• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 
52 #include <asm/tlbflush.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56 
57 #include "internal.h"
58 
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
migrate_prep(void)64 int migrate_prep(void)
65 {
66 	/*
67 	 * Clear the LRU lists so pages can be isolated.
68 	 * Note that pages may be moved off the LRU after we have
69 	 * drained them. Those pages will fail to migrate like other
70 	 * pages that may be busy.
71 	 */
72 	lru_add_drain_all();
73 
74 	return 0;
75 }
76 
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)78 int migrate_prep_local(void)
79 {
80 	lru_add_drain();
81 
82 	return 0;
83 }
84 
isolate_movable_page(struct page * page,isolate_mode_t mode)85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87 	struct address_space *mapping;
88 
89 	/*
90 	 * Avoid burning cycles with pages that are yet under __free_pages(),
91 	 * or just got freed under us.
92 	 *
93 	 * In case we 'win' a race for a movable page being freed under us and
94 	 * raise its refcount preventing __free_pages() from doing its job
95 	 * the put_page() at the end of this block will take care of
96 	 * release this page, thus avoiding a nasty leakage.
97 	 */
98 	if (unlikely(!get_page_unless_zero(page)))
99 		goto out;
100 
101 	/*
102 	 * Check PageMovable before holding a PG_lock because page's owner
103 	 * assumes anybody doesn't touch PG_lock of newly allocated page
104 	 * so unconditionally grabbing the lock ruins page's owner side.
105 	 */
106 	if (unlikely(!__PageMovable(page)))
107 		goto out_putpage;
108 	/*
109 	 * As movable pages are not isolated from LRU lists, concurrent
110 	 * compaction threads can race against page migration functions
111 	 * as well as race against the releasing a page.
112 	 *
113 	 * In order to avoid having an already isolated movable page
114 	 * being (wrongly) re-isolated while it is under migration,
115 	 * or to avoid attempting to isolate pages being released,
116 	 * lets be sure we have the page lock
117 	 * before proceeding with the movable page isolation steps.
118 	 */
119 	if (unlikely(!trylock_page(page)))
120 		goto out_putpage;
121 
122 	if (!PageMovable(page) || PageIsolated(page))
123 		goto out_no_isolated;
124 
125 	mapping = page_mapping(page);
126 	VM_BUG_ON_PAGE(!mapping, page);
127 
128 	if (!mapping->a_ops->isolate_page(page, mode))
129 		goto out_no_isolated;
130 
131 	/* Driver shouldn't use PG_isolated bit of page->flags */
132 	WARN_ON_ONCE(PageIsolated(page));
133 	__SetPageIsolated(page);
134 	unlock_page(page);
135 
136 	return 0;
137 
138 out_no_isolated:
139 	unlock_page(page);
140 out_putpage:
141 	put_page(page);
142 out:
143 	return -EBUSY;
144 }
145 
146 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)147 void putback_movable_page(struct page *page)
148 {
149 	struct address_space *mapping;
150 
151 	VM_BUG_ON_PAGE(!PageLocked(page), page);
152 	VM_BUG_ON_PAGE(!PageMovable(page), page);
153 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 
155 	mapping = page_mapping(page);
156 	mapping->a_ops->putback_page(page);
157 	__ClearPageIsolated(page);
158 }
159 
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
putback_movable_pages(struct list_head * l)168 void putback_movable_pages(struct list_head *l)
169 {
170 	struct page *page;
171 	struct page *page2;
172 
173 	list_for_each_entry_safe(page, page2, l, lru) {
174 		if (unlikely(PageHuge(page))) {
175 			putback_active_hugepage(page);
176 			continue;
177 		}
178 		list_del(&page->lru);
179 		/*
180 		 * We isolated non-lru movable page so here we can use
181 		 * __PageMovable because LRU page's mapping cannot have
182 		 * PAGE_MAPPING_MOVABLE.
183 		 */
184 		if (unlikely(__PageMovable(page))) {
185 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 			lock_page(page);
187 			if (PageMovable(page))
188 				putback_movable_page(page);
189 			else
190 				__ClearPageIsolated(page);
191 			unlock_page(page);
192 			put_page(page);
193 		} else {
194 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195 					page_is_file_cache(page), -hpage_nr_pages(page));
196 			putback_lru_page(page);
197 		}
198 	}
199 }
200 
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205 				 unsigned long addr, void *old)
206 {
207 	struct page_vma_mapped_walk pvmw = {
208 		.page = old,
209 		.vma = vma,
210 		.address = addr,
211 		.flags = PVMW_SYNC | PVMW_MIGRATION,
212 	};
213 	struct page *new;
214 	pte_t pte;
215 	swp_entry_t entry;
216 
217 	VM_BUG_ON_PAGE(PageTail(page), page);
218 	while (page_vma_mapped_walk(&pvmw)) {
219 		if (PageKsm(page))
220 			new = page;
221 		else
222 			new = page - pvmw.page->index +
223 				linear_page_index(vma, pvmw.address);
224 
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226 		/* PMD-mapped THP migration entry */
227 		if (!pvmw.pte) {
228 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229 			remove_migration_pmd(&pvmw, new);
230 			continue;
231 		}
232 #endif
233 
234 		get_page(new);
235 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236 		if (pte_swp_soft_dirty(*pvmw.pte))
237 			pte = pte_mksoft_dirty(pte);
238 
239 		/*
240 		 * Recheck VMA as permissions can change since migration started
241 		 */
242 		entry = pte_to_swp_entry(*pvmw.pte);
243 		if (is_write_migration_entry(entry))
244 			pte = maybe_mkwrite(pte, vma);
245 
246 		if (unlikely(is_zone_device_page(new))) {
247 			if (is_device_private_page(new)) {
248 				entry = make_device_private_entry(new, pte_write(pte));
249 				pte = swp_entry_to_pte(entry);
250 			}
251 		}
252 
253 #ifdef CONFIG_HUGETLB_PAGE
254 		if (PageHuge(new)) {
255 			pte = pte_mkhuge(pte);
256 			pte = arch_make_huge_pte(pte, vma, new, 0);
257 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 			if (PageAnon(new))
259 				hugepage_add_anon_rmap(new, vma, pvmw.address);
260 			else
261 				page_dup_rmap(new, true);
262 		} else
263 #endif
264 		{
265 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266 
267 			if (PageAnon(new))
268 				page_add_anon_rmap(new, vma, pvmw.address, false);
269 			else
270 				page_add_file_rmap(new, false);
271 		}
272 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 			mlock_vma_page(new);
274 
275 		if (PageTransHuge(page) && PageMlocked(page))
276 			clear_page_mlock(page);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
remove_migration_ptes(struct page * old,struct page * new,bool locked)289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 	page = compound_head(page);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
expected_page_refs(struct address_space * mapping,struct page * page)375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device public or private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	if (mapping)
385 		expected_count += hpage_nr_pages(page) + page_has_private(page);
386 
387 	return expected_count;
388 }
389 
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)398 int migrate_page_move_mapping(struct address_space *mapping,
399 		struct page *newpage, struct page *page, int extra_count)
400 {
401 	XA_STATE(xas, &mapping->i_pages, page_index(page));
402 	struct zone *oldzone, *newzone;
403 	int dirty;
404 	int expected_count = expected_page_refs(mapping, page) + extra_count;
405 
406 	if (!mapping) {
407 		/* Anonymous page without mapping */
408 		if (page_count(page) != expected_count)
409 			return -EAGAIN;
410 
411 		/* No turning back from here */
412 		newpage->index = page->index;
413 		newpage->mapping = page->mapping;
414 		if (PageSwapBacked(page))
415 			__SetPageSwapBacked(newpage);
416 
417 		return MIGRATEPAGE_SUCCESS;
418 	}
419 
420 	oldzone = page_zone(page);
421 	newzone = page_zone(newpage);
422 
423 	xas_lock_irq(&xas);
424 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 		xas_unlock_irq(&xas);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_ref_freeze(page, expected_count)) {
430 		xas_unlock_irq(&xas);
431 		return -EAGAIN;
432 	}
433 
434 	/*
435 	 * Now we know that no one else is looking at the page:
436 	 * no turning back from here.
