1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/huge_mm.h>
65 #include <linux/backing-dev.h>
66 #include <linux/page_idle.h>
67 #include <linux/memremap.h>
68 #include <linux/userfaultfd_k.h>
69
70 #include <asm/tlbflush.h>
71
72 #include <trace/events/tlb.h>
73
74 #include "internal.h"
75
76 static struct kmem_cache *anon_vma_cachep;
77 static struct kmem_cache *anon_vma_chain_cachep;
78
anon_vma_alloc(void)79 static inline struct anon_vma *anon_vma_alloc(void)
80 {
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
86 anon_vma->num_children = 0;
87 anon_vma->num_active_vmas = 0;
88 anon_vma->parent = anon_vma;
89 /*
90 * Initialise the anon_vma root to point to itself. If called
91 * from fork, the root will be reset to the parents anon_vma.
92 */
93 anon_vma->root = anon_vma;
94 }
95
96 return anon_vma;
97 }
98
anon_vma_free(struct anon_vma * anon_vma)99 static inline void anon_vma_free(struct anon_vma *anon_vma)
100 {
101 VM_BUG_ON(atomic_read(&anon_vma->refcount));
102
103 /*
104 * Synchronize against page_lock_anon_vma_read() such that
105 * we can safely hold the lock without the anon_vma getting
106 * freed.
107 *
108 * Relies on the full mb implied by the atomic_dec_and_test() from
109 * put_anon_vma() against the acquire barrier implied by
110 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
111 *
112 * page_lock_anon_vma_read() VS put_anon_vma()
113 * down_read_trylock() atomic_dec_and_test()
114 * LOCK MB
115 * atomic_read() rwsem_is_locked()
116 *
117 * LOCK should suffice since the actual taking of the lock must
118 * happen _before_ what follows.
119 */
120 might_sleep();
121 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
122 anon_vma_lock_write(anon_vma);
123 anon_vma_unlock_write(anon_vma);
124 }
125
126 kmem_cache_free(anon_vma_cachep, anon_vma);
127 }
128
anon_vma_chain_alloc(gfp_t gfp)129 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
130 {
131 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
132 }
133
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)134 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
135 {
136 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
137 }
138
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)139 static void anon_vma_chain_link(struct vm_area_struct *vma,
140 struct anon_vma_chain *avc,
141 struct anon_vma *anon_vma)
142 {
143 avc->vma = vma;
144 avc->anon_vma = anon_vma;
145 list_add(&avc->same_vma, &vma->anon_vma_chain);
146 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
147 }
148
149 /**
150 * __anon_vma_prepare - attach an anon_vma to a memory region
151 * @vma: the memory region in question
152 *
153 * This makes sure the memory mapping described by 'vma' has
154 * an 'anon_vma' attached to it, so that we can associate the
155 * anonymous pages mapped into it with that anon_vma.
156 *
157 * The common case will be that we already have one, which
158 * is handled inline by anon_vma_prepare(). But if
159 * not we either need to find an adjacent mapping that we
160 * can re-use the anon_vma from (very common when the only
161 * reason for splitting a vma has been mprotect()), or we
162 * allocate a new one.
163 *
164 * Anon-vma allocations are very subtle, because we may have
165 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
166 * and that may actually touch the spinlock even in the newly
167 * allocated vma (it depends on RCU to make sure that the
168 * anon_vma isn't actually destroyed).
169 *
170 * As a result, we need to do proper anon_vma locking even
171 * for the new allocation. At the same time, we do not want
172 * to do any locking for the common case of already having
173 * an anon_vma.
174 *
175 * This must be called with the mmap_sem held for reading.
176 */
__anon_vma_prepare(struct vm_area_struct * vma)177 int __anon_vma_prepare(struct vm_area_struct *vma)
178 {
179 struct mm_struct *mm = vma->vm_mm;
180 struct anon_vma *anon_vma, *allocated;
181 struct anon_vma_chain *avc;
182
183 might_sleep();
184
185 avc = anon_vma_chain_alloc(GFP_KERNEL);
186 if (!avc)
187 goto out_enomem;
188
189 anon_vma = find_mergeable_anon_vma(vma);
190 allocated = NULL;
191 if (!anon_vma) {
192 anon_vma = anon_vma_alloc();
193 if (unlikely(!anon_vma))
194 goto out_enomem_free_avc;
195 anon_vma->num_children++; /* self-parent link for new root */
196 allocated = anon_vma;
197 }
198
199 anon_vma_lock_write(anon_vma);
200 /* page_table_lock to protect against threads */
201 spin_lock(&mm->page_table_lock);
202 if (likely(!vma->anon_vma)) {
203 vma->anon_vma = anon_vma;
204 anon_vma_chain_link(vma, avc, anon_vma);
205 anon_vma->num_active_vmas++;
206 allocated = NULL;
207 avc = NULL;
208 }
209 spin_unlock(&mm->page_table_lock);
210 anon_vma_unlock_write(anon_vma);
211
212 if (unlikely(allocated))
213 put_anon_vma(allocated);
214 if (unlikely(avc))
215 anon_vma_chain_free(avc);
216
217 return 0;
218
219 out_enomem_free_avc:
220 anon_vma_chain_free(avc);
221 out_enomem:
222 return -ENOMEM;
223 }
224
225 /*
226 * This is a useful helper function for locking the anon_vma root as
227 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
228 * have the same vma.
229 *
230 * Such anon_vma's should have the same root, so you'd expect to see
231 * just a single mutex_lock for the whole traversal.
232 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)233 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
234 {
235 struct anon_vma *new_root = anon_vma->root;
236 if (new_root != root) {
237 if (WARN_ON_ONCE(root))
238 up_write(&root->rwsem);
239 root = new_root;
240 down_write(&root->rwsem);
241 }
242 return root;
243 }
244
unlock_anon_vma_root(struct anon_vma * root)245 static inline void unlock_anon_vma_root(struct anon_vma *root)
246 {
247 if (root)
248 up_write(&root->rwsem);
249 }
250
251 /*
252 * Attach the anon_vmas from src to dst.
253 * Returns 0 on success, -ENOMEM on failure.
254 *
255 * If dst->anon_vma is NULL this function tries to find and reuse existing
256 * anon_vma which has no vmas and only one child anon_vma. This prevents
257 * degradation of anon_vma hierarchy to endless linear chain in case of
258 * constantly forking task. On the other hand, an anon_vma with more than one
259 * child isn't reused even if there was no alive vma, thus rmap walker has a
260 * good chance of avoiding scanning the whole hierarchy when it searches where
261 * page is mapped.
262 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)263 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
264 {
265 struct anon_vma_chain *avc, *pavc;
266 struct anon_vma *root = NULL;
267
268 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
269 struct anon_vma *anon_vma;
270
271 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
272 if (unlikely(!avc)) {
273 unlock_anon_vma_root(root);
274 root = NULL;
275 avc = anon_vma_chain_alloc(GFP_KERNEL);
276 if (!avc)
277 goto enomem_failure;
278 }
279 anon_vma = pavc->anon_vma;
280 root = lock_anon_vma_root(root, anon_vma);
281 anon_vma_chain_link(dst, avc, anon_vma);
282
283 /*
284 * Reuse existing anon_vma if it has no vma and only one
285 * anon_vma child.
286 *
287 * Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
289 */
290 if (!dst->anon_vma && src->anon_vma &&
291 anon_vma->num_children < 2 &&
292 anon_vma->num_active_vmas == 0)
293 dst->anon_vma = anon_vma;
294 }
295 if (dst->anon_vma)
296 dst->anon_vma->num_active_vmas++;
297 unlock_anon_vma_root(root);
298 return 0;
299
300 enomem_failure:
301 /*
302 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
303 * decremented in unlink_anon_vmas().
