1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
shmem_default_max_inodes(void)131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
SHMEM_SB(struct super_block * sb)158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
shmem_acct_size(unsigned long flags,loff_t size)169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
shmem_unacct_size(unsigned long flags,loff_t size)175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
shmem_acct_block(unsigned long flags,long pages)200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
shmem_unacct_blocks(unsigned long flags,long pages)209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_inode_acct_block(struct inode * inode,long pages)215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
shmem_inode_unacct_blocks(struct inode * inode,long pages)237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
vma_is_shmem(struct vm_area_struct * vma)256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
shmem_reserve_inode(struct super_block * sb)264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
shmem_free_inode(struct super_block * sb)279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
shmem_recalc_inode(struct inode * inode)301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
shmem_charge(struct inode * inode,long pages)314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
shmem_uncharge(struct inode * inode,long pages)334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 goto next;
485 }
486
487 /* Check if there's anything to gain */
488 if (round_up(inode->i_size, PAGE_SIZE) ==
489 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490 list_move(&info->shrinklist, &to_remove);
491 goto next;
492 }
493
494 list_move(&info->shrinklist, &list);
495 next:
496 sbinfo->shrinklist_len--;
497 if (!--batch)
498 break;
499 }
500 spin_unlock(&sbinfo->shrinklist_lock);
501
502 list_for_each_safe(pos, next, &to_remove) {
503 info = list_entry(pos, struct shmem_inode_info, shrinklist);
504 inode = &info->vfs_inode;
505 list_del_init(&info->shrinklist);
506 iput(inode);
507 }
508
509 list_for_each_safe(pos, next, &list) {
510 int ret;
511
512 info = list_entry(pos, struct shmem_inode_info, shrinklist);
513 inode = &info->vfs_inode;
514
515 if (nr_to_split && split >= nr_to_split)
516 goto move_back;
517
518 page = find_get_page(inode->i_mapping,
519 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520 if (!page)
521 goto drop;
522
523 /* No huge page at the end of the file: nothing to split */
524 if (!PageTransHuge(page)) {
525 put_page(page);
526 goto drop;
527 }
528
529 /*
530 * Move the inode on the list back to shrinklist if we failed
531 * to lock the page at this time.
532 *
533 * Waiting for the lock may lead to deadlock in the
534 * reclaim path.
535 */
536 if (!trylock_page(page)) {
537 put_page(page);
538 goto move_back;
539 }
540
541 ret = split_huge_page(page);
542 unlock_page(page);
543 put_page(page);
544
545 /* If split failed move the inode on the list back to shrinklist */
546 if (ret)
547 goto move_back;
548
549 split++;
550 drop:
551 list_del_init(&info->shrinklist);
552 goto put;
553 move_back:
554 /*
555 * Make sure the inode is either on the global list or deleted
556 * from any local list before iput() since it could be deleted
557 * in another thread once we put the inode (then the local list
558 * is corrupted).
559 */
560 spin_lock(&sbinfo->shrinklist_lock);
561 list_move(&info->shrinklist, &sbinfo->shrinklist);
562 sbinfo->shrinklist_len++;
563 spin_unlock(&sbinfo->shrinklist_lock);
564 put:
565 iput(inode);
566 }
567
568 return split;
569 }
570
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)571 static long shmem_unused_huge_scan(struct super_block *sb,
572 struct shrink_control *sc)
573 {
574 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
575
576 if (!READ_ONCE(sbinfo->shrinklist_len))
577 return SHRINK_STOP;
578
579 return shmem_unused_huge_shrink(sbinfo, sc, 0);
580 }
581
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)582 static long shmem_unused_huge_count(struct super_block *sb,
583 struct shrink_control *sc)
584 {
585 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
586 return READ_ONCE(sbinfo->shrinklist_len);
587 }
588 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
589
590 #define shmem_huge SHMEM_HUGE_DENY
591
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)592 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
593 struct shrink_control *sc, unsigned long nr_to_split)
594 {
595 return 0;
596 }
597 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
598
is_huge_enabled(struct shmem_sb_info * sbinfo)599 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
600 {
601 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
602 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
603 shmem_huge != SHMEM_HUGE_DENY)
604 return true;
605 return false;
606 }
607
608 /*
609 * Like add_to_page_cache_locked, but error if expected item has gone.
610 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)611 static int shmem_add_to_page_cache(struct page *page,
612 struct address_space *mapping,
613 pgoff_t index, void *expected, gfp_t gfp)
614 {
615 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
616 unsigned long i = 0;
617 unsigned long nr = compound_nr(page);
618
619 VM_BUG_ON_PAGE(PageTail(page), page);
620 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
621 VM_BUG_ON_PAGE(!PageLocked(page), page);
622 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
623 VM_BUG_ON(expected && PageTransHuge(page));
624
625 page_ref_add(page, nr);
626 page->mapping = mapping;
627 page->index = index;
628
629 do {
630 void *entry;
631 xas_lock_irq(&xas);
632 entry = xas_find_conflict(&xas);
633 if (entry != expected)
634 xas_set_err(&xas, -EEXIST);
635 xas_create_range(&xas);
636 if (xas_error(&xas))
637 goto unlock;
638 next:
639 xas_store(&xas, page);
640 if (++i < nr) {
641 xas_next(&xas);
642 goto next;
643 }
644 if (PageTransHuge(page)) {
645 count_vm_event(THP_FILE_ALLOC);
646 __inc_node_page_state(page, NR_SHMEM_THPS);
647 }
648 mapping->nrpages += nr;
649 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
650 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
651 unlock:
652 xas_unlock_irq(&xas);
653 } while (xas_nomem(&xas, gfp));
654
655 if (xas_error(&xas)) {
656 page->mapping = NULL;
657 page_ref_sub(page, nr);
658 return xas_error(&xas);
659 }
660
661 return 0;
662 }
663
664 /*
665 * Like delete_from_page_cache, but substitutes swap for page.
666 */
shmem_delete_from_page_cache(struct page * page,void * radswap)667 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
668 {
669 struct address_space *mapping = page->mapping;
670 int error;
671
672 VM_BUG_ON_PAGE(PageCompound(page), page);
673
674 xa_lock_irq(&mapping->i_pages);
675 error = shmem_replace_entry(mapping, page->index, page, radswap);
676 page->mapping = NULL;
677 mapping->nrpages--;
678 __dec_node_page_state(page, NR_FILE_PAGES);
679 __dec_node_page_state(page, NR_SHMEM);
680 xa_unlock_irq(&mapping->i_pages);
681 put_page(page);
682 BUG_ON(error);
683 }
684
685 /*
686 * Remove swap entry from page cache, free the swap and its page cache.
687 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)688 static int shmem_free_swap(struct address_space *mapping,
689 pgoff_t index, void *radswap)
690 {
691 void *old;
692
693 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
694 if (old != radswap)
695 return -ENOENT;
696 free_swap_and_cache(radix_to_swp_entry(radswap));
697 return 0;
698 }
699
700 /*
701 * Determine (in bytes) how many of the shmem object's pages mapped by the
702 * given offsets are swapped out.
703 *
704 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
705 * as long as the inode doesn't go away and racy results are not a problem.
706 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)707 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
708 pgoff_t start, pgoff_t end)
709 {
710 XA_STATE(xas, &mapping->i_pages, start);
711 struct page *page;
712 unsigned long swapped = 0;
713
714 rcu_read_lock();
715 xas_for_each(&xas, page, end - 1) {
716 if (xas_retry(&xas, page))
717 continue;
718 if (xa_is_value(page))
719 swapped++;
720
721 if (need_resched()) {
722 xas_pause(&xas);
723 cond_resched_rcu();
724 }
725 }
726
727 rcu_read_unlock();
728
729 return swapped << PAGE_SHIFT;
730 }
731
732 /*
733 * Determine (in bytes) how many of the shmem object's pages mapped by the
734 * given vma is swapped out.
735 *
736 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
737 * as long as the inode doesn't go away and racy results are not a problem.
