1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
vmalloc_user(unsigned long size)158 void *vmalloc_user(unsigned long size)
159 {
160 void *ret;
161
162 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
165
166 down_write(¤t->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(¤t->mm->mmap_sem);
171 }
172
173 return ret;
174 }
175 EXPORT_SYMBOL(vmalloc_user);
176
vmalloc_to_page(const void * addr)177 struct page *vmalloc_to_page(const void *addr)
178 {
179 return virt_to_page(addr);
180 }
181 EXPORT_SYMBOL(vmalloc_to_page);
182
vmalloc_to_pfn(const void * addr)183 unsigned long vmalloc_to_pfn(const void *addr)
184 {
185 return page_to_pfn(virt_to_page(addr));
186 }
187 EXPORT_SYMBOL(vmalloc_to_pfn);
188
vread(char * buf,char * addr,unsigned long count)189 long vread(char *buf, char *addr, unsigned long count)
190 {
191 /* Don't allow overflow */
192 if ((unsigned long) buf + count < count)
193 count = -(unsigned long) buf;
194
195 memcpy(buf, addr, count);
196 return count;
197 }
198
vwrite(char * buf,char * addr,unsigned long count)199 long vwrite(char *buf, char *addr, unsigned long count)
200 {
201 /* Don't allow overflow */
202 if ((unsigned long) addr + count < count)
203 count = -(unsigned long) addr;
204
205 memcpy(addr, buf, count);
206 return count;
207 }
208
209 /*
210 * vmalloc - allocate virtually contiguous memory
211 *
212 * @size: allocation size
213 *
214 * Allocate enough pages to cover @size from the page level
215 * allocator and map them into contiguous kernel virtual space.
216 *
217 * For tight control over page level allocator and protection flags
218 * use __vmalloc() instead.
219 */
vmalloc(unsigned long size)220 void *vmalloc(unsigned long size)
221 {
222 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225
226 /*
227 * vzalloc - allocate virtually contiguous memory with zero fill
228 *
229 * @size: allocation size
230 *
231 * Allocate enough pages to cover @size from the page level
232 * allocator and map them into contiguous kernel virtual space.
233 * The memory allocated is set to zero.
234 *
235 * For tight control over page level allocator and protection flags
236 * use __vmalloc() instead.
237 */
vzalloc(unsigned long size)238 void *vzalloc(unsigned long size)
239 {
240 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242 }
243 EXPORT_SYMBOL(vzalloc);
244
245 /**
246 * vmalloc_node - allocate memory on a specific node
247 * @size: allocation size
248 * @node: numa node
249 *
250 * Allocate enough pages to cover @size from the page level
251 * allocator and map them into contiguous kernel virtual space.
252 *
253 * For tight control over page level allocator and protection flags
254 * use __vmalloc() instead.
255 */
vmalloc_node(unsigned long size,int node)256 void *vmalloc_node(unsigned long size, int node)
257 {
258 return vmalloc(size);
259 }
260 EXPORT_SYMBOL(vmalloc_node);
261
262 /**
263 * vzalloc_node - allocate memory on a specific node with zero fill
264 * @size: allocation size
265 * @node: numa node
266 *
267 * Allocate enough pages to cover @size from the page level
268 * allocator and map them into contiguous kernel virtual space.
269 * The memory allocated is set to zero.
270 *
271 * For tight control over page level allocator and protection flags
272 * use __vmalloc() instead.
273 */
vzalloc_node(unsigned long size,int node)274 void *vzalloc_node(unsigned long size, int node)
275 {
276 return vzalloc(size);
277 }
278 EXPORT_SYMBOL(vzalloc_node);
279
280 /**
281 * vmalloc_exec - allocate virtually contiguous, executable memory
282 * @size: allocation size
283 *
284 * Kernel-internal function to allocate enough pages to cover @size
285 * the page level allocator and map them into contiguous and
286 * executable kernel virtual space.
287 *
288 * For tight control over page level allocator and protection flags
289 * use __vmalloc() instead.
290 */
291
vmalloc_exec(unsigned long size)292 void *vmalloc_exec(unsigned long size)
293 {
294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295 }
296
297 /**
298 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
299 * @size: allocation size
300 *
301 * Allocate enough 32bit PA addressable pages to cover @size from the
302 * page level allocator and map them into contiguous kernel virtual space.
303 */
vmalloc_32(unsigned long size)304 void *vmalloc_32(unsigned long size)
305 {
306 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307 }
308 EXPORT_SYMBOL(vmalloc_32);
309
310 /**
311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312 * @size: allocation size
313 *
314 * The resulting memory area is 32bit addressable and zeroed so it can be
315 * mapped to userspace without leaking data.
316 *
317 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318 * remap_vmalloc_range() are permissible.
319 */
vmalloc_32_user(unsigned long size)320 void *vmalloc_32_user(unsigned long size)
321 {
322 /*
323 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 * but for now this can simply use vmalloc_user() directly.
325 */
326 return vmalloc_user(size);
327 }
328 EXPORT_SYMBOL(vmalloc_32_user);
329
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331 {
332 BUG();
333 return NULL;
334 }
335 EXPORT_SYMBOL(vmap);
336
vunmap(const void * addr)337 void vunmap(const void *addr)
338 {
339 BUG();
340 }
341 EXPORT_SYMBOL(vunmap);
342
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344 {
345 BUG();
346 return NULL;
347 }
348 EXPORT_SYMBOL(vm_map_ram);
349
vm_unmap_ram(const void * mem,unsigned int count)350 void vm_unmap_ram(const void *mem, unsigned int count)
351 {
352 BUG();
353 }
354 EXPORT_SYMBOL(vm_unmap_ram);
355
vm_unmap_aliases(void)356 void vm_unmap_aliases(void)
357 {
358 }
359 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360
361 /*
362 * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
363 * chose not to have one.