304 * We can safely do this because callers of anon_vma_clone() don't care
305 * about dst->anon_vma if anon_vma_clone() failed.
306 */
307 dst->anon_vma = NULL;
308 unlink_anon_vmas(dst);
309 return -ENOMEM;
310 }
311
312 /*
313 * Attach vma to its own anon_vma, as well as to the anon_vmas that
314 * the corresponding VMA in the parent process is attached to.
315 * Returns 0 on success, non-zero on failure.
316 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)317 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
318 {
319 struct anon_vma_chain *avc;
320 struct anon_vma *anon_vma;
321 int error;
322
323 /* Don't bother if the parent process has no anon_vma here. */
324 if (!pvma->anon_vma)
325 return 0;
326
327 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
328 vma->anon_vma = NULL;
329
330 /*
331 * First, attach the new VMA to the parent VMA's anon_vmas,
332 * so rmap can find non-COWed pages in child processes.
333 */
334 error = anon_vma_clone(vma, pvma);
335 if (error)
336 return error;
337
338 /* An existing anon_vma has been reused, all done then. */
339 if (vma->anon_vma)
340 return 0;
341
342 /* Then add our own anon_vma. */
343 anon_vma = anon_vma_alloc();
344 if (!anon_vma)
345 goto out_error;
346 anon_vma->num_active_vmas++;
347 avc = anon_vma_chain_alloc(GFP_KERNEL);
348 if (!avc)
349 goto out_error_free_anon_vma;
350
351 /*
352 * The root anon_vma's spinlock is the lock actually used when we
353 * lock any of the anon_vmas in this anon_vma tree.
354 */
355 anon_vma->root = pvma->anon_vma->root;
356 anon_vma->parent = pvma->anon_vma;
357 /*
358 * With refcounts, an anon_vma can stay around longer than the
359 * process it belongs to. The root anon_vma needs to be pinned until
360 * this anon_vma is freed, because the lock lives in the root.
361 */
362 get_anon_vma(anon_vma->root);
363 /* Mark this anon_vma as the one where our new (COWed) pages go. */
364 vma->anon_vma = anon_vma;
365 anon_vma_lock_write(anon_vma);
366 anon_vma_chain_link(vma, avc, anon_vma);
367 anon_vma->parent->num_children++;
368 anon_vma_unlock_write(anon_vma);
369
370 return 0;
371
372 out_error_free_anon_vma:
373 put_anon_vma(anon_vma);
374 out_error:
375 unlink_anon_vmas(vma);
376 return -ENOMEM;
377 }
378
unlink_anon_vmas(struct vm_area_struct * vma)379 void unlink_anon_vmas(struct vm_area_struct *vma)
380 {
381 struct anon_vma_chain *avc, *next;
382 struct anon_vma *root = NULL;
383
384 /*
385 * Unlink each anon_vma chained to the VMA. This list is ordered
386 * from newest to oldest, ensuring the root anon_vma gets freed last.
387 */
388 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
389 struct anon_vma *anon_vma = avc->anon_vma;
390
391 root = lock_anon_vma_root(root, anon_vma);
392 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
393
394 /*
395 * Leave empty anon_vmas on the list - we'll need
396 * to free them outside the lock.
397 */
398 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
399 anon_vma->parent->num_children--;
400 continue;
401 }
402
403 list_del(&avc->same_vma);
404 anon_vma_chain_free(avc);
405 }
406 if (vma->anon_vma)
407 vma->anon_vma->num_active_vmas--;
408
409 unlock_anon_vma_root(root);
410
411 /*
412 * Iterate the list once more, it now only contains empty and unlinked
413 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
414 * needing to write-acquire the anon_vma->root->rwsem.
415 */
416 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
417 struct anon_vma *anon_vma = avc->anon_vma;
418
419 VM_WARN_ON(anon_vma->num_children);
420 VM_WARN_ON(anon_vma->num_active_vmas);
421 put_anon_vma(anon_vma);
422
423 list_del(&avc->same_vma);
424 anon_vma_chain_free(avc);
425 }
426 }
427
anon_vma_ctor(void * data)428 static void anon_vma_ctor(void *data)
429 {
430 struct anon_vma *anon_vma = data;
431
432 init_rwsem(&anon_vma->rwsem);
433 atomic_set(&anon_vma->refcount, 0);
434 anon_vma->rb_root = RB_ROOT_CACHED;
435 }
436
anon_vma_init(void)437 void __init anon_vma_init(void)
438 {
439 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
440 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
441 anon_vma_ctor);
442 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
443 SLAB_PANIC|SLAB_ACCOUNT);
444 }
445
446 /*
447 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
448 *
449 * Since there is no serialization what so ever against page_remove_rmap()
450 * the best this function can do is return a locked anon_vma that might
451 * have been relevant to this page.
452 *
453 * The page might have been remapped to a different anon_vma or the anon_vma
454 * returned may already be freed (and even reused).
455 *
456 * In case it was remapped to a different anon_vma, the new anon_vma will be a
457 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
458 * ensure that any anon_vma obtained from the page will still be valid for as
459 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
460 *
461 * All users of this function must be very careful when walking the anon_vma
462 * chain and verify that the page in question is indeed mapped in it
463 * [ something equivalent to page_mapped_in_vma() ].
464 *
465 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
466 * that the anon_vma pointer from page->mapping is valid if there is a
467 * mapcount, we can dereference the anon_vma after observing those.
468 */
page_get_anon_vma(struct page * page)469 struct anon_vma *page_get_anon_vma(struct page *page)
470 {
471 struct anon_vma *anon_vma = NULL;
472 unsigned long anon_mapping;
473
474 rcu_read_lock();
475 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
476 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
477 goto out;
478 if (!page_mapped(page))
479 goto out;
480
481 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
482 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
483 anon_vma = NULL;
484 goto out;
485 }
486
487 /*
488 * If this page is still mapped, then its anon_vma cannot have been
489 * freed. But if it has been unmapped, we have no security against the
490 * anon_vma structure being freed and reused (for another anon_vma:
491 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
492 * above cannot corrupt).
493 */
494 if (!page_mapped(page)) {
495 rcu_read_unlock();
496 put_anon_vma(anon_vma);
497 return NULL;
498 }
499 out:
500 rcu_read_unlock();
501
502 return anon_vma;
503 }
504
505 /*
506 * Similar to page_get_anon_vma() except it locks the anon_vma.
507 *
508 * Its a little more complex as it tries to keep the fast path to a single
509 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
510 * reference like with page_get_anon_vma() and then block on the mutex
511 * on !rwc->try_lock case.
512 */
page_lock_anon_vma_read(struct page * page,struct rmap_walk_control * rwc)513 struct anon_vma *page_lock_anon_vma_read(struct page *page,
514 struct rmap_walk_control *rwc)
515 {
516 struct anon_vma *anon_vma = NULL;
517 struct anon_vma *root_anon_vma;
518 unsigned long anon_mapping;
519
520 rcu_read_lock();
521 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
522 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
523 goto out;
524 if (!page_mapped(page))
525 goto out;
526
527 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
528 root_anon_vma = READ_ONCE(anon_vma->root);
529 if (down_read_trylock(&root_anon_vma->rwsem)) {
530 /*
531 * If the page is still mapped, then this anon_vma is still
532 * its anon_vma, and holding the mutex ensures that it will
533 * not go away, see anon_vma_free().