738 */
shmem_swap_usage(struct vm_area_struct * vma)739 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
740 {
741 struct inode *inode = file_inode(vma->vm_file);
742 struct shmem_inode_info *info = SHMEM_I(inode);
743 struct address_space *mapping = inode->i_mapping;
744 unsigned long swapped;
745
746 /* Be careful as we don't hold info->lock */
747 swapped = READ_ONCE(info->swapped);
748
749 /*
750 * The easier cases are when the shmem object has nothing in swap, or
751 * the vma maps it whole. Then we can simply use the stats that we
752 * already track.
753 */
754 if (!swapped)
755 return 0;
756
757 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
758 return swapped << PAGE_SHIFT;
759
760 /* Here comes the more involved part */
761 return shmem_partial_swap_usage(mapping,
762 linear_page_index(vma, vma->vm_start),
763 linear_page_index(vma, vma->vm_end));
764 }
765
766 /*
767 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
768 */
shmem_unlock_mapping(struct address_space * mapping)769 void shmem_unlock_mapping(struct address_space *mapping)
770 {
771 struct pagevec pvec;
772 pgoff_t indices[PAGEVEC_SIZE];
773 pgoff_t index = 0;
774
775 pagevec_init(&pvec);
776 /*
777 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
778 */
779 while (!mapping_unevictable(mapping)) {
780 /*
781 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
782 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
783 */
784 pvec.nr = find_get_entries(mapping, index,
785 PAGEVEC_SIZE, pvec.pages, indices);
786 if (!pvec.nr)
787 break;
788 index = indices[pvec.nr - 1] + 1;
789 pagevec_remove_exceptionals(&pvec);
790 check_move_unevictable_pages(&pvec);
791 pagevec_release(&pvec);
792 cond_resched();
793 }
794 }
795
796 /*
797 * Remove range of pages and swap entries from page cache, and free them.
798 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
799 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)800 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
801 bool unfalloc)
802 {
803 struct address_space *mapping = inode->i_mapping;
804 struct shmem_inode_info *info = SHMEM_I(inode);
805 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
806 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
807 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
808 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
809 struct pagevec pvec;
810 pgoff_t indices[PAGEVEC_SIZE];
811 long nr_swaps_freed = 0;
812 pgoff_t index;
813 int i;
814
815 if (lend == -1)
816 end = -1; /* unsigned, so actually very big */
817
818 pagevec_init(&pvec);
819 index = start;
820 while (index < end) {
821 pvec.nr = find_get_entries(mapping, index,
822 min(end - index, (pgoff_t)PAGEVEC_SIZE),
823 pvec.pages, indices);
824 if (!pvec.nr)
825 break;
826 for (i = 0; i < pagevec_count(&pvec); i++) {
827 struct page *page = pvec.pages[i];
828
829 index = indices[i];
830 if (index >= end)
831 break;
832
833 if (xa_is_value(page)) {
834 if (unfalloc)
835 continue;
836 nr_swaps_freed += !shmem_free_swap(mapping,
837 index, page);
838 continue;
839 }
840
841 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
842
843 if (!trylock_page(page))
844 continue;
845
846 if (PageTransTail(page)) {
847 /* Middle of THP: zero out the page */
848 clear_highpage(page);
849 unlock_page(page);
850 continue;
851 } else if (PageTransHuge(page)) {
852 if (index == round_down(end, HPAGE_PMD_NR)) {
853 /*
854 * Range ends in the middle of THP:
855 * zero out the page
856 */
857 clear_highpage(page);
858 unlock_page(page);
859 continue;
860 }
861 index += HPAGE_PMD_NR - 1;
862 i += HPAGE_PMD_NR - 1;
863 }
864
865 if (!unfalloc || !PageUptodate(page)) {
866 VM_BUG_ON_PAGE(PageTail(page), page);
867 if (page_mapping(page) == mapping) {
868 VM_BUG_ON_PAGE(PageWriteback(page), page);
869 truncate_inode_page(mapping, page);
870 }
871 }
872 unlock_page(page);
873 }
874 pagevec_remove_exceptionals(&pvec);
875 pagevec_release(&pvec);
876 cond_resched();
877 index++;
878 }
879
880 if (partial_start) {
881 struct page *page = NULL;
882 shmem_getpage(inode, start - 1, &page, SGP_READ);
883 if (page) {
884 unsigned int top = PAGE_SIZE;
885 if (start > end) {
886 top = partial_end;
887 partial_end = 0;
888 }
889 zero_user_segment(page, partial_start, top);
890 set_page_dirty(page);
891 unlock_page(page);
892 put_page(page);
893 }
894 }
895 if (partial_end) {
896 struct page *page = NULL;
897 shmem_getpage(inode, end, &page, SGP_READ);
898 if (page) {
899 zero_user_segment(page, 0, partial_end);
900 set_page_dirty(page);
901 unlock_page(page);
902 put_page(page);
903 }
904 }
905 if (start >= end)
906 return;
907
908 index = start;
909 while (index < end) {
910 cond_resched();
911
912 pvec.nr = find_get_entries(mapping, index,
913 min(end - index, (pgoff_t)PAGEVEC_SIZE),
914 pvec.pages, indices);
915 if (!pvec.nr) {
916 /* If all gone or hole-punch or unfalloc, we're done */
917 if (index == start || end != -1)
918 break;
919 /* But if truncating, restart to make sure all gone */
920 index = start;
921 continue;
922 }
923 for (i = 0; i < pagevec_count(&pvec); i++) {
924 struct page *page = pvec.pages[i];
925
926 index = indices[i];
927 if (index >= end)
928 break;
929
930 if (xa_is_value(page)) {
931 if (unfalloc)
932 continue;
933 if (shmem_free_swap(mapping, index, page)) {
934 /* Swap was replaced by page: retry */
935 index--;
936 break;
937 }
938 nr_swaps_freed++;
939 continue;
940 }
941
942 lock_page(page);
943
944 if (PageTransTail(page)) {
945 /* Middle of THP: zero out the page */
946 clear_highpage(page);
947 unlock_page(page);
948 /*
949 * Partial thp truncate due 'start' in middle
950 * of THP: don't need to look on these pages
951 * again on !pvec.nr restart.
952 */
953 if (index != round_down(end, HPAGE_PMD_NR))
954 start++;
955 continue;
956 } else if (PageTransHuge(page)) {
957 if (index == round_down(end, HPAGE_PMD_NR)) {
958 /*
959 * Range ends in the middle of THP:
960 * zero out the page
961 */
962 clear_highpage(page);
963 unlock_page(page);
964 continue;
965 }
966 index += HPAGE_PMD_NR - 1;
967 i += HPAGE_PMD_NR - 1;
968 }
969
970 if (!unfalloc || !PageUptodate(page)) {
971 VM_BUG_ON_PAGE(PageTail(page), page);
972 if (page_mapping(page) == mapping) {
973 VM_BUG_ON_PAGE(PageWriteback(page), page);
974 truncate_inode_page(mapping, page);
975 } else {
976 /* Page was replaced by swap: retry */
977 unlock_page(page);
978 index--;
979 break;
980 }
981 }
982 unlock_page(page);
983 }
984 pagevec_remove_exceptionals(&pvec);
985 pagevec_release(&pvec);
986 index++;
987 }
988
989 spin_lock_irq(&info->lock);
990 info->swapped -= nr_swaps_freed;
991 shmem_recalc_inode(inode);
992 spin_unlock_irq(&info->lock);
993 }
994
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997 shmem_undo_range(inode, lstart, lend, false);
998 inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 u32 request_mask, unsigned int query_flags)
1004 {
1005 struct inode *inode = path->dentry->d_inode;
1006 struct shmem_inode_info *info = SHMEM_I(inode);
1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008
1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 spin_lock_irq(&info->lock);
1011 shmem_recalc_inode(inode);
1012 spin_unlock_irq(&info->lock);
1013 }
1014 generic_fillattr(inode, stat);
1015
1016 if (is_huge_enabled(sb_info))
1017 stat->blksize = HPAGE_PMD_SIZE;
1018
1019 return 0;
1020 }
1021
shmem_setattr(struct dentry * dentry,struct iattr * attr)1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024 struct inode *inode = d_inode(dentry);
1025 struct shmem_inode_info *info = SHMEM_I(inode);
1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 int error;
1028
1029 error = setattr_prepare(dentry, attr);
1030 if (error)
1031 return error;
1032
1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 loff_t oldsize = inode->i_size;
1035 loff_t newsize = attr->ia_size;
1036
1037 /* protected by i_mutex */
1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 return -EPERM;
1041
1042 if (newsize != oldsize) {
1043 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 oldsize, newsize);
1045 if (error)
1046 return error;
1047 i_size_write(inode, newsize);
1048 inode->i_ctime = inode->i_mtime = current_time(inode);
1049 }
1050 if (newsize <= oldsize) {
1051 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1055 if (info->alloced)
1056 shmem_truncate_range(inode,
1057 newsize, (loff_t)-1);
1058 /* unmap again to remove racily COWed private pages */
1059 if (oldsize > holebegin)
1060 unmap_mapping_range(inode->i_mapping,
1061 holebegin, 0, 1);
1062
1063 /*
1064 * Part of the huge page can be beyond i_size: subject
1065 * to shrink under memory pressure.
