
1466 * to be offlined is over or equal to the accounted pages,
1467 * we know that the node will become empty, and so, we can clear
1468 * it for N_MEMORY as well.
1469 */
1470 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1471
1472 if (nr_pages >= present_pages)
1473 arg->status_change_nid = zone_to_nid(zone);
1474 }
1475
node_states_clear_node(int node,struct memory_notify * arg)1476 static void node_states_clear_node(int node, struct memory_notify *arg)
1477 {
1478 if (arg->status_change_nid_normal >= 0)
1479 node_clear_state(node, N_NORMAL_MEMORY);
1480
1481 if (arg->status_change_nid_high >= 0)
1482 node_clear_state(node, N_HIGH_MEMORY);
1483
1484 if (arg->status_change_nid >= 0)
1485 node_clear_state(node, N_MEMORY);
1486 }
1487
__offline_pages(unsigned long start_pfn,unsigned long end_pfn)1488 static int __ref __offline_pages(unsigned long start_pfn,
1489 unsigned long end_pfn)
1490 {
1491 unsigned long pfn, nr_pages;
1492 unsigned long offlined_pages = 0;
1493 int ret, node, nr_isolate_pageblock;
1494 unsigned long flags;
1495 unsigned long valid_start, valid_end;
1496 struct zone *zone;
1497 struct memory_notify arg;
1498 char *reason;
1499
1500 mem_hotplug_begin();
1501
1502 /* This makes hotplug much easier...and readable.
1503 we assume this for now. .*/
1504 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1505 &valid_end)) {
1506 ret = -EINVAL;
1507 reason = "multizone range";
1508 goto failed_removal;
1509 }
1510
1511 zone = page_zone(pfn_to_page(valid_start));
1512 node = zone_to_nid(zone);
1513 nr_pages = end_pfn - start_pfn;
1514
1515 /* set above range as isolated */
1516 ret = start_isolate_page_range(start_pfn, end_pfn,
1517 MIGRATE_MOVABLE,
1518 SKIP_HWPOISON | REPORT_FAILURE);
1519 if (ret < 0) {
1520 reason = "failure to isolate range";
1521 goto failed_removal;
1522 }
1523 nr_isolate_pageblock = ret;
1524
1525 arg.start_pfn = start_pfn;
1526 arg.nr_pages = nr_pages;
1527 node_states_check_changes_offline(nr_pages, zone, &arg);
1528
1529 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1530 ret = notifier_to_errno(ret);
1531 if (ret) {
1532 reason = "notifier failure";
1533 goto failed_removal_isolated;
1534 }
1535
1536 do {
1537 for (pfn = start_pfn; pfn;) {
1538 if (signal_pending(current)) {
1539 ret = -EINTR;
1540 reason = "signal backoff";
1541 goto failed_removal_isolated;
1542 }
1543
1544 cond_resched();
1545 lru_add_drain_all();
1546
1547 pfn = scan_movable_pages(pfn, end_pfn);
1548 if (pfn) {
1549 /*
1550 * TODO: fatal migration failures should bail
1551 * out
1552 */
1553 do_migrate_range(pfn, end_pfn);
1554 }
1555 }
1556
1557 /*
1558 * Dissolve free hugepages in the memory block before doing
1559 * offlining actually in order to make hugetlbfs's object
1560 * counting consistent.
1561 */
1562 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1563 if (ret) {
1564 reason = "failure to dissolve huge pages";
1565 goto failed_removal_isolated;
1566 }
1567 /* check again */
1568 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1569 NULL, check_pages_isolated_cb);
1570 /*
1571 * per-cpu pages are drained in start_isolate_page_range, but if
1572 * there are still pages that are not free, make sure that we
1573 * drain again, because when we isolated range we might
1574 * have raced with another thread that was adding pages to pcp
1575 * list.