534 */
535 if (!page_mapped(page)) {
536 up_read(&root_anon_vma->rwsem);
537 anon_vma = NULL;
538 }
539 goto out;
540 }
541
542 if (rwc && rwc->try_lock) {
543 anon_vma = NULL;
544 rwc->contended = true;
545 goto out;
546 }
547
548 /* trylock failed, we got to sleep */
549 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
550 anon_vma = NULL;
551 goto out;
552 }
553
554 if (!page_mapped(page)) {
555 rcu_read_unlock();
556 put_anon_vma(anon_vma);
557 return NULL;
558 }
559
560 /* we pinned the anon_vma, its safe to sleep */
561 rcu_read_unlock();
562 anon_vma_lock_read(anon_vma);
563
564 if (atomic_dec_and_test(&anon_vma->refcount)) {
565 /*
566 * Oops, we held the last refcount, release the lock
567 * and bail -- can't simply use put_anon_vma() because
568 * we'll deadlock on the anon_vma_lock_write() recursion.
569 */
570 anon_vma_unlock_read(anon_vma);
571 __put_anon_vma(anon_vma);
572 anon_vma = NULL;
573 }
574
575 return anon_vma;
576
577 out:
578 rcu_read_unlock();
579 return anon_vma;
580 }
581
page_unlock_anon_vma_read(struct anon_vma * anon_vma)582 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
583 {
584 anon_vma_unlock_read(anon_vma);
585 }
586
587 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
588 /*
589 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
590 * important if a PTE was dirty when it was unmapped that it's flushed
591 * before any IO is initiated on the page to prevent lost writes. Similarly,
592 * it must be flushed before freeing to prevent data leakage.
593 */
try_to_unmap_flush(void)594 void try_to_unmap_flush(void)
595 {
596 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
597
598 if (!tlb_ubc->flush_required)
599 return;
600
601 arch_tlbbatch_flush(&tlb_ubc->arch);
602 tlb_ubc->flush_required = false;
603 tlb_ubc->writable = false;
604 }
605
606 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)607 void try_to_unmap_flush_dirty(void)
608 {
609 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
610
611 if (tlb_ubc->writable)
612 try_to_unmap_flush();
613 }
614
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)615 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
616 {
617 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
618
619 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
620 tlb_ubc->flush_required = true;
621
622 /*
623 * Ensure compiler does not re-order the setting of tlb_flush_batched
624 * before the PTE is cleared.
625 */
626 barrier();
627 mm->tlb_flush_batched = true;
628
629 /*
630 * If the PTE was dirty then it's best to assume it's writable. The
631 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
632 * before the page is queued for IO.
633 */
634 if (writable)
635 tlb_ubc->writable = true;
636 }
637
638 /*
639 * Returns true if the TLB flush should be deferred to the end of a batch of
640 * unmap operations to reduce IPIs.
641 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)642 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
643 {
644 bool should_defer = false;
645
646 if (!(flags & TTU_BATCH_FLUSH))
647 return false;
648
649 /* If remote CPUs need to be flushed then defer batch the flush */
650 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
651 should_defer = true;
652 put_cpu();
653
654 return should_defer;
655 }
656
657 /*
658 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
659 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
660 * operation such as mprotect or munmap to race between reclaim unmapping
661 * the page and flushing the page. If this race occurs, it potentially allows
662 * access to data via a stale TLB entry. Tracking all mm's that have TLB
663 * batching in flight would be expensive during reclaim so instead track
664 * whether TLB batching occurred in the past and if so then do a flush here
665 * if required. This will cost one additional flush per reclaim cycle paid
666 * by the first operation at risk such as mprotect and mumap.
667 *
668 * This must be called under the PTL so that an access to tlb_flush_batched
669 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
670 * via the PTL.
671 */
flush_tlb_batched_pending(struct mm_struct * mm)672 void flush_tlb_batched_pending(struct mm_struct *mm)
673 {
674 if (mm->tlb_flush_batched) {
675 flush_tlb_mm(mm);
676
677 /*
678 * Do not allow the compiler to re-order the clearing of
679 * tlb_flush_batched before the tlb is flushed.
680 */
681 barrier();
682 mm->tlb_flush_batched = false;
683 }
684 }
685 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)686 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
687 {
688 }
689
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691 {
692 return false;
693 }
694 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
695
696 /*
697 * At what user virtual address is page expected in vma?
698 * Caller should check the page is actually part of the vma.
699 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)700 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
701 {
702 if (PageAnon(page)) {
703 struct anon_vma *page__anon_vma = page_anon_vma(page);
704 /*
705 * Note: swapoff's unuse_vma() is more efficient with this
706 * check, and needs it to match anon_vma when KSM is active.
707 */
708 if (!vma->anon_vma || !page__anon_vma ||
709 vma->anon_vma->root != page__anon_vma->root)
710 return -EFAULT;
711 } else if (!vma->vm_file) {
712 return -EFAULT;
713 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
714 return -EFAULT;
715 }
716
717 return vma_address(page, vma);
718 }
719
mm_find_pmd(struct mm_struct * mm,unsigned long address)720 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
721 {
722 pgd_t *pgd;
723 p4d_t *p4d;
724 pud_t *pud;
725 pmd_t *pmd = NULL;
726 pmd_t pmde;
727
728 pgd = pgd_offset(mm, address);
729 if (!pgd_present(*pgd))
730 goto out;
731
732 p4d = p4d_offset(pgd, address);
733 if (!p4d_present(*p4d))
734 goto out;
735
736 pud = pud_offset(p4d, address);
737 if (!pud_present(*pud))
738 goto out;
739
740 pmd = pmd_offset(pud, address);
741 /*
742 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
743 * without holding anon_vma lock for write. So when looking for a
744 * genuine pmde (in which to find pte), test present and !THP together.
745 */
746 pmde = *pmd;
747 barrier();
748 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
749 pmd = NULL;
750 out:
751 return pmd;
752 }
753
754 struct page_referenced_arg {
755 int mapcount;
756 int referenced;
757 unsigned long vm_flags;
758 struct mem_cgroup *memcg;
759 };
760 /*
761 * arg: page_referenced_arg will be passed
762 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)763 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
764 unsigned long address, void *arg)
765 {
766 struct page_referenced_arg *pra = arg;
767 struct page_vma_mapped_walk pvmw = {
768 .page = page,
769 .vma = vma,
770 .address = address,
771 };
772 int referenced = 0;
773
774 while (page_vma_mapped_walk(&pvmw)) {
775 address = pvmw.address;
776
777 if (vma->vm_flags & VM_LOCKED) {
778 page_vma_mapped_walk_done(&pvmw);
779 pra->vm_flags |= VM_LOCKED;
780 return false; /* To break the loop */
781 }
782
783 if (pvmw.pte) {
784 if (ptep_clear_flush_young_notify(vma, address,
785 pvmw.pte)) {
786 /*
787 * Don't treat a reference through
788 * a sequentially read mapping as such.
789 * If the page has been used in another mapping,
790 * we will catch it; if this other mapping is
791 * already gone, the unmap path will have set
792 * PG_referenced or activated the page.