1066 */
1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1069 /*
1070 * _careful to defend against unlocked access to
1071 * ->shrink_list in shmem_unused_huge_shrink()
1072 */
1073 if (list_empty_careful(&info->shrinklist)) {
1074 list_add_tail(&info->shrinklist,
1075 &sbinfo->shrinklist);
1076 sbinfo->shrinklist_len++;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
1080 }
1081 }
1082
1083 setattr_copy(inode, attr);
1084 if (attr->ia_valid & ATTR_MODE)
1085 error = posix_acl_chmod(inode, inode->i_mode);
1086 return error;
1087 }
1088
shmem_evict_inode(struct inode * inode)1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091 struct shmem_inode_info *info = SHMEM_I(inode);
1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093
1094 if (inode->i_mapping->a_ops == &shmem_aops) {
1095 shmem_unacct_size(info->flags, inode->i_size);
1096 inode->i_size = 0;
1097 shmem_truncate_range(inode, 0, (loff_t)-1);
1098 if (!list_empty(&info->shrinklist)) {
1099 spin_lock(&sbinfo->shrinklist_lock);
1100 if (!list_empty(&info->shrinklist)) {
1101 list_del_init(&info->shrinklist);
1102 sbinfo->shrinklist_len--;
1103 }
1104 spin_unlock(&sbinfo->shrinklist_lock);
1105 }
1106 while (!list_empty(&info->swaplist)) {
1107 /* Wait while shmem_unuse() is scanning this inode... */
1108 wait_var_event(&info->stop_eviction,
1109 !atomic_read(&info->stop_eviction));
1110 mutex_lock(&shmem_swaplist_mutex);
1111 /* ...but beware of the race if we peeked too early */
1112 if (!atomic_read(&info->stop_eviction))
1113 list_del_init(&info->swaplist);
1114 mutex_unlock(&shmem_swaplist_mutex);
1115 }
1116 }
1117
1118 simple_xattrs_free(&info->xattrs);
1119 WARN_ON(inode->i_blocks);
1120 shmem_free_inode(inode->i_sb);
1121 clear_inode(inode);
1122 }
1123
1124 extern struct swap_info_struct *swap_info[];
1125
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127 pgoff_t start, unsigned int nr_entries,
1128 struct page **entries, pgoff_t *indices,
1129 unsigned int type, bool frontswap)
1130 {
1131 XA_STATE(xas, &mapping->i_pages, start);
1132 struct page *page;
1133 swp_entry_t entry;
1134 unsigned int ret = 0;
1135
1136 if (!nr_entries)
1137 return 0;
1138
1139 rcu_read_lock();
1140 xas_for_each(&xas, page, ULONG_MAX) {
1141 if (xas_retry(&xas, page))
1142 continue;
1143
1144 if (!xa_is_value(page))
1145 continue;
1146
1147 entry = radix_to_swp_entry(page);
1148 if (swp_type(entry) != type)
1149 continue;
1150 if (frontswap &&
1151 !frontswap_test(swap_info[type], swp_offset(entry)))
1152 continue;
1153
1154 indices[ret] = xas.xa_index;
1155 entries[ret] = page;
1156
1157 if (need_resched()) {
1158 xas_pause(&xas);
1159 cond_resched_rcu();
1160 }
1161 if (++ret == nr_entries)
1162 break;
1163 }
1164 rcu_read_unlock();
1165
1166 return ret;
1167 }
1168
1169 /*
1170 * Move the swapped pages for an inode to page cache. Returns the count
1171 * of pages swapped in, or the error in case of failure.
1172 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 pgoff_t *indices)
1175 {
1176 int i = 0;
1177 int ret = 0;
1178 int error = 0;
1179 struct address_space *mapping = inode->i_mapping;
1180
1181 for (i = 0; i < pvec.nr; i++) {
1182 struct page *page = pvec.pages[i];
1183
1184 if (!xa_is_value(page))
1185 continue;
1186 error = shmem_swapin_page(inode, indices[i],
1187 &page, SGP_CACHE,
1188 mapping_gfp_mask(mapping),
1189 NULL, NULL);
1190 if (error == 0) {
1191 unlock_page(page);
1192 put_page(page);
1193 ret++;
1194 }
1195 if (error == -ENOMEM)
1196 break;
1197 error = 0;
1198 }
1199 return error ? error : ret;
1200 }
1201
1202 /*
1203 * If swap found in inode, free it and move page from swapcache to filecache.
1204 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208 struct address_space *mapping = inode->i_mapping;
1209 pgoff_t start = 0;
1210 struct pagevec pvec;
1211 pgoff_t indices[PAGEVEC_SIZE];
1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 int ret = 0;
1214
1215 pagevec_init(&pvec);
1216 do {
1217 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 nr_entries = *fs_pages_to_unuse;
1221
1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 pvec.pages, indices,
1224 type, frontswap);
1225 if (pvec.nr == 0) {
1226 ret = 0;
1227 break;
1228 }
1229
1230 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 if (ret < 0)
1232 break;
1233
1234 if (frontswap_partial) {
1235 *fs_pages_to_unuse -= ret;
1236 if (*fs_pages_to_unuse == 0) {
1237 ret = FRONTSWAP_PAGES_UNUSED;
1238 break;
1239 }
1240 }
1241
1242 start = indices[pvec.nr - 1];
1243 } while (true);
1244
1245 return ret;
1246 }
1247
1248 /*
1249 * Read all the shared memory data that resides in the swap
1250 * device 'type' back into memory, so the swap device can be
1251 * unused.
1252 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1253 int shmem_unuse(unsigned int type, bool frontswap,
1254 unsigned long *fs_pages_to_unuse)
1255 {
1256 struct shmem_inode_info *info, *next;
1257 int error = 0;
1258
1259 if (list_empty(&shmem_swaplist))
1260 return 0;
1261
1262 mutex_lock(&shmem_swaplist_mutex);
1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 if (!info->swapped) {
1265 list_del_init(&info->swaplist);
1266 continue;
1267 }
1268 /*
1269 * Drop the swaplist mutex while searching the inode for swap;
1270 * but before doing so, make sure shmem_evict_inode() will not
1271 * remove placeholder inode from swaplist, nor let it be freed
1272 * (igrab() would protect from unlink, but not from unmount).
1273 */
1274 atomic_inc(&info->stop_eviction);
1275 mutex_unlock(&shmem_swaplist_mutex);
1276
1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278 fs_pages_to_unuse);
1279 cond_resched();
1280
1281 mutex_lock(&shmem_swaplist_mutex);
1282 next = list_next_entry(info, swaplist);
1283 if (!info->swapped)
1284 list_del_init(&info->swaplist);
1285 if (atomic_dec_and_test(&info->stop_eviction))
1286 wake_up_var(&info->stop_eviction);
1287 if (error)
1288 break;
1289 }
1290 mutex_unlock(&shmem_swaplist_mutex);
1291
1292 return error;
1293 }
1294
1295 /*
1296 * Move the page from the page cache to the swap cache.