437 	 */
438 	newpage->index = page->index;
439 	newpage->mapping = page->mapping;
440 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441 	if (PageSwapBacked(page)) {
442 		__SetPageSwapBacked(newpage);
443 		if (PageSwapCache(page)) {
444 			int i;
445 
446 			SetPageSwapCache(newpage);
447 			for (i = 0; i < (1 << compound_order(page)); i++)
448 				set_page_private(newpage + i,
449 						 page_private(page + i));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
copy_huge_page(struct page * dst,struct page * src)570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
migrate_page_states(struct page * newpage,struct page * page)599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	copy_page_owner(page, newpage);
655 
656 	mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659 
migrate_page_copy(struct page * newpage,struct page * page)660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662 	if (PageHuge(page) || PageTransHuge(page))
663 		copy_huge_page(newpage, page);
664 	else
665 		copy_highpage(newpage, page);
666 
667 	migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	if (mode != MIGRATE_SYNC_NO_COPY)
695 		migrate_page_copy(newpage, page);
696 	else
697 		migrate_page_states(newpage, page);
698 	return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701 
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 							enum migrate_mode mode)
706 {
707 	struct buffer_head *bh = head;
708 
709 	/* Simple case, sync compaction */
710 	if (mode != MIGRATE_ASYNC) {
711 		do {
712 			lock_buffer(bh);
713 			bh = bh->b_this_page;
714 
715 		} while (bh != head);
716 
717 		return true;
718 	}
719 
720 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
721 	do {
722 		if (!trylock_buffer(bh)) {
723 			/*
724 			 * We failed to lock the buffer and cannot stall in
725 			 * async migration. Release the taken locks
726 			 */
727 			struct buffer_head *failed_bh = bh;
728 			bh = head;
729 			while (bh != failed_bh) {
730 				unlock_buffer(bh);
731 				bh = bh->b_this_page;
732 			}
733 			return false;
734 		}
735 
736 		bh = bh->b_this_page;
737 	} while (bh != head);
738 	return true;
739 }
740 
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)741 static int __buffer_migrate_page(struct address_space *mapping,
742 		struct page *newpage, struct page *page, enum migrate_mode mode,
743 		bool check_refs)
744 {
745 	struct buffer_head *bh, *head;
746 	int rc;
747 	int expected_count;
748 
749 	if (!page_has_buffers(page))
750 		return migrate_page(mapping, newpage, page, mode);
751 
752 	/* Check whether page does not have extra refs before we do more work */
753 	expected_count = expected_page_refs(mapping, page);
754 	if (page_count(page) != expected_count)
755 		return -EAGAIN;
756 
757 	head = page_buffers(page);
758 	if (!buffer_migrate_lock_buffers(head, mode))
759 		return -EAGAIN;
760 
761 	if (check_refs) {
762 		bool busy;
763 		bool invalidated = false;
764 
765 recheck_buffers:
766 		busy = false;
767 		spin_lock(&mapping->private_lock);
768 		bh = head;
769 		do {
770 			if (atomic_read(&bh->b_count)) {
771 				busy = true;
772 				break;
773 			}
774 			bh = bh->b_this_page;
775 		} while (bh != head);
776 		if (busy) {
777 			if (invalidated) {
778 				rc = -EAGAIN;
779 				goto unlock_buffers;
780 			}
781 			spin_unlock(&mapping->private_lock);
782 			invalidate_bh_lrus();
783 			invalidated = true;
784 			goto recheck_buffers;
785 		}
786 	}
787 
788 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
789 	if (rc != MIGRATEPAGE_SUCCESS)
790 		goto unlock_buffers;
791 
792 	ClearPagePrivate(page);
793 	set_page_private(newpage, page_private(page));
794 	set_page_private(page, 0);
795 	put_page(page);
796 	get_page(newpage);
797 
798 	bh = head;
799 	do {
800 		set_bh_page(bh, newpage, bh_offset(bh));
801 		bh = bh->b_this_page;
802 
803 	} while (bh != head);
804 
805 	SetPagePrivate(newpage);
806 
807 	if (mode != MIGRATE_SYNC_NO_COPY)
808 		migrate_page_copy(newpage, page);
809 	else
810 		migrate_page_states(newpage, page);
811 
812 	rc = MIGRATEPAGE_SUCCESS;
813 unlock_buffers:
814 	if (check_refs)
815 		spin_unlock(&mapping->private_lock);
816 	bh = head;
817 	do {
818 		unlock_buffer(bh);
819 		bh = bh->b_this_page;
820 
821 	} while (bh != head);
822 
823 	return rc;
824 }
825 
826 /*
827  * Migration function for pages with buffers. This function can only be used
828  * if the underlying filesystem guarantees that no other references to "page"
829  * exist. For example attached buffer heads are accessed only under page lock.
830  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)831 int buffer_migrate_page(struct address_space *mapping,
832 		struct page *newpage, struct page *page, enum migrate_mode mode)
833 {
834 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
835 }
836 EXPORT_SYMBOL(buffer_migrate_page);
837 
838 /*
839  * Same as above except that this variant is more careful and checks that there
840  * are also no buffer head references. This function is the right one for
841  * mappings where buffer heads are directly looked up and referenced (such as
842  * block device mappings).
843  */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)844 int buffer_migrate_page_norefs(struct address_space *mapping,
845 		struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
848 }
849 #endif
850 
851 /*
852  * Writeback a page to clean the dirty state
853  */
writeout(struct address_space * mapping,struct page * page)854 static int writeout(struct address_space *mapping, struct page *page)
855 {
856 	struct writeback_control wbc = {
857 		.sync_mode = WB_SYNC_NONE,
858 		.nr_to_write = 1,
859 		.range_start = 0,
860 		.range_end = LLONG_MAX,
861 		.for_reclaim = 1
862 	};
863 	int rc;
864 
865 	if (!mapping->a_ops->writepage)
866 		/* No write method for the address space */
867 		return -EINVAL;
868 
869 	if (!clear_page_dirty_for_io(page))
870 		/* Someone else already triggered a write */
871 		return -EAGAIN;
872 
873 	/*
874 	 * A dirty page may imply that the underlying filesystem has
875 	 * the page on some queue. So the page must be clean for
876 	 * migration. Writeout may mean we loose the lock and the
877 	 * page state is no longer what we checked for earlier.
878 	 * At this point we know that the migration attempt cannot
879 	 * be successful.
880 	 */
881 	remove_migration_ptes(page, page, false);
882 
883 	rc = mapping->a_ops->writepage(page, &wbc);
884 
885 	if (rc != AOP_WRITEPAGE_ACTIVATE)
886 		/* unlocked. Relock */
887 		lock_page(page);
888 
889 	return (rc < 0) ? -EIO : -EAGAIN;
890 }
891 
892 /*
893  * Default handling if a filesystem does not provide a migration function.
894  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)895 static int fallback_migrate_page(struct address_space *mapping,
896 	struct page *newpage, struct page *page, enum migrate_mode mode)
897 {
898 	if (PageDirty(page)) {
899 		/* Only writeback pages in full synchronous migration */
900 		switch (mode) {
901 		case MIGRATE_SYNC:
902 		case MIGRATE_SYNC_NO_COPY:
903 			break;
904 		default:
905 			return -EBUSY;
906 		}
907 		return writeout(mapping, page);
908 	}
909 
910 	/*
911 	 * Buffers may be managed in a filesystem specific way.
912 	 * We must have no buffers or drop them.
913 	 */
914 	if (page_has_private(page) &&
915 	    !try_to_release_page(page, GFP_KERNEL))
916 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
917 
918 	return migrate_page(mapping, newpage, page, mode);
919 }
920 
921 /*
922  * Move a page to a newly allocated page
923  * The page is locked and all ptes have been successfully removed.
924  *
925  * The new page will have replaced the old page if this function
926  * is successful.
927  *
928  * Return value:
929  *   < 0 - error code
930  *  MIGRATEPAGE_SUCCESS - success
931  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)932 static int move_to_new_page(struct page *newpage, struct page *page,
933 				enum migrate_mode mode)
934 {
935 	struct address_space *mapping;
936 	int rc = -EAGAIN;
937 	bool is_lru = !__PageMovable(page);
938 
939 	VM_BUG_ON_PAGE(!PageLocked(page), page);
940 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
941 
942 	mapping = page_mapping(page);
943 
944 	if (likely(is_lru)) {
945 		if (!mapping)
946 			rc = migrate_page(mapping, newpage, page, mode);
947 		else if (mapping->a_ops->migratepage)
948 			/*
949 			 * Most pages have a mapping and most filesystems
950 			 * provide a migratepage callback. Anonymous pages
951 			 * are part of swap space which also has its own
952 			 * migratepage callback. This is the most common path
953 			 * for page migration.
954 			 */
955 			rc = mapping->a_ops->migratepage(mapping, newpage,
956 							page, mode);
957 		else
958 			rc = fallback_migrate_page(mapping, newpage,
959 							page, mode);
960 	} else {
961 		/*
962 		 * In case of non-lru page, it could be released after
963 		 * isolation step. In that case, we shouldn't try migration.
964 		 */
965 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
966 		if (!PageMovable(page)) {
967 			rc = MIGRATEPAGE_SUCCESS;
968 			__ClearPageIsolated(page);
969 			goto out;
970 		}
971 
972 		rc = mapping->a_ops->migratepage(mapping, newpage,
973 						page, mode);
974 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
975 			!PageIsolated(page));
976 	}
977 
978 	/*
979 	 * When successful, old pagecache page->mapping must be cleared before
980 	 * page is freed; but stats require that PageAnon be left as PageAnon.
981 	 */
982 	if (rc == MIGRATEPAGE_SUCCESS) {
983 		if (__PageMovable(page)) {
984 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
985 
986 			/*
987 			 * We clear PG_movable under page_lock so any compactor
988 			 * cannot try to migrate this page.
989 			 */
990 			__ClearPageIsolated(page);
991 		}
992 
993 		/*
994 		 * Anonymous and movable page->mapping will be cleard by
995 		 * free_pages_prepare so don't reset it here for keeping
996 		 * the type to work PageAnon, for example.
997 		 */
998 		if (!PageMappingFlags(page))
999 			page->mapping = NULL;
1000 
1001 		if (likely(!is_zone_device_page(newpage))) {
1002 			int i, nr = compound_nr(newpage);
1003 
1004 			for (i = 0; i < nr; i++)
1005 				flush_dcache_page(newpage + i);
1006 		}
1007 	}
1008 out:
1009 	return rc;
1010 }
1011 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1012 static int __unmap_and_move(struct page *page, struct page *newpage,
1013 				int force, enum migrate_mode mode)
1014 {
1015 	int rc = -EAGAIN;
1016 	int page_was_mapped = 0;
1017 	struct anon_vma *anon_vma = NULL;
1018 	bool is_lru = !__PageMovable(page);
1019 
1020 	if (!trylock_page(page)) {
1021 		if (!force || mode == MIGRATE_ASYNC)
1022 			goto out;
1023 
1024 		/*
1025 		 * It's not safe for direct compaction to call lock_page.
1026 		 * For example, during page readahead pages are added locked
1027 		 * to the LRU. Later, when the IO completes the pages are
1028 		 * marked uptodate and unlocked. However, the queueing
1029 		 * could be merging multiple pages for one bio (e.g.
1030 		 * mpage_readpages). If an allocation happens for the
1031 		 * second or third page, the process can end up locking
1032 		 * the same page twice and deadlocking. Rather than
1033 		 * trying to be clever about what pages can be locked,
1034 		 * avoid the use of lock_page for direct compaction
1035 		 * altogether.
1036 		 */
1037 		if (current->flags & PF_MEMALLOC)
1038 			goto out;
1039 
1040 		lock_page(page);
1041 	}
1042 
1043 	if (PageWriteback(page)) {
1044 		/*
1045 		 * Only in the case of a full synchronous migration is it
1046 		 * necessary to wait for PageWriteback. In the async case,
1047 		 * the retry loop is too short and in the sync-light case,
1048 		 * the overhead of stalling is too much
1049 		 */
1050 		switch (mode) {
1051 		case MIGRATE_SYNC:
1052 		case MIGRATE_SYNC_NO_COPY:
1053 			break;
1054 		default:
1055 			rc = -EBUSY;
1056 			goto out_unlock;
1057 		}
1058 		if (!force)
1059 			goto out_unlock;
1060 		wait_on_page_writeback(page);
1061 	}
1062 
1063 	/*
1064 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1065 	 * we cannot notice that anon_vma is freed while we migrates a page.
1066 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1067 	 * of migration. File cache pages are no problem because of page_lock()
1068 	 * File Caches may use write_page() or lock_page() in migration, then,
1069 	 * just care Anon page here.