793 */
794 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
795 referenced++;
796 }
797 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
798 if (pmdp_clear_flush_young_notify(vma, address,
799 pvmw.pmd))
800 referenced++;
801 } else {
802 /* unexpected pmd-mapped page? */
803 WARN_ON_ONCE(1);
804 }
805
806 pra->mapcount--;
807 }
808
809 if (referenced)
810 clear_page_idle(page);
811 if (test_and_clear_page_young(page))
812 referenced++;
813
814 if (referenced) {
815 pra->referenced++;
816 pra->vm_flags |= vma->vm_flags;
817 }
818
819 if (!pra->mapcount)
820 return false; /* To break the loop */
821
822 return true;
823 }
824
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)825 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
826 {
827 struct page_referenced_arg *pra = arg;
828 struct mem_cgroup *memcg = pra->memcg;
829
830 if (!mm_match_cgroup(vma->vm_mm, memcg))
831 return true;
832
833 return false;
834 }
835
836 /**
837 * page_referenced - test if the page was referenced
838 * @page: the page to test
839 * @is_locked: caller holds lock on the page
840 * @memcg: target memory cgroup
841 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
842 *
843 * Quick test_and_clear_referenced for all mappings of a page,
844 *
845 * Return: The number of mappings which referenced the page. Return -1 if
846 * the function bailed out due to rmap lock contention.
847 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)848 int page_referenced(struct page *page,
849 int is_locked,
850 struct mem_cgroup *memcg,
851 unsigned long *vm_flags)
852 {
853 int we_locked = 0;
854 struct page_referenced_arg pra = {
855 .mapcount = total_mapcount(page),
856 .memcg = memcg,
857 };
858 struct rmap_walk_control rwc = {
859 .rmap_one = page_referenced_one,
860 .arg = (void *)&pra,
861 .anon_lock = page_lock_anon_vma_read,
862 .try_lock = true,
863 };
864
865 *vm_flags = 0;
866 if (!pra.mapcount)
867 return 0;
868
869 if (!page_rmapping(page))
870 return 0;
871
872 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
873 we_locked = trylock_page(page);
874 if (!we_locked)
875 return 1;
876 }
877
878 /*
879 * If we are reclaiming on behalf of a cgroup, skip
880 * counting on behalf of references from different
881 * cgroups
882 */
883 if (memcg) {
884 rwc.invalid_vma = invalid_page_referenced_vma;
885 }
886
887 rmap_walk(page, &rwc);
888 *vm_flags = pra.vm_flags;
889
890 if (we_locked)
891 unlock_page(page);
892
893 return rwc.contended ? -1 : pra.referenced;
894 }
895
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)896 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
897 unsigned long address, void *arg)
898 {
899 struct page_vma_mapped_walk pvmw = {
900 .page = page,
901 .vma = vma,
902 .address = address,
903 .flags = PVMW_SYNC,
904 };
905 struct mmu_notifier_range range;
906 int *cleaned = arg;
907
908 /*
909 * We have to assume the worse case ie pmd for invalidation. Note that
910 * the page can not be free from this function.
911 */
912 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
913 0, vma, vma->vm_mm, address,
914 vma_address_end(page, vma));
915 mmu_notifier_invalidate_range_start(&range);
916
917 while (page_vma_mapped_walk(&pvmw)) {
918 int ret = 0;
919
920 address = pvmw.address;
921 if (pvmw.pte) {
922 pte_t entry;
923 pte_t *pte = pvmw.pte;
924
925 if (!pte_dirty(*pte) && !pte_write(*pte))
926 continue;
927
928 flush_cache_page(vma, address, pte_pfn(*pte));
929 entry = ptep_clear_flush(vma, address, pte);
930 entry = pte_wrprotect(entry);
931 entry = pte_mkclean(entry);
932 set_pte_at(vma->vm_mm, address, pte, entry);
933 ret = 1;
934 } else {
935 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
936 pmd_t *pmd = pvmw.pmd;
937 pmd_t entry;
938
939 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
940 continue;
941
942 flush_cache_page(vma, address, page_to_pfn(page));
943 entry = pmdp_invalidate(vma, address, pmd);
944 entry = pmd_wrprotect(entry);
945 entry = pmd_mkclean(entry);
946 set_pmd_at(vma->vm_mm, address, pmd, entry);
947 ret = 1;
948 #else
949 /* unexpected pmd-mapped page? */
950 WARN_ON_ONCE(1);
951 #endif
952 }
953
954 /*
955 * No need to call mmu_notifier_invalidate_range() as we are
956 * downgrading page table protection not changing it to point
957 * to a new page.
958 *
959 * See Documentation/vm/mmu_notifier.rst
960 */
961 if (ret)
962 (*cleaned)++;
963 }
964
965 mmu_notifier_invalidate_range_end(&range);
966
967 return true;
968 }
969
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)970 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
971 {
972 if (vma->vm_flags & VM_SHARED)
973 return false;
974
975 return true;
976 }
977
page_mkclean(struct page * page)978 int page_mkclean(struct page *page)
979 {
980 int cleaned = 0;
981 struct address_space *mapping;
982 struct rmap_walk_control rwc = {
983 .arg = (void *)&cleaned,
984 .rmap_one = page_mkclean_one,
985 .invalid_vma = invalid_mkclean_vma,
986 };
987
988 BUG_ON(!PageLocked(page));
989
990 if (!page_mapped(page))
991 return 0;
992
993 mapping = page_mapping(page);
994 if (!mapping)
995 return 0;
996
997 rmap_walk(page, &rwc);
998
999 return cleaned;
1000 }
1001 EXPORT_SYMBOL_GPL(page_mkclean);
1002
1003 /**
1004 * page_move_anon_rmap - move a page to our anon_vma
1005 * @page: the page to move to our anon_vma
1006 * @vma: the vma the page belongs to
1007 *
1008 * When a page belongs exclusively to one process after a COW event,
1009 * that page can be moved into the anon_vma that belongs to just that
1010 * process, so the rmap code will not search the parent or sibling
1011 * processes.
1012 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1013 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1014 {
1015 struct anon_vma *anon_vma = vma->anon_vma;
1016
1017 page = compound_head(page);
1018
1019 VM_BUG_ON_PAGE(!PageLocked(page), page);
1020 VM_BUG_ON_VMA(!anon_vma, vma);
1021
1022 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1023 /*
1024 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1025 * simultaneously, so a concurrent reader (eg page_referenced()'s
1026 * PageAnon()) will not see one without the other.
1027 */
1028 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1029 }
1030
1031 /**
1032 * __page_set_anon_rmap - set up new anonymous rmap
1033 * @page: Page or Hugepage to add to rmap
1034 * @vma: VM area to add page to.
1035 * @address: User virtual address of the mapping
1036 * @exclusive: the page is exclusively owned by the current process
1037 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1038 static void __page_set_anon_rmap(struct page *page,
1039 struct vm_area_struct *vma, unsigned long address, int exclusive)
1040 {
1041 struct anon_vma *anon_vma = vma->anon_vma;
1042
1043 BUG_ON(!anon_vma);
1044
1045 if (PageAnon(page))
1046 return;
1047
1048 /*
1049 * If the page isn't exclusively mapped into this vma,
1050 * we must use the _oldest_ possible anon_vma for the
1051 * page mapping!
1052 */
1053 if (!exclusive)
1054 anon_vma = anon_vma->root;
1055
1056 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1057 page->mapping = (struct address_space *) anon_vma;
1058 page->index = linear_page_index(vma, address);
1059 }
1060
1061 /**
1062 * __page_check_anon_rmap - sanity check anonymous rmap addition
1063 * @page: the page to add the mapping to
1064 * @vma: the vm area in which the mapping is added
1065 * @address: the user virtual address mapped
1066 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1067 static void __page_check_anon_rmap(struct page *page,
1068 struct vm_area_struct *vma, unsigned long address)
1069 {
1070 #ifdef CONFIG_DEBUG_VM
1071 /*
1072 * The page's anon-rmap details (mapping and index) are guaranteed to
1073 * be set up correctly at this point.
1074 *
1075 * We have exclusion against page_add_anon_rmap because the caller
1076 * always holds the page locked, except if called from page_dup_rmap,
1077 * in which case the page is already known to be setup.