364 */
vmalloc_sync_mappings(void)365 void __weak vmalloc_sync_mappings(void)
366 {
367 }
368
vmalloc_sync_unmappings(void)369 void __weak vmalloc_sync_unmappings(void)
370 {
371 }
372
alloc_vm_area(size_t size,pte_t ** ptes)373 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
374 {
375 BUG();
376 return NULL;
377 }
378 EXPORT_SYMBOL_GPL(alloc_vm_area);
379
free_vm_area(struct vm_struct * area)380 void free_vm_area(struct vm_struct *area)
381 {
382 BUG();
383 }
384 EXPORT_SYMBOL_GPL(free_vm_area);
385
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
387 struct page *page)
388 {
389 return -EINVAL;
390 }
391 EXPORT_SYMBOL(vm_insert_page);
392
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)393 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
394 unsigned long num)
395 {
396 return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_map_pages);
399
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)400 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
401 unsigned long num)
402 {
403 return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages_zero);
406
407 /*
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
413 */
SYSCALL_DEFINE1(brk,unsigned long,brk)414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 struct mm_struct *mm = current->mm;
417
418 if (brk < mm->start_brk || brk > mm->context.end_brk)
419 return mm->brk;
420
421 if (mm->brk == brk)
422 return mm->brk;
423
424 /*
425 * Always allow shrinking brk
426 */
427 if (brk <= mm->brk) {
428 mm->brk = brk;
429 return brk;
430 }
431
432 /*
433 * Ok, looks good - let it rip.
434 */
435 flush_icache_range(mm->brk, brk);
436 return mm->brk = brk;
437 }
438
439 /*
440 * initialise the percpu counter for VM and region record slabs
441 */
mmap_init(void)442 void __init mmap_init(void)
443 {
444 int ret;
445
446 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
447 VM_BUG_ON(ret);
448 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
449 }
450
451 /*
452 * validate the region tree
453 * - the caller must hold the region lock
454 */
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)456 static noinline void validate_nommu_regions(void)
457 {
458 struct vm_region *region, *last;
459 struct rb_node *p, *lastp;
460
461 lastp = rb_first(&nommu_region_tree);
462 if (!lastp)
463 return;
464
465 last = rb_entry(lastp, struct vm_region, vm_rb);
466 BUG_ON(last->vm_end <= last->vm_start);
467 BUG_ON(last->vm_top < last->vm_end);
468
469 while ((p = rb_next(lastp))) {
470 region = rb_entry(p, struct vm_region, vm_rb);
471 last = rb_entry(lastp, struct vm_region, vm_rb);
472
473 BUG_ON(region->vm_end <= region->vm_start);
474 BUG_ON(region->vm_top < region->vm_end);
475 BUG_ON(region->vm_start < last->vm_top);
476
477 lastp = p;
478 }
479 }
480 #else
validate_nommu_regions(void)481 static void validate_nommu_regions(void)
482 {
483 }
484 #endif
485
486 /*
487 * add a region into the global tree
488 */
add_nommu_region(struct vm_region * region)489 static void add_nommu_region(struct vm_region *region)
490 {
491 struct vm_region *pregion;
492 struct rb_node **p, *parent;
493
494 validate_nommu_regions();
495
496 parent = NULL;
497 p = &nommu_region_tree.rb_node;
498 while (*p) {
499 parent = *p;
500 pregion = rb_entry(parent, struct vm_region, vm_rb);
501 if (region->vm_start < pregion->vm_start)
502 p = &(*p)->rb_left;
503 else if (region->vm_start > pregion->vm_start)
504 p = &(*p)->rb_right;
505 else if (pregion == region)
506 return;
507 else
508 BUG();
509 }
510
511 rb_link_node(®ion->vm_rb, parent, p);
512 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
513
514 validate_nommu_regions();
515 }
516
517 /*
518 * delete a region from the global tree
519 */
delete_nommu_region(struct vm_region * region)520 static void delete_nommu_region(struct vm_region *region)
521 {
522 BUG_ON(!nommu_region_tree.rb_node);
523
524 validate_nommu_regions();
525 rb_erase(®ion->vm_rb, &nommu_region_tree);
526 validate_nommu_regions();
527 }
528
529 /*
530 * free a contiguous series of pages
531 */
free_page_series(unsigned long from,unsigned long to)532 static void free_page_series(unsigned long from, unsigned long to)
533 {
534 for (; from < to; from += PAGE_SIZE) {
535 struct page *page = virt_to_page(from);
536
537 atomic_long_dec(&mmap_pages_allocated);
538 put_page(page);
539 }
540 }
541
542 /*
543 * release a reference to a region
544 * - the caller must hold the region semaphore for writing, which this releases
545 * - the region may not have been added to the tree yet, in which case vm_top
546 * will equal vm_start
547 */
__put_nommu_region(struct vm_region * region)548 static void __put_nommu_region(struct vm_region *region)
549 __releases(nommu_region_sem)
550 {
551 BUG_ON(!nommu_region_tree.rb_node);
552
553 if (--region->vm_usage == 0) {
554 if (region->vm_top > region->vm_start)
555 delete_nommu_region(region);
556 up_write(&nommu_region_sem);
557
558 if (region->vm_file)
559 fput(region->vm_file);
560
561 /* IO memory and memory shared directly out of the pagecache
562 * from ramfs/tmpfs mustn't be released here */
563 if (region->vm_flags & VM_MAPPED_COPY)
564 free_page_series(region->vm_start, region->vm_top);
565 kmem_cache_free(vm_region_jar, region);
566 } else {
567 up_write(&nommu_region_sem);
568 }
569 }
570
571 /*
572 * release a reference to a region
573 */
put_nommu_region(struct vm_region * region)574 static void put_nommu_region(struct vm_region *region)
575 {
576 down_write(&nommu_region_sem);
577 __put_nommu_region(region);
578 }
579
580 /*
581 * add a VMA into a process's mm_struct in the appropriate place in the list
582 * and tree and add to the address space's page tree also if not an anonymous
583 * page
584 * - should be called with mm->mmap_sem held writelocked
585 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)586 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
587 {
588 struct vm_area_struct *pvma, *prev;
589 struct address_space *mapping;
590 struct rb_node **p, *parent, *rb_prev;
591
592 BUG_ON(!vma->vm_region);
593
594 mm->map_count++;
595 vma->vm_mm = mm;
596
597 /* add the VMA to the mapping */
598 if (vma->vm_file) {
599 mapping = vma->vm_file->f_mapping;
600