1070 	 *
1071 	 * Only page_get_anon_vma() understands the subtleties of
1072 	 * getting a hold on an anon_vma from outside one of its mms.
1073 	 * But if we cannot get anon_vma, then we won't need it anyway,
1074 	 * because that implies that the anon page is no longer mapped
1075 	 * (and cannot be remapped so long as we hold the page lock).
1076 	 */
1077 	if (PageAnon(page) && !PageKsm(page))
1078 		anon_vma = page_get_anon_vma(page);
1079 
1080 	/*
1081 	 * Block others from accessing the new page when we get around to
1082 	 * establishing additional references. We are usually the only one
1083 	 * holding a reference to newpage at this point. We used to have a BUG
1084 	 * here if trylock_page(newpage) fails, but would like to allow for
1085 	 * cases where there might be a race with the previous use of newpage.
1086 	 * This is much like races on refcount of oldpage: just don't BUG().
1087 	 */
1088 	if (unlikely(!trylock_page(newpage)))
1089 		goto out_unlock;
1090 
1091 	if (unlikely(!is_lru)) {
1092 		rc = move_to_new_page(newpage, page, mode);
1093 		goto out_unlock_both;
1094 	}
1095 
1096 	/*
1097 	 * Corner case handling:
1098 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1099 	 * and treated as swapcache but it has no rmap yet.
1100 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1101 	 * trigger a BUG.  So handle it here.
1102 	 * 2. An orphaned page (see truncate_complete_page) might have
1103 	 * fs-private metadata. The page can be picked up due to memory
1104 	 * offlining.  Everywhere else except page reclaim, the page is
1105 	 * invisible to the vm, so the page can not be migrated.  So try to
1106 	 * free the metadata, so the page can be freed.
1107 	 */
1108 	if (!page->mapping) {
1109 		VM_BUG_ON_PAGE(PageAnon(page), page);
1110 		if (page_has_private(page)) {
1111 			try_to_free_buffers(page);
1112 			goto out_unlock_both;
1113 		}
1114 	} else if (page_mapped(page)) {
1115 		/* Establish migration ptes */
1116 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1117 				page);
1118 		try_to_unmap(page,
1119 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1120 		page_was_mapped = 1;
1121 	}
1122 
1123 	if (!page_mapped(page))
1124 		rc = move_to_new_page(newpage, page, mode);
1125 
1126 	if (page_was_mapped)
1127 		remove_migration_ptes(page,
1128 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1129 
1130 out_unlock_both:
1131 	unlock_page(newpage);
1132 out_unlock:
1133 	/* Drop an anon_vma reference if we took one */
1134 	if (anon_vma)
1135 		put_anon_vma(anon_vma);
1136 	unlock_page(page);
1137 out:
1138 	/*
1139 	 * If migration is successful, decrease refcount of the newpage
1140 	 * which will not free the page because new page owner increased
1141 	 * refcounter. As well, if it is LRU page, add the page to LRU
1142 	 * list in here. Use the old state of the isolated source page to
1143 	 * determine if we migrated a LRU page. newpage was already unlocked
1144 	 * and possibly modified by its owner - don't rely on the page
1145 	 * state.
1146 	 */
1147 	if (rc == MIGRATEPAGE_SUCCESS) {
1148 		if (unlikely(!is_lru))
1149 			put_page(newpage);
1150 		else
1151 			putback_lru_page(newpage);
1152 	}
1153 
1154 	return rc;
1155 }
1156 
1157 /*
1158  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1159  * around it.
1160  */
1161 #if defined(CONFIG_ARM) && \
1162 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1163 #define ICE_noinline noinline
1164 #else
1165 #define ICE_noinline
1166 #endif
1167 
1168 /*
1169  * Obtain the lock on page, remove all ptes and migrate the page
1170  * to the newly allocated page in newpage.
1171  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1172 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1173 				   free_page_t put_new_page,
1174 				   unsigned long private, struct page *page,
1175 				   int force, enum migrate_mode mode,
1176 				   enum migrate_reason reason)
1177 {
1178 	int rc = MIGRATEPAGE_SUCCESS;
1179 	struct page *newpage;
1180 
1181 	if (!thp_migration_supported() && PageTransHuge(page))
1182 		return -ENOMEM;
1183 
1184 	newpage = get_new_page(page, private);
1185 	if (!newpage)
1186 		return -ENOMEM;
1187 
1188 	if (page_count(page) == 1) {
1189 		/* page was freed from under us. So we are done. */
1190 		ClearPageActive(page);
1191 		ClearPageUnevictable(page);
1192 		if (unlikely(__PageMovable(page))) {
1193 			lock_page(page);
1194 			if (!PageMovable(page))
1195 				__ClearPageIsolated(page);
1196 			unlock_page(page);
1197 		}
1198 		if (put_new_page)
1199 			put_new_page(newpage, private);
1200 		else
1201 			put_page(newpage);
1202 		goto out;
1203 	}
1204 
1205 	rc = __unmap_and_move(page, newpage, force, mode);
1206 	if (rc == MIGRATEPAGE_SUCCESS)
1207 		set_page_owner_migrate_reason(newpage, reason);
1208 
1209 out:
1210 	if (rc != -EAGAIN) {
1211 		/*
1212 		 * A page that has been migrated has all references
1213 		 * removed and will be freed. A page that has not been
1214 		 * migrated will have kepts its references and be
1215 		 * restored.
1216 		 */
1217 		list_del(&page->lru);
1218 
1219 		/*
1220 		 * Compaction can migrate also non-LRU pages which are
1221 		 * not accounted to NR_ISOLATED_*. They can be recognized
1222 		 * as __PageMovable
1223 		 */
1224 		if (likely(!__PageMovable(page)))
1225 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226 					page_is_file_cache(page), -hpage_nr_pages(page));
1227 	}
1228 
1229 	/*
1230 	 * If migration is successful, releases reference grabbed during
1231 	 * isolation. Otherwise, restore the page to right list unless
1232 	 * we want to retry.
1233 	 */
1234 	if (rc == MIGRATEPAGE_SUCCESS) {
1235 		put_page(page);
1236 		if (reason == MR_MEMORY_FAILURE) {
1237 			/*
1238 			 * Set PG_HWPoison on just freed page
1239 			 * intentionally. Although it's rather weird,
1240 			 * it's how HWPoison flag works at the moment.
1241 			 */
1242 			if (set_hwpoison_free_buddy_page(page))
1243 				num_poisoned_pages_inc();
1244 		}
1245 	} else {
1246 		if (rc != -EAGAIN) {
1247 			if (likely(!__PageMovable(page))) {
1248 				putback_lru_page(page);
1249 				goto put_new;
1250 			}
1251 
1252 			lock_page(page);
1253 			if (PageMovable(page))
1254 				putback_movable_page(page);
1255 			else
1256 				__ClearPageIsolated(page);
1257 			unlock_page(page);
1258 			put_page(page);
1259 		}
1260 put_new:
1261 		if (put_new_page)
1262 			put_new_page(newpage, private);
1263 		else
1264 			put_page(newpage);
1265 	}
1266 
1267 	return rc;
1268 }
1269 
1270 /*
1271  * Counterpart of unmap_and_move_page() for hugepage migration.
1272  *
1273  * This function doesn't wait the completion of hugepage I/O
1274  * because there is no race between I/O and migration for hugepage.
1275  * Note that currently hugepage I/O occurs only in direct I/O
1276  * where no lock is held and PG_writeback is irrelevant,
1277  * and writeback status of all subpages are counted in the reference
1278  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279  * under direct I/O, the reference of the head page is 512 and a bit more.)
1280  * This means that when we try to migrate hugepage whose subpages are
1281  * doing direct I/O, some references remain after try_to_unmap() and
1282  * hugepage migration fails without data corruption.
1283  *
1284  * There is also no race when direct I/O is issued on the page under migration,
1285  * because then pte is replaced with migration swap entry and direct I/O code
1286  * will wait in the page fault for migration to complete.
1287  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1288 static int unmap_and_move_huge_page(new_page_t get_new_page,
1289 				free_page_t put_new_page, unsigned long private,
1290 				struct page *hpage, int force,
1291 				enum migrate_mode mode, int reason)
1292 {
1293 	int rc = -EAGAIN;
1294 	int page_was_mapped = 0;
1295 	struct page *new_hpage;
1296 	struct anon_vma *anon_vma = NULL;
1297 
1298 	/*
1299 	 * Migratability of hugepages depends on architectures and their size.
1300 	 * This check is necessary because some callers of hugepage migration
1301 	 * like soft offline and memory hotremove don't walk through page
1302 	 * tables or check whether the hugepage is pmd-based or not before
1303 	 * kicking migration.
1304 	 */
1305 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1306 		putback_active_hugepage(hpage);
1307 		return -ENOSYS;
1308 	}
1309 
1310 	new_hpage = get_new_page(hpage, private);
1311 	if (!new_hpage)
1312 		return -ENOMEM;
1313 
1314 	if (!trylock_page(hpage)) {
1315 		if (!force)
1316 			goto out;
1317 		switch (mode) {
1318 		case MIGRATE_SYNC:
1319 		case MIGRATE_SYNC_NO_COPY:
1320 			break;
1321 		default:
1322 			goto out;
1323 		}
1324 		lock_page(hpage);
1325 	}
1326 
1327 	/*
1328 	 * Check for pages which are in the process of being freed.  Without
1329 	 * page_mapping() set, hugetlbfs specific move page routine will not
1330 	 * be called and we could leak usage counts for subpools.
1331 	 */
1332 	if (page_private(hpage) && !page_mapping(hpage)) {
1333 		rc = -EBUSY;
1334 		goto out_unlock;
1335 	}
1336 
1337 	if (PageAnon(hpage))
1338 		anon_vma = page_get_anon_vma(hpage);
1339 
1340 	if (unlikely(!trylock_page(new_hpage)))
1341 		goto put_anon;
1342 
1343 	if (page_mapped(hpage)) {
1344 		try_to_unmap(hpage,
1345 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1346 		page_was_mapped = 1;
1347 	}
1348 
1349 	if (!page_mapped(hpage))
1350 		rc = move_to_new_page(new_hpage, hpage, mode);
1351 
1352 	if (page_was_mapped)
1353 		remove_migration_ptes(hpage,
1354 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1355 
1356 	unlock_page(new_hpage);
1357 
1358 put_anon:
1359 	if (anon_vma)
1360 		put_anon_vma(anon_vma);
1361 
1362 	if (rc == MIGRATEPAGE_SUCCESS) {
1363 		move_hugetlb_state(hpage, new_hpage, reason);
1364 		put_new_page = NULL;
1365 	}
1366 
1367 out_unlock:
1368 	unlock_page(hpage);
1369 out:
1370 	if (rc != -EAGAIN)
1371 		putback_active_hugepage(hpage);
1372 
1373 	/*
1374 	 * If migration was not successful and there's a freeing callback, use
1375 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1376 	 * isolation.