1078 *
1079 * We have exclusion against page_add_new_anon_rmap because those pages
1080 * are initially only visible via the pagetables, and the pte is locked
1081 * over the call to page_add_new_anon_rmap.
1082 */
1083 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1084 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1085 #endif
1086 }
1087
1088 /**
1089 * page_add_anon_rmap - add pte mapping to an anonymous page
1090 * @page: the page to add the mapping to
1091 * @vma: the vm area in which the mapping is added
1092 * @address: the user virtual address mapped
1093 * @compound: charge the page as compound or small page
1094 *
1095 * The caller needs to hold the pte lock, and the page must be locked in
1096 * the anon_vma case: to serialize mapping,index checking after setting,
1097 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1098 * (but PageKsm is never downgraded to PageAnon).
1099 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1100 void page_add_anon_rmap(struct page *page,
1101 struct vm_area_struct *vma, unsigned long address, bool compound)
1102 {
1103 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1104 }
1105
1106 /*
1107 * Special version of the above for do_swap_page, which often runs
1108 * into pages that are exclusively owned by the current process.
1109 * Everybody else should continue to use page_add_anon_rmap above.
1110 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1111 void do_page_add_anon_rmap(struct page *page,
1112 struct vm_area_struct *vma, unsigned long address, int flags)
1113 {
1114 bool compound = flags & RMAP_COMPOUND;
1115 bool first;
1116
1117 if (compound) {
1118 atomic_t *mapcount;
1119 VM_BUG_ON_PAGE(!PageLocked(page), page);
1120 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1121 mapcount = compound_mapcount_ptr(page);
1122 first = atomic_inc_and_test(mapcount);
1123 } else {
1124 first = atomic_inc_and_test(&page->_mapcount);
1125 }
1126
1127 if (first) {
1128 int nr = compound ? hpage_nr_pages(page) : 1;
1129 /*
1130 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1131 * these counters are not modified in interrupt context, and
1132 * pte lock(a spinlock) is held, which implies preemption
1133 * disabled.
1134 */
1135 if (compound)
1136 __inc_node_page_state(page, NR_ANON_THPS);
1137 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1138 }
1139 if (unlikely(PageKsm(page)))
1140 return;
1141
1142 VM_BUG_ON_PAGE(!PageLocked(page), page);
1143
1144 /* address might be in next vma when migration races vma_adjust */
1145 if (first)
1146 __page_set_anon_rmap(page, vma, address,
1147 flags & RMAP_EXCLUSIVE);
1148 else
1149 __page_check_anon_rmap(page, vma, address);
1150 }
1151
1152 /**
1153 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1154 * @page: the page to add the mapping to
1155 * @vma: the vm area in which the mapping is added
1156 * @address: the user virtual address mapped
1157 * @compound: charge the page as compound or small page
1158 *
1159 * Same as page_add_anon_rmap but must only be called on *new* pages.
1160 * This means the inc-and-test can be bypassed.
1161 * Page does not have to be locked.
1162 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1163 void page_add_new_anon_rmap(struct page *page,
1164 struct vm_area_struct *vma, unsigned long address, bool compound)
1165 {
1166 int nr = compound ? hpage_nr_pages(page) : 1;
1167
1168 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1169 __SetPageSwapBacked(page);
1170 if (compound) {
1171 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1172 /* increment count (starts at -1) */
1173 atomic_set(compound_mapcount_ptr(page), 0);
1174 __inc_node_page_state(page, NR_ANON_THPS);
1175 } else {
1176 /* Anon THP always mapped first with PMD */
1177 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1178 /* increment count (starts at -1) */
1179 atomic_set(&page->_mapcount, 0);
1180 }
1181 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1182 __page_set_anon_rmap(page, vma, address, 1);
1183 }
1184
1185 /**
1186 * page_add_file_rmap - add pte mapping to a file page
1187 * @page: the page to add the mapping to
1188 * @compound: charge the page as compound or small page
1189 *
1190 * The caller needs to hold the pte lock.
1191 */
page_add_file_rmap(struct page * page,bool compound)1192 void page_add_file_rmap(struct page *page, bool compound)
1193 {
1194 int i, nr = 1;
1195
1196 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1197 lock_page_memcg(page);
1198 if (compound && PageTransHuge(page)) {
1199 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1200 if (atomic_inc_and_test(&page[i]._mapcount))
1201 nr++;
1202 }
1203 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1204 goto out;
1205 if (PageSwapBacked(page))
1206 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1207 else
1208 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1209 } else {
1210 if (PageTransCompound(page) && page_mapping(page)) {
1211 VM_WARN_ON_ONCE(!PageLocked(page));
1212
1213 SetPageDoubleMap(compound_head(page));
1214 if (PageMlocked(page))
1215 clear_page_mlock(compound_head(page));
1216 }
1217 if (!atomic_inc_and_test(&page->_mapcount))
1218 goto out;
1219 }
1220 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1221 out:
1222 unlock_page_memcg(page);
1223 }
1224
page_remove_file_rmap(struct page * page,bool compound)1225 static void page_remove_file_rmap(struct page *page, bool compound)
1226 {
1227 int i, nr = 1;
1228
1229 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1230 lock_page_memcg(page);
1231
1232 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1233 if (unlikely(PageHuge(page))) {
1234 /* hugetlb pages are always mapped with pmds */
1235 atomic_dec(compound_mapcount_ptr(page));
1236 goto out;
1237 }
1238
1239 /* page still mapped by someone else? */
1240 if (compound && PageTransHuge(page)) {
1241 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1242 if (atomic_add_negative(-1, &page[i]._mapcount))
1243 nr++;
1244 }
1245 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1246 goto out;
1247 if (PageSwapBacked(page))
1248 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1249 else
1250 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1251 } else {
1252 if (!atomic_add_negative(-1, &page->_mapcount))
1253 goto out;
1254 }
1255
1256 /*
1257 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1258 * these counters are not modified in interrupt context, and
1259 * pte lock(a spinlock) is held, which implies preemption disabled.
1260 */
1261 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1262
1263 if (unlikely(PageMlocked(page)))
1264 clear_page_mlock(page);
1265 out:
1266 unlock_page_memcg(page);
1267 }
1268
page_remove_anon_compound_rmap(struct page * page)1269 static void page_remove_anon_compound_rmap(struct page *page)
1270 {
1271 int i, nr;
1272
1273 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1274 return;
1275
1276 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1277 if (unlikely(PageHuge(page)))
1278 return;
1279
1280 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1281 return;
1282
1283 __dec_node_page_state(page, NR_ANON_THPS);
1284
1285 if (TestClearPageDoubleMap(page)) {
1286 /*
1287 * Subpages can be mapped with PTEs too. Check how many of
1288 * themi are still mapped.
1289 */
1290 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1291 if (atomic_add_negative(-1, &page[i]._mapcount))
1292 nr++;
1293 }
1294 } else {
1295 nr = HPAGE_PMD_NR;
1296 }
1297
1298 if (unlikely(PageMlocked(page)))
1299 clear_page_mlock(page);
1300
1301 if (nr) {
1302 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1303 deferred_split_huge_page(page);
1304 }
1305 }
1306
1307 /**
1308 * page_remove_rmap - take down pte mapping from a page
1309 * @page: page to remove mapping from
1310 * @compound: uncharge the page as compound or small page
1311 *
1312 * The caller needs to hold the pte lock.