1297 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300 struct shmem_inode_info *info;
1301 struct address_space *mapping;
1302 struct inode *inode;
1303 swp_entry_t swap;
1304 pgoff_t index;
1305
1306 VM_BUG_ON_PAGE(PageCompound(page), page);
1307 BUG_ON(!PageLocked(page));
1308 mapping = page->mapping;
1309 index = page->index;
1310 inode = mapping->host;
1311 info = SHMEM_I(inode);
1312 if (info->flags & VM_LOCKED)
1313 goto redirty;
1314 if (!total_swap_pages)
1315 goto redirty;
1316
1317 /*
1318 * Our capabilities prevent regular writeback or sync from ever calling
1319 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 * its underlying filesystem, in which case tmpfs should write out to
1321 * swap only in response to memory pressure, and not for the writeback
1322 * threads or sync.
1323 */
1324 if (!wbc->for_reclaim) {
1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1326 goto redirty;
1327 }
1328
1329 /*
1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 * value into swapfile.c, the only way we can correctly account for a
1332 * fallocated page arriving here is now to initialize it and write it.
1333 *
1334 * That's okay for a page already fallocated earlier, but if we have
1335 * not yet completed the fallocation, then (a) we want to keep track
1336 * of this page in case we have to undo it, and (b) it may not be a
1337 * good idea to continue anyway, once we're pushing into swap. So
1338 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 */
1340 if (!PageUptodate(page)) {
1341 if (inode->i_private) {
1342 struct shmem_falloc *shmem_falloc;
1343 spin_lock(&inode->i_lock);
1344 shmem_falloc = inode->i_private;
1345 if (shmem_falloc &&
1346 !shmem_falloc->waitq &&
1347 index >= shmem_falloc->start &&
1348 index < shmem_falloc->next)
1349 shmem_falloc->nr_unswapped++;
1350 else
1351 shmem_falloc = NULL;
1352 spin_unlock(&inode->i_lock);
1353 if (shmem_falloc)
1354 goto redirty;
1355 }
1356 clear_highpage(page);
1357 flush_dcache_page(page);
1358 SetPageUptodate(page);
1359 }
1360
1361 swap = get_swap_page(page);
1362 if (!swap.val)
1363 goto redirty;
1364
1365 /*
1366 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 * if it's not already there. Do it now before the page is
1368 * moved to swap cache, when its pagelock no longer protects
1369 * the inode from eviction. But don't unlock the mutex until
1370 * we've incremented swapped, because shmem_unuse_inode() will
1371 * prune a !swapped inode from the swaplist under this mutex.
1372 */
1373 mutex_lock(&shmem_swaplist_mutex);
1374 if (list_empty(&info->swaplist))
1375 list_add(&info->swaplist, &shmem_swaplist);
1376
1377 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1378 spin_lock_irq(&info->lock);
1379 shmem_recalc_inode(inode);
1380 info->swapped++;
1381 spin_unlock_irq(&info->lock);
1382
1383 swap_shmem_alloc(swap);
1384 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385
1386 mutex_unlock(&shmem_swaplist_mutex);
1387 BUG_ON(page_mapped(page));
1388 swap_writepage(page, wbc);
1389 return 0;
1390 }
1391
1392 mutex_unlock(&shmem_swaplist_mutex);
1393 put_swap_page(page, swap);
1394 redirty:
1395 set_page_dirty(page);
1396 if (wbc->for_reclaim)
1397 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1398 unlock_page(page);
1399 return 0;
1400 }
1401
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404 {
1405 char buffer[64];
1406
1407 if (!mpol || mpol->mode == MPOL_DEFAULT)
1408 return; /* show nothing */
1409
1410 mpol_to_str(buffer, sizeof(buffer), mpol);
1411
1412 seq_printf(seq, ",mpol=%s", buffer);
1413 }
1414
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417 struct mempolicy *mpol = NULL;
1418 if (sbinfo->mpol) {
1419 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1420 mpol = sbinfo->mpol;
1421 mpol_get(mpol);
1422 spin_unlock(&sbinfo->stat_lock);
1423 }
1424 return mpol;
1425 }
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431 {
1432 return NULL;
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #ifndef CONFIG_NUMA
1436 #define vm_policy vm_private_data
1437 #endif
1438
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440 struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 /* Create a pseudo vma that just contains the policy */
1443 vma_init(vma, NULL);
1444 /* Bias interleave by inode number to distribute better across nodes */
1445 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447 }
1448
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 {
1451 /* Drop reference taken by mpol_shared_policy_lookup() */
1452 mpol_cond_put(vma->vm_policy);
1453 }
1454
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456 struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 struct vm_area_struct pvma;
1459 struct page *page;
1460 struct vm_fault vmf;
1461
1462 shmem_pseudo_vma_init(&pvma, info, index);
1463 vmf.vma = &pvma;
1464 vmf.address = 0;
1465 page = swap_cluster_readahead(swap, gfp, &vmf);
1466 shmem_pseudo_vma_destroy(&pvma);
1467
1468 return page;
1469 }
1470
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1471 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472 struct shmem_inode_info *info, pgoff_t index)
1473 {
1474 struct vm_area_struct pvma;
1475 struct address_space *mapping = info->vfs_inode.i_mapping;
1476 pgoff_t hindex;
1477 struct page *page;
1478
1479 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1480 return NULL;
1481
1482 hindex = round_down(index, HPAGE_PMD_NR);
1483 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1484 XA_PRESENT))
1485 return NULL;
1486
1487 shmem_pseudo_vma_init(&pvma, info, hindex);
1488 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1489 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1490 shmem_pseudo_vma_destroy(&pvma);
1491 if (page)
1492 prep_transhuge_page(page);
1493 return page;
1494 }
1495
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497 struct shmem_inode_info *info, pgoff_t index)
1498 {
1499 struct vm_area_struct pvma;
1500 struct page *page;
1501
1502 shmem_pseudo_vma_init(&pvma, info, index);
1503 page = alloc_page_vma(gfp, &pvma, 0);
1504 shmem_pseudo_vma_destroy(&pvma);
1505
1506 return page;
1507 }
1508
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 struct inode *inode,
1511 pgoff_t index, bool huge)
1512 {
1513 struct shmem_inode_info *info = SHMEM_I(inode);
1514 struct page *page;
1515 int nr;
1516 int err = -ENOSPC;
1517
1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1519 huge = false;
1520 nr = huge ? HPAGE_PMD_NR : 1;
1521
1522 if (!shmem_inode_acct_block(inode, nr))
1523 goto failed;
1524
1525 if (huge)
1526 page = shmem_alloc_hugepage(gfp, info, index);
1527 else
1528 page = shmem_alloc_page(gfp, info, index);
1529 if (page) {
1530 __SetPageLocked(page);
1531 __SetPageSwapBacked(page);
1532 return page;
1533 }
1534
1535 err = -ENOMEM;
1536 shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538 return ERR_PTR(err);
1539 }
1540
1541 /*
1542 * When a page is moved from swapcache to shmem filecache (either by the
1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545 * ignorance of the mapping it belongs to. If that mapping has special
1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547 * we may need to copy to a suitable page before moving to filecache.
1548 *
1549 * In a future release, this may well be extended to respect cpuset and
1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551 * but for now it is a simple matter of zone.
1552 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555 return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 struct page *oldpage, *newpage;
1562 struct address_space *swap_mapping;
1563 swp_entry_t entry;
1564 pgoff_t swap_index;
1565 int error;
1566
1567 oldpage = *pagep;
1568 entry.val = page_private(oldpage);
1569 swap_index = swp_offset(entry);
1570 swap_mapping = page_mapping(oldpage);
1571
1572 /*
1573 * We have arrived here because our zones are constrained, so don't
1574 * limit chance of success by further cpuset and node constraints.