1576 *
1577 * Forward progress should be still guaranteed because
1578 * pages on the pcp list can only belong to MOVABLE_ZONE
1579 * because has_unmovable_pages explicitly checks for
1580 * PageBuddy on freed pages on other zones.
1581 */
1582 if (ret)
1583 drain_all_pages(zone);
1584 } while (ret);
1585
1586 /* Ok, all of our target is isolated.
1587 We cannot do rollback at this point. */
1588 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1589 &offlined_pages, offline_isolated_pages_cb);
1590 pr_info("Offlined Pages %ld\n", offlined_pages);
1591 /*
1592 * Onlining will reset pagetype flags and makes migrate type
1593 * MOVABLE, so just need to decrease the number of isolated
1594 * pageblocks zone counter here.
1595 */
1596 spin_lock_irqsave(&zone->lock, flags);
1597 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1598 spin_unlock_irqrestore(&zone->lock, flags);
1599
1600 /* removal success */
1601 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1602 zone->present_pages -= offlined_pages;
1603
1604 pgdat_resize_lock(zone->zone_pgdat, &flags);
1605 zone->zone_pgdat->node_present_pages -= offlined_pages;
1606 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1607
1608 init_per_zone_wmark_min();
1609
1610 if (!populated_zone(zone)) {
1611 zone_pcp_reset(zone);
1612 build_all_zonelists(NULL);
1613 } else
1614 zone_pcp_update(zone);
1615
1616 node_states_clear_node(node, &arg);
1617 if (arg.status_change_nid >= 0) {
1618 kswapd_stop(node);
1619 kcompactd_stop(node);
1620 }
1621
1622 vm_total_pages = nr_free_pagecache_pages();
1623 writeback_set_ratelimit();
1624
1625 memory_notify(MEM_OFFLINE, &arg);
1626 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1627 mem_hotplug_done();
1628 return 0;
1629
1630 failed_removal_isolated:
1631 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1632 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1633 failed_removal:
1634 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1635 (unsigned long long) start_pfn << PAGE_SHIFT,
1636 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1637 reason);
1638 /* pushback to free area */
1639 mem_hotplug_done();
1640 return ret;
1641 }
1642
offline_pages(unsigned long start_pfn,unsigned long nr_pages)1643 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1644 {
1645 return __offline_pages(start_pfn, start_pfn + nr_pages);
1646 }
1647
check_memblock_offlined_cb(struct memory_block * mem,void * arg)1648 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1649 {
1650 int ret = !is_memblock_offlined(mem);
1651
1652 if (unlikely(ret)) {
1653 phys_addr_t beginpa, endpa;
1654
1655 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1656 endpa = beginpa + memory_block_size_bytes() - 1;
1657 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1658 &beginpa, &endpa);
1659
1660 return -EBUSY;
1661 }
1662 return 0;
1663 }
1664
check_cpu_on_node(pg_data_t * pgdat)1665 static int check_cpu_on_node(pg_data_t *pgdat)
1666 {
1667 int cpu;
1668
1669 for_each_present_cpu(cpu) {
1670 if (cpu_to_node(cpu) == pgdat->node_id)
1671 /*
1672 * the cpu on this node isn't removed, and we can't
1673 * offline this node.
1674 */
1675 return -EBUSY;
1676 }
1677
1678 return 0;
1679 }
1680
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)1681 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1682 {
1683 int nid = *(int *)arg;
1684
1685 /*
1686 * If a memory block belongs to multiple nodes, the stored nid is not
1687 * reliable. However, such blocks are always online (e.g., cannot get
1688 * offlined) and, therefore, are still spanned by the node.
1689 */
1690 return mem->nid == nid ? -EEXIST : 0;
1691 }
1692
1693 /**
1694 * try_offline_node
1695 * @nid: the node ID
1696 *
1697 * Offline a node if all memory sections and cpus of the node are removed.
1698 *
1699 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1700 * and online/offline operations before this call.