601 i_mmap_lock_write(mapping);
602 flush_dcache_mmap_lock(mapping);
603 vma_interval_tree_insert(vma, &mapping->i_mmap);
604 flush_dcache_mmap_unlock(mapping);
605 i_mmap_unlock_write(mapping);
606 }
607
608 /* add the VMA to the tree */
609 parent = rb_prev = NULL;
610 p = &mm->mm_rb.rb_node;
611 while (*p) {
612 parent = *p;
613 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
614
615 /* sort by: start addr, end addr, VMA struct addr in that order
616 * (the latter is necessary as we may get identical VMAs) */
617 if (vma->vm_start < pvma->vm_start)
618 p = &(*p)->rb_left;
619 else if (vma->vm_start > pvma->vm_start) {
620 rb_prev = parent;
621 p = &(*p)->rb_right;
622 } else if (vma->vm_end < pvma->vm_end)
623 p = &(*p)->rb_left;
624 else if (vma->vm_end > pvma->vm_end) {
625 rb_prev = parent;
626 p = &(*p)->rb_right;
627 } else if (vma < pvma)
628 p = &(*p)->rb_left;
629 else if (vma > pvma) {
630 rb_prev = parent;
631 p = &(*p)->rb_right;
632 } else
633 BUG();
634 }
635
636 rb_link_node(&vma->vm_rb, parent, p);
637 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
638
639 /* add VMA to the VMA list also */
640 prev = NULL;
641 if (rb_prev)
642 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
643
644 __vma_link_list(mm, vma, prev, parent);
645 }
646
647 /*
648 * delete a VMA from its owning mm_struct and address space
649 */
delete_vma_from_mm(struct vm_area_struct * vma)650 static void delete_vma_from_mm(struct vm_area_struct *vma)
651 {
652 int i;
653 struct address_space *mapping;
654 struct mm_struct *mm = vma->vm_mm;
655 struct task_struct *curr = current;
656
657 mm->map_count--;
658 for (i = 0; i < VMACACHE_SIZE; i++) {
659 /* if the vma is cached, invalidate the entire cache */
660 if (curr->vmacache.vmas[i] == vma) {
661 vmacache_invalidate(mm);
662 break;
663 }
664 }
665
666 /* remove the VMA from the mapping */
667 if (vma->vm_file) {
668 mapping = vma->vm_file->f_mapping;
669
670 i_mmap_lock_write(mapping);
671 flush_dcache_mmap_lock(mapping);
672 vma_interval_tree_remove(vma, &mapping->i_mmap);
673 flush_dcache_mmap_unlock(mapping);
674 i_mmap_unlock_write(mapping);
675 }
676
677 /* remove from the MM's tree and list */
678 rb_erase(&vma->vm_rb, &mm->mm_rb);
679
680 if (vma->vm_prev)
681 vma->vm_prev->vm_next = vma->vm_next;
682 else
683 mm->mmap = vma->vm_next;
684
685 if (vma->vm_next)
686 vma->vm_next->vm_prev = vma->vm_prev;
687 }
688
689 /*
690 * destroy a VMA record
691 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)692 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694 if (vma->vm_ops && vma->vm_ops->close)
695 vma->vm_ops->close(vma);
696 if (vma->vm_file)
697 fput(vma->vm_file);
698 put_nommu_region(vma->vm_region);
699 vm_area_free(vma);
700 }
701
702 /*
703 * look up the first VMA in which addr resides, NULL if none
704 * - should be called with mm->mmap_sem at least held readlocked
705 */
find_vma(struct mm_struct * mm,unsigned long addr)706 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
707 {
708 struct vm_area_struct *vma;
709
710 /* check the cache first */
711 vma = vmacache_find(mm, addr);
712 if (likely(vma))
713 return vma;
714
715 /* trawl the list (there may be multiple mappings in which addr
716 * resides) */
717 for (vma = mm->mmap; vma; vma = vma->vm_next) {
718 if (vma->vm_start > addr)
719 return NULL;
720 if (vma->vm_end > addr) {
721 vmacache_update(addr, vma);
722 return vma;
723 }
724 }
725
726 return NULL;
727 }
728 EXPORT_SYMBOL(find_vma);
729
730 /*
731 * find a VMA
732 * - we don't extend stack VMAs under NOMMU conditions
733 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)734 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
735 {
736 return find_vma(mm, addr);
737 }
738
739 /*
740 * expand a stack to a given address
741 * - not supported under NOMMU conditions
742 */
expand_stack(struct vm_area_struct * vma,unsigned long address)743 int expand_stack(struct vm_area_struct *vma, unsigned long address)
744 {
745 return -ENOMEM;
746 }
747
748 /*
749 * look up the first VMA exactly that exactly matches addr
750 * - should be called with mm->mmap_sem at least held readlocked
751 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)752 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
753 unsigned long addr,
754 unsigned long len)
755 {
756 struct vm_area_struct *vma;
757 unsigned long end = addr + len;
758
759 /* check the cache first */
760 vma = vmacache_find_exact(mm, addr, end);
761 if (vma)
762 return vma;
763
764 /* trawl the list (there may be multiple mappings in which addr
765 * resides) */
766 for (vma = mm->mmap; vma; vma = vma->vm_next) {
767 if (vma->vm_start < addr)
768 continue;
769 if (vma->vm_start > addr)
770 return NULL;
771 if (vma->vm_end == end) {
772 vmacache_update(addr, vma);
773 return vma;
774 }
775 }
776
777 return NULL;
778 }
779
780 /*
781 * determine whether a mapping should be permitted and, if so, what sort of
782 * mapping we're capable of supporting
783 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)784 static int validate_mmap_request(struct file *file,
785 unsigned long addr,
786 unsigned long len,
787 unsigned long prot,
788 unsigned long flags,
789 unsigned long pgoff,
790 unsigned long *_capabilities)
791 {
792 unsigned long capabilities, rlen;
793 int ret;
794
795 /* do the simple checks first */
796 if (flags & MAP_FIXED)
797 return -EINVAL;
798
799 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
800 (flags & MAP_TYPE) != MAP_SHARED)
801 return -EINVAL;
802
803 if (!len)
804 return -EINVAL;
805
806 /* Careful about overflows.. */
807 rlen = PAGE_ALIGN(len);
808 if (!rlen || rlen > TASK_SIZE)
809 return -ENOMEM;
810
811 /* offset overflow? */
812 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
813 return -EOVERFLOW;
814
815 if (file) {
816 /* files must support mmap */
817 if (!file->f_op->mmap)
818 return -ENODEV;
819
820 /* work out if what we've got could possibly be shared
821 * - we support chardevs that provide their own "memory"
822 * - we support files/blockdevs that are memory backed
823 */
824 if (file->f_op->mmap_capabilities) {
825 capabilities = file->f_op->mmap_capabilities(file);
826 } else {
827 /* no explicit capabilities set, so assume some