1313 */
page_remove_rmap(struct page * page,bool compound)1314 void page_remove_rmap(struct page *page, bool compound)
1315 {
1316 if (!PageAnon(page))
1317 return page_remove_file_rmap(page, compound);
1318
1319 if (compound)
1320 return page_remove_anon_compound_rmap(page);
1321
1322 /* page still mapped by someone else? */
1323 if (!atomic_add_negative(-1, &page->_mapcount))
1324 return;
1325
1326 /*
1327 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1328 * these counters are not modified in interrupt context, and
1329 * pte lock(a spinlock) is held, which implies preemption disabled.
1330 */
1331 __dec_node_page_state(page, NR_ANON_MAPPED);
1332
1333 if (unlikely(PageMlocked(page)))
1334 clear_page_mlock(page);
1335
1336 if (PageTransCompound(page))
1337 deferred_split_huge_page(compound_head(page));
1338
1339 /*
1340 * It would be tidy to reset the PageAnon mapping here,
1341 * but that might overwrite a racing page_add_anon_rmap
1342 * which increments mapcount after us but sets mapping
1343 * before us: so leave the reset to free_unref_page,
1344 * and remember that it's only reliable while mapped.
1345 * Leaving it set also helps swapoff to reinstate ptes
1346 * faster for those pages still in swapcache.
1347 */
1348 }
1349
1350 /*
1351 * @arg: enum ttu_flags will be passed to this argument
1352 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1353 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1354 unsigned long address, void *arg)
1355 {
1356 struct mm_struct *mm = vma->vm_mm;
1357 struct page_vma_mapped_walk pvmw = {
1358 .page = page,
1359 .vma = vma,
1360 .address = address,
1361 };
1362 pte_t pteval;
1363 struct page *subpage;
1364 bool ret = true;
1365 struct mmu_notifier_range range;
1366 enum ttu_flags flags = (enum ttu_flags)arg;
1367
1368 /*
1369 * When racing against e.g. zap_pte_range() on another cpu,
1370 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1371 * try_to_unmap() may return false when it is about to become true,
1372 * if page table locking is skipped: use TTU_SYNC to wait for that.
1373 */
1374 if (flags & TTU_SYNC)
1375 pvmw.flags = PVMW_SYNC;
1376
1377 /* munlock has nothing to gain from examining un-locked vmas */
1378 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1379 return true;
1380
1381 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1382 is_zone_device_page(page) && !is_device_private_page(page))
1383 return true;
1384
1385 if (flags & TTU_SPLIT_HUGE_PMD) {
1386 split_huge_pmd_address(vma, address,
1387 flags & TTU_SPLIT_FREEZE, page);
1388 }
1389
1390 /*
1391 * For THP, we have to assume the worse case ie pmd for invalidation.
1392 * For hugetlb, it could be much worse if we need to do pud
1393 * invalidation in the case of pmd sharing.
1394 *
1395 * Note that the page can not be free in this function as call of
1396 * try_to_unmap() must hold a reference on the page.
1397 */
1398 range.end = PageKsm(page) ?
1399 address + PAGE_SIZE : vma_address_end(page, vma);
1400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1401 address, range.end);
1402 if (PageHuge(page)) {
1403 /*
1404 * If sharing is possible, start and end will be adjusted
1405 * accordingly.
1406 */
1407 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1408 &range.end);
1409 }
1410 mmu_notifier_invalidate_range_start(&range);
1411
1412 while (page_vma_mapped_walk(&pvmw)) {
1413 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1414 /* PMD-mapped THP migration entry */
1415 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1416 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1417
1418 set_pmd_migration_entry(&pvmw, page);
1419 continue;
1420 }
1421 #endif
1422
1423 /*
1424 * If the page is mlock()d, we cannot swap it out.
1425 * If it's recently referenced (perhaps page_referenced
1426 * skipped over this mm) then we should reactivate it.
1427 */
1428 if (!(flags & TTU_IGNORE_MLOCK)) {
1429 if (vma->vm_flags & VM_LOCKED) {
1430 /* PTE-mapped THP are never mlocked */
1431 if (!PageTransCompound(page)) {
1432 /*
1433 * Holding pte lock, we do *not* need
1434 * mmap_sem here
1435 */
1436 mlock_vma_page(page);
1437 }
1438 ret = false;
1439 page_vma_mapped_walk_done(&pvmw);
1440 break;
1441 }
1442 if (flags & TTU_MUNLOCK)
1443 continue;
1444 }
1445
1446 /* Unexpected PMD-mapped THP? */
1447 VM_BUG_ON_PAGE(!pvmw.pte, page);
1448
1449 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1450 address = pvmw.address;
1451
1452 if (PageHuge(page)) {
1453 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1454 /*
1455 * huge_pmd_unshare unmapped an entire PMD
1456 * page. There is no way of knowing exactly
1457 * which PMDs may be cached for this mm, so
1458 * we must flush them all. start/end were
1459 * already adjusted above to cover this range.
1460 */
1461 flush_cache_range(vma, range.start, range.end);
1462 flush_tlb_range(vma, range.start, range.end);
1463 mmu_notifier_invalidate_range(mm, range.start,
1464 range.end);
1465
1466 /*
1467 * The ref count of the PMD page was dropped
1468 * which is part of the way map counting
1469 * is done for shared PMDs. Return 'true'
1470 * here. When there is no other sharing,
1471 * huge_pmd_unshare returns false and we will
1472 * unmap the actual page and drop map count
1473 * to zero.
1474 */
1475 page_vma_mapped_walk_done(&pvmw);
1476 break;
1477 }
1478 }
1479
1480 if (IS_ENABLED(CONFIG_MIGRATION) &&
1481 (flags & TTU_MIGRATION) &&
1482 is_zone_device_page(page)) {
1483 swp_entry_t entry;
1484 pte_t swp_pte;
1485
1486 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1487
1488 /*
1489 * Store the pfn of the page in a special migration
1490 * pte. do_swap_page() will wait until the migration
1491 * pte is removed and then restart fault handling.
1492 */
1493 entry = make_migration_entry(page, 0);
1494 swp_pte = swp_entry_to_pte(entry);
1495 if (pte_soft_dirty(pteval))
1496 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1497 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1498 /*
1499 * No need to invalidate here it will synchronize on
1500 * against the special swap migration pte.
1501 *
1502 * The assignment to subpage above was computed from a
1503 * swap PTE which results in an invalid pointer.
1504 * Since only PAGE_SIZE pages can currently be
1505 * migrated, just set it to page. This will need to be
1506 * changed when hugepage migrations to device private
1507 * memory are supported.
1508 */
1509 subpage = page;
1510 goto discard;
1511 }
1512
1513 if (!(flags & TTU_IGNORE_ACCESS)) {
1514 if (ptep_clear_flush_young_notify(vma, address,
1515 pvmw.pte)) {
1516 ret = false;
1517 page_vma_mapped_walk_done(&pvmw);
1518 break;
1519 }
1520 }
1521
1522 /* Nuke the page table entry. */
1523 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1524 if (should_defer_flush(mm, flags)) {
1525 /*
1526 * We clear the PTE but do not flush so potentially
1527 * a remote CPU could still be writing to the page.
1528 * If the entry was previously clean then the
1529 * architecture must guarantee that a clear->dirty
1530 * transition on a cached TLB entry is written through
1531 * and traps if the PTE is unmapped.
1532 */
1533 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1534
1535 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1536 } else {
1537 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1538 }
1539
1540 /* Move the dirty bit to the page. Now the pte is gone. */
1541 if (pte_dirty(pteval))
1542 set_page_dirty(page);
1543
1544 /* Update high watermark before we lower rss */
1545 update_hiwater_rss(mm);
1546
1547 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1548 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1549 if (PageHuge(page)) {
1550 hugetlb_count_sub(compound_nr(page), mm);
1551 set_huge_swap_pte_at(mm, address,
1552 pvmw.pte, pteval,
1553 vma_mmu_pagesize(vma));
1554 } else {
1555 dec_mm_counter(mm, mm_counter(page));
1556 set_pte_at(mm, address, pvmw.pte, pteval);
1557 }
1558
1559 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1560 /*
1561 * The guest indicated that the page content is of no
1562 * interest anymore. Simply discard the pte, vmscan
1563 * will take care of the rest.
