• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 	return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157 
vmalloc_user(unsigned long size)158 void *vmalloc_user(unsigned long size)
159 {
160 	void *ret;
161 
162 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 	if (ret) {
164 		struct vm_area_struct *vma;
165 
166 		down_write(&current->mm->mmap_sem);
167 		vma = find_vma(current->mm, (unsigned long)ret);
168 		if (vma)
169 			vma->vm_flags |= VM_USERMAP;
170 		up_write(&current->mm->mmap_sem);
171 	}
172 
173 	return ret;
174 }
175 EXPORT_SYMBOL(vmalloc_user);
176 
vmalloc_to_page(const void * addr)177 struct page *vmalloc_to_page(const void *addr)
178 {
179 	return virt_to_page(addr);
180 }
181 EXPORT_SYMBOL(vmalloc_to_page);
182 
vmalloc_to_pfn(const void * addr)183 unsigned long vmalloc_to_pfn(const void *addr)
184 {
185 	return page_to_pfn(virt_to_page(addr));
186 }
187 EXPORT_SYMBOL(vmalloc_to_pfn);
188 
vread(char * buf,char * addr,unsigned long count)189 long vread(char *buf, char *addr, unsigned long count)
190 {
191 	/* Don't allow overflow */
192 	if ((unsigned long) buf + count < count)
193 		count = -(unsigned long) buf;
194 
195 	memcpy(buf, addr, count);
196 	return count;
197 }
198 
vwrite(char * buf,char * addr,unsigned long count)199 long vwrite(char *buf, char *addr, unsigned long count)
200 {
201 	/* Don't allow overflow */
202 	if ((unsigned long) addr + count < count)
203 		count = -(unsigned long) addr;
204 
205 	memcpy(addr, buf, count);
206 	return count;
207 }
208 
209 /*
210  *	vmalloc  -  allocate virtually contiguous memory
211  *
212  *	@size:		allocation size
213  *
214  *	Allocate enough pages to cover @size from the page level
215  *	allocator and map them into contiguous kernel virtual space.
216  *
217  *	For tight control over page level allocator and protection flags
218  *	use __vmalloc() instead.
219  */
vmalloc(unsigned long size)220 void *vmalloc(unsigned long size)
221 {
222        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225 
226 /*
227  *	vzalloc - allocate virtually contiguous memory with zero fill
228  *
229  *	@size:		allocation size
230  *
231  *	Allocate enough pages to cover @size from the page level
232  *	allocator and map them into contiguous kernel virtual space.
233  *	The memory allocated is set to zero.
234  *
235  *	For tight control over page level allocator and protection flags
236  *	use __vmalloc() instead.
237  */
vzalloc(unsigned long size)238 void *vzalloc(unsigned long size)
239 {
240 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 			PAGE_KERNEL);
242 }
243 EXPORT_SYMBOL(vzalloc);
244 
245 /**
246  * vmalloc_node - allocate memory on a specific node
247  * @size:	allocation size
248  * @node:	numa node
249  *
250  * Allocate enough pages to cover @size from the page level
251  * allocator and map them into contiguous kernel virtual space.
252  *
253  * For tight control over page level allocator and protection flags
254  * use __vmalloc() instead.
255  */
vmalloc_node(unsigned long size,int node)256 void *vmalloc_node(unsigned long size, int node)
257 {
258 	return vmalloc(size);
259 }
260 EXPORT_SYMBOL(vmalloc_node);
261 
262 /**
263  * vzalloc_node - allocate memory on a specific node with zero fill
264  * @size:	allocation size
265  * @node:	numa node
266  *
267  * Allocate enough pages to cover @size from the page level
268  * allocator and map them into contiguous kernel virtual space.
269  * The memory allocated is set to zero.
270  *
271  * For tight control over page level allocator and protection flags
272  * use __vmalloc() instead.
273  */
vzalloc_node(unsigned long size,int node)274 void *vzalloc_node(unsigned long size, int node)
275 {
276 	return vzalloc(size);
277 }
278 EXPORT_SYMBOL(vzalloc_node);
279 
280 /**
281  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
282  *	@size:		allocation size
283  *
284  *	Kernel-internal function to allocate enough pages to cover @size
285  *	the page level allocator and map them into contiguous and
286  *	executable kernel virtual space.
287  *
288  *	For tight control over page level allocator and protection flags
289  *	use __vmalloc() instead.
290  */
291 
vmalloc_exec(unsigned long size)292 void *vmalloc_exec(unsigned long size)
293 {
294 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295 }
296 
297 /**
298  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
299  *	@size:		allocation size
300  *
301  *	Allocate enough 32bit PA addressable pages to cover @size from the
302  *	page level allocator and map them into contiguous kernel virtual space.
303  */
vmalloc_32(unsigned long size)304 void *vmalloc_32(unsigned long size)
305 {
306 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307 }
308 EXPORT_SYMBOL(vmalloc_32);
309 
310 /**
311  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312  *	@size:		allocation size
313  *
314  * The resulting memory area is 32bit addressable and zeroed so it can be
315  * mapped to userspace without leaking data.
316  *
317  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318  * remap_vmalloc_range() are permissible.
319  */
vmalloc_32_user(unsigned long size)320 void *vmalloc_32_user(unsigned long size)
321 {
322 	/*
323 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 	 * but for now this can simply use vmalloc_user() directly.
325 	 */
326 	return vmalloc_user(size);
327 }
328 EXPORT_SYMBOL(vmalloc_32_user);
329 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331 {
332 	BUG();
333 	return NULL;
334 }
335 EXPORT_SYMBOL(vmap);
336 
vunmap(const void * addr)337 void vunmap(const void *addr)
338 {
339 	BUG();
340 }
341 EXPORT_SYMBOL(vunmap);
342 
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344 {
345 	BUG();
346 	return NULL;
347 }
348 EXPORT_SYMBOL(vm_map_ram);
349 
vm_unmap_ram(const void * mem,unsigned int count)350 void vm_unmap_ram(const void *mem, unsigned int count)
351 {
352 	BUG();
353 }
354 EXPORT_SYMBOL(vm_unmap_ram);
355 
vm_unmap_aliases(void)356 void vm_unmap_aliases(void)
357 {
358 }
359 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360 
361 /*
362  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
363  * chose not to have one.