828 * defaults */
829 switch (file_inode(file)->i_mode & S_IFMT) {
830 case S_IFREG:
831 case S_IFBLK:
832 capabilities = NOMMU_MAP_COPY;
833 break;
834
835 case S_IFCHR:
836 capabilities =
837 NOMMU_MAP_DIRECT |
838 NOMMU_MAP_READ |
839 NOMMU_MAP_WRITE;
840 break;
841
842 default:
843 return -EINVAL;
844 }
845 }
846
847 /* eliminate any capabilities that we can't support on this
848 * device */
849 if (!file->f_op->get_unmapped_area)
850 capabilities &= ~NOMMU_MAP_DIRECT;
851 if (!(file->f_mode & FMODE_CAN_READ))
852 capabilities &= ~NOMMU_MAP_COPY;
853
854 /* The file shall have been opened with read permission. */
855 if (!(file->f_mode & FMODE_READ))
856 return -EACCES;
857
858 if (flags & MAP_SHARED) {
859 /* do checks for writing, appending and locking */
860 if ((prot & PROT_WRITE) &&
861 !(file->f_mode & FMODE_WRITE))
862 return -EACCES;
863
864 if (IS_APPEND(file_inode(file)) &&
865 (file->f_mode & FMODE_WRITE))
866 return -EACCES;
867
868 if (locks_verify_locked(file))
869 return -EAGAIN;
870
871 if (!(capabilities & NOMMU_MAP_DIRECT))
872 return -ENODEV;
873
874 /* we mustn't privatise shared mappings */
875 capabilities &= ~NOMMU_MAP_COPY;
876 } else {
877 /* we're going to read the file into private memory we
878 * allocate */
879 if (!(capabilities & NOMMU_MAP_COPY))
880 return -ENODEV;
881
882 /* we don't permit a private writable mapping to be
883 * shared with the backing device */
884 if (prot & PROT_WRITE)
885 capabilities &= ~NOMMU_MAP_DIRECT;
886 }
887
888 if (capabilities & NOMMU_MAP_DIRECT) {
889 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
890 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
891 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
892 ) {
893 capabilities &= ~NOMMU_MAP_DIRECT;
894 if (flags & MAP_SHARED) {
895 pr_warn("MAP_SHARED not completely supported on !MMU\n");
896 return -EINVAL;
897 }
898 }
899 }
900
901 /* handle executable mappings and implied executable
902 * mappings */
903 if (path_noexec(&file->f_path)) {
904 if (prot & PROT_EXEC)
905 return -EPERM;
906 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
907 /* handle implication of PROT_EXEC by PROT_READ */
908 if (current->personality & READ_IMPLIES_EXEC) {
909 if (capabilities & NOMMU_MAP_EXEC)
910 prot |= PROT_EXEC;
911 }
912 } else if ((prot & PROT_READ) &&
913 (prot & PROT_EXEC) &&
914 !(capabilities & NOMMU_MAP_EXEC)
915 ) {
916 /* backing file is not executable, try to copy */
917 capabilities &= ~NOMMU_MAP_DIRECT;
918 }
919 } else {
920 /* anonymous mappings are always memory backed and can be
921 * privately mapped
922 */
923 capabilities = NOMMU_MAP_COPY;
924
925 /* handle PROT_EXEC implication by PROT_READ */
926 if ((prot & PROT_READ) &&
927 (current->personality & READ_IMPLIES_EXEC))
928 prot |= PROT_EXEC;
929 }
930
931 /* allow the security API to have its say */
932 ret = security_mmap_addr(addr);
933 if (ret < 0)
934 return ret;
935
936 /* looks okay */
937 *_capabilities = capabilities;
938 return 0;
939 }
940
941 /*
942 * we've determined that we can make the mapping, now translate what we
943 * now know into VMA flags
944 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)945 static unsigned long determine_vm_flags(struct file *file,
946 unsigned long prot,
947 unsigned long flags,
948 unsigned long capabilities)
949 {
950 unsigned long vm_flags;
951
952 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
953 /* vm_flags |= mm->def_flags; */
954
955 if (!(capabilities & NOMMU_MAP_DIRECT)) {
956 /* attempt to share read-only copies of mapped file chunks */
957 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
958 if (file && !(prot & PROT_WRITE))
959 vm_flags |= VM_MAYSHARE;
960 } else {
961 /* overlay a shareable mapping on the backing device or inode
962 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
963 * romfs/cramfs */
964 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
965 if (flags & MAP_SHARED)
966 vm_flags |= VM_SHARED;
967 }
968
969 /* refuse to let anyone share private mappings with this process if
970 * it's being traced - otherwise breakpoints set in it may interfere
971 * with another untraced process
972 */
973 if ((flags & MAP_PRIVATE) && current->ptrace)
974 vm_flags &= ~VM_MAYSHARE;
975
976 return vm_flags;
977 }
978
979 /*
980 * set up a shared mapping on a file (the driver or filesystem provides and
981 * pins the storage)
982 */
do_mmap_shared_file(struct vm_area_struct * vma)983 static int do_mmap_shared_file(struct vm_area_struct *vma)
984 {
985 int ret;
986
987 ret = call_mmap(vma->vm_file, vma);
988 if (ret == 0) {
989 vma->vm_region->vm_top = vma->vm_region->vm_end;
990 return 0;
991 }
992 if (ret != -ENOSYS)
993 return ret;
994
995 /* getting -ENOSYS indicates that direct mmap isn't possible (as
996 * opposed to tried but failed) so we can only give a suitable error as
997 * it's not possible to make a private copy if MAP_SHARED was given */
998 return -ENODEV;
999 }
1000
1001 /*
1002 * set up a private mapping or an anonymous shared mapping
1003 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)1004 static int do_mmap_private(struct vm_area_struct *vma,
1005 struct vm_region *region,
1006 unsigned long len,
1007 unsigned long capabilities)
1008 {
1009 unsigned long total, point;
1010 void *base;
1011 int ret, order;
1012
1013 /* invoke the file's mapping function so that it can keep track of
1014 * shared mappings on devices or memory
1015 * - VM_MAYSHARE will be set if it may attempt to share
1016 */
1017 if (capabilities & NOMMU_MAP_DIRECT) {
1018 ret = call_mmap(vma->vm_file, vma);
1019 if (ret == 0) {
1020 /* shouldn't return success if we're not sharing */
1021 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1022 vma->vm_region->vm_top = vma->vm_region->vm_end;
1023 return 0;
1024 }
1025 if (ret != -ENOSYS)
1026 return ret;
1027
1028 /* getting an ENOSYS error indicates that direct mmap isn't
1029 * possible (as opposed to tried but failed) so we'll try to
1030 * make a private copy of the data and map that instead */
1031 }
1032
1033
1034 /* allocate some memory to hold the mapping
1035 * - note that this may not return a page-aligned address if the object