1575 */
1576 gfp &= ~GFP_CONSTRAINT_MASK;
1577 newpage = shmem_alloc_page(gfp, info, index);
1578 if (!newpage)
1579 return -ENOMEM;
1580
1581 get_page(newpage);
1582 copy_highpage(newpage, oldpage);
1583 flush_dcache_page(newpage);
1584
1585 __SetPageLocked(newpage);
1586 __SetPageSwapBacked(newpage);
1587 SetPageUptodate(newpage);
1588 set_page_private(newpage, entry.val);
1589 SetPageSwapCache(newpage);
1590
1591 /*
1592 * Our caller will very soon move newpage out of swapcache, but it's
1593 * a nice clean interface for us to replace oldpage by newpage there.
1594 */
1595 xa_lock_irq(&swap_mapping->i_pages);
1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597 if (!error) {
1598 __inc_node_page_state(newpage, NR_FILE_PAGES);
1599 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1600 }
1601 xa_unlock_irq(&swap_mapping->i_pages);
1602
1603 if (unlikely(error)) {
1604 /*
1605 * Is this possible? I think not, now that our callers check
1606 * both PageSwapCache and page_private after getting page lock;
1607 * but be defensive. Reverse old to newpage for clear and free.
1608 */
1609 oldpage = newpage;
1610 } else {
1611 mem_cgroup_migrate(oldpage, newpage);
1612 lru_cache_add_anon(newpage);
1613 *pagep = newpage;
1614 }
1615
1616 ClearPageSwapCache(oldpage);
1617 set_page_private(oldpage, 0);
1618
1619 unlock_page(oldpage);
1620 put_page(oldpage);
1621 put_page(oldpage);
1622 return error;
1623 }
1624
1625 /*
1626 * Swap in the page pointed to by *pagep.
1627 * Caller has to make sure that *pagep contains a valid swapped page.
1628 * Returns 0 and the page in pagep if success. On failure, returns the
1629 * the error code and NULL in *pagep.
1630 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 struct page **pagep, enum sgp_type sgp,
1633 gfp_t gfp, struct vm_area_struct *vma,
1634 vm_fault_t *fault_type)
1635 {
1636 struct address_space *mapping = inode->i_mapping;
1637 struct shmem_inode_info *info = SHMEM_I(inode);
1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639 struct mem_cgroup *memcg;
1640 struct page *page;
1641 swp_entry_t swap;
1642 int error;
1643
1644 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1645 swap = radix_to_swp_entry(*pagep);
1646 *pagep = NULL;
1647
1648 /* Look it up and read it in.. */
1649 page = lookup_swap_cache(swap, NULL, 0);
1650 if (!page) {
1651 /* Or update major stats only when swapin succeeds?? */
1652 if (fault_type) {
1653 *fault_type |= VM_FAULT_MAJOR;
1654 count_vm_event(PGMAJFAULT);
1655 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656 }
1657 /* Here we actually start the io */
1658 page = shmem_swapin(swap, gfp, info, index);
1659 if (!page) {
1660 error = -ENOMEM;
1661 goto failed;
1662 }
1663 }
1664
1665 /* We have to do this with page locked to prevent races */
1666 lock_page(page);
1667 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668 !shmem_confirm_swap(mapping, index, swap)) {
1669 error = -EEXIST;
1670 goto unlock;
1671 }
1672 if (!PageUptodate(page)) {
1673 error = -EIO;
1674 goto failed;
1675 }
1676 wait_on_page_writeback(page);
1677
1678 if (shmem_should_replace_page(page, gfp)) {
1679 error = shmem_replace_page(&page, gfp, info, index);
1680 if (error)
1681 goto failed;
1682 }
1683
1684 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685 false);
1686 if (!error) {
1687 error = shmem_add_to_page_cache(page, mapping, index,
1688 swp_to_radix_entry(swap), gfp);
1689 /*
1690 * We already confirmed swap under page lock, and make
1691 * no memory allocation here, so usually no possibility
1692 * of error; but free_swap_and_cache() only trylocks a
1693 * page, so it is just possible that the entry has been
1694 * truncated or holepunched since swap was confirmed.
1695 * shmem_undo_range() will have done some of the
1696 * unaccounting, now delete_from_swap_cache() will do
1697 * the rest.
1698 */
1699 if (error) {
1700 mem_cgroup_cancel_charge(page, memcg, false);
1701 delete_from_swap_cache(page);
1702 }
1703 }
1704 if (error)
1705 goto failed;
1706
1707 mem_cgroup_commit_charge(page, memcg, true, false);
1708
1709 spin_lock_irq(&info->lock);
1710 info->swapped--;
1711 shmem_recalc_inode(inode);
1712 spin_unlock_irq(&info->lock);
1713
1714 if (sgp == SGP_WRITE)
1715 mark_page_accessed(page);
1716
1717 delete_from_swap_cache(page);
1718 set_page_dirty(page);
1719 swap_free(swap);
1720
1721 *pagep = page;
1722 return 0;
1723 failed:
1724 if (!shmem_confirm_swap(mapping, index, swap))
1725 error = -EEXIST;
1726 unlock:
1727 if (page) {
1728 unlock_page(page);
1729 put_page(page);
1730 }
1731
1732 return error;
1733 }
1734
1735 /*
1736 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1737 *
1738 * If we allocate a new one we do not mark it dirty. That's up to the
1739 * vm. If we swap it in we mark it dirty since we also free the swap
1740 * entry since a page cannot live in both the swap and page cache.
1741 *
1742 * vmf and fault_type are only supplied by shmem_fault:
1743 * otherwise they are NULL.
1744 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1745 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1746 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1747 struct vm_area_struct *vma, struct vm_fault *vmf,
1748 vm_fault_t *fault_type)
1749 {
1750 struct address_space *mapping = inode->i_mapping;
1751 struct shmem_inode_info *info = SHMEM_I(inode);
1752 struct shmem_sb_info *sbinfo;
1753 struct mm_struct *charge_mm;
1754 struct mem_cgroup *memcg;
1755 struct page *page;
1756 enum sgp_type sgp_huge = sgp;
1757 pgoff_t hindex = index;
1758 int error;
1759 int once = 0;
1760 int alloced = 0;
1761
1762 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1763 return -EFBIG;
1764 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1765 sgp = SGP_CACHE;
1766 repeat:
1767 if (sgp <= SGP_CACHE &&
1768 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1769 return -EINVAL;
1770 }
1771
1772 sbinfo = SHMEM_SB(inode->i_sb);
1773 charge_mm = vma ? vma->vm_mm : current->mm;
1774
1775 page = find_lock_entry(mapping, index);
1776 if (xa_is_value(page)) {
1777 error = shmem_swapin_page(inode, index, &page,
1778 sgp, gfp, vma, fault_type);
1779 if (error == -EEXIST)
1780 goto repeat;
1781
1782 *pagep = page;
1783 return error;
1784 }
1785
1786 if (page && sgp == SGP_WRITE)
1787 mark_page_accessed(page);
1788
1789 /* fallocated page? */
1790 if (page && !PageUptodate(page)) {
1791 if (sgp != SGP_READ)
1792 goto clear;
1793 unlock_page(page);
1794 put_page(page);
1795 page = NULL;
1796 }
1797 if (page || sgp == SGP_READ) {
1798 *pagep = page;
1799 return 0;
1800 }
1801
1802 /*
1803 * Fast cache lookup did not find it:
1804 * bring it back from swap or allocate.
1805 */
1806
1807 if (vma && userfaultfd_missing(vma)) {
1808 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1809 return 0;
1810 }
1811
1812 /* shmem_symlink() */
1813 if (mapping->a_ops != &shmem_aops)
1814 goto alloc_nohuge;
1815 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1816 goto alloc_nohuge;
1817 if (shmem_huge == SHMEM_HUGE_FORCE)
1818 goto alloc_huge;
1819 switch (sbinfo->huge) {
1820 loff_t i_size;
1821 pgoff_t off;
1822 case SHMEM_HUGE_NEVER:
1823 goto alloc_nohuge;
1824 case SHMEM_HUGE_WITHIN_SIZE:
1825 off = round_up(index, HPAGE_PMD_NR);
1826 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1827 if (i_size >= HPAGE_PMD_SIZE &&
1828 i_size >> PAGE_SHIFT >= off)
1829 goto alloc_huge;
1830 /* fallthrough */
1831 case SHMEM_HUGE_ADVISE:
1832 if (sgp_huge == SGP_HUGE)
1833 goto alloc_huge;
1834 /* TODO: implement fadvise() hints */
1835 goto alloc_nohuge;
1836 }
1837
1838 alloc_huge:
1839 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1840 if (IS_ERR(page)) {
1841 alloc_nohuge:
1842 page = shmem_alloc_and_acct_page(gfp, inode,
1843 index, false);
1844 }
1845 if (IS_ERR(page)) {
1846 int retry = 5;
1847
1848 error = PTR_ERR(page);
1849 page = NULL;
1850 if (error != -ENOSPC)
1851 goto unlock;
1852 /*
1853 * Try to reclaim some space by splitting a huge page
1854 * beyond i_size on the filesystem.