1377 	 */
1378 	if (put_new_page)
1379 		put_new_page(new_hpage, private);
1380 	else
1381 		putback_active_hugepage(new_hpage);
1382 
1383 	return rc;
1384 }
1385 
1386 /*
1387  * migrate_pages - migrate the pages specified in a list, to the free pages
1388  *		   supplied as the target for the page migration
1389  *
1390  * @from:		The list of pages to be migrated.
1391  * @get_new_page:	The function used to allocate free pages to be used
1392  *			as the target of the page migration.
1393  * @put_new_page:	The function used to free target pages if migration
1394  *			fails, or NULL if no special handling is necessary.
1395  * @private:		Private data to be passed on to get_new_page()
1396  * @mode:		The migration mode that specifies the constraints for
1397  *			page migration, if any.
1398  * @reason:		The reason for page migration.
1399  *
1400  * The function returns after 10 attempts or if no pages are movable any more
1401  * because the list has become empty or no retryable pages exist any more.
1402  * The caller should call putback_movable_pages() to return pages to the LRU
1403  * or free list only if ret != 0.
1404  *
1405  * Returns the number of pages that were not migrated, or an error code.
1406  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1407 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1408 		free_page_t put_new_page, unsigned long private,
1409 		enum migrate_mode mode, int reason)
1410 {
1411 	int retry = 1;
1412 	int nr_failed = 0;
1413 	int nr_succeeded = 0;
1414 	int pass = 0;
1415 	struct page *page;
1416 	struct page *page2;
1417 	int swapwrite = current->flags & PF_SWAPWRITE;
1418 	int rc;
1419 
1420 	if (!swapwrite)
1421 		current->flags |= PF_SWAPWRITE;
1422 
1423 	for(pass = 0; pass < 10 && retry; pass++) {
1424 		retry = 0;
1425 
1426 		list_for_each_entry_safe(page, page2, from, lru) {
1427 retry:
1428 			cond_resched();
1429 
1430 			if (PageHuge(page))
1431 				rc = unmap_and_move_huge_page(get_new_page,
1432 						put_new_page, private, page,
1433 						pass > 2, mode, reason);
1434 			else
1435 				rc = unmap_and_move(get_new_page, put_new_page,
1436 						private, page, pass > 2, mode,
1437 						reason);
1438 
1439 			switch(rc) {
1440 			case -ENOMEM:
1441 				/*
1442 				 * THP migration might be unsupported or the
1443 				 * allocation could've failed so we should
1444 				 * retry on the same page with the THP split
1445 				 * to base pages.
1446 				 *
1447 				 * Head page is retried immediately and tail
1448 				 * pages are added to the tail of the list so
1449 				 * we encounter them after the rest of the list
1450 				 * is processed.
1451 				 */
1452 				if (PageTransHuge(page) && !PageHuge(page)) {
1453 					lock_page(page);
1454 					rc = split_huge_page_to_list(page, from);
1455 					unlock_page(page);
1456 					if (!rc) {
1457 						list_safe_reset_next(page, page2, lru);
1458 						goto retry;
1459 					}
1460 				}
1461 				nr_failed++;
1462 				goto out;
1463 			case -EAGAIN:
1464 				retry++;
1465 				break;
1466 			case MIGRATEPAGE_SUCCESS:
1467 				nr_succeeded++;
1468 				break;
1469 			default:
1470 				/*
1471 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1472 				 * unlike -EAGAIN case, the failed page is
1473 				 * removed from migration page list and not
1474 				 * retried in the next outer loop.
1475 				 */
1476 				nr_failed++;
1477 				break;
1478 			}
1479 		}
1480 	}
1481 	nr_failed += retry;
1482 	rc = nr_failed;
1483 out:
1484 	if (nr_succeeded)
1485 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1486 	if (nr_failed)
1487 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1488 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1489 
1490 	if (!swapwrite)
1491 		current->flags &= ~PF_SWAPWRITE;
1492 
1493 	return rc;
1494 }
1495 
1496 #ifdef CONFIG_NUMA
1497 
store_status(int __user * status,int start,int value,int nr)1498 static int store_status(int __user *status, int start, int value, int nr)
1499 {
1500 	while (nr-- > 0) {
1501 		if (put_user(value, status + start))
1502 			return -EFAULT;
1503 		start++;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1509 static int do_move_pages_to_node(struct mm_struct *mm,
1510 		struct list_head *pagelist, int node)
1511 {
1512 	int err;
1513 
1514 	if (list_empty(pagelist))
1515 		return 0;
1516 
1517 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1518 			MIGRATE_SYNC, MR_SYSCALL);
1519 	if (err)
1520 		putback_movable_pages(pagelist);
1521 	return err;
1522 }
1523 
1524 /*
1525  * Resolves the given address to a struct page, isolates it from the LRU and
1526  * puts it to the given pagelist.
1527  * Returns:
1528  *     errno - if the page cannot be found/isolated
1529  *     0 - when it doesn't have to be migrated because it is already on the
1530  *         target node
1531  *     1 - when it has been queued
1532  */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1533 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1534 		int node, struct list_head *pagelist, bool migrate_all)
1535 {
1536 	struct vm_area_struct *vma;
1537 	struct page *page;
1538 	unsigned int follflags;
1539 	int err;
1540 
1541 	down_read(&mm->mmap_sem);
1542 	err = -EFAULT;
1543 	vma = find_vma(mm, addr);
1544 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1545 		goto out;
1546 
1547 	/* FOLL_DUMP to ignore special (like zero) pages */
1548 	follflags = FOLL_GET | FOLL_DUMP;
1549 	page = follow_page(vma, addr, follflags);
1550 
1551 	err = PTR_ERR(page);
1552 	if (IS_ERR(page))
1553 		goto out;
1554 
1555 	err = -ENOENT;
1556 	if (!page)
1557 		goto out;
1558 
1559 	err = 0;
1560 	if (page_to_nid(page) == node)
1561 		goto out_putpage;
1562 
1563 	err = -EACCES;
1564 	if (page_mapcount(page) > 1 && !migrate_all)
1565 		goto out_putpage;
1566 
1567 	if (PageHuge(page)) {
1568 		if (PageHead(page)) {
1569 			isolate_huge_page(page, pagelist);
1570 			err = 1;
1571 		}
1572 	} else {
1573 		struct page *head;
1574 
1575 		head = compound_head(page);
1576 		err = isolate_lru_page(head);
1577 		if (err)
1578 			goto out_putpage;
1579 
1580 		err = 1;
1581 		list_add_tail(&head->lru, pagelist);
1582 		mod_node_page_state(page_pgdat(head),
1583 			NR_ISOLATED_ANON + page_is_file_cache(head),
1584 			hpage_nr_pages(head));
1585 	}
1586 out_putpage:
1587 	/*
1588 	 * Either remove the duplicate refcount from
1589 	 * isolate_lru_page() or drop the page ref if it was
1590 	 * not isolated.
1591 	 */
1592 	put_page(page);
1593 out:
1594 	up_read(&mm->mmap_sem);
1595 	return err;
1596 }
1597 
1598 /*
1599  * Migrate an array of page address onto an array of nodes and fill
1600  * the corresponding array of status.
1601  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1602 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1603 			 unsigned long nr_pages,
1604 			 const void __user * __user *pages,
1605 			 const int __user *nodes,
1606 			 int __user *status, int flags)
1607 {
1608 	int current_node = NUMA_NO_NODE;
1609 	LIST_HEAD(pagelist);
1610 	int start, i;
1611 	int err = 0, err1;
1612 
1613 	migrate_prep();
1614 
1615 	for (i = start = 0; i < nr_pages; i++) {
1616 		const void __user *p;
1617 		unsigned long addr;
1618 		int node;
1619 
1620 		err = -EFAULT;
1621 		if (get_user(p, pages + i))
1622 			goto out_flush;
1623 		if (get_user(node, nodes + i))
1624 			goto out_flush;
1625 		addr = (unsigned long)untagged_addr(p);
1626 
1627 		err = -ENODEV;
1628 		if (node < 0 || node >= MAX_NUMNODES)
1629 			goto out_flush;
1630 		if (!node_state(node, N_MEMORY))
1631 			goto out_flush;
1632 
1633 		err = -EACCES;
1634 		if (!node_isset(node, task_nodes))
1635 			goto out_flush;
1636 
1637 		if (current_node == NUMA_NO_NODE) {
1638 			current_node = node;
1639 			start = i;
1640 		} else if (node != current_node) {
1641 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1642 			if (err) {
1643 				/*
1644 				 * Positive err means the number of failed
1645 				 * pages to migrate.  Since we are going to
1646 				 * abort and return the number of non-migrated
1647 				 * pages, so need to incude the rest of the
1648 				 * nr_pages that have not been attempted as
1649 				 * well.
1650 				 */
1651 				if (err > 0)
1652 					err += nr_pages - i - 1;
1653 				goto out;
1654 			}
1655 			err = store_status(status, start, current_node, i - start);
1656 			if (err)
1657 				goto out;
1658 			start = i;
1659 			current_node = node;
1660 		}
1661 
1662 		/*
1663 		 * Errors in the page lookup or isolation are not fatal and we simply
1664 		 * report them via status
1665 		 */
1666 		err = add_page_for_migration(mm, addr, current_node,
1667 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1668 
1669 		if (!err) {
1670 			/* The page is already on the target node */
1671 			err = store_status(status, i, current_node, 1);
1672 			if (err)
1673 				goto out_flush;
1674 			continue;
1675 		} else if (err > 0) {
1676 			/* The page is successfully queued for migration */
1677 			continue;
1678 		}
1679 
1680 		err = store_status(status, i, err, 1);
1681 		if (err)
1682 			goto out_flush;
1683 
1684 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1685 		if (err) {
1686 			if (err > 0)
1687 				err += nr_pages - i - 1;
1688 			goto out;
1689 		}
1690 		if (i > start) {
1691 			err = store_status(status, start, current_node, i - start);
1692 			if (err)
1693 				goto out;
1694 		}
1695 		current_node = NUMA_NO_NODE;
1696 	}
1697 out_flush:
1698 	if (list_empty(&pagelist))
1699 		return err;
1700 
1701 	/* Make sure we do not overwrite the existing error */
1702 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1703 	/*
1704 	 * Don't have to report non-attempted pages here since:
1705 	 *     - If the above loop is done gracefully all pages have been
1706 	 *       attempted.