1036 * we're allocating is smaller than a page
1037 */
1038 order = get_order(len);
1039 total = 1 << order;
1040 point = len >> PAGE_SHIFT;
1041
1042 /* we don't want to allocate a power-of-2 sized page set */
1043 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1044 total = point;
1045
1046 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1047 if (!base)
1048 goto enomem;
1049
1050 atomic_long_add(total, &mmap_pages_allocated);
1051
1052 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1053 region->vm_start = (unsigned long) base;
1054 region->vm_end = region->vm_start + len;
1055 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1056
1057 vma->vm_start = region->vm_start;
1058 vma->vm_end = region->vm_start + len;
1059
1060 if (vma->vm_file) {
1061 /* read the contents of a file into the copy */
1062 loff_t fpos;
1063
1064 fpos = vma->vm_pgoff;
1065 fpos <<= PAGE_SHIFT;
1066
1067 ret = kernel_read(vma->vm_file, base, len, &fpos);
1068 if (ret < 0)
1069 goto error_free;
1070
1071 /* clear the last little bit */
1072 if (ret < len)
1073 memset(base + ret, 0, len - ret);
1074
1075 } else {
1076 vma_set_anonymous(vma);
1077 }
1078
1079 return 0;
1080
1081 error_free:
1082 free_page_series(region->vm_start, region->vm_top);
1083 region->vm_start = vma->vm_start = 0;
1084 region->vm_end = vma->vm_end = 0;
1085 region->vm_top = 0;
1086 return ret;
1087
1088 enomem:
1089 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1090 len, current->pid, current->comm);
1091 show_free_areas(0, NULL);
1092 return -ENOMEM;
1093 }
1094
1095 /*
1096 * handle mapping creation for uClinux
1097 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1098 unsigned long do_mmap(struct file *file,
1099 unsigned long addr,
1100 unsigned long len,
1101 unsigned long prot,
1102 unsigned long flags,
1103 vm_flags_t vm_flags,
1104 unsigned long pgoff,
1105 unsigned long *populate,
1106 struct list_head *uf)
1107 {
1108 struct vm_area_struct *vma;
1109 struct vm_region *region;
1110 struct rb_node *rb;
1111 unsigned long capabilities, result;
1112 int ret;
1113
1114 *populate = 0;
1115
1116 /* decide whether we should attempt the mapping, and if so what sort of
1117 * mapping */
1118 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1119 &capabilities);
1120 if (ret < 0)
1121 return ret;
1122
1123 /* we ignore the address hint */
1124 addr = 0;
1125 len = PAGE_ALIGN(len);
1126
1127 /* we've determined that we can make the mapping, now translate what we
1128 * now know into VMA flags */
1129 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1130
1131 /* we're going to need to record the mapping */
1132 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1133 if (!region)
1134 goto error_getting_region;
1135
1136 vma = vm_area_alloc(current->mm);
1137 if (!vma)
1138 goto error_getting_vma;
1139
1140 region->vm_usage = 1;
1141 region->vm_flags = vm_flags;
1142 region->vm_pgoff = pgoff;
1143
1144 vma->vm_flags = vm_flags;
1145 vma->vm_pgoff = pgoff;
1146
1147 if (file) {
1148 region->vm_file = get_file(file);
1149 vma->vm_file = get_file(file);
1150 }
1151
1152 down_write(&nommu_region_sem);
1153
1154 /* if we want to share, we need to check for regions created by other
1155 * mmap() calls that overlap with our proposed mapping
1156 * - we can only share with a superset match on most regular files
1157 * - shared mappings on character devices and memory backed files are
1158 * permitted to overlap inexactly as far as we are concerned for in
1159 * these cases, sharing is handled in the driver or filesystem rather
1160 * than here
1161 */
1162 if (vm_flags & VM_MAYSHARE) {
1163 struct vm_region *pregion;
1164 unsigned long pglen, rpglen, pgend, rpgend, start;
1165
1166 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1167 pgend = pgoff + pglen;
1168
1169 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1170 pregion = rb_entry(rb, struct vm_region, vm_rb);
1171
1172 if (!(pregion->vm_flags & VM_MAYSHARE))
1173 continue;
1174
1175 /* search for overlapping mappings on the same file */
1176 if (file_inode(pregion->vm_file) !=
1177 file_inode(file))
1178 continue;
1179
1180 if (pregion->vm_pgoff >= pgend)
1181 continue;
1182
1183 rpglen = pregion->vm_end - pregion->vm_start;
1184 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185 rpgend = pregion->vm_pgoff + rpglen;
1186 if (pgoff >= rpgend)
1187 continue;
1188
1189 /* handle inexactly overlapping matches between
1190 * mappings */
1191 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1192 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1193 /* new mapping is not a subset of the region */
1194 if (!(capabilities & NOMMU_MAP_DIRECT))
1195 goto sharing_violation;
1196 continue;
1197 }
1198
1199 /* we've found a region we can share */
1200 pregion->vm_usage++;
1201 vma->vm_region = pregion;
1202 start = pregion->vm_start;
1203 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1204 vma->vm_start = start;
1205 vma->vm_end = start + len;
1206
1207 if (pregion->vm_flags & VM_MAPPED_COPY)
1208 vma->vm_flags |= VM_MAPPED_COPY;
1209 else {
1210 ret = do_mmap_shared_file(vma);
1211 if (ret < 0) {
1212 vma->vm_region = NULL;
1213 vma->vm_start = 0;
1214 vma->vm_end = 0;
1215 pregion->vm_usage--;
1216 pregion = NULL;
1217 goto error_just_free;
1218 }
1219 }
1220 fput(region->vm_file);
1221 kmem_cache_free(vm_region_jar, region);
1222 region = pregion;
1223 result = start;
1224 goto share;
1225 }
1226
1227 /* obtain the address at which to make a shared mapping
1228 * - this is the hook for quasi-memory character devices to
1229 * tell us the location of a shared mapping
1230 */
1231 if (capabilities & NOMMU_MAP_DIRECT) {
1232 addr = file->f_op->get_unmapped_area(file, addr, len,
1233 pgoff, flags);
1234 if (IS_ERR_VALUE(addr)) {
1235 ret = addr;
1236 if (ret != -ENOSYS)
1237 goto error_just_free;
1238
1239 /* the driver refused to tell us where to site
1240 * the mapping so we'll have to attempt to copy
1241 * it */
1242 ret = -ENODEV;
1243 if (!(capabilities & NOMMU_MAP_COPY))
1244 goto error_just_free;
1245
1246 capabilities &= ~NOMMU_MAP_DIRECT;
1247 } else {
1248 vma->vm_start = region->vm_start = addr;
1249 vma->vm_end = region->vm_end = addr + len;