1855 */
1856 while (retry--) {
1857 int ret;
1858
1859 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1860 if (ret == SHRINK_STOP)
1861 break;
1862 if (ret)
1863 goto alloc_nohuge;
1864 }
1865 goto unlock;
1866 }
1867
1868 if (PageTransHuge(page))
1869 hindex = round_down(index, HPAGE_PMD_NR);
1870 else
1871 hindex = index;
1872
1873 if (sgp == SGP_WRITE)
1874 __SetPageReferenced(page);
1875
1876 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1877 PageTransHuge(page));
1878 if (error)
1879 goto unacct;
1880 error = shmem_add_to_page_cache(page, mapping, hindex,
1881 NULL, gfp & GFP_RECLAIM_MASK);
1882 if (error) {
1883 mem_cgroup_cancel_charge(page, memcg,
1884 PageTransHuge(page));
1885 goto unacct;
1886 }
1887 mem_cgroup_commit_charge(page, memcg, false,
1888 PageTransHuge(page));
1889 lru_cache_add_anon(page);
1890
1891 spin_lock_irq(&info->lock);
1892 info->alloced += compound_nr(page);
1893 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1894 shmem_recalc_inode(inode);
1895 spin_unlock_irq(&info->lock);
1896 alloced = true;
1897
1898 if (PageTransHuge(page) &&
1899 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1900 hindex + HPAGE_PMD_NR - 1) {
1901 /*
1902 * Part of the huge page is beyond i_size: subject
1903 * to shrink under memory pressure.
1904 */
1905 spin_lock(&sbinfo->shrinklist_lock);
1906 /*
1907 * _careful to defend against unlocked access to
1908 * ->shrink_list in shmem_unused_huge_shrink()
1909 */
1910 if (list_empty_careful(&info->shrinklist)) {
1911 list_add_tail(&info->shrinklist,
1912 &sbinfo->shrinklist);
1913 sbinfo->shrinklist_len++;
1914 }
1915 spin_unlock(&sbinfo->shrinklist_lock);
1916 }
1917
1918 /*
1919 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1920 */
1921 if (sgp == SGP_FALLOC)
1922 sgp = SGP_WRITE;
1923 clear:
1924 /*
1925 * Let SGP_WRITE caller clear ends if write does not fill page;
1926 * but SGP_FALLOC on a page fallocated earlier must initialize
1927 * it now, lest undo on failure cancel our earlier guarantee.
1928 */
1929 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1930 struct page *head = compound_head(page);
1931 int i;
1932
1933 for (i = 0; i < compound_nr(head); i++) {
1934 clear_highpage(head + i);
1935 flush_dcache_page(head + i);
1936 }
1937 SetPageUptodate(head);
1938 }
1939
1940 /* Perhaps the file has been truncated since we checked */
1941 if (sgp <= SGP_CACHE &&
1942 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1943 if (alloced) {
1944 ClearPageDirty(page);
1945 delete_from_page_cache(page);
1946 spin_lock_irq(&info->lock);
1947 shmem_recalc_inode(inode);
1948 spin_unlock_irq(&info->lock);
1949 }
1950 error = -EINVAL;
1951 goto unlock;
1952 }
1953 *pagep = page + index - hindex;
1954 return 0;
1955
1956 /*
1957 * Error recovery.
1958 */
1959 unacct:
1960 shmem_inode_unacct_blocks(inode, compound_nr(page));
1961
1962 if (PageTransHuge(page)) {
1963 unlock_page(page);
1964 put_page(page);
1965 goto alloc_nohuge;
1966 }
1967 unlock:
1968 if (page) {
1969 unlock_page(page);
1970 put_page(page);
1971 }
1972 if (error == -ENOSPC && !once++) {
1973 spin_lock_irq(&info->lock);
1974 shmem_recalc_inode(inode);
1975 spin_unlock_irq(&info->lock);
1976 goto repeat;
1977 }
1978 if (error == -EEXIST)
1979 goto repeat;
1980 return error;
1981 }
1982
1983 /*
1984 * This is like autoremove_wake_function, but it removes the wait queue
1985 * entry unconditionally - even if something else had already woken the
1986 * target.
1987 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1988 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1989 {
1990 int ret = default_wake_function(wait, mode, sync, key);
1991 list_del_init(&wait->entry);
1992 return ret;
1993 }
1994
shmem_fault(struct vm_fault * vmf)1995 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1996 {
1997 struct vm_area_struct *vma = vmf->vma;
1998 struct inode *inode = file_inode(vma->vm_file);
1999 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2000 enum sgp_type sgp;
2001 int err;
2002 vm_fault_t ret = VM_FAULT_LOCKED;
2003
2004 /*
2005 * Trinity finds that probing a hole which tmpfs is punching can
2006 * prevent the hole-punch from ever completing: which in turn
2007 * locks writers out with its hold on i_mutex. So refrain from
2008 * faulting pages into the hole while it's being punched. Although
2009 * shmem_undo_range() does remove the additions, it may be unable to
2010 * keep up, as each new page needs its own unmap_mapping_range() call,
2011 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2012 *
2013 * It does not matter if we sometimes reach this check just before the
2014 * hole-punch begins, so that one fault then races with the punch:
2015 * we just need to make racing faults a rare case.
2016 *
2017 * The implementation below would be much simpler if we just used a
2018 * standard mutex or completion: but we cannot take i_mutex in fault,
2019 * and bloating every shmem inode for this unlikely case would be sad.
2020 */
2021 if (unlikely(inode->i_private)) {
2022 struct shmem_falloc *shmem_falloc;
2023
2024 spin_lock(&inode->i_lock);
2025 shmem_falloc = inode->i_private;
2026 if (shmem_falloc &&
2027 shmem_falloc->waitq &&
2028 vmf->pgoff >= shmem_falloc->start &&
2029 vmf->pgoff < shmem_falloc->next) {
2030 struct file *fpin;
2031 wait_queue_head_t *shmem_falloc_waitq;
2032 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2033
2034 ret = VM_FAULT_NOPAGE;
2035 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2036 if (fpin)
2037 ret = VM_FAULT_RETRY;
2038
2039 shmem_falloc_waitq = shmem_falloc->waitq;
2040 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2041 TASK_UNINTERRUPTIBLE);
2042 spin_unlock(&inode->i_lock);
2043 schedule();
2044
2045 /*
2046 * shmem_falloc_waitq points into the shmem_fallocate()
2047 * stack of the hole-punching task: shmem_falloc_waitq
2048 * is usually invalid by the time we reach here, but
2049 * finish_wait() does not dereference it in that case;
2050 * though i_lock needed lest racing with wake_up_all().