1707 	 *     - If the above loop is aborted it means a fatal error
1708 	 *       happened, should return ret.
1709 	 */
1710 	if (!err1)
1711 		err1 = store_status(status, start, current_node, i - start);
1712 	if (err >= 0)
1713 		err = err1;
1714 out:
1715 	return err;
1716 }
1717 
1718 /*
1719  * Determine the nodes of an array of pages and store it in an array of status.
1720  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1721 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1722 				const void __user **pages, int *status)
1723 {
1724 	unsigned long i;
1725 
1726 	down_read(&mm->mmap_sem);
1727 
1728 	for (i = 0; i < nr_pages; i++) {
1729 		unsigned long addr = (unsigned long)(*pages);
1730 		struct vm_area_struct *vma;
1731 		struct page *page;
1732 		int err = -EFAULT;
1733 
1734 		vma = find_vma(mm, addr);
1735 		if (!vma || addr < vma->vm_start)
1736 			goto set_status;
1737 
1738 		/* FOLL_DUMP to ignore special (like zero) pages */
1739 		page = follow_page(vma, addr, FOLL_DUMP);
1740 
1741 		err = PTR_ERR(page);
1742 		if (IS_ERR(page))
1743 			goto set_status;
1744 
1745 		err = page ? page_to_nid(page) : -ENOENT;
1746 set_status:
1747 		*status = err;
1748 
1749 		pages++;
1750 		status++;
1751 	}
1752 
1753 	up_read(&mm->mmap_sem);
1754 }
1755 
1756 /*
1757  * Determine the nodes of a user array of pages and store it in
1758  * a user array of status.
1759  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1760 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1761 			 const void __user * __user *pages,
1762 			 int __user *status)
1763 {
1764 #define DO_PAGES_STAT_CHUNK_NR 16
1765 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1766 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1767 
1768 	while (nr_pages) {
1769 		unsigned long chunk_nr;
1770 
1771 		chunk_nr = nr_pages;
1772 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1773 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1774 
1775 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1776 			break;
1777 
1778 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1779 
1780 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1781 			break;
1782 
1783 		pages += chunk_nr;
1784 		status += chunk_nr;
1785 		nr_pages -= chunk_nr;
1786 	}
1787 	return nr_pages ? -EFAULT : 0;
1788 }
1789 
1790 /*
1791  * Move a list of pages in the address space of the currently executing
1792  * process.
1793  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1794 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1795 			     const void __user * __user *pages,
1796 			     const int __user *nodes,
1797 			     int __user *status, int flags)
1798 {
1799 	struct task_struct *task;
1800 	struct mm_struct *mm;
1801 	int err;
1802 	nodemask_t task_nodes;
1803 
1804 	/* Check flags */
1805 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1806 		return -EINVAL;
1807 
1808 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1809 		return -EPERM;
1810 
1811 	/* Find the mm_struct */
1812 	rcu_read_lock();
1813 	task = pid ? find_task_by_vpid(pid) : current;
1814 	if (!task) {
1815 		rcu_read_unlock();
1816 		return -ESRCH;
1817 	}
1818 	get_task_struct(task);
1819 
1820 	/*
1821 	 * Check if this process has the right to modify the specified
1822 	 * process. Use the regular "ptrace_may_access()" checks.
1823 	 */
1824 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1825 		rcu_read_unlock();
1826 		err = -EPERM;
1827 		goto out;
1828 	}
1829 	rcu_read_unlock();
1830 
1831  	err = security_task_movememory(task);
1832  	if (err)
1833 		goto out;
1834 
1835 	task_nodes = cpuset_mems_allowed(task);
1836 	mm = get_task_mm(task);
1837 	put_task_struct(task);
1838 
1839 	if (!mm)
1840 		return -EINVAL;
1841 
1842 	if (nodes)
1843 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1844 				    nodes, status, flags);
1845 	else
1846 		err = do_pages_stat(mm, nr_pages, pages, status);
1847 
1848 	mmput(mm);
1849 	return err;
1850 
1851 out:
1852 	put_task_struct(task);
1853 	return err;
1854 }
1855 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1856 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1857 		const void __user * __user *, pages,
1858 		const int __user *, nodes,
1859 		int __user *, status, int, flags)
1860 {
1861 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1862 }
1863 
1864 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1865 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1866 		       compat_uptr_t __user *, pages32,
1867 		       const int __user *, nodes,
1868 		       int __user *, status,
1869 		       int, flags)
1870 {
1871 	const void __user * __user *pages;
1872 	int i;
1873 
1874 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1875 	for (i = 0; i < nr_pages; i++) {
1876 		compat_uptr_t p;
1877 
1878 		if (get_user(p, pages32 + i) ||
1879 			put_user(compat_ptr(p), pages + i))
1880 			return -EFAULT;
1881 	}
1882 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1883 }
1884 #endif /* CONFIG_COMPAT */
1885 
1886 #ifdef CONFIG_NUMA_BALANCING
1887 /*
1888  * Returns true if this is a safe migration target node for misplaced NUMA
1889  * pages. Currently it only checks the watermarks which crude
1890  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1891 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1892 				   unsigned long nr_migrate_pages)
1893 {
1894 	int z;
1895 
1896 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1897 		struct zone *zone = pgdat->node_zones + z;
1898 
1899 		if (!populated_zone(zone))
1900 			continue;
1901 
1902 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1903 		if (!zone_watermark_ok(zone, 0,
1904 				       high_wmark_pages(zone) +
1905 				       nr_migrate_pages,
1906 				       0, 0))
1907 			continue;
1908 		return true;
1909 	}
1910 	return false;
1911 }
1912 
alloc_misplaced_dst_page(struct page * page,unsigned long data)1913 static struct page *alloc_misplaced_dst_page(struct page *page,
1914 					   unsigned long data)
1915 {
1916 	int nid = (int) data;
1917 	struct page *newpage;
1918 
1919 	newpage = __alloc_pages_node(nid,
1920 					 (GFP_HIGHUSER_MOVABLE |
1921 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1922 					  __GFP_NORETRY | __GFP_NOWARN) &
1923 					 ~__GFP_RECLAIM, 0);
1924 
1925 	return newpage;
1926 }
1927 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)1928 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1929 {
1930 	int page_lru;
1931 
1932 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1933 
1934 	/* Avoid migrating to a node that is nearly full */
1935 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1936 		return 0;
1937 
1938 	if (isolate_lru_page(page))
1939 		return 0;
1940 
1941 	/*
1942 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1943 	 * check on page_count(), so we must do it here, now that the page
1944 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1945 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1946 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1947 	 */
1948 	if (PageTransHuge(page) && page_count(page) != 3) {
1949 		putback_lru_page(page);
1950 		return 0;
1951 	}
1952 
1953 	page_lru = page_is_file_cache(page);
1954 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1955 				hpage_nr_pages(page));
1956 
1957 	/*
1958 	 * Isolating the page has taken another reference, so the
1959 	 * caller's reference can be safely dropped without the page
1960 	 * disappearing underneath us during migration.
1961 	 */
1962 	put_page(page);
1963 	return 1;
1964 }
1965 
pmd_trans_migrating(pmd_t pmd)1966 bool pmd_trans_migrating(pmd_t pmd)
1967 {
1968 	struct page *page = pmd_page(pmd);
1969 	return PageLocked(page);
1970 }
1971 
1972 /*
1973  * Attempt to migrate a misplaced page to the specified destination
1974  * node. Caller is expected to have an elevated reference count on
1975  * the page that will be dropped by this function before returning.
1976  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)1977 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1978 			   int node)
1979 {
1980 	pg_data_t *pgdat = NODE_DATA(node);
1981 	int isolated;
1982 	int nr_remaining;
1983 	LIST_HEAD(migratepages);
1984 
1985 	/*
1986 	 * Don't migrate file pages that are mapped in multiple processes
1987 	 * with execute permissions as they are probably shared libraries.
1988 	 */
1989 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1990 	    (vma->vm_flags & VM_EXEC))
1991 		goto out;
1992 
1993 	/*
1994 	 * Also do not migrate dirty pages as not all filesystems can move
1995 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1996 	 */
1997 	if (page_is_file_cache(page) && PageDirty(page))
1998 		goto out;
1999 
2000 	isolated = numamigrate_isolate_page(pgdat, page);
2001 	if (!isolated)
2002 		goto out;
2003 
2004 	list_add(&page->lru, &migratepages);
2005 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2006 				     NULL, node, MIGRATE_ASYNC,
2007 				     MR_NUMA_MISPLACED);
2008 	if (nr_remaining) {
2009 		if (!list_empty(&migratepages)) {
2010 			list_del(&page->lru);
2011 			dec_node_page_state(page, NR_ISOLATED_ANON +
2012 					page_is_file_cache(page));
2013 			putback_lru_page(page);
2014 		}
2015 		isolated = 0;
2016 	} else
2017 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2018 	BUG_ON(!list_empty(&migratepages));
2019 	return isolated;
2020 
2021 out:
2022 	put_page(page);
2023 	return 0;
2024 }
2025 #endif /* CONFIG_NUMA_BALANCING */
2026 
2027 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2028 /*
2029  * Migrates a THP to a given target node. page must be locked and is unlocked
2030  * before returning.