1564 * A future reference will then fault in a new zero
1565 * page. When userfaultfd is active, we must not drop
1566 * this page though, as its main user (postcopy
1567 * migration) will not expect userfaults on already
1568 * copied pages.
1569 */
1570 dec_mm_counter(mm, mm_counter(page));
1571 /* We have to invalidate as we cleared the pte */
1572 mmu_notifier_invalidate_range(mm, address,
1573 address + PAGE_SIZE);
1574 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1575 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1576 swp_entry_t entry;
1577 pte_t swp_pte;
1578
1579 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1580 set_pte_at(mm, address, pvmw.pte, pteval);
1581 ret = false;
1582 page_vma_mapped_walk_done(&pvmw);
1583 break;
1584 }
1585
1586 /*
1587 * Store the pfn of the page in a special migration
1588 * pte. do_swap_page() will wait until the migration
1589 * pte is removed and then restart fault handling.
1590 */
1591 entry = make_migration_entry(subpage,
1592 pte_write(pteval));
1593 swp_pte = swp_entry_to_pte(entry);
1594 if (pte_soft_dirty(pteval))
1595 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1596 set_pte_at(mm, address, pvmw.pte, swp_pte);
1597 /*
1598 * No need to invalidate here it will synchronize on
1599 * against the special swap migration pte.
1600 */
1601 } else if (PageAnon(page)) {
1602 swp_entry_t entry = { .val = page_private(subpage) };
1603 pte_t swp_pte;
1604 /*
1605 * Store the swap location in the pte.
1606 * See handle_pte_fault() ...
1607 */
1608 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1609 WARN_ON_ONCE(1);
1610 ret = false;
1611 /* We have to invalidate as we cleared the pte */
1612 mmu_notifier_invalidate_range(mm, address,
1613 address + PAGE_SIZE);
1614 page_vma_mapped_walk_done(&pvmw);
1615 break;
1616 }
1617
1618 /* MADV_FREE page check */
1619 if (!PageSwapBacked(page)) {
1620 int ref_count, map_count;
1621
1622 /*
1623 * Synchronize with gup_pte_range():
1624 * - clear PTE; barrier; read refcount
1625 * - inc refcount; barrier; read PTE
1626 */
1627 smp_mb();
1628
1629 ref_count = page_ref_count(page);
1630 map_count = page_mapcount(page);
1631
1632 /*
1633 * Order reads for page refcount and dirty flag
1634 * (see comments in __remove_mapping()).
1635 */
1636 smp_rmb();
1637
1638 /*
1639 * The only page refs must be one from isolation
1640 * plus the rmap(s) (dropped by discard:).
1641 */
1642 if (ref_count == 1 + map_count &&
1643 !PageDirty(page)) {
1644 /* Invalidate as we cleared the pte */
1645 mmu_notifier_invalidate_range(mm,
1646 address, address + PAGE_SIZE);
1647 dec_mm_counter(mm, MM_ANONPAGES);
1648 goto discard;
1649 }
1650
1651 /*
1652 * If the page was redirtied, it cannot be
1653 * discarded. Remap the page to page table.
1654 */
1655 set_pte_at(mm, address, pvmw.pte, pteval);
1656 SetPageSwapBacked(page);
1657 ret = false;
1658 page_vma_mapped_walk_done(&pvmw);
1659 break;
1660 }
1661
1662 if (swap_duplicate(entry) < 0) {
1663 set_pte_at(mm, address, pvmw.pte, pteval);
1664 ret = false;
1665 page_vma_mapped_walk_done(&pvmw);
1666 break;
1667 }
1668 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1669 set_pte_at(mm, address, pvmw.pte, pteval);
1670 ret = false;
1671 page_vma_mapped_walk_done(&pvmw);
1672 break;
1673 }
1674 if (list_empty(&mm->mmlist)) {
1675 spin_lock(&mmlist_lock);
1676 if (list_empty(&mm->mmlist))
1677 list_add(&mm->mmlist, &init_mm.mmlist);
1678 spin_unlock(&mmlist_lock);
1679 }
1680 dec_mm_counter(mm, MM_ANONPAGES);
1681 inc_mm_counter(mm, MM_SWAPENTS);
1682 swp_pte = swp_entry_to_pte(entry);
1683 if (pte_soft_dirty(pteval))
1684 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1685 set_pte_at(mm, address, pvmw.pte, swp_pte);
1686 /* Invalidate as we cleared the pte */
1687 mmu_notifier_invalidate_range(mm, address,
1688 address + PAGE_SIZE);
1689 } else {
1690 /*
1691 * This is a locked file-backed page, thus it cannot
1692 * be removed from the page cache and replaced by a new
1693 * page before mmu_notifier_invalidate_range_end, so no
1694 * concurrent thread might update its page table to
1695 * point at new page while a device still is using this
1696 * page.
1697 *
1698 * See Documentation/vm/mmu_notifier.rst
1699 */
1700 dec_mm_counter(mm, mm_counter_file(page));
1701 }
1702 discard:
1703 /*
1704 * No need to call mmu_notifier_invalidate_range() it has be
1705 * done above for all cases requiring it to happen under page
1706 * table lock before mmu_notifier_invalidate_range_end()
1707 *
1708 * See Documentation/vm/mmu_notifier.rst
1709 */
1710 page_remove_rmap(subpage, PageHuge(page));
1711 put_page(page);
1712 }
1713
1714 mmu_notifier_invalidate_range_end(&range);
1715
1716 return ret;
1717 }
1718
is_vma_temporary_stack(struct vm_area_struct * vma)1719 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1720 {
1721 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1722
1723 if (!maybe_stack)
1724 return false;
1725
1726 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1727 VM_STACK_INCOMPLETE_SETUP)
1728 return true;
1729
1730 return false;
1731 }
1732
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1733 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1734 {
1735 return is_vma_temporary_stack(vma);
1736 }
1737
page_not_mapped(struct page * page)1738 static int page_not_mapped(struct page *page)
1739 {
1740 return !page_mapped(page);
1741 }
1742
1743 /**
1744 * try_to_unmap - try to remove all page table mappings to a page
1745 * @page: the page to get unmapped
1746 * @flags: action and flags
1747 *
1748 * Tries to remove all the page table entries which are mapping this
1749 * page, used in the pageout path. Caller must hold the page lock.
1750 *
1751 * If unmap is successful, return true. Otherwise, false.
1752 */
try_to_unmap(struct page * page,enum ttu_flags flags)1753 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1754 {
1755 struct rmap_walk_control rwc = {
1756 .rmap_one = try_to_unmap_one,
1757 .arg = (void *)flags,
1758 .done = page_not_mapped,
1759 .anon_lock = page_lock_anon_vma_read,
1760 };
1761
1762 /*
1763 * During exec, a temporary VMA is setup and later moved.
1764 * The VMA is moved under the anon_vma lock but not the
1765 * page tables leading to a race where migration cannot
1766 * find the migration ptes. Rather than increasing the
1767 * locking requirements of exec(), migration skips
1768 * temporary VMAs until after exec() completes.