2051 */
2052 spin_lock(&inode->i_lock);
2053 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2054 spin_unlock(&inode->i_lock);
2055
2056 if (fpin)
2057 fput(fpin);
2058 return ret;
2059 }
2060 spin_unlock(&inode->i_lock);
2061 }
2062
2063 sgp = SGP_CACHE;
2064
2065 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2066 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2067 sgp = SGP_NOHUGE;
2068 else if (vma->vm_flags & VM_HUGEPAGE)
2069 sgp = SGP_HUGE;
2070
2071 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2072 gfp, vma, vmf, &ret);
2073 if (err)
2074 return vmf_error(err);
2075 return ret;
2076 }
2077
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2078 unsigned long shmem_get_unmapped_area(struct file *file,
2079 unsigned long uaddr, unsigned long len,
2080 unsigned long pgoff, unsigned long flags)
2081 {
2082 unsigned long (*get_area)(struct file *,
2083 unsigned long, unsigned long, unsigned long, unsigned long);
2084 unsigned long addr;
2085 unsigned long offset;
2086 unsigned long inflated_len;
2087 unsigned long inflated_addr;
2088 unsigned long inflated_offset;
2089
2090 if (len > TASK_SIZE)
2091 return -ENOMEM;
2092
2093 get_area = current->mm->get_unmapped_area;
2094 addr = get_area(file, uaddr, len, pgoff, flags);
2095
2096 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2097 return addr;
2098 if (IS_ERR_VALUE(addr))
2099 return addr;
2100 if (addr & ~PAGE_MASK)
2101 return addr;
2102 if (addr > TASK_SIZE - len)
2103 return addr;
2104
2105 if (shmem_huge == SHMEM_HUGE_DENY)
2106 return addr;
2107 if (len < HPAGE_PMD_SIZE)
2108 return addr;
2109 if (flags & MAP_FIXED)
2110 return addr;
2111 /*
2112 * Our priority is to support MAP_SHARED mapped hugely;
2113 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2114 * But if caller specified an address hint and we allocated area there
2115 * successfully, respect that as before.
2116 */
2117 if (uaddr == addr)
2118 return addr;
2119
2120 if (shmem_huge != SHMEM_HUGE_FORCE) {
2121 struct super_block *sb;
2122
2123 if (file) {
2124 VM_BUG_ON(file->f_op != &shmem_file_operations);
2125 sb = file_inode(file)->i_sb;
2126 } else {
2127 /*
2128 * Called directly from mm/mmap.c, or drivers/char/mem.c
2129 * for "/dev/zero", to create a shared anonymous object.
2130 */
2131 if (IS_ERR(shm_mnt))
2132 return addr;
2133 sb = shm_mnt->mnt_sb;
2134 }
2135 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2136 return addr;
2137 }
2138
2139 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2140 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2141 return addr;
2142 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2143 return addr;
2144
2145 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2146 if (inflated_len > TASK_SIZE)
2147 return addr;
2148 if (inflated_len < len)
2149 return addr;
2150
2151 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2152 if (IS_ERR_VALUE(inflated_addr))
2153 return addr;
2154 if (inflated_addr & ~PAGE_MASK)
2155 return addr;
2156
2157 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2158 inflated_addr += offset - inflated_offset;
2159 if (inflated_offset > offset)
2160 inflated_addr += HPAGE_PMD_SIZE;
2161
2162 if (inflated_addr > TASK_SIZE - len)
2163 return addr;
2164 return inflated_addr;
2165 }
2166
2167 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2168 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2169 {
2170 struct inode *inode = file_inode(vma->vm_file);
2171 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2172 }
2173
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2174 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2175 unsigned long addr)
2176 {
2177 struct inode *inode = file_inode(vma->vm_file);
2178 pgoff_t index;
2179
2180 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2181 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2182 }
2183 #endif
2184
shmem_lock(struct file * file,int lock,struct user_struct * user)2185 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2186 {
2187 struct inode *inode = file_inode(file);
2188 struct shmem_inode_info *info = SHMEM_I(inode);
2189 int retval = -ENOMEM;
2190
2191 /*
2192 * What serializes the accesses to info->flags?
2193 * ipc_lock_object() when called from shmctl_do_lock(),
2194 * no serialization needed when called from shm_destroy().
2195 */
2196 if (lock && !(info->flags & VM_LOCKED)) {
2197 if (!user_shm_lock(inode->i_size, user))
2198 goto out_nomem;
2199 info->flags |= VM_LOCKED;
2200 mapping_set_unevictable(file->f_mapping);
2201 }
2202 if (!lock && (info->flags & VM_LOCKED) && user) {
2203 user_shm_unlock(inode->i_size, user);
2204 info->flags &= ~VM_LOCKED;
2205 mapping_clear_unevictable(file->f_mapping);
2206 }
2207 retval = 0;
2208
2209 out_nomem:
2210 return retval;
2211 }
2212
shmem_mmap(struct file * file,struct vm_area_struct * vma)2213 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2216 int ret;
2217
2218 ret = seal_check_future_write(info->seals, vma);
2219 if (ret)
2220 return ret;
2221
2222 file_accessed(file);
2223 vma->vm_ops = &shmem_vm_ops;
2224 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2225 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2226 (vma->vm_end & HPAGE_PMD_MASK)) {
2227 khugepaged_enter(vma, vma->vm_flags);
2228 }
2229 return 0;
2230 }
2231
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2232 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2233 umode_t mode, dev_t dev, unsigned long flags)
2234 {
2235 struct inode *inode;
2236 struct shmem_inode_info *info;
2237 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2238
2239 if (shmem_reserve_inode(sb))
2240 return NULL;
2241
2242 inode = new_inode(sb);
2243 if (inode) {
2244 inode->i_ino = get_next_ino();
2245 inode_init_owner(inode, dir, mode);
2246 inode->i_blocks = 0;
2247 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2248 inode->i_generation = prandom_u32();
2249 info = SHMEM_I(inode);
2250 memset(info, 0, (char *)inode - (char *)info);
2251 spin_lock_init(&info->lock);
2252 atomic_set(&info->stop_eviction, 0);
2253 info->seals = F_SEAL_SEAL;
2254 info->flags = flags & VM_NORESERVE;
2255 INIT_LIST_HEAD(&info->shrinklist);
2256 INIT_LIST_HEAD(&info->swaplist);
2257 simple_xattrs_init(&info->xattrs);
2258 cache_no_acl(inode);
2259
2260 switch (mode & S_IFMT) {
2261 default:
2262 inode->i_op = &shmem_special_inode_operations;
2263 init_special_inode(inode, mode, dev);
2264 break;
2265 case S_IFREG:
2266 inode->i_mapping->a_ops = &shmem_aops;
2267 inode->i_op = &shmem_inode_operations;
2268 inode->i_fop = &shmem_file_operations;
2269 mpol_shared_policy_init(&info->policy,
2270 shmem_get_sbmpol(sbinfo));
2271 break;
2272 case S_IFDIR:
2273 inc_nlink(inode);
2274 /* Some things misbehave if size == 0 on a directory */
2275 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2276 inode->i_op = &shmem_dir_inode_operations;
2277 inode->i_fop = &simple_dir_operations;
2278 break;
2279 case S_IFLNK:
2280 /*
2281 * Must not load anything in the rbtree,
2282 * mpol_free_shared_policy will not be called.
2283 */
2284 mpol_shared_policy_init(&info->policy, NULL);
2285 break;
2286 }
2287
2288 lockdep_annotate_inode_mutex_key(inode);
2289 } else
2290 shmem_free_inode(sb);
2291 return inode;
2292 }
2293
shmem_mapping(struct address_space * mapping)2294 bool shmem_mapping(struct address_space *mapping)
2295 {
2296 return mapping->a_ops == &shmem_aops;
2297 }
2298
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2299 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2300 pmd_t *dst_pmd,
2301 struct vm_area_struct *dst_vma,
2302 unsigned long dst_addr,
2303 unsigned long src_addr,
2304 bool zeropage,
2305 struct page **pagep)
2306 {
2307 struct inode *inode = file_inode(dst_vma->vm_file);
2308 struct shmem_inode_info *info = SHMEM_I(inode);
2309 struct address_space *mapping = inode->i_mapping;
2310 gfp_t gfp = mapping_gfp_mask(mapping);
2311 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2312 struct mem_cgroup *memcg;
2313 spinlock_t *ptl;
2314 void *page_kaddr;
2315 struct page *page;
2316 pte_t _dst_pte, *dst_pte;
2317 int ret;
2318 pgoff_t offset, max_off;
2319
2320 ret = -ENOMEM;
2321 if (!shmem_inode_acct_block(inode, 1)) {
2322 /*
2323 * We may have got a page, returned -ENOENT triggering a retry,
2324 * and now we find ourselves with -ENOMEM. Release the page, to
2325 * avoid a BUG_ON in our caller.