1701 */
try_offline_node(int nid)1702 void try_offline_node(int nid)
1703 {
1704 pg_data_t *pgdat = NODE_DATA(nid);
1705 int rc;
1706
1707 /*
1708 * If the node still spans pages (especially ZONE_DEVICE), don't
1709 * offline it. A node spans memory after move_pfn_range_to_zone(),
1710 * e.g., after the memory block was onlined.
1711 */
1712 if (pgdat->node_spanned_pages)
1713 return;
1714
1715 /*
1716 * Especially offline memory blocks might not be spanned by the
1717 * node. They will get spanned by the node once they get onlined.
1718 * However, they link to the node in sysfs and can get onlined later.
1719 */
1720 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1721 if (rc)
1722 return;
1723
1724 if (check_cpu_on_node(pgdat))
1725 return;
1726
1727 /*
1728 * all memory/cpu of this node are removed, we can offline this
1729 * node now.
1730 */
1731 node_set_offline(nid);
1732 unregister_one_node(nid);
1733 }
1734 EXPORT_SYMBOL(try_offline_node);
1735
__release_memory_resource(resource_size_t start,resource_size_t size)1736 static void __release_memory_resource(resource_size_t start,
1737 resource_size_t size)
1738 {
1739 int ret;
1740
1741 /*
1742 * When removing memory in the same granularity as it was added,
1743 * this function never fails. It might only fail if resources
1744 * have to be adjusted or split. We'll ignore the error, as
1745 * removing of memory cannot fail.
1746 */
1747 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1748 if (ret) {
1749 resource_size_t endres = start + size - 1;
1750
1751 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1752 &start, &endres, ret);
1753 }
1754 }
1755
try_remove_memory(int nid,u64 start,u64 size)1756 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1757 {
1758 int rc = 0;
1759
1760 BUG_ON(check_hotplug_memory_range(start, size));
1761
1762 /*
1763 * All memory blocks must be offlined before removing memory. Check
1764 * whether all memory blocks in question are offline and return error
1765 * if this is not the case.
1766 */
1767 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1768 if (rc)
1769 return rc;
1770
1771 /* remove memmap entry */
1772 firmware_map_remove(start, start + size, "System RAM");
1773 memblock_free(start, size);
1774 memblock_remove(start, size);
1775
1776 /*
1777 * Memory block device removal under the device_hotplug_lock is
1778 * a barrier against racing online attempts.
1779 */
1780 remove_memory_block_devices(start, size);
1781
1782 mem_hotplug_begin();
1783
1784 arch_remove_memory(nid, start, size, NULL);
1785 __release_memory_resource(start, size);
1786
1787 try_offline_node(nid);
1788
1789 mem_hotplug_done();
1790 return 0;
1791 }
1792
1793 /**
1794 * remove_memory
1795 * @nid: the node ID
1796 * @start: physical address of the region to remove
1797 * @size: size of the region to remove
1798 *
1799 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1800 * and online/offline operations before this call, as required by
1801 * try_offline_node().
1802 */
__remove_memory(int nid,u64 start,u64 size)1803 void __remove_memory(int nid, u64 start, u64 size)
1804 {
1805
1806 /*
1807 * trigger BUG() if some memory is not offlined prior to calling this
1808 * function
1809 */
1810 if (try_remove_memory(nid, start, size))
1811 BUG();
1812 }
1813
1814 /*
1815 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1816 * some memory is not offline
1817 */
remove_memory(int nid,u64 start,u64 size)1818 int remove_memory(int nid, u64 start, u64 size)
1819 {
1820 int rc;
1821
1822 lock_device_hotplug();
1823 rc = try_remove_memory(nid, start, size);
1824 unlock_device_hotplug();
1825
1826 return rc;
1827 }
1828 EXPORT_SYMBOL_GPL(remove_memory);
1829 #endif /* CONFIG_MEMORY_HOTREMOVE */
1830