1250 }
1251 }
1252 }
1253
1254 vma->vm_region = region;
1255
1256 /* set up the mapping
1257 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1258 */
1259 if (file && vma->vm_flags & VM_SHARED)
1260 ret = do_mmap_shared_file(vma);
1261 else
1262 ret = do_mmap_private(vma, region, len, capabilities);
1263 if (ret < 0)
1264 goto error_just_free;
1265 add_nommu_region(region);
1266
1267 /* clear anonymous mappings that don't ask for uninitialized data */
1268 if (!vma->vm_file &&
1269 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1270 !(flags & MAP_UNINITIALIZED)))
1271 memset((void *)region->vm_start, 0,
1272 region->vm_end - region->vm_start);
1273
1274 /* okay... we have a mapping; now we have to register it */
1275 result = vma->vm_start;
1276
1277 current->mm->total_vm += len >> PAGE_SHIFT;
1278
1279 share:
1280 add_vma_to_mm(current->mm, vma);
1281
1282 /* we flush the region from the icache only when the first executable
1283 * mapping of it is made */
1284 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1285 flush_icache_range(region->vm_start, region->vm_end);
1286 region->vm_icache_flushed = true;
1287 }
1288
1289 up_write(&nommu_region_sem);
1290
1291 return result;
1292
1293 error_just_free:
1294 up_write(&nommu_region_sem);
1295 error:
1296 if (region->vm_file)
1297 fput(region->vm_file);
1298 kmem_cache_free(vm_region_jar, region);
1299 if (vma->vm_file)
1300 fput(vma->vm_file);
1301 vm_area_free(vma);
1302 return ret;
1303
1304 sharing_violation:
1305 up_write(&nommu_region_sem);
1306 pr_warn("Attempt to share mismatched mappings\n");
1307 ret = -EINVAL;
1308 goto error;
1309
1310 error_getting_vma:
1311 kmem_cache_free(vm_region_jar, region);
1312 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1313 len, current->pid);
1314 show_free_areas(0, NULL);
1315 return -ENOMEM;
1316
1317 error_getting_region:
1318 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1319 len, current->pid);
1320 show_free_areas(0, NULL);
1321 return -ENOMEM;
1322 }
1323
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1324 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1325 unsigned long prot, unsigned long flags,
1326 unsigned long fd, unsigned long pgoff)
1327 {
1328 struct file *file = NULL;
1329 unsigned long retval = -EBADF;
1330
1331 audit_mmap_fd(fd, flags);
1332 if (!(flags & MAP_ANONYMOUS)) {
1333 file = fget(fd);
1334 if (!file)
1335 goto out;
1336 }
1337
1338 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1339
1340 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1341
1342 if (file)
1343 fput(file);
1344 out:
1345 return retval;
1346 }
1347
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1348 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1349 unsigned long, prot, unsigned long, flags,
1350 unsigned long, fd, unsigned long, pgoff)
1351 {
1352 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1353 }
1354
1355 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1356 struct mmap_arg_struct {
1357 unsigned long addr;
1358 unsigned long len;
1359 unsigned long prot;
1360 unsigned long flags;
1361 unsigned long fd;
1362 unsigned long offset;
1363 };
1364
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1365 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1366 {
1367 struct mmap_arg_struct a;
1368
1369 if (copy_from_user(&a, arg, sizeof(a)))
1370 return -EFAULT;
1371 if (offset_in_page(a.offset))
1372 return -EINVAL;
1373
1374 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1375 a.offset >> PAGE_SHIFT);
1376 }
1377 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1378
1379 /*
1380 * split a vma into two pieces at address 'addr', a new vma is allocated either
1381 * for the first part or the tail.
1382 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1383 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1384 unsigned long addr, int new_below)
1385 {
1386 struct vm_area_struct *new;
1387 struct vm_region *region;
1388 unsigned long npages;
1389
1390 /* we're only permitted to split anonymous regions (these should have
1391 * only a single usage on the region) */
1392 if (vma->vm_file)
1393 return -ENOMEM;
1394
1395 if (mm->map_count >= sysctl_max_map_count)
1396 return -ENOMEM;
1397
1398 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1399 if (!region)
1400 return -ENOMEM;
1401
1402 new = vm_area_dup(vma);
1403 if (!new) {
1404 kmem_cache_free(vm_region_jar, region);
1405 return -ENOMEM;
1406 }
1407
1408 /* most fields are the same, copy all, and then fixup */
1409 *region = *vma->vm_region;
1410 new->vm_region = region;
1411
1412 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1413
1414 if (new_below) {
1415 region->vm_top = region->vm_end = new->vm_end = addr;
1416 } else {
1417 region->vm_start = new->vm_start = addr;
1418 region->vm_pgoff = new->vm_pgoff += npages;
1419 }
1420
1421 if (new->vm_ops && new->vm_ops->open)
1422 new->vm_ops->open(new);
1423
1424 delete_vma_from_mm(vma);
1425 down_write(&nommu_region_sem);
1426 delete_nommu_region(vma->vm_region);
1427 if (new_below) {
1428 vma->vm_region->vm_start = vma->vm_start = addr;
1429 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1430 } else {
1431 vma->vm_region->vm_end = vma->vm_end = addr;
1432 vma->vm_region->vm_top = addr;
1433 }
1434 add_nommu_region(vma->vm_region);
1435 add_nommu_region(new->vm_region);
1436 up_write(&nommu_region_sem);
1437 add_vma_to_mm(mm, vma);
1438 add_vma_to_mm(mm, new);
1439 return 0;
1440 }
1441
1442 /*
1443 * shrink a VMA by removing the specified chunk from either the beginning or
1444 * the end
1445 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1446 static int shrink_vma(struct mm_struct *mm,
1447 struct vm_area_struct *vma,
1448 unsigned long from, unsigned long to)
1449 {
1450 struct vm_region *region;
1451
1452 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1453 * and list */
1454 delete_vma_from_mm(vma);
1455 if (from > vma->vm_start)
1456 vma->vm_end = from;
1457 else
1458 vma->vm_start = to;
1459 add_vma_to_mm(mm, vma);
1460
1461 /* cut the backing region down to size */
1462 region = vma->vm_region;
1463 BUG_ON(region->vm_usage != 1);
1464
1465 down_write(&nommu_region_sem);
1466 delete_nommu_region(region);