364  */
vmalloc_sync_mappings(void)365 void __weak vmalloc_sync_mappings(void)
366 {
367 }
368 
vmalloc_sync_unmappings(void)369 void __weak vmalloc_sync_unmappings(void)
370 {
371 }
372 
alloc_vm_area(size_t size,pte_t ** ptes)373 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
374 {
375 	BUG();
376 	return NULL;
377 }
378 EXPORT_SYMBOL_GPL(alloc_vm_area);
379 
free_vm_area(struct vm_struct * area)380 void free_vm_area(struct vm_struct *area)
381 {
382 	BUG();
383 }
384 EXPORT_SYMBOL_GPL(free_vm_area);
385 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
387 		   struct page *page)
388 {
389 	return -EINVAL;
390 }
391 EXPORT_SYMBOL(vm_insert_page);
392 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)393 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
394 			unsigned long num)
395 {
396 	return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_map_pages);
399 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)400 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
401 				unsigned long num)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages_zero);
406 
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
SYSCALL_DEFINE1(brk,unsigned long,brk)414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 	struct mm_struct *mm = current->mm;
417 
418 	if (brk < mm->start_brk || brk > mm->context.end_brk)
419 		return mm->brk;
420 
421 	if (mm->brk == brk)
422 		return mm->brk;
423 
424 	/*
425 	 * Always allow shrinking brk
426 	 */
427 	if (brk <= mm->brk) {
428 		mm->brk = brk;
429 		return brk;
430 	}
431 
432 	/*
433 	 * Ok, looks good - let it rip.
434 	 */
435 	flush_icache_range(mm->brk, brk);
436 	return mm->brk = brk;
437 }
438 
439 /*
440  * initialise the percpu counter for VM and region record slabs
441  */
mmap_init(void)442 void __init mmap_init(void)
443 {
444 	int ret;
445 
446 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
447 	VM_BUG_ON(ret);
448 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
449 }
450 
451 /*
452  * validate the region tree
453  * - the caller must hold the region lock
454  */
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)456 static noinline void validate_nommu_regions(void)
457 {
458 	struct vm_region *region, *last;
459 	struct rb_node *p, *lastp;
460 
461 	lastp = rb_first(&nommu_region_tree);
462 	if (!lastp)
463 		return;
464 
465 	last = rb_entry(lastp, struct vm_region, vm_rb);
466 	BUG_ON(last->vm_end <= last->vm_start);
467 	BUG_ON(last->vm_top < last->vm_end);
468 
469 	while ((p = rb_next(lastp))) {
470 		region = rb_entry(p, struct vm_region, vm_rb);
471 		last = rb_entry(lastp, struct vm_region, vm_rb);
472 
473 		BUG_ON(region->vm_end <= region->vm_start);
474 		BUG_ON(region->vm_top < region->vm_end);
475 		BUG_ON(region->vm_start < last->vm_top);
476 
477 		lastp = p;
478 	}
479 }
480 #else
validate_nommu_regions(void)481 static void validate_nommu_regions(void)
482 {
483 }
484 #endif
485 
486 /*
487  * add a region into the global tree
488  */
add_nommu_region(struct vm_region * region)489 static void add_nommu_region(struct vm_region *region)
490 {
491 	struct vm_region *pregion;
492 	struct rb_node **p, *parent;
493 
494 	validate_nommu_regions();
495 
496 	parent = NULL;
497 	p = &nommu_region_tree.rb_node;
498 	while (*p) {
499 		parent = *p;
500 		pregion = rb_entry(parent, struct vm_region, vm_rb);
501 		if (region->vm_start < pregion->vm_start)
502 			p = &(*p)->rb_left;
503 		else if (region->vm_start > pregion->vm_start)
504 			p = &(*p)->rb_right;
505 		else if (pregion == region)
506 			return;
507 		else
508 			BUG();
509 	}
510 
511 	rb_link_node(&region->vm_rb, parent, p);
512 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
513 
514 	validate_nommu_regions();
515 }
516 
517 /*
518  * delete a region from the global tree
519  */
delete_nommu_region(struct vm_region * region)520 static void delete_nommu_region(struct vm_region *region)
521 {
522 	BUG_ON(!nommu_region_tree.rb_node);
523 
524 	validate_nommu_regions();
525 	rb_erase(&region->vm_rb, &nommu_region_tree);
526 	validate_nommu_regions();
527 }
528 
529 /*
530  * free a contiguous series of pages
531  */
free_page_series(unsigned long from,unsigned long to)532 static void free_page_series(unsigned long from, unsigned long to)
533 {
534 	for (; from < to; from += PAGE_SIZE) {
535 		struct page *page = virt_to_page(from);
536 
537 		atomic_long_dec(&mmap_pages_allocated);
538 		put_page(page);
539 	}
540 }
541 
542 /*
543  * release a reference to a region
544  * - the caller must hold the region semaphore for writing, which this releases
545  * - the region may not have been added to the tree yet, in which case vm_top
546  *   will equal vm_start
547  */
__put_nommu_region(struct vm_region * region)548 static void __put_nommu_region(struct vm_region *region)
549 	__releases(nommu_region_sem)
550 {
551 	BUG_ON(!nommu_region_tree.rb_node);
552 
553 	if (--region->vm_usage == 0) {
554 		if (region->vm_top > region->vm_start)
555 			delete_nommu_region(region);
556 		up_write(&nommu_region_sem);
557 
558 		if (region->vm_file)
559 			fput(region->vm_file);
560 
561 		/* IO memory and memory shared directly out of the pagecache
562 		 * from ramfs/tmpfs mustn't be released here */
563 		if (region->vm_flags & VM_MAPPED_COPY)
564 			free_page_series(region->vm_start, region->vm_top);
565 		kmem_cache_free(vm_region_jar, region);
566 	} else {
567 		up_write(&nommu_region_sem);
568 	}
569 }
570 
571 /*
572  * release a reference to a region
573  */
put_nommu_region(struct vm_region * region)574 static void put_nommu_region(struct vm_region *region)
575 {
576 	down_write(&nommu_region_sem);
577 	__put_nommu_region(region);
578 }
579 
580 /*
581  * add a VMA into a process's mm_struct in the appropriate place in the list
582  * and tree and add to the address space's page tree also if not an anonymous
583  * page
584  * - should be called with mm->mmap_sem held writelocked
585  */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)586 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