2031  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2032 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2033 				struct vm_area_struct *vma,
2034 				pmd_t *pmd, pmd_t entry,
2035 				unsigned long address,
2036 				struct page *page, int node)
2037 {
2038 	spinlock_t *ptl;
2039 	pg_data_t *pgdat = NODE_DATA(node);
2040 	int isolated = 0;
2041 	struct page *new_page = NULL;
2042 	int page_lru = page_is_file_cache(page);
2043 	unsigned long start = address & HPAGE_PMD_MASK;
2044 
2045 	new_page = alloc_pages_node(node,
2046 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2047 		HPAGE_PMD_ORDER);
2048 	if (!new_page)
2049 		goto out_fail;
2050 	prep_transhuge_page(new_page);
2051 
2052 	isolated = numamigrate_isolate_page(pgdat, page);
2053 	if (!isolated) {
2054 		put_page(new_page);
2055 		goto out_fail;
2056 	}
2057 
2058 	/* Prepare a page as a migration target */
2059 	__SetPageLocked(new_page);
2060 	if (PageSwapBacked(page))
2061 		__SetPageSwapBacked(new_page);
2062 
2063 	/* anon mapping, we can simply copy page->mapping to the new page: */
2064 	new_page->mapping = page->mapping;
2065 	new_page->index = page->index;
2066 	/* flush the cache before copying using the kernel virtual address */
2067 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2068 	migrate_page_copy(new_page, page);
2069 	WARN_ON(PageLRU(new_page));
2070 
2071 	/* Recheck the target PMD */
2072 	ptl = pmd_lock(mm, pmd);
2073 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2074 		spin_unlock(ptl);
2075 
2076 		/* Reverse changes made by migrate_page_copy() */
2077 		if (TestClearPageActive(new_page))
2078 			SetPageActive(page);
2079 		if (TestClearPageUnevictable(new_page))
2080 			SetPageUnevictable(page);
2081 
2082 		unlock_page(new_page);
2083 		put_page(new_page);		/* Free it */
2084 
2085 		/* Retake the callers reference and putback on LRU */
2086 		get_page(page);
2087 		putback_lru_page(page);
2088 		mod_node_page_state(page_pgdat(page),
2089 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2090 
2091 		goto out_unlock;
2092 	}
2093 
2094 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2095 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2096 
2097 	/*
2098 	 * Overwrite the old entry under pagetable lock and establish
2099 	 * the new PTE. Any parallel GUP will either observe the old
2100 	 * page blocking on the page lock, block on the page table
2101 	 * lock or observe the new page. The SetPageUptodate on the
2102 	 * new page and page_add_new_anon_rmap guarantee the copy is
2103 	 * visible before the pagetable update.
2104 	 */
2105 	page_add_anon_rmap(new_page, vma, start, true);
2106 	/*
2107 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2108 	 * has already been flushed globally.  So no TLB can be currently
2109 	 * caching this non present pmd mapping.  There's no need to clear the
2110 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2111 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2112 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2113 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2114 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2115 	 * pmd.
2116 	 */
2117 	set_pmd_at(mm, start, pmd, entry);
2118 	update_mmu_cache_pmd(vma, address, &entry);
2119 
2120 	page_ref_unfreeze(page, 2);
2121 	mlock_migrate_page(new_page, page);
2122 	page_remove_rmap(page, true);
2123 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2124 
2125 	spin_unlock(ptl);
2126 
2127 	/* Take an "isolate" reference and put new page on the LRU. */
2128 	get_page(new_page);
2129 	putback_lru_page(new_page);
2130 
2131 	unlock_page(new_page);
2132 	unlock_page(page);
2133 	put_page(page);			/* Drop the rmap reference */
2134 	put_page(page);			/* Drop the LRU isolation reference */
2135 
2136 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2137 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2138 
2139 	mod_node_page_state(page_pgdat(page),
2140 			NR_ISOLATED_ANON + page_lru,
2141 			-HPAGE_PMD_NR);
2142 	return isolated;
2143 
2144 out_fail:
2145 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2146 	ptl = pmd_lock(mm, pmd);
2147 	if (pmd_same(*pmd, entry)) {
2148 		entry = pmd_modify(entry, vma->vm_page_prot);
2149 		set_pmd_at(mm, start, pmd, entry);
2150 		update_mmu_cache_pmd(vma, address, &entry);
2151 	}
2152 	spin_unlock(ptl);
2153 
2154 out_unlock:
2155 	unlock_page(page);
2156 	put_page(page);
2157 	return 0;
2158 }
2159 #endif /* CONFIG_NUMA_BALANCING */
2160 
2161 #endif /* CONFIG_NUMA */
2162 
2163 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,struct mm_walk * walk)2164 static int migrate_vma_collect_hole(unsigned long start,
2165 				    unsigned long end,
2166 				    struct mm_walk *walk)
2167 {
2168 	struct migrate_vma *migrate = walk->private;
2169 	unsigned long addr;
2170 
2171 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2172 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2173 		migrate->dst[migrate->npages] = 0;
2174 		migrate->npages++;
2175 		migrate->cpages++;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2181 static int migrate_vma_collect_skip(unsigned long start,
2182 				    unsigned long end,
2183 				    struct mm_walk *walk)
2184 {
2185 	struct migrate_vma *migrate = walk->private;
2186 	unsigned long addr;
2187 
2188 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2189 		migrate->dst[migrate->npages] = 0;
2190 		migrate->src[migrate->npages++] = 0;
2191 	}
2192 
2193 	return 0;
2194 }
2195 
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2196 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197 				   unsigned long start,
2198 				   unsigned long end,
2199 				   struct mm_walk *walk)
2200 {
2201 	struct migrate_vma *migrate = walk->private;
2202 	struct vm_area_struct *vma = walk->vma;
2203 	struct mm_struct *mm = vma->vm_mm;
2204 	unsigned long addr = start, unmapped = 0;
2205 	spinlock_t *ptl;
2206 	pte_t *ptep;
2207 
2208 again:
2209 	if (pmd_none(*pmdp))
2210 		return migrate_vma_collect_hole(start, end, walk);
2211 
2212 	if (pmd_trans_huge(*pmdp)) {
2213 		struct page *page;
2214 
2215 		ptl = pmd_lock(mm, pmdp);
2216 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2217 			spin_unlock(ptl);
2218 			goto again;
2219 		}
2220 
2221 		page = pmd_page(*pmdp);
2222 		if (is_huge_zero_page(page)) {
2223 			spin_unlock(ptl);
2224 			split_huge_pmd(vma, pmdp, addr);
2225 			if (pmd_trans_unstable(pmdp))
2226 				return migrate_vma_collect_skip(start, end,
2227 								walk);
2228 		} else {
2229 			int ret;
2230 
2231 			get_page(page);
2232 			spin_unlock(ptl);
2233 			if (unlikely(!trylock_page(page)))
2234 				return migrate_vma_collect_skip(start, end,
2235 								walk);
2236 			ret = split_huge_page(page);
2237 			unlock_page(page);
2238 			put_page(page);
2239 			if (ret)
2240 				return migrate_vma_collect_skip(start, end,
2241 								walk);
2242 			if (pmd_none(*pmdp))
2243 				return migrate_vma_collect_hole(start, end,
2244 								walk);
2245 		}
2246 	}
2247 
2248 	if (unlikely(pmd_bad(*pmdp)))
2249 		return migrate_vma_collect_skip(start, end, walk);
2250 
2251 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2252 	arch_enter_lazy_mmu_mode();
2253 
2254 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2255 		unsigned long mpfn, pfn;
2256 		struct page *page;
2257 		swp_entry_t entry;
2258 		pte_t pte;
2259 
2260 		pte = *ptep;
2261 
2262 		if (pte_none(pte)) {
2263 			mpfn = MIGRATE_PFN_MIGRATE;
2264 			migrate->cpages++;
2265 			goto next;
2266 		}
2267 
2268 		if (!pte_present(pte)) {
2269 			mpfn = 0;
2270 
2271 			/*
2272 			 * Only care about unaddressable device page special
2273 			 * page table entry. Other special swap entries are not
2274 			 * migratable, and we ignore regular swapped page.
2275 			 */
2276 			entry = pte_to_swp_entry(pte);
2277 			if (!is_device_private_entry(entry))
2278 				goto next;
2279 
2280 			page = device_private_entry_to_page(entry);
2281 			mpfn = migrate_pfn(page_to_pfn(page)) |
2282 					MIGRATE_PFN_MIGRATE;
2283 			if (is_write_device_private_entry(entry))
2284 				mpfn |= MIGRATE_PFN_WRITE;
2285 		} else {
2286 			pfn = pte_pfn(pte);
2287 			if (is_zero_pfn(pfn)) {
2288 				mpfn = MIGRATE_PFN_MIGRATE;
2289 				migrate->cpages++;
2290 				goto next;
2291 			}
2292 			page = vm_normal_page(migrate->vma, addr, pte);
2293 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2294 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2295 		}
2296 
2297 		/* FIXME support THP */
2298 		if (!page || !page->mapping || PageTransCompound(page)) {
2299 			mpfn = 0;
2300 			goto next;
2301 		}
2302 
2303 		/*
2304 		 * By getting a reference on the page we pin it and that blocks
2305 		 * any kind of migration. Side effect is that it "freezes" the
2306 		 * pte.
2307 		 *
2308 		 * We drop this reference after isolating the page from the lru
2309 		 * for non device page (device page are not on the lru and thus
2310 		 * can't be dropped from it).
2311 		 */
2312 		get_page(page);
2313 		migrate->cpages++;
2314 
2315 		/*
2316 		 * Optimize for the common case where page is only mapped once
2317 		 * in one process. If we can lock the page, then we can safely
2318 		 * set up a special migration page table entry now.
2319 		 */
2320 		if (trylock_page(page)) {
2321 			pte_t swp_pte;
2322 
2323 			mpfn |= MIGRATE_PFN_LOCKED;
2324 			ptep_get_and_clear(mm, addr, ptep);
2325 
2326 			/* Setup special migration page table entry */
2327 			entry = make_migration_entry(page, mpfn &
2328 						     MIGRATE_PFN_WRITE);
2329 			swp_pte = swp_entry_to_pte(entry);
2330 			if (pte_soft_dirty(pte))
2331 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2332 			set_pte_at(mm, addr, ptep, swp_pte);
2333 
2334 			/*
2335 			 * This is like regular unmap: we remove the rmap and
2336 			 * drop page refcount. Page won't be freed, as we took
2337 			 * a reference just above.