1769 */
1770 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1771 && !PageKsm(page) && PageAnon(page))
1772 rwc.invalid_vma = invalid_migration_vma;
1773
1774 if (flags & TTU_RMAP_LOCKED)
1775 rmap_walk_locked(page, &rwc);
1776 else
1777 rmap_walk(page, &rwc);
1778
1779 /*
1780 * When racing against e.g. zap_pte_range() on another cpu,
1781 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1782 * try_to_unmap() may return false when it is about to become true,
1783 * if page table locking is skipped: use TTU_SYNC to wait for that.
1784 */
1785 return !page_mapcount(page);
1786 }
1787
1788 /**
1789 * try_to_munlock - try to munlock a page
1790 * @page: the page to be munlocked
1791 *
1792 * Called from munlock code. Checks all of the VMAs mapping the page
1793 * to make sure nobody else has this page mlocked. The page will be
1794 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1795 */
1796
try_to_munlock(struct page * page)1797 void try_to_munlock(struct page *page)
1798 {
1799 struct rmap_walk_control rwc = {
1800 .rmap_one = try_to_unmap_one,
1801 .arg = (void *)TTU_MUNLOCK,
1802 .done = page_not_mapped,
1803 .anon_lock = page_lock_anon_vma_read,
1804
1805 };
1806
1807 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1808 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1809
1810 rmap_walk(page, &rwc);
1811 }
1812
__put_anon_vma(struct anon_vma * anon_vma)1813 void __put_anon_vma(struct anon_vma *anon_vma)
1814 {
1815 struct anon_vma *root = anon_vma->root;
1816
1817 anon_vma_free(anon_vma);
1818 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1819 anon_vma_free(root);
1820 }
1821
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1822 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1823 struct rmap_walk_control *rwc)
1824 {
1825 struct anon_vma *anon_vma;
1826
1827 if (rwc->anon_lock)
1828 return rwc->anon_lock(page, rwc);
1829
1830 /*
1831 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1832 * because that depends on page_mapped(); but not all its usages
1833 * are holding mmap_sem. Users without mmap_sem are required to
1834 * take a reference count to prevent the anon_vma disappearing
1835 */
1836 anon_vma = page_anon_vma(page);
1837 if (!anon_vma)
1838 return NULL;
1839
1840 if (anon_vma_trylock_read(anon_vma))
1841 goto out;
1842
1843 if (rwc->try_lock) {
1844 anon_vma = NULL;
1845 rwc->contended = true;
1846 goto out;
1847 }
1848
1849 anon_vma_lock_read(anon_vma);
1850 out:
1851 return anon_vma;
1852 }
1853
1854 /*
1855 * rmap_walk_anon - do something to anonymous page using the object-based
1856 * rmap method
1857 * @page: the page to be handled
1858 * @rwc: control variable according to each walk type
1859 *
1860 * Find all the mappings of a page using the mapping pointer and the vma chains
1861 * contained in the anon_vma struct it points to.
1862 *
1863 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1864 * where the page was found will be held for write. So, we won't recheck
1865 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1866 * LOCKED.
1867 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1868 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1869 bool locked)
1870 {
1871 struct anon_vma *anon_vma;
1872 pgoff_t pgoff_start, pgoff_end;
1873 struct anon_vma_chain *avc;
1874
1875 if (locked) {
1876 anon_vma = page_anon_vma(page);
1877 /* anon_vma disappear under us? */
1878 VM_BUG_ON_PAGE(!anon_vma, page);
1879 } else {
1880 anon_vma = rmap_walk_anon_lock(page, rwc);
1881 }
1882 if (!anon_vma)
1883 return;
1884
1885 pgoff_start = page_to_pgoff(page);
1886 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1887 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1888 pgoff_start, pgoff_end) {
1889 struct vm_area_struct *vma = avc->vma;
1890 unsigned long address = vma_address(page, vma);
1891
1892 VM_BUG_ON_VMA(address == -EFAULT, vma);
1893 cond_resched();
1894
1895 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1896 continue;
1897
1898 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1899 break;
1900 if (rwc->done && rwc->done(page))
1901 break;
1902 }
1903
1904 if (!locked)
1905 anon_vma_unlock_read(anon_vma);
1906 }
1907
1908 /*
1909 * rmap_walk_file - do something to file page using the object-based rmap method
1910 * @page: the page to be handled
1911 * @rwc: control variable according to each walk type
1912 *
1913 * Find all the mappings of a page using the mapping pointer and the vma chains
1914 * contained in the address_space struct it points to.
1915 *
1916 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1917 * where the page was found will be held for write. So, we won't recheck
1918 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1919 * LOCKED.
1920 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)1921 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1922 bool locked)
1923 {
1924 struct address_space *mapping = page_mapping(page);
1925 pgoff_t pgoff_start, pgoff_end;
1926 struct vm_area_struct *vma;
1927
1928 /*
1929 * The page lock not only makes sure that page->mapping cannot
1930 * suddenly be NULLified by truncation, it makes sure that the
1931 * structure at mapping cannot be freed and reused yet,
1932 * so we can safely take mapping->i_mmap_rwsem.
1933 */
1934 VM_BUG_ON_PAGE(!PageLocked(page), page);
1935
1936 if (!mapping)
1937 return;
1938
1939 pgoff_start = page_to_pgoff(page);
1940 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1941 if (!locked) {
1942 if (i_mmap_trylock_read(mapping))
1943 goto lookup;
1944
1945 if (rwc->try_lock) {
1946 rwc->contended = true;
1947 return;
1948 }
1949
1950 i_mmap_lock_read(mapping);
1951 }
1952 lookup:
1953 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1954 pgoff_start, pgoff_end) {
1955 unsigned long address = vma_address(page, vma);
1956
1957 VM_BUG_ON_VMA(address == -EFAULT, vma);
1958 cond_resched();
1959
1960 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1961 continue;
1962
1963 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1964 goto done;
1965 if (rwc->done && rwc->done(page))
1966 goto done;
1967 }
1968
1969 done:
1970 if (!locked)
1971 i_mmap_unlock_read(mapping);
1972 }
1973
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1974 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1975 {
1976 if (unlikely(PageKsm(page)))
1977 rmap_walk_ksm(page, rwc);
1978 else if (PageAnon(page))
1979 rmap_walk_anon(page, rwc, false);
1980 else
1981 rmap_walk_file(page, rwc, false);
1982 }
1983
1984 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)1985 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1986 {
1987 /* no ksm support for now */
1988 VM_BUG_ON_PAGE(PageKsm(page), page);
1989 if (PageAnon(page))
1990 rmap_walk_anon(page, rwc, true);
1991 else
1992 rmap_walk_file(page, rwc, true);
1993 }
1994
1995 #ifdef CONFIG_HUGETLB_PAGE
1996 /*
1997 * The following two functions are for anonymous (private mapped) hugepages.
1998 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1999 * and no lru code, because we handle hugepages differently from common pages.
2000 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2001 void hugepage_add_anon_rmap(struct page *page,
2002 struct vm_area_struct *vma, unsigned long address)
2003 {
2004 struct anon_vma *anon_vma = vma->anon_vma;
2005 int first;
2006
2007 BUG_ON(!PageLocked(page));
2008 BUG_ON(!anon_vma);
2009 /* address might be in next vma when migration races vma_adjust */
2010 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2011 if (first)
2012 __page_set_anon_rmap(page, vma, address, 0);
2013 }
2014
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2015 void hugepage_add_new_anon_rmap(struct page *page,
2016 struct vm_area_struct *vma, unsigned long address)
2017 {
2018 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2019 atomic_set(compound_mapcount_ptr(page), 0);
2020 __page_set_anon_rmap(page, vma, address, 1);
2021 }
2022 #endif /* CONFIG_HUGETLB_PAGE */
2023