587 {
588 	struct vm_area_struct *pvma, *prev;
589 	struct address_space *mapping;
590 	struct rb_node **p, *parent, *rb_prev;
591 
592 	BUG_ON(!vma->vm_region);
593 
594 	mm->map_count++;
595 	vma->vm_mm = mm;
596 
597 	/* add the VMA to the mapping */
598 	if (vma->vm_file) {
599 		mapping = vma->vm_file->f_mapping;
600 
601 		i_mmap_lock_write(mapping);
602 		flush_dcache_mmap_lock(mapping);
603 		vma_interval_tree_insert(vma, &mapping->i_mmap);
604 		flush_dcache_mmap_unlock(mapping);
605 		i_mmap_unlock_write(mapping);
606 	}
607 
608 	/* add the VMA to the tree */
609 	parent = rb_prev = NULL;
610 	p = &mm->mm_rb.rb_node;
611 	while (*p) {
612 		parent = *p;
613 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
614 
615 		/* sort by: start addr, end addr, VMA struct addr in that order
616 		 * (the latter is necessary as we may get identical VMAs) */
617 		if (vma->vm_start < pvma->vm_start)
618 			p = &(*p)->rb_left;
619 		else if (vma->vm_start > pvma->vm_start) {
620 			rb_prev = parent;
621 			p = &(*p)->rb_right;
622 		} else if (vma->vm_end < pvma->vm_end)
623 			p = &(*p)->rb_left;
624 		else if (vma->vm_end > pvma->vm_end) {
625 			rb_prev = parent;
626 			p = &(*p)->rb_right;
627 		} else if (vma < pvma)
628 			p = &(*p)->rb_left;
629 		else if (vma > pvma) {
630 			rb_prev = parent;
631 			p = &(*p)->rb_right;
632 		} else
633 			BUG();
634 	}
635 
636 	rb_link_node(&vma->vm_rb, parent, p);
637 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
638 
639 	/* add VMA to the VMA list also */
640 	prev = NULL;
641 	if (rb_prev)
642 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
643 
644 	__vma_link_list(mm, vma, prev, parent);
645 }
646 
647 /*
648  * delete a VMA from its owning mm_struct and address space
649  */
delete_vma_from_mm(struct vm_area_struct * vma)650 static void delete_vma_from_mm(struct vm_area_struct *vma)
651 {
652 	int i;
653 	struct address_space *mapping;
654 	struct mm_struct *mm = vma->vm_mm;
655 	struct task_struct *curr = current;
656 
657 	mm->map_count--;
658 	for (i = 0; i < VMACACHE_SIZE; i++) {
659 		/* if the vma is cached, invalidate the entire cache */
660 		if (curr->vmacache.vmas[i] == vma) {
661 			vmacache_invalidate(mm);
662 			break;
663 		}
664 	}
665 
666 	/* remove the VMA from the mapping */
667 	if (vma->vm_file) {
668 		mapping = vma->vm_file->f_mapping;
669 
670 		i_mmap_lock_write(mapping);
671 		flush_dcache_mmap_lock(mapping);
672 		vma_interval_tree_remove(vma, &mapping->i_mmap);
673 		flush_dcache_mmap_unlock(mapping);
674 		i_mmap_unlock_write(mapping);
675 	}
676 
677 	/* remove from the MM's tree and list */
678 	rb_erase(&vma->vm_rb, &mm->mm_rb);
679 
680 	if (vma->vm_prev)
681 		vma->vm_prev->vm_next = vma->vm_next;
682 	else
683 		mm->mmap = vma->vm_next;
684 
685 	if (vma->vm_next)
686 		vma->vm_next->vm_prev = vma->vm_prev;
687 }
688 
689 /*
690  * destroy a VMA record
691  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)692 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694 	if (vma->vm_ops && vma->vm_ops->close)
695 		vma->vm_ops->close(vma);
696 	if (vma->vm_file)
697 		fput(vma->vm_file);
698 	put_nommu_region(vma->vm_region);
699 	vm_area_free(vma);
700 }
701 
702 /*
703  * look up the first VMA in which addr resides, NULL if none
704  * - should be called with mm->mmap_sem at least held readlocked
705  */
find_vma(struct mm_struct * mm,unsigned long addr)706 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
707 {
708 	struct vm_area_struct *vma;
709 
710 	/* check the cache first */
711 	vma = vmacache_find(mm, addr);
712 	if (likely(vma))
713 		return vma;
714 
715 	/* trawl the list (there may be multiple mappings in which addr
716 	 * resides) */
717 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
718 		if (vma->vm_start > addr)
719 			return NULL;
720 		if (vma->vm_end > addr) {
721 			vmacache_update(addr, vma);
722 			return vma;
723 		}
724 	}
725 
726 	return NULL;
727 }
728 EXPORT_SYMBOL(find_vma);
729 
730 /*
731  * find a VMA
732  * - we don't extend stack VMAs under NOMMU conditions
733  */
find_extend_vma(struct mm_struct * mm,unsigned long addr)734 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
735 {
736 	return find_vma(mm, addr);
737 }
738 
739 /*
740  * expand a stack to a given address
741  * - not supported under NOMMU conditions
742  */
expand_stack(struct vm_area_struct * vma,unsigned long address)743 int expand_stack(struct vm_area_struct *vma, unsigned long address)
744 {
745 	return -ENOMEM;
746 }
747 
748 /*
749  * look up the first VMA exactly that exactly matches addr
750  * - should be called with mm->mmap_sem at least held readlocked
751  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)752 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
753 					     unsigned long addr,
754 					     unsigned long len)
755 {
756 	struct vm_area_struct *vma;
757 	unsigned long end = addr + len;
758 
759 	/* check the cache first */
760 	vma = vmacache_find_exact(mm, addr, end);
761 	if (vma)
762 		return vma;
763 
764 	/* trawl the list (there may be multiple mappings in which addr
765 	 * resides) */
766 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
767 		if (vma->vm_start < addr)
768 			continue;
769 		if (vma->vm_start > addr)
770 			return NULL;
771 		if (vma->vm_end == end) {
772 			vmacache_update(addr, vma);
773 			return vma;
774 		}
775 	}
776 
777 	return NULL;
778 }
779 
780 /*
781  * determine whether a mapping should be permitted and, if so, what sort of
782  * mapping we're capable of supporting
783  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)784 static int validate_mmap_request(struct file *file,
785 				 unsigned long addr,
786 				 unsigned long len,
787 				 unsigned long prot,
788 				 unsigned long flags,
789 				 unsigned long pgoff,
790 				 unsigned long *_capabilities)
791 {
792 	unsigned long capabilities, rlen;
793 	int ret;
794 
795 	/* do the simple checks first */
796 	if (flags & MAP_FIXED)