2338 			 */
2339 			page_remove_rmap(page, false);
2340 			put_page(page);
2341 
2342 			if (pte_present(pte))
2343 				unmapped++;
2344 		}
2345 
2346 next:
2347 		migrate->dst[migrate->npages] = 0;
2348 		migrate->src[migrate->npages++] = mpfn;
2349 	}
2350 
2351 	/* Only flush the TLB if we actually modified any entries */
2352 	if (unmapped)
2353 		flush_tlb_range(walk->vma, start, end);
2354 
2355 	arch_leave_lazy_mmu_mode();
2356 	pte_unmap_unlock(ptep - 1, ptl);
2357 
2358 	return 0;
2359 }
2360 
2361 static const struct mm_walk_ops migrate_vma_walk_ops = {
2362 	.pmd_entry		= migrate_vma_collect_pmd,
2363 	.pte_hole		= migrate_vma_collect_hole,
2364 };
2365 
2366 /*
2367  * migrate_vma_collect() - collect pages over a range of virtual addresses
2368  * @migrate: migrate struct containing all migration information
2369  *
2370  * This will walk the CPU page table. For each virtual address backed by a
2371  * valid page, it updates the src array and takes a reference on the page, in
2372  * order to pin the page until we lock it and unmap it.
2373  */
migrate_vma_collect(struct migrate_vma * migrate)2374 static void migrate_vma_collect(struct migrate_vma *migrate)
2375 {
2376 	struct mmu_notifier_range range;
2377 
2378 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2379 			migrate->vma->vm_mm, migrate->start, migrate->end);
2380 	mmu_notifier_invalidate_range_start(&range);
2381 
2382 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2383 			&migrate_vma_walk_ops, migrate);
2384 
2385 	mmu_notifier_invalidate_range_end(&range);
2386 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2387 }
2388 
2389 /*
2390  * migrate_vma_check_page() - check if page is pinned or not
2391  * @page: struct page to check
2392  *
2393  * Pinned pages cannot be migrated. This is the same test as in
2394  * migrate_page_move_mapping(), except that here we allow migration of a
2395  * ZONE_DEVICE page.
2396  */
migrate_vma_check_page(struct page * page)2397 static bool migrate_vma_check_page(struct page *page)
2398 {
2399 	/*
2400 	 * One extra ref because caller holds an extra reference, either from
2401 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2402 	 * a device page.
2403 	 */
2404 	int extra = 1;
2405 
2406 	/*
2407 	 * FIXME support THP (transparent huge page), it is bit more complex to
2408 	 * check them than regular pages, because they can be mapped with a pmd
2409 	 * or with a pte (split pte mapping).
2410 	 */
2411 	if (PageCompound(page))
2412 		return false;
2413 
2414 	/* Page from ZONE_DEVICE have one extra reference */
2415 	if (is_zone_device_page(page)) {
2416 		/*
2417 		 * Private page can never be pin as they have no valid pte and
2418 		 * GUP will fail for those. Yet if there is a pending migration
2419 		 * a thread might try to wait on the pte migration entry and
2420 		 * will bump the page reference count. Sadly there is no way to
2421 		 * differentiate a regular pin from migration wait. Hence to
2422 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2423 		 * infinite loop (one stoping migration because the other is
2424 		 * waiting on pte migration entry). We always return true here.
2425 		 *
2426 		 * FIXME proper solution is to rework migration_entry_wait() so
2427 		 * it does not need to take a reference on page.
2428 		 */
2429 		return is_device_private_page(page);
2430 	}
2431 
2432 	/* For file back page */
2433 	if (page_mapping(page))
2434 		extra += 1 + page_has_private(page);
2435 
2436 	if ((page_count(page) - extra) > page_mapcount(page))
2437 		return false;
2438 
2439 	return true;
2440 }
2441 
2442 /*
2443  * migrate_vma_prepare() - lock pages and isolate them from the lru
2444  * @migrate: migrate struct containing all migration information
2445  *
2446  * This locks pages that have been collected by migrate_vma_collect(). Once each
2447  * page is locked it is isolated from the lru (for non-device pages). Finally,
2448  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2449  * migrated by concurrent kernel threads.
2450  */
migrate_vma_prepare(struct migrate_vma * migrate)2451 static void migrate_vma_prepare(struct migrate_vma *migrate)
2452 {
2453 	const unsigned long npages = migrate->npages;
2454 	const unsigned long start = migrate->start;
2455 	unsigned long addr, i, restore = 0;
2456 	bool allow_drain = true;
2457 
2458 	lru_add_drain();
2459 
2460 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2461 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2462 		bool remap = true;
2463 
2464 		if (!page)
2465 			continue;
2466 
2467 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2468 			/*
2469 			 * Because we are migrating several pages there can be
2470 			 * a deadlock between 2 concurrent migration where each
2471 			 * are waiting on each other page lock.
2472 			 *
2473 			 * Make migrate_vma() a best effort thing and backoff
2474 			 * for any page we can not lock right away.
2475 			 */
2476 			if (!trylock_page(page)) {
2477 				migrate->src[i] = 0;
2478 				migrate->cpages--;
2479 				put_page(page);
2480 				continue;
2481 			}
2482 			remap = false;
2483 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2484 		}
2485 
2486 		/* ZONE_DEVICE pages are not on LRU */
2487 		if (!is_zone_device_page(page)) {
2488 			if (!PageLRU(page) && allow_drain) {
2489 				/* Drain CPU's pagevec */
2490 				lru_add_drain_all();
2491 				allow_drain = false;
2492 			}
2493 
2494 			if (isolate_lru_page(page)) {
2495 				if (remap) {
2496 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2497 					migrate->cpages--;
2498 					restore++;
2499 				} else {
2500 					migrate->src[i] = 0;
2501 					unlock_page(page);
2502 					migrate->cpages--;
2503 					put_page(page);
2504 				}
2505 				continue;
2506 			}
2507 
2508 			/* Drop the reference we took in collect */
2509 			put_page(page);
2510 		}
2511 
2512 		if (!migrate_vma_check_page(page)) {
2513 			if (remap) {
2514 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2515 				migrate->cpages--;
2516 				restore++;
2517 
2518 				if (!is_zone_device_page(page)) {
2519 					get_page(page);
2520 					putback_lru_page(page);
2521 				}
2522 			} else {
2523 				migrate->src[i] = 0;
2524 				unlock_page(page);
2525 				migrate->cpages--;
2526 
2527 				if (!is_zone_device_page(page))
2528 					putback_lru_page(page);
2529 				else
2530 					put_page(page);
2531 			}
2532 		}
2533 	}
2534 
2535 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2536 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2537 
2538 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2539 			continue;
2540 
2541 		remove_migration_pte(page, migrate->vma, addr, page);
2542 
2543 		migrate->src[i] = 0;
2544 		unlock_page(page);
2545 		put_page(page);
2546 		restore--;
2547 	}
2548 }
2549 
2550 /*
2551  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2552  * @migrate: migrate struct containing all migration information
2553  *
2554  * Replace page mapping (CPU page table pte) with a special migration pte entry
2555  * and check again if it has been pinned. Pinned pages are restored because we
2556  * cannot migrate them.
2557  *
2558  * This is the last step before we call the device driver callback to allocate
2559  * destination memory and copy contents of original page over to new page.
2560  */
migrate_vma_unmap(struct migrate_vma * migrate)2561 static void migrate_vma_unmap(struct migrate_vma *migrate)
2562 {
2563 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2564 	const unsigned long npages = migrate->npages;
2565 	const unsigned long start = migrate->start;
2566 	unsigned long addr, i, restore = 0;
2567 
2568 	for (i = 0; i < npages; i++) {
2569 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2570 
2571 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2572 			continue;
2573 
2574 		if (page_mapped(page)) {
2575 			try_to_unmap(page, flags);
2576 			if (page_mapped(page))
2577 				goto restore;
2578 		}
2579 
2580 		if (migrate_vma_check_page(page))
2581 			continue;
2582 
2583 restore:
2584 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2585 		migrate->cpages--;
2586 		restore++;
2587 	}
2588 
2589 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2590 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2591 
2592 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2593 			continue;
2594 
2595 		remove_migration_ptes(page, page, false);
2596 
2597 		migrate->src[i] = 0;
2598 		unlock_page(page);
2599 		restore--;
2600 
2601 		if (is_zone_device_page(page))
2602 			put_page(page);
2603 		else
2604 			putback_lru_page(page);
2605 	}
2606 }
2607 
2608 /**
2609  * migrate_vma_setup() - prepare to migrate a range of memory
2610  * @args: contains the vma, start, and and pfns arrays for the migration
2611  *
2612  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2613  * without an error.
2614  *
2615  * Prepare to migrate a range of memory virtual address range by collecting all
2616  * the pages backing each virtual address in the range, saving them inside the
2617  * src array.  Then lock those pages and unmap them. Once the pages are locked
2618  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2619  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2620  * corresponding src array entry.  Then restores any pages that are pinned, by
2621  * remapping and unlocking those pages.
2622  *
2623  * The caller should then allocate destination memory and copy source memory to
2624  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2625  * flag set).  Once these are allocated and copied, the caller must update each
2626  * corresponding entry in the dst array with the pfn value of the destination
2627  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2628  * (destination pages must have their struct pages locked, via lock_page()).
2629  *
2630  * Note that the caller does not have to migrate all the pages that are marked
2631  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2632  * device memory to system memory.  If the caller cannot migrate a device page
2633  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2634  * consequences for the userspace process, so it must be avoided if at all
2635  * possible.
2636  *
2637  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2638  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2639  * allowing the caller to allocate device memory for those unback virtual
2640  * address.  For this the caller simply has to allocate device memory and
2641  * properly set the destination entry like for regular migration.  Note that
2642  * this can still fails and thus inside the device driver must check if the
2643  * migration was successful for those entries after calling migrate_vma_pages()
2644  * just like for regular migration.
2645  *
2646  * After that, the callers must call migrate_vma_pages() to go over each entry
2647  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2648  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2649  * then migrate_vma_pages() to migrate struct page information from the source
2650  * struct page to the destination struct page.  If it fails to migrate the
2651  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2652  * src array.
2653  *
2654  * At this point all successfully migrated pages have an entry in the src
2655  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2656  * array entry with MIGRATE_PFN_VALID flag set.
2657  *
2658  * Once migrate_vma_pages() returns the caller may inspect which pages were
2659  * successfully migrated, and which were not.  Successfully migrated pages will
2660  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2661  *
2662  * It is safe to update device page table after migrate_vma_pages() because
2663  * both destination and source page are still locked, and the mmap_sem is held
2664  * in read mode (hence no one can unmap the range being migrated).
2665  *
2666  * Once the caller is done cleaning up things and updating its page table (if it
2667  * chose to do so, this is not an obligation) it finally calls
2668  * migrate_vma_finalize() to update the CPU page table to point to new pages
2669  * for successfully migrated pages or otherwise restore the CPU page table to
2670  * point to the original source pages.