1467 if (from > region->vm_start) {
1468 to = region->vm_top;
1469 region->vm_top = region->vm_end = from;
1470 } else {
1471 region->vm_start = to;
1472 }
1473 add_nommu_region(region);
1474 up_write(&nommu_region_sem);
1475
1476 free_page_series(from, to);
1477 return 0;
1478 }
1479
1480 /*
1481 * release a mapping
1482 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1483 * VMA, though it need not cover the whole VMA
1484 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1485 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1486 {
1487 struct vm_area_struct *vma;
1488 unsigned long end;
1489 int ret;
1490
1491 len = PAGE_ALIGN(len);
1492 if (len == 0)
1493 return -EINVAL;
1494
1495 end = start + len;
1496
1497 /* find the first potentially overlapping VMA */
1498 vma = find_vma(mm, start);
1499 if (!vma) {
1500 static int limit;
1501 if (limit < 5) {
1502 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1503 current->pid, current->comm,
1504 start, start + len - 1);
1505 limit++;
1506 }
1507 return -EINVAL;
1508 }
1509
1510 /* we're allowed to split an anonymous VMA but not a file-backed one */
1511 if (vma->vm_file) {
1512 do {
1513 if (start > vma->vm_start)
1514 return -EINVAL;
1515 if (end == vma->vm_end)
1516 goto erase_whole_vma;
1517 vma = vma->vm_next;
1518 } while (vma);
1519 return -EINVAL;
1520 } else {
1521 /* the chunk must be a subset of the VMA found */
1522 if (start == vma->vm_start && end == vma->vm_end)
1523 goto erase_whole_vma;
1524 if (start < vma->vm_start || end > vma->vm_end)
1525 return -EINVAL;
1526 if (offset_in_page(start))
1527 return -EINVAL;
1528 if (end != vma->vm_end && offset_in_page(end))
1529 return -EINVAL;
1530 if (start != vma->vm_start && end != vma->vm_end) {
1531 ret = split_vma(mm, vma, start, 1);
1532 if (ret < 0)
1533 return ret;
1534 }
1535 return shrink_vma(mm, vma, start, end);
1536 }
1537
1538 erase_whole_vma:
1539 delete_vma_from_mm(vma);
1540 delete_vma(mm, vma);
1541 return 0;
1542 }
1543 EXPORT_SYMBOL(do_munmap);
1544
vm_munmap(unsigned long addr,size_t len)1545 int vm_munmap(unsigned long addr, size_t len)
1546 {
1547 struct mm_struct *mm = current->mm;
1548 int ret;
1549
1550 down_write(&mm->mmap_sem);
1551 ret = do_munmap(mm, addr, len, NULL);
1552 up_write(&mm->mmap_sem);
1553 return ret;
1554 }
1555 EXPORT_SYMBOL(vm_munmap);
1556
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1557 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1558 {
1559 return vm_munmap(addr, len);
1560 }
1561
1562 /*
1563 * release all the mappings made in a process's VM space
1564 */
exit_mmap(struct mm_struct * mm)1565 void exit_mmap(struct mm_struct *mm)
1566 {
1567 struct vm_area_struct *vma;
1568
1569 if (!mm)
1570 return;
1571
1572 mm->total_vm = 0;
1573
1574 while ((vma = mm->mmap)) {
1575 mm->mmap = vma->vm_next;
1576 delete_vma_from_mm(vma);
1577 delete_vma(mm, vma);
1578 cond_resched();
1579 }
1580 }
1581
vm_brk(unsigned long addr,unsigned long len)1582 int vm_brk(unsigned long addr, unsigned long len)
1583 {
1584 return -ENOMEM;
1585 }
1586
1587 /*
1588 * expand (or shrink) an existing mapping, potentially moving it at the same
1589 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1590 *
1591 * under NOMMU conditions, we only permit changing a mapping's size, and only
1592 * as long as it stays within the region allocated by do_mmap_private() and the
1593 * block is not shareable
1594 *
1595 * MREMAP_FIXED is not supported under NOMMU conditions
1596 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1597 static unsigned long do_mremap(unsigned long addr,
1598 unsigned long old_len, unsigned long new_len,
1599 unsigned long flags, unsigned long new_addr)
1600 {
1601 struct vm_area_struct *vma;
1602
1603 /* insanity checks first */
1604 old_len = PAGE_ALIGN(old_len);
1605 new_len = PAGE_ALIGN(new_len);
1606 if (old_len == 0 || new_len == 0)
1607 return (unsigned long) -EINVAL;
1608
1609 if (offset_in_page(addr))
1610 return -EINVAL;
1611
1612 if (flags & MREMAP_FIXED && new_addr != addr)
1613 return (unsigned long) -EINVAL;
1614
1615 vma = find_vma_exact(current->mm, addr, old_len);
1616 if (!vma)
1617 return (unsigned long) -EINVAL;
1618
1619 if (vma->vm_end != vma->vm_start + old_len)
1620 return (unsigned long) -EFAULT;
1621
1622 if (vma->vm_flags & VM_MAYSHARE)
1623 return (unsigned long) -EPERM;
1624
1625 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1626 return (unsigned long) -ENOMEM;
1627
1628 /* all checks complete - do it */
1629 vma->vm_end = vma->vm_start + new_len;
1630 return vma->vm_start;
1631 }
1632
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1633 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1634 unsigned long, new_len, unsigned long, flags,
1635 unsigned long, new_addr)
1636 {
1637 unsigned long ret;
1638
1639 down_write(¤t->mm->mmap_sem);
1640 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1641 up_write(¤t->mm->mmap_sem);
1642 return ret;
1643 }
1644
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1645 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1646 unsigned int foll_flags)
1647 {
1648 return NULL;
1649 }
1650
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1652 unsigned long pfn, unsigned long size, pgprot_t prot)
1653 {
1654 if (addr != (pfn << PAGE_SHIFT))
1655 return -EINVAL;
1656
1657 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1658 return 0;
1659 }
1660 EXPORT_SYMBOL(remap_pfn_range);
1661
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1662 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1663 {
1664 unsigned long pfn = start >> PAGE_SHIFT;
1665 unsigned long vm_len = vma->vm_end - vma->vm_start;
1666
1667 pfn += vma->vm_pgoff;
1668 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1669 }
1670 EXPORT_SYMBOL(vm_iomap_memory);
1671
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1672 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1673 unsigned long pgoff)
1674 {
1675 unsigned int size = vma->vm_end - vma->vm_start;
1676
1677 if (!(vma->vm_flags & VM_USERMAP))
1678 return -EINVAL;
1679
1680 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1681 vma->vm_end = vma->vm_start + size;