797 		return -EINVAL;
798 
799 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
800 	    (flags & MAP_TYPE) != MAP_SHARED)
801 		return -EINVAL;
802 
803 	if (!len)
804 		return -EINVAL;
805 
806 	/* Careful about overflows.. */
807 	rlen = PAGE_ALIGN(len);
808 	if (!rlen || rlen > TASK_SIZE)
809 		return -ENOMEM;
810 
811 	/* offset overflow? */
812 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
813 		return -EOVERFLOW;
814 
815 	if (file) {
816 		/* files must support mmap */
817 		if (!file->f_op->mmap)
818 			return -ENODEV;
819 
820 		/* work out if what we've got could possibly be shared
821 		 * - we support chardevs that provide their own "memory"
822 		 * - we support files/blockdevs that are memory backed
823 		 */
824 		if (file->f_op->mmap_capabilities) {
825 			capabilities = file->f_op->mmap_capabilities(file);
826 		} else {
827 			/* no explicit capabilities set, so assume some
828 			 * defaults */
829 			switch (file_inode(file)->i_mode & S_IFMT) {
830 			case S_IFREG:
831 			case S_IFBLK:
832 				capabilities = NOMMU_MAP_COPY;
833 				break;
834 
835 			case S_IFCHR:
836 				capabilities =
837 					NOMMU_MAP_DIRECT |
838 					NOMMU_MAP_READ |
839 					NOMMU_MAP_WRITE;
840 				break;
841 
842 			default:
843 				return -EINVAL;
844 			}
845 		}
846 
847 		/* eliminate any capabilities that we can't support on this
848 		 * device */
849 		if (!file->f_op->get_unmapped_area)
850 			capabilities &= ~NOMMU_MAP_DIRECT;
851 		if (!(file->f_mode & FMODE_CAN_READ))
852 			capabilities &= ~NOMMU_MAP_COPY;
853 
854 		/* The file shall have been opened with read permission. */
855 		if (!(file->f_mode & FMODE_READ))
856 			return -EACCES;
857 
858 		if (flags & MAP_SHARED) {
859 			/* do checks for writing, appending and locking */
860 			if ((prot & PROT_WRITE) &&
861 			    !(file->f_mode & FMODE_WRITE))
862 				return -EACCES;
863 
864 			if (IS_APPEND(file_inode(file)) &&
865 			    (file->f_mode & FMODE_WRITE))
866 				return -EACCES;
867 
868 			if (locks_verify_locked(file))
869 				return -EAGAIN;
870 
871 			if (!(capabilities & NOMMU_MAP_DIRECT))
872 				return -ENODEV;
873 
874 			/* we mustn't privatise shared mappings */
875 			capabilities &= ~NOMMU_MAP_COPY;
876 		} else {
877 			/* we're going to read the file into private memory we
878 			 * allocate */
879 			if (!(capabilities & NOMMU_MAP_COPY))
880 				return -ENODEV;
881 
882 			/* we don't permit a private writable mapping to be
883 			 * shared with the backing device */
884 			if (prot & PROT_WRITE)
885 				capabilities &= ~NOMMU_MAP_DIRECT;
886 		}
887 
888 		if (capabilities & NOMMU_MAP_DIRECT) {
889 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
890 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
891 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
892 			    ) {
893 				capabilities &= ~NOMMU_MAP_DIRECT;
894 				if (flags & MAP_SHARED) {
895 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
896 					return -EINVAL;
897 				}
898 			}
899 		}
900 
901 		/* handle executable mappings and implied executable
902 		 * mappings */
903 		if (path_noexec(&file->f_path)) {
904 			if (prot & PROT_EXEC)
905 				return -EPERM;
906 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
907 			/* handle implication of PROT_EXEC by PROT_READ */
908 			if (current->personality & READ_IMPLIES_EXEC) {
909 				if (capabilities & NOMMU_MAP_EXEC)
910 					prot |= PROT_EXEC;
911 			}
912 		} else if ((prot & PROT_READ) &&
913 			 (prot & PROT_EXEC) &&
914 			 !(capabilities & NOMMU_MAP_EXEC)
915 			 ) {
916 			/* backing file is not executable, try to copy */
917 			capabilities &= ~NOMMU_MAP_DIRECT;
918 		}
919 	} else {
920 		/* anonymous mappings are always memory backed and can be
921 		 * privately mapped
922 		 */
923 		capabilities = NOMMU_MAP_COPY;
924 
925 		/* handle PROT_EXEC implication by PROT_READ */
926 		if ((prot & PROT_READ) &&
927 		    (current->personality & READ_IMPLIES_EXEC))
928 			prot |= PROT_EXEC;
929 	}
930 
931 	/* allow the security API to have its say */
932 	ret = security_mmap_addr(addr);
933 	if (ret < 0)
934 		return ret;
935 
936 	/* looks okay */
937 	*_capabilities = capabilities;
938 	return 0;
939 }
940 
941 /*
942  * we've determined that we can make the mapping, now translate what we
943  * now know into VMA flags
944  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)945 static unsigned long determine_vm_flags(struct file *file,
946 					unsigned long prot,
947 					unsigned long flags,
948 					unsigned long capabilities)
949 {
950 	unsigned long vm_flags;
951 
952 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
953 	/* vm_flags |= mm->def_flags; */
954 
955 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
956 		/* attempt to share read-only copies of mapped file chunks */
957 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
958 		if (file && !(prot & PROT_WRITE))
959 			vm_flags |= VM_MAYSHARE;
960 	} else {
961 		/* overlay a shareable mapping on the backing device or inode
962 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
963 		 * romfs/cramfs */
964 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
965 		if (flags & MAP_SHARED)
966 			vm_flags |= VM_SHARED;
967 	}
968 
969 	/* refuse to let anyone share private mappings with this process if
970 	 * it's being traced - otherwise breakpoints set in it may interfere
971 	 * with another untraced process
972 	 */
973 	if ((flags & MAP_PRIVATE) && current->ptrace)
974 		vm_flags &= ~VM_MAYSHARE;
975 
976 	return vm_flags;
977 }
978 
979 /*
980  * set up a shared mapping on a file (the driver or filesystem provides and
981  * pins the storage)
982  */
do_mmap_shared_file(struct vm_area_struct * vma)983 static int do_mmap_shared_file(struct vm_area_struct *vma)
984 {
985 	int ret;
986 
987 	ret = call_mmap(vma->vm_file, vma);
988 	if (ret == 0) {
989 		vma->vm_region->vm_top = vma->vm_region->vm_end;
990 		return 0;
991 	}
992 	if (ret != -ENOSYS)
993 		return ret;
994 
995 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