2671  */
migrate_vma_setup(struct migrate_vma * args)2672 int migrate_vma_setup(struct migrate_vma *args)
2673 {
2674 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2675 
2676 	args->start &= PAGE_MASK;
2677 	args->end &= PAGE_MASK;
2678 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2679 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2680 		return -EINVAL;
2681 	if (nr_pages <= 0)
2682 		return -EINVAL;
2683 	if (args->start < args->vma->vm_start ||
2684 	    args->start >= args->vma->vm_end)
2685 		return -EINVAL;
2686 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2687 		return -EINVAL;
2688 	if (!args->src || !args->dst)
2689 		return -EINVAL;
2690 
2691 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2692 	args->cpages = 0;
2693 	args->npages = 0;
2694 
2695 	migrate_vma_collect(args);
2696 
2697 	if (args->cpages)
2698 		migrate_vma_prepare(args);
2699 	if (args->cpages)
2700 		migrate_vma_unmap(args);
2701 
2702 	/*
2703 	 * At this point pages are locked and unmapped, and thus they have
2704 	 * stable content and can safely be copied to destination memory that
2705 	 * is allocated by the drivers.
2706 	 */
2707 	return 0;
2708 
2709 }
2710 EXPORT_SYMBOL(migrate_vma_setup);
2711 
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2712 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2713 				    unsigned long addr,
2714 				    struct page *page,
2715 				    unsigned long *src,
2716 				    unsigned long *dst)
2717 {
2718 	struct vm_area_struct *vma = migrate->vma;
2719 	struct mm_struct *mm = vma->vm_mm;
2720 	struct mem_cgroup *memcg;
2721 	bool flush = false;
2722 	spinlock_t *ptl;
2723 	pte_t entry;
2724 	pgd_t *pgdp;
2725 	p4d_t *p4dp;
2726 	pud_t *pudp;
2727 	pmd_t *pmdp;
2728 	pte_t *ptep;
2729 
2730 	/* Only allow populating anonymous memory */
2731 	if (!vma_is_anonymous(vma))
2732 		goto abort;
2733 
2734 	pgdp = pgd_offset(mm, addr);
2735 	p4dp = p4d_alloc(mm, pgdp, addr);
2736 	if (!p4dp)
2737 		goto abort;
2738 	pudp = pud_alloc(mm, p4dp, addr);
2739 	if (!pudp)
2740 		goto abort;
2741 	pmdp = pmd_alloc(mm, pudp, addr);
2742 	if (!pmdp)
2743 		goto abort;
2744 
2745 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2746 		goto abort;
2747 
2748 	/*
2749 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2750 	 * pte_offset_map() on pmds where a huge pmd might be created
2751 	 * from a different thread.
2752 	 *
2753 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2754 	 * parallel threads are excluded by other means.
2755 	 *
2756 	 * Here we only have down_read(mmap_sem).
2757 	 */
2758 	if (pte_alloc(mm, pmdp))
2759 		goto abort;
2760 
2761 	/* See the comment in pte_alloc_one_map() */
2762 	if (unlikely(pmd_trans_unstable(pmdp)))
2763 		goto abort;
2764 
2765 	if (unlikely(anon_vma_prepare(vma)))
2766 		goto abort;
2767 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2768 		goto abort;
2769 
2770 	/*
2771 	 * The memory barrier inside __SetPageUptodate makes sure that
2772 	 * preceding stores to the page contents become visible before
2773 	 * the set_pte_at() write.
2774 	 */
2775 	__SetPageUptodate(page);
2776 
2777 	if (is_zone_device_page(page)) {
2778 		if (is_device_private_page(page)) {
2779 			swp_entry_t swp_entry;
2780 
2781 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2782 			entry = swp_entry_to_pte(swp_entry);
2783 		} else {
2784 			/*
2785 			 * For now we only support migrating to un-addressable
2786 			 * device memory.
2787 			 */
2788 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2789 			goto abort;
2790 		}
2791 	} else {
2792 		entry = mk_pte(page, vma->vm_page_prot);
2793 		if (vma->vm_flags & VM_WRITE)
2794 			entry = pte_mkwrite(pte_mkdirty(entry));
2795 	}
2796 
2797 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2798 
2799 	if (pte_present(*ptep)) {
2800 		unsigned long pfn = pte_pfn(*ptep);
2801 
2802 		if (!is_zero_pfn(pfn)) {
2803 			pte_unmap_unlock(ptep, ptl);
2804 			mem_cgroup_cancel_charge(page, memcg, false);
2805 			goto abort;
2806 		}
2807 		flush = true;
2808 	} else if (!pte_none(*ptep)) {
2809 		pte_unmap_unlock(ptep, ptl);
2810 		mem_cgroup_cancel_charge(page, memcg, false);
2811 		goto abort;
2812 	}
2813 
2814 	/*
2815 	 * Check for usefaultfd but do not deliver the fault. Instead,
2816 	 * just back off.
2817 	 */
2818 	if (userfaultfd_missing(vma)) {
2819 		pte_unmap_unlock(ptep, ptl);
2820 		mem_cgroup_cancel_charge(page, memcg, false);
2821 		goto abort;
2822 	}
2823 
2824 	inc_mm_counter(mm, MM_ANONPAGES);
2825 	page_add_new_anon_rmap(page, vma, addr, false);
2826 	mem_cgroup_commit_charge(page, memcg, false, false);
2827 	if (!is_zone_device_page(page))
2828 		lru_cache_add_active_or_unevictable(page, vma);
2829 	get_page(page);
2830 
2831 	if (flush) {
2832 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2833 		ptep_clear_flush_notify(vma, addr, ptep);
2834 		set_pte_at_notify(mm, addr, ptep, entry);
2835 		update_mmu_cache(vma, addr, ptep);
2836 	} else {
2837 		/* No need to invalidate - it was non-present before */
2838 		set_pte_at(mm, addr, ptep, entry);
2839 		update_mmu_cache(vma, addr, ptep);
2840 	}
2841 
2842 	pte_unmap_unlock(ptep, ptl);
2843 	*src = MIGRATE_PFN_MIGRATE;
2844 	return;
2845 
2846 abort:
2847 	*src &= ~MIGRATE_PFN_MIGRATE;
2848 }
2849 
2850 /**
2851  * migrate_vma_pages() - migrate meta-data from src page to dst page
2852  * @migrate: migrate struct containing all migration information
2853  *
2854  * This migrates struct page meta-data from source struct page to destination
2855  * struct page. This effectively finishes the migration from source page to the
2856  * destination page.
2857  */
migrate_vma_pages(struct migrate_vma * migrate)2858 void migrate_vma_pages(struct migrate_vma *migrate)
2859 {
2860 	const unsigned long npages = migrate->npages;
2861 	const unsigned long start = migrate->start;
2862 	struct mmu_notifier_range range;
2863 	unsigned long addr, i;
2864 	bool notified = false;
2865 
2866 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2867 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2868 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2869 		struct address_space *mapping;
2870 		int r;
2871 
2872 		if (!newpage) {
2873 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874 			continue;
2875 		}
2876 
2877 		if (!page) {
2878 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2879 				continue;
2880 			}
2881 			if (!notified) {
2882 				notified = true;
2883 
2884 				mmu_notifier_range_init(&range,
2885 							MMU_NOTIFY_CLEAR, 0,
2886 							NULL,
2887 							migrate->vma->vm_mm,
2888 							addr, migrate->end);
2889 				mmu_notifier_invalidate_range_start(&range);
2890 			}
2891 			migrate_vma_insert_page(migrate, addr, newpage,
2892 						&migrate->src[i],
2893 						&migrate->dst[i]);
2894 			continue;
2895 		}
2896 
2897 		mapping = page_mapping(page);
2898 
2899 		if (is_zone_device_page(newpage)) {
2900 			if (is_device_private_page(newpage)) {
2901 				/*
2902 				 * For now only support private anonymous when
2903 				 * migrating to un-addressable device memory.
2904 				 */
2905 				if (mapping) {
2906 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2907 					continue;
2908 				}
2909 			} else {
2910 				/*
2911 				 * Other types of ZONE_DEVICE page are not
2912 				 * supported.
2913 				 */
2914 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2915 				continue;
2916 			}
2917 		}
2918 
2919 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2920 		if (r != MIGRATEPAGE_SUCCESS)
2921 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2922 	}
2923 
2924 	/*
2925 	 * No need to double call mmu_notifier->invalidate_range() callback as
2926 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2927 	 * did already call it.
2928 	 */
2929 	if (notified)
2930 		mmu_notifier_invalidate_range_only_end(&range);
2931 }
2932 EXPORT_SYMBOL(migrate_vma_pages);
2933 
2934 /**
2935  * migrate_vma_finalize() - restore CPU page table entry
2936  * @migrate: migrate struct containing all migration information
2937  *
2938  * This replaces the special migration pte entry with either a mapping to the
2939  * new page if migration was successful for that page, or to the original page
2940  * otherwise.
2941  *
2942  * This also unlocks the pages and puts them back on the lru, or drops the extra
2943  * refcount, for device pages.
2944  */
migrate_vma_finalize(struct migrate_vma * migrate)2945 void migrate_vma_finalize(struct migrate_vma *migrate)
2946 {
2947 	const unsigned long npages = migrate->npages;
2948 	unsigned long i;
2949 
2950 	for (i = 0; i < npages; i++) {
2951 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2952 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2953 
2954 		if (!page) {
2955 			if (newpage) {
2956 				unlock_page(newpage);
2957 				put_page(newpage);
2958 			}
2959 			continue;
2960 		}
2961 
2962 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2963 			if (newpage) {
2964 				unlock_page(newpage);
2965 				put_page(newpage);
2966 			}
2967 			newpage = page;
2968 		}
2969 
2970 		remove_migration_ptes(page, newpage, false);
2971 		unlock_page(page);
2972 		migrate->cpages--;
2973 
2974 		if (is_zone_device_page(page))
2975 			put_page(page);
2976 		else
2977 			putback_lru_page(page);
2978 
2979 		if (newpage != page) {
2980 			unlock_page(newpage);
2981 			if (is_zone_device_page(newpage))
2982 				put_page(newpage);
2983 			else
2984 				putback_lru_page(newpage);
2985 		}
2986 	}
2987 }
2988 EXPORT_SYMBOL(migrate_vma_finalize);
2989 #endif /* CONFIG_DEVICE_PRIVATE */
2990