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL(remap_vmalloc_range);
1686
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1687 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1688 unsigned long len, unsigned long pgoff, unsigned long flags)
1689 {
1690 return -ENOMEM;
1691 }
1692
filemap_fault(struct vm_fault * vmf)1693 vm_fault_t filemap_fault(struct vm_fault *vmf)
1694 {
1695 BUG();
1696 return 0;
1697 }
1698 EXPORT_SYMBOL(filemap_fault);
1699
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1700 void filemap_map_pages(struct vm_fault *vmf,
1701 pgoff_t start_pgoff, pgoff_t end_pgoff)
1702 {
1703 BUG();
1704 }
1705 EXPORT_SYMBOL(filemap_map_pages);
1706
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1707 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1708 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1709 {
1710 struct vm_area_struct *vma;
1711 int write = gup_flags & FOLL_WRITE;
1712
1713 if (down_read_killable(&mm->mmap_sem))
1714 return 0;
1715
1716 /* the access must start within one of the target process's mappings */
1717 vma = find_vma(mm, addr);
1718 if (vma) {
1719 /* don't overrun this mapping */
1720 if (addr + len >= vma->vm_end)
1721 len = vma->vm_end - addr;
1722
1723 /* only read or write mappings where it is permitted */
1724 if (write && vma->vm_flags & VM_MAYWRITE)
1725 copy_to_user_page(vma, NULL, addr,
1726 (void *) addr, buf, len);
1727 else if (!write && vma->vm_flags & VM_MAYREAD)
1728 copy_from_user_page(vma, NULL, addr,
1729 buf, (void *) addr, len);
1730 else
1731 len = 0;
1732 } else {
1733 len = 0;
1734 }
1735
1736 up_read(&mm->mmap_sem);
1737
1738 return len;
1739 }
1740
1741 /**
1742 * access_remote_vm - access another process' address space
1743 * @mm: the mm_struct of the target address space
1744 * @addr: start address to access
1745 * @buf: source or destination buffer
1746 * @len: number of bytes to transfer
1747 * @gup_flags: flags modifying lookup behaviour
1748 *
1749 * The caller must hold a reference on @mm.
1750 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1751 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1752 void *buf, int len, unsigned int gup_flags)
1753 {
1754 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1755 }
1756
1757 /*
1758 * Access another process' address space.
1759 * - source/target buffer must be kernel space
1760 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1761 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1762 unsigned int gup_flags)
1763 {
1764 struct mm_struct *mm;
1765
1766 if (addr + len < addr)
1767 return 0;
1768
1769 mm = get_task_mm(tsk);
1770 if (!mm)
1771 return 0;
1772
1773 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1774
1775 mmput(mm);
1776 return len;
1777 }
1778 EXPORT_SYMBOL_GPL(access_process_vm);
1779
1780 /**
1781 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1782 * @inode: The inode to check
1783 * @size: The current filesize of the inode
1784 * @newsize: The proposed filesize of the inode
1785 *
1786 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1787 * make sure that that any outstanding VMAs aren't broken and then shrink the
1788 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1789 * automatically grant mappings that are too large.
1790 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1791 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1792 size_t newsize)
1793 {
1794 struct vm_area_struct *vma;
1795 struct vm_region *region;
1796 pgoff_t low, high;
1797 size_t r_size, r_top;
1798
1799 low = newsize >> PAGE_SHIFT;
1800 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1801
1802 down_write(&nommu_region_sem);
1803 i_mmap_lock_read(inode->i_mapping);
1804
1805 /* search for VMAs that fall within the dead zone */
1806 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1807 /* found one - only interested if it's shared out of the page
1808 * cache */
1809 if (vma->vm_flags & VM_SHARED) {
1810 i_mmap_unlock_read(inode->i_mapping);
1811 up_write(&nommu_region_sem);
1812 return -ETXTBSY; /* not quite true, but near enough */
1813 }
1814 }
1815
1816 /* reduce any regions that overlap the dead zone - if in existence,
1817 * these will be pointed to by VMAs that don't overlap the dead zone
1818 *
1819 * we don't check for any regions that start beyond the EOF as there
1820 * shouldn't be any
1821 */
1822 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1823 if (!(vma->vm_flags & VM_SHARED))
1824 continue;
1825
1826 region = vma->vm_region;
1827 r_size = region->vm_top - region->vm_start;
1828 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1829
1830 if (r_top > newsize) {
1831 region->vm_top -= r_top - newsize;
1832 if (region->vm_end > region->vm_top)
1833 region->vm_end = region->vm_top;
1834 }
1835 }
1836
1837 i_mmap_unlock_read(inode->i_mapping);
1838 up_write(&nommu_region_sem);
1839 return 0;
1840 }
1841
1842 /*
1843 * Initialise sysctl_user_reserve_kbytes.
1844 *
1845 * This is intended to prevent a user from starting a single memory hogging
1846 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1847 * mode.
1848 *
1849 * The default value is min(3% of free memory, 128MB)
1850 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1851 */
init_user_reserve(void)1852 static int __meminit init_user_reserve(void)
1853 {
1854 unsigned long free_kbytes;
1855
1856 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1857
1858 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1859 return 0;
1860 }
1861 subsys_initcall(init_user_reserve);
1862
1863 /*
1864 * Initialise sysctl_admin_reserve_kbytes.
1865 *
1866 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1867 * to log in and kill a memory hogging process.
1868 *
1869 * Systems with more than 256MB will reserve 8MB, enough to recover
1870 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1871 * only reserve 3% of free pages by default.
1872 */
init_admin_reserve(void)1873 static int __meminit init_admin_reserve(void)
1874 {
1875 unsigned long free_kbytes;
1876
1877 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1878
1879 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1880 return 0;
1881 }
1882 subsys_initcall(init_admin_reserve);
1883