996 	 * opposed to tried but failed) so we can only give a suitable error as
997 	 * it's not possible to make a private copy if MAP_SHARED was given */
998 	return -ENODEV;
999 }
1000 
1001 /*
1002  * set up a private mapping or an anonymous shared mapping
1003  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)1004 static int do_mmap_private(struct vm_area_struct *vma,
1005 			   struct vm_region *region,
1006 			   unsigned long len,
1007 			   unsigned long capabilities)
1008 {
1009 	unsigned long total, point;
1010 	void *base;
1011 	int ret, order;
1012 
1013 	/* invoke the file's mapping function so that it can keep track of
1014 	 * shared mappings on devices or memory
1015 	 * - VM_MAYSHARE will be set if it may attempt to share
1016 	 */
1017 	if (capabilities & NOMMU_MAP_DIRECT) {
1018 		ret = call_mmap(vma->vm_file, vma);
1019 		if (ret == 0) {
1020 			/* shouldn't return success if we're not sharing */
1021 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1022 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1023 			return 0;
1024 		}
1025 		if (ret != -ENOSYS)
1026 			return ret;
1027 
1028 		/* getting an ENOSYS error indicates that direct mmap isn't
1029 		 * possible (as opposed to tried but failed) so we'll try to
1030 		 * make a private copy of the data and map that instead */
1031 	}
1032 
1033 
1034 	/* allocate some memory to hold the mapping
1035 	 * - note that this may not return a page-aligned address if the object
1036 	 *   we're allocating is smaller than a page
1037 	 */
1038 	order = get_order(len);
1039 	total = 1 << order;
1040 	point = len >> PAGE_SHIFT;
1041 
1042 	/* we don't want to allocate a power-of-2 sized page set */
1043 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1044 		total = point;
1045 
1046 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1047 	if (!base)
1048 		goto enomem;
1049 
1050 	atomic_long_add(total, &mmap_pages_allocated);
1051 
1052 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1053 	region->vm_start = (unsigned long) base;
1054 	region->vm_end   = region->vm_start + len;
1055 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1056 
1057 	vma->vm_start = region->vm_start;
1058 	vma->vm_end   = region->vm_start + len;
1059 
1060 	if (vma->vm_file) {
1061 		/* read the contents of a file into the copy */
1062 		loff_t fpos;
1063 
1064 		fpos = vma->vm_pgoff;
1065 		fpos <<= PAGE_SHIFT;
1066 
1067 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1068 		if (ret < 0)
1069 			goto error_free;
1070 
1071 		/* clear the last little bit */
1072 		if (ret < len)
1073 			memset(base + ret, 0, len - ret);
1074 
1075 	} else {
1076 		vma_set_anonymous(vma);
1077 	}
1078 
1079 	return 0;
1080 
1081 error_free:
1082 	free_page_series(region->vm_start, region->vm_top);
1083 	region->vm_start = vma->vm_start = 0;
1084 	region->vm_end   = vma->vm_end = 0;
1085 	region->vm_top   = 0;
1086 	return ret;
1087 
1088 enomem:
1089 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1090 	       len, current->pid, current->comm);
1091 	show_free_areas(0, NULL);
1092 	return -ENOMEM;
1093 }
1094 
1095 /*
1096  * handle mapping creation for uClinux
1097  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1098 unsigned long do_mmap(struct file *file,
1099 			unsigned long addr,
1100 			unsigned long len,
1101 			unsigned long prot,
1102 			unsigned long flags,
1103 			vm_flags_t vm_flags,
1104 			unsigned long pgoff,
1105 			unsigned long *populate,
1106 			struct list_head *uf)
1107 {
1108 	struct vm_area_struct *vma;
1109 	struct vm_region *region;
1110 	struct rb_node *rb;
1111 	unsigned long capabilities, result;
1112 	int ret;
1113 
1114 	*populate = 0;
1115 
1116 	/* decide whether we should attempt the mapping, and if so what sort of
1117 	 * mapping */
1118 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1119 				    &capabilities);
1120 	if (ret < 0)
1121 		return ret;
1122 
1123 	/* we ignore the address hint */
1124 	addr = 0;
1125 	len = PAGE_ALIGN(len);
1126 
1127 	/* we've determined that we can make the mapping, now translate what we
1128 	 * now know into VMA flags */
1129 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1130 
1131 	/* we're going to need to record the mapping */
1132 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1133 	if (!region)
1134 		goto error_getting_region;
1135 
1136 	vma = vm_area_alloc(current->mm);
1137 	if (!vma)
1138 		goto error_getting_vma;
1139 
1140 	region->vm_usage = 1;
1141 	region->vm_flags = vm_flags;
1142 	region->vm_pgoff = pgoff;
1143 
1144 	vma->vm_flags = vm_flags;
1145 	vma->vm_pgoff = pgoff;
1146 
1147 	if (file) {
1148 		region->vm_file = get_file(file);
1149 		vma->vm_file = get_file(file);
1150 	}
1151 
1152 	down_write(&nommu_region_sem);
1153 
1154 	/* if we want to share, we need to check for regions created by other
1155 	 * mmap() calls that overlap with our proposed mapping
1156 	 * - we can only share with a superset match on most regular files
1157 	 * - shared mappings on character devices and memory backed files are
1158 	 *   permitted to overlap inexactly as far as we are concerned for in
1159 	 *   these cases, sharing is handled in the driver or filesystem rather
1160 	 *   than here
1161 	 */
1162 	if (vm_flags & VM_MAYSHARE) {
1163 		struct vm_region *pregion;
1164 		unsigned long pglen, rpglen, pgend, rpgend, start;
1165 
1166 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1167 		pgend = pgoff + pglen;
1168 
1169 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1170 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1171 
1172 			if (!(pregion->vm_flags & VM_MAYSHARE))
1173 				continue;
1174 
1175 			/* search for overlapping mappings on the same file */
1176 			if (file_inode(pregion->vm_file) !=
1177 			    file_inode(file))
1178 				continue;
1179 
1180 			if (pregion->vm_pgoff >= pgend)
1181 				continue;
1182 
1183 			rpglen = pregion->vm_end - pregion->vm_start;
1184 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185 			rpgend = pregion->vm_pgoff + rpglen;
1186 			if (pgoff >= rpgend)
1187 				continue;
1188 
1189 			/* handle inexactly overlapping matches between
1190 			 * mappings */
1191 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1192 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1193 				/* new mapping is not a subset of the region */
1194 				if (!(capabilities & NOMMU_MAP_DIRECT))
1195 					goto sharing_violation;
1196 				continue;
1197 			}
1198 
1199 			/* we've found a region we can share */
1200 			pregion->vm_usage++;
1201 			vma->vm_region = pregion;
1202 			start = pregion->vm_start;
1203 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1204 			vma->vm_start = start;
1205 			vma->vm_end = start + len;
1206 
1207 			if (pregion->vm_flags & VM_MAPPED_COPY)
1208 				vma->vm_flags |= VM_MAPPED_COPY;
1209 			else {
1210 				ret = do_mmap_shared_file(vma);
1211 				if (ret < 0) {
1212 					vma->vm_region = NULL;
1213 					vma->vm_start = 0;
1214 					vma->vm_end = 0;
1215 					pregion->vm_usage--;
1216 					pregion = NULL;
1217 					goto error_just_free;
1218 				}
1219 			}
1220 			fput(region->vm_file);
1221 			kmem_cache_free(vm_region_jar, region);
1222 			region = pregion;
1223 			result = start;
1224 			goto share;
1225 		}
1226 
1227 		/* obtain the address at which to make a shared mapping
1228 		 * - this is the hook for quasi-memory character devices to
1229 		 *   tell us the location of a shared mapping
1230 		 */
1231 		if (capabilities & NOMMU_MAP_DIRECT) {
1232 			addr = file->f_op->get_unmapped_area(file, addr, len,
1233 							     pgoff, flags);
1234 			if (IS_ERR_VALUE(addr)) {
1235 				ret = addr;
1236 				if (ret != -ENOSYS)
1237 					goto error_just_free;
1238 
1239 				/* the driver refused to tell us where to site
1240 				 * the mapping so we'll have to attempt to copy
1241 				 * it */
1242 				ret = -ENODEV;
1243 				if (!(capabilities & NOMMU_MAP_COPY))
1244 					goto error_just_free;
1245 
1246 				capabilities &= ~NOMMU_MAP_DIRECT;
1247 			} else {
1248 				vma->vm_start = region->vm_start = addr;
1249 				vma->vm_end = region->vm_end = addr + len;
1250 			}
1251 		}
1252 	}
1253 
1254 	vma->vm_region = region;
1255 
1256 	/* set up the mapping
1257 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1258 	 */
1259 	if (file && vma->vm_flags & VM_SHARED)
1260 		ret = do_mmap_shared_file(vma);
1261 	else
1262 		ret = do_mmap_private(vma, region, len, capabilities);
1263 	if (ret < 0)
1264 		goto error_just_free;
1265 	add_nommu_region(region);
1266 
1267 	/* clear anonymous mappings that don't ask for uninitialized data */
1268 	if (!vma->vm_file &&
1269 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1270 	     !(flags & MAP_UNINITIALIZED)))
1271 		memset((void *)region->vm_start, 0,
1272 		       region->vm_end - region->vm_start);
1273 
1274 	/* okay... we have a mapping; now we have to register it */
1275 	result = vma->vm_start;
1276 
1277 	current->mm->total_vm += len >> PAGE_SHIFT;
1278 
1279 share:
1280 	add_vma_to_mm(current->mm, vma);
1281 
1282 	/* we flush the region from the icache only when the first executable
1283 	 * mapping of it is made  */
1284 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1285 		flush_icache_range(region->vm_start, region->vm_end);
1286 		region->vm_icache_flushed = true;
1287 	}
1288 
1289 	up_write(&nommu_region_sem);
1290 
1291 	return result;
1292 
1293 error_just_free:
1294 	up_write(&nommu_region_sem);
1295 error:
1296 	if (region->vm_file)
1297 		fput(region->vm_file);
1298 	kmem_cache_free(vm_region_jar, region);
1299 	if (vma->vm_file)
1300 		fput(vma->vm_file);
1301 	vm_area_free(vma);
1302 	return ret;
1303 
1304 sharing_violation:
1305 	up_write(&nommu_region_sem);
1306 	pr_warn("Attempt to share mismatched mappings\n");
1307 	ret = -EINVAL;
1308 	goto error;
1309 
1310 error_getting_vma:
1311 	kmem_cache_free(vm_region_jar, region);
1312 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1313 			len, current->pid);
1314 	show_free_areas(0, NULL);
1315 	return -ENOMEM;
1316 
1317 error_getting_region:
1318 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1319 			len, current->pid);
1320 	show_free_areas(0, NULL);
1321 	return -ENOMEM;
1322 }
1323 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1324 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1325 			      unsigned long prot, unsigned long flags,
1326 			      unsigned long fd, unsigned long pgoff)
1327 {
1328 	struct file *file = NULL;
1329 	unsigned long retval = -EBADF;
1330 
1331 	audit_mmap_fd(fd, flags);
1332 	if (!(flags & MAP_ANONYMOUS)) {
1333 		file = fget(fd);
1334 		if (!file)
1335 			goto out;
1336 	}
1337 
1338 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1339 
1340 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1341 
1342 	if (file)
1343 		fput(file);
1344 out:
1345 	return retval;
1346 }
1347 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1348 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1349 		unsigned long, prot, unsigned long, flags,
1350 		unsigned long, fd, unsigned long, pgoff)
1351 {
1352 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1353 }
1354 
1355 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1356 struct mmap_arg_struct {
1357 	unsigned long addr;
1358 	unsigned long len;
1359 	unsigned long prot;
1360 	unsigned long flags;
1361 	unsigned long fd;
1362 	unsigned long offset;
1363 };
1364 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1365 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1366 {
1367 	struct mmap_arg_struct a;
1368 
1369 	if (copy_from_user(&a, arg, sizeof(a)))
1370 		return -EFAULT;
1371 	if (offset_in_page(a.offset))
1372 		return -EINVAL;
1373 
1374 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1375 			       a.offset >> PAGE_SHIFT);
1376 }
1377 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1378 
1379 /*
1380  * split a vma into two pieces at address 'addr', a new vma is allocated either
1381  * for the first part or the tail.
1382  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1383 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1384 	      unsigned long addr, int new_below)
1385 {
1386 	struct vm_area_struct *new;
1387 	struct vm_region *region;
1388 	unsigned long npages;
1389 
1390 	/* we're only permitted to split anonymous regions (these should have
1391 	 * only a single usage on the region) */
1392 	if (vma->vm_file)
1393 		return -ENOMEM;
1394 
1395 	if (mm->map_count >= sysctl_max_map_count)
1396 		return -ENOMEM;
1397 
1398 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1399 	if (!region)
1400 		return -ENOMEM;
1401 
1402 	new = vm_area_dup(vma);
1403 	if (!new) {
1404 		kmem_cache_free(vm_region_jar, region);
1405 		return -ENOMEM;
1406 	}
1407 
1408 	/* most fields are the same, copy all, and then fixup */
1409 	*region = *vma->vm_region;
1410 	new->vm_region = region;
1411 
1412 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1413 
1414 	if (new_below) {
1415 		region->vm_top = region->vm_end = new->vm_end = addr;
1416 	} else {
1417 		region->vm_start = new->vm_start = addr;
1418 		region->vm_pgoff = new->vm_pgoff += npages;
1419 	}
1420 
1421 	if (new->vm_ops && new->vm_ops->open)
1422 		new->vm_ops->open(new);
1423 
1424 	delete_vma_from_mm(vma);
1425 	down_write(&nommu_region_sem);
1426 	delete_nommu_region(vma->vm_region);
1427 	if (new_below) {
1428 		vma->vm_region->vm_start = vma->vm_start = addr;
1429 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1430 	} else {
1431 		vma->vm_region->vm_end = vma->vm_end = addr;
1432 		vma->vm_region->vm_top = addr;
1433 	}
1434 	add_nommu_region(vma->vm_region);
1435 	add_nommu_region(new->vm_region);
1436 	up_write(&nommu_region_sem);
1437 	add_vma_to_mm(mm, vma);
1438 	add_vma_to_mm(mm, new);
1439 	return 0;
1440 }
1441 
1442 /*
1443  * shrink a VMA by removing the specified chunk from either the beginning or
1444  * the end
1445  */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1446 static int shrink_vma(struct mm_struct *mm,
1447 		      struct vm_area_struct *vma,
1448 		      unsigned long from, unsigned long to)
1449 {
1450 	struct vm_region *region;
1451 
1452 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1453 	 * and list */
1454 	delete_vma_from_mm(vma);
1455 	if (from > vma->vm_start)
1456 		vma->vm_end = from;
1457 	else
1458 		vma->vm_start = to;
1459 	add_vma_to_mm(mm, vma);
1460 
1461 	/* cut the backing region down to size */
1462 	region = vma->vm_region;
1463 	BUG_ON(region->vm_usage != 1);
1464 
1465 	down_write(&nommu_region_sem);
1466 	delete_nommu_region(region);
1467 	if (from > region->vm_start) {
1468 		to = region->vm_top;
1469 		region->vm_top = region->vm_end = from;
1470 	} else {
1471 		region->vm_start = to;
1472 	}
1473 	add_nommu_region(region);
1474 	up_write(&nommu_region_sem);
1475 
1476 	free_page_series(from, to);
1477 	return 0;
1478 }
1479 
1480 /*
1481  * release a mapping
1482  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1483  *   VMA, though it need not cover the whole VMA
1484  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1485 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1486 {
1487 	struct vm_area_struct *vma;
1488 	unsigned long end;
1489 	int ret;
1490 
1491 	len = PAGE_ALIGN(len);
1492 	if (len == 0)
1493 		return -EINVAL;
1494 
1495 	end = start + len;
1496 
1497 	/* find the first potentially overlapping VMA */
1498 	vma = find_vma(mm, start);
1499 	if (!vma) {
1500 		static int limit;
1501 		if (limit < 5) {
1502 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1503 					current->pid, current->comm,
1504 					start, start + len - 1);
1505 			limit++;
1506 		}
1507 		return -EINVAL;
1508 	}
1509 
1510 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1511 	if (vma->vm_file) {
1512 		do {
1513 			if (start > vma->vm_start)
1514 				return -EINVAL;
1515 			if (end == vma->vm_end)
1516 				goto erase_whole_vma;
1517 			vma = vma->vm_next;
1518 		} while (vma);
1519 		return -EINVAL;
1520 	} else {
1521 		/* the chunk must be a subset of the VMA found */
1522 		if (start == vma->vm_start && end == vma->vm_end)
1523 			goto erase_whole_vma;
1524 		if (start < vma->vm_start || end > vma->vm_end)
1525 			return -EINVAL;
1526 		if (offset_in_page(start))
1527 			return -EINVAL;
1528 		if (end != vma->vm_end && offset_in_page(end))
1529 			return -EINVAL;
1530 		if (start != vma->vm_start && end != vma->vm_end) {
1531 			ret = split_vma(mm, vma, start, 1);
1532 			if (ret < 0)
1533 				return ret;
1534 		}
1535 		return shrink_vma(mm, vma, start, end);
1536 	}
1537 
1538 erase_whole_vma:
1539 	delete_vma_from_mm(vma);
1540 	delete_vma(mm, vma);
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL(do_munmap);
1544 
vm_munmap(unsigned long addr,size_t len)1545 int vm_munmap(unsigned long addr, size_t len)
1546 {
1547 	struct mm_struct *mm = current->mm;
1548 	int ret;
1549 
1550 	down_write(&mm->mmap_sem);
1551 	ret = do_munmap(mm, addr, len, NULL);
1552 	up_write(&mm->mmap_sem);
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(vm_munmap);
1556 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1557 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1558 {
1559 	return vm_munmap(addr, len);
1560 }
1561 
1562 /*
1563  * release all the mappings made in a process's VM space
1564  */
exit_mmap(struct mm_struct * mm)1565 void exit_mmap(struct mm_struct *mm)
1566 {
1567 	struct vm_area_struct *vma;
1568 
1569 	if (!mm)
1570 		return;
1571 
1572 	mm->total_vm = 0;
1573 
1574 	while ((vma = mm->mmap)) {
1575 		mm->mmap = vma->vm_next;
1576 		delete_vma_from_mm(vma);
1577 		delete_vma(mm, vma);
1578 		cond_resched();
1579 	}
1580 }
1581 
vm_brk(unsigned long addr,unsigned long len)1582 int vm_brk(unsigned long addr, unsigned long len)
1583 {
1584 	return -ENOMEM;
1585 }
1586 
1587 /*
1588  * expand (or shrink) an existing mapping, potentially moving it at the same
1589  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1590  *
1591  * under NOMMU conditions, we only permit changing a mapping's size, and only
1592  * as long as it stays within the region allocated by do_mmap_private() and the
1593  * block is not shareable
1594  *
1595  * MREMAP_FIXED is not supported under NOMMU conditions
1596  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1597 static unsigned long do_mremap(unsigned long addr,
1598 			unsigned long old_len, unsigned long new_len,
1599 			unsigned long flags, unsigned long new_addr)
1600 {
1601 	struct vm_area_struct *vma;
1602 
1603 	/* insanity checks first */
1604 	old_len = PAGE_ALIGN(old_len);
1605 	new_len = PAGE_ALIGN(new_len);
1606 	if (old_len == 0 || new_len == 0)
1607 		return (unsigned long) -EINVAL;
1608 
1609 	if (offset_in_page(addr))
1610 		return -EINVAL;
1611 
1612 	if (flags & MREMAP_FIXED && new_addr != addr)
1613 		return (unsigned long) -EINVAL;
1614 
1615 	vma = find_vma_exact(current->mm, addr, old_len);
1616 	if (!vma)
1617 		return (unsigned long) -EINVAL;
1618 
1619 	if (vma->vm_end != vma->vm_start + old_len)
1620 		return (unsigned long) -EFAULT;
1621 
1622 	if (vma->vm_flags & VM_MAYSHARE)
1623 		return (unsigned long) -EPERM;
1624 
1625 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1626 		return (unsigned long) -ENOMEM;
1627 
1628 	/* all checks complete - do it */
1629 	vma->vm_end = vma->vm_start + new_len;
1630 	return vma->vm_start;
1631 }
1632 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1633 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1634 		unsigned long, new_len, unsigned long, flags,
1635 		unsigned long, new_addr)
1636 {
1637 	unsigned long ret;
1638 
1639 	down_write(&current->mm->mmap_sem);
1640 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1641 	up_write(&current->mm->mmap_sem);
1642 	return ret;
1643 }
1644 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1645 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1646 			 unsigned int foll_flags)
1647 {
1648 	return NULL;
1649 }
1650 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1652 		unsigned long pfn, unsigned long size, pgprot_t prot)
1653 {
1654 	if (addr != (pfn << PAGE_SHIFT))
1655 		return -EINVAL;
1656 
1657 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL(remap_pfn_range);
1661 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1662 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1663 {
1664 	unsigned long pfn = start >> PAGE_SHIFT;
1665 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1666 
1667 	pfn += vma->vm_pgoff;
1668 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1669 }
1670 EXPORT_SYMBOL(vm_iomap_memory);
1671 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1672 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1673 			unsigned long pgoff)
1674 {
1675 	unsigned int size = vma->vm_end - vma->vm_start;
1676 
1677 	if (!(vma->vm_flags & VM_USERMAP))
1678 		return -EINVAL;
1679 
1680 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1681 	vma->vm_end = vma->vm_start + size;
1682 
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(remap_vmalloc_range);
1686 
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1687 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1688 	unsigned long len, unsigned long pgoff, unsigned long flags)
1689 {
1690 	return -ENOMEM;
1691 }
1692 
filemap_fault(struct vm_fault * vmf)1693 vm_fault_t filemap_fault(struct vm_fault *vmf)
1694 {
1695 	BUG();
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL(filemap_fault);
1699 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1700 void filemap_map_pages(struct vm_fault *vmf,
1701 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1702 {
1703 	BUG();
1704 }
1705 EXPORT_SYMBOL(filemap_map_pages);
1706 
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1707 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1708 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1709 {
1710 	struct vm_area_struct *vma;
1711 	int write = gup_flags & FOLL_WRITE;
1712 
1713 	if (down_read_killable(&mm->mmap_sem))
1714 		return 0;
1715 
1716 	/* the access must start within one of the target process's mappings */
1717 	vma = find_vma(mm, addr);
1718 	if (vma) {
1719 		/* don't overrun this mapping */
1720 		if (addr + len >= vma->vm_end)
1721 			len = vma->vm_end - addr;
1722 
1723 		/* only read or write mappings where it is permitted */
1724 		if (write && vma->vm_flags & VM_MAYWRITE)
1725 			copy_to_user_page(vma, NULL, addr,
1726 					 (void *) addr, buf, len);
1727 		else if (!write && vma->vm_flags & VM_MAYREAD)
1728 			copy_from_user_page(vma, NULL, addr,
1729 					    buf, (void *) addr, len);
1730 		else
1731 			len = 0;
1732 	} else {
1733 		len = 0;
1734 	}
1735 
1736 	up_read(&mm->mmap_sem);
1737 
1738 	return len;
1739 }
1740 
1741 /**
1742  * access_remote_vm - access another process' address space
1743  * @mm:		the mm_struct of the target address space
1744  * @addr:	start address to access
1745  * @buf:	source or destination buffer
1746  * @len:	number of bytes to transfer
1747  * @gup_flags:	flags modifying lookup behaviour
1748  *
1749  * The caller must hold a reference on @mm.
1750  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1751 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1752 		void *buf, int len, unsigned int gup_flags)
1753 {
1754 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1755 }
1756 
1757 /*
1758  * Access another process' address space.
1759  * - source/target buffer must be kernel space
1760  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1761 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1762 		unsigned int gup_flags)
1763 {
1764 	struct mm_struct *mm;
1765 
1766 	if (addr + len < addr)
1767 		return 0;
1768 
1769 	mm = get_task_mm(tsk);
1770 	if (!mm)
1771 		return 0;
1772 
1773 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1774 
1775 	mmput(mm);
1776 	return len;
1777 }
1778 EXPORT_SYMBOL_GPL(access_process_vm);
1779 
1780 /**
1781  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1782  * @inode: The inode to check
1783  * @size: The current filesize of the inode
1784  * @newsize: The proposed filesize of the inode
1785  *
1786  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1787  * make sure that that any outstanding VMAs aren't broken and then shrink the
1788  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1789  * automatically grant mappings that are too large.
1790  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1791 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1792 				size_t newsize)
1793 {
1794 	struct vm_area_struct *vma;
1795 	struct vm_region *region;
1796 	pgoff_t low, high;
1797 	size_t r_size, r_top;
1798 
1799 	low = newsize >> PAGE_SHIFT;
1800 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1801 
1802 	down_write(&nommu_region_sem);
1803 	i_mmap_lock_read(inode->i_mapping);
1804 
1805 	/* search for VMAs that fall within the dead zone */
1806 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1807 		/* found one - only interested if it's shared out of the page
1808 		 * cache */
1809 		if (vma->vm_flags & VM_SHARED) {
1810 			i_mmap_unlock_read(inode->i_mapping);
1811 			up_write(&nommu_region_sem);
1812 			return -ETXTBSY; /* not quite true, but near enough */
1813 		}
1814 	}
1815 
1816 	/* reduce any regions that overlap the dead zone - if in existence,
1817 	 * these will be pointed to by VMAs that don't overlap the dead zone
1818 	 *
1819 	 * we don't check for any regions that start beyond the EOF as there
1820 	 * shouldn't be any
1821 	 */
1822 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1823 		if (!(vma->vm_flags & VM_SHARED))
1824 			continue;
1825 
1826 		region = vma->vm_region;
1827 		r_size = region->vm_top - region->vm_start;
1828 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1829 
1830 		if (r_top > newsize) {
1831 			region->vm_top -= r_top - newsize;
1832 			if (region->vm_end > region->vm_top)
1833 				region->vm_end = region->vm_top;
1834 		}
1835 	}
1836 
1837 	i_mmap_unlock_read(inode->i_mapping);
1838 	up_write(&nommu_region_sem);
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Initialise sysctl_user_reserve_kbytes.
1844  *
1845  * This is intended to prevent a user from starting a single memory hogging
1846  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1847  * mode.
1848  *
1849  * The default value is min(3% of free memory, 128MB)
1850  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1851  */
init_user_reserve(void)1852 static int __meminit init_user_reserve(void)
1853 {
1854 	unsigned long free_kbytes;
1855 
1856 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1857 
1858 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1859 	return 0;
1860 }
1861 subsys_initcall(init_user_reserve);
1862 
1863 /*
1864  * Initialise sysctl_admin_reserve_kbytes.
1865  *
1866  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1867  * to log in and kill a memory hogging process.
1868  *
1869  * Systems with more than 256MB will reserve 8MB, enough to recover
1870  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1871  * only reserve 3% of free pages by default.
1872  */
init_admin_reserve(void)1873 static int __meminit init_admin_reserve(void)
1874 {
1875 	unsigned long free_kbytes;
1876 
1877 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1878 
1879 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1880 	return 0;
1881 }
1882 subsys_initcall(init_admin_reserve);
1883