2326 */
2327 if (unlikely(*pagep)) {
2328 put_page(*pagep);
2329 *pagep = NULL;
2330 }
2331 goto out;
2332 }
2333
2334 if (!*pagep) {
2335 page = shmem_alloc_page(gfp, info, pgoff);
2336 if (!page)
2337 goto out_unacct_blocks;
2338
2339 if (!zeropage) { /* mcopy_atomic */
2340 page_kaddr = kmap_atomic(page);
2341 ret = copy_from_user(page_kaddr,
2342 (const void __user *)src_addr,
2343 PAGE_SIZE);
2344 kunmap_atomic(page_kaddr);
2345
2346 /* fallback to copy_from_user outside mmap_sem */
2347 if (unlikely(ret)) {
2348 *pagep = page;
2349 shmem_inode_unacct_blocks(inode, 1);
2350 /* don't free the page */
2351 return -ENOENT;
2352 }
2353 } else { /* mfill_zeropage_atomic */
2354 clear_highpage(page);
2355 }
2356 } else {
2357 page = *pagep;
2358 *pagep = NULL;
2359 }
2360
2361 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2362 __SetPageLocked(page);
2363 __SetPageSwapBacked(page);
2364 __SetPageUptodate(page);
2365
2366 ret = -EFAULT;
2367 offset = linear_page_index(dst_vma, dst_addr);
2368 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2369 if (unlikely(offset >= max_off))
2370 goto out_release;
2371
2372 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2373 if (ret)
2374 goto out_release;
2375
2376 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2377 gfp & GFP_RECLAIM_MASK);
2378 if (ret)
2379 goto out_release_uncharge;
2380
2381 mem_cgroup_commit_charge(page, memcg, false, false);
2382
2383 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2384 if (dst_vma->vm_flags & VM_WRITE)
2385 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2386 else {
2387 /*
2388 * We don't set the pte dirty if the vma has no
2389 * VM_WRITE permission, so mark the page dirty or it
2390 * could be freed from under us. We could do it
2391 * unconditionally before unlock_page(), but doing it
2392 * only if VM_WRITE is not set is faster.
2393 */
2394 set_page_dirty(page);
2395 }
2396
2397 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2398
2399 ret = -EFAULT;
2400 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2401 if (unlikely(offset >= max_off))
2402 goto out_release_uncharge_unlock;
2403
2404 ret = -EEXIST;
2405 if (!pte_none(*dst_pte))
2406 goto out_release_uncharge_unlock;
2407
2408 lru_cache_add_anon(page);
2409
2410 spin_lock_irq(&info->lock);
2411 info->alloced++;
2412 inode->i_blocks += BLOCKS_PER_PAGE;
2413 shmem_recalc_inode(inode);
2414 spin_unlock_irq(&info->lock);
2415
2416 inc_mm_counter(dst_mm, mm_counter_file(page));
2417 page_add_file_rmap(page, false);
2418 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2419
2420 /* No need to invalidate - it was non-present before */
2421 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2422 pte_unmap_unlock(dst_pte, ptl);
2423 unlock_page(page);
2424 ret = 0;
2425 out:
2426 return ret;
2427 out_release_uncharge_unlock:
2428 pte_unmap_unlock(dst_pte, ptl);
2429 ClearPageDirty(page);
2430 delete_from_page_cache(page);
2431 out_release_uncharge:
2432 mem_cgroup_cancel_charge(page, memcg, false);
2433 out_release:
2434 unlock_page(page);
2435 put_page(page);
2436 out_unacct_blocks:
2437 shmem_inode_unacct_blocks(inode, 1);
2438 goto out;
2439 }
2440
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2441 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2442 pmd_t *dst_pmd,
2443 struct vm_area_struct *dst_vma,
2444 unsigned long dst_addr,
2445 unsigned long src_addr,
2446 struct page **pagep)
2447 {
2448 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2449 dst_addr, src_addr, false, pagep);
2450 }
2451
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2452 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2453 pmd_t *dst_pmd,
2454 struct vm_area_struct *dst_vma,
2455 unsigned long dst_addr)
2456 {
2457 struct page *page = NULL;
2458
2459 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2460 dst_addr, 0, true, &page);
2461 }
2462
2463 #ifdef CONFIG_TMPFS
2464 static const struct inode_operations shmem_symlink_inode_operations;
2465 static const struct inode_operations shmem_short_symlink_operations;
2466
2467 #ifdef CONFIG_TMPFS_XATTR
2468 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2469 #else
2470 #define shmem_initxattrs NULL
2471 #endif
2472
2473 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2474 shmem_write_begin(struct file *file, struct address_space *mapping,
2475 loff_t pos, unsigned len, unsigned flags,
2476 struct page **pagep, void **fsdata)
2477 {
2478 struct inode *inode = mapping->host;
2479 struct shmem_inode_info *info = SHMEM_I(inode);
2480 pgoff_t index = pos >> PAGE_SHIFT;
2481
2482 /* i_mutex is held by caller */
2483 if (unlikely(info->seals & (F_SEAL_GROW |
2484 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2485 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2486 return -EPERM;
2487 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2488 return -EPERM;
2489 }
2490
2491 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2492 }
2493
2494 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2495 shmem_write_end(struct file *file, struct address_space *mapping,
2496 loff_t pos, unsigned len, unsigned copied,
2497 struct page *page, void *fsdata)
2498 {
2499 struct inode *inode = mapping->host;
2500
2501 if (pos + copied > inode->i_size)
2502 i_size_write(inode, pos + copied);
2503
2504 if (!PageUptodate(page)) {
2505 struct page *head = compound_head(page);
2506 if (PageTransCompound(page)) {
2507 int i;
2508
2509 for (i = 0; i < HPAGE_PMD_NR; i++) {
2510 if (head + i == page)
2511 continue;
2512 clear_highpage(head + i);
2513 flush_dcache_page(head + i);
2514 }
2515 }
2516 if (copied < PAGE_SIZE) {
2517 unsigned from = pos & (PAGE_SIZE - 1);
2518 zero_user_segments(page, 0, from,
2519 from + copied, PAGE_SIZE);
2520 }
2521 SetPageUptodate(head);
2522 }
2523 set_page_dirty(page);
2524 unlock_page(page);
2525 put_page(page);
2526
2527 return copied;
2528 }
2529
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2530 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2531 {
2532 struct file *file = iocb->ki_filp;
2533 struct inode *inode = file_inode(file);
2534 struct address_space *mapping = inode->i_mapping;
2535 pgoff_t index;
2536 unsigned long offset;
2537 enum sgp_type sgp = SGP_READ;
2538 int error = 0;
2539 ssize_t retval = 0;
2540 loff_t *ppos = &iocb->ki_pos;
2541
2542 /*
2543 * Might this read be for a stacking filesystem? Then when reading
2544 * holes of a sparse file, we actually need to allocate those pages,
2545 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2546 */
2547 if (!iter_is_iovec(to))
2548 sgp = SGP_CACHE;
2549
2550 index = *ppos >> PAGE_SHIFT;
2551 offset = *ppos & ~PAGE_MASK;
2552
2553 for (;;) {
2554 struct page *page = NULL;
2555 pgoff_t end_index;
2556 unsigned long nr, ret;
2557 loff_t i_size = i_size_read(inode);
2558
2559 end_index = i_size >> PAGE_SHIFT;
2560 if (index > end_index)
2561 break;
2562 if (index == end_index) {
2563 nr = i_size & ~PAGE_MASK;
2564 if (nr <= offset)
2565 break;
2566 }
2567
2568 error = shmem_getpage(inode, index, &page, sgp);
2569 if (error) {
2570 if (error == -EINVAL)
2571 error = 0;
2572 break;
2573 }
2574 if (page) {
2575 if (sgp == SGP_CACHE)
2576 set_page_dirty(page);
2577 unlock_page(page);
2578 }
2579
2580 /*
2581 * We must evaluate after, since reads (unlike writes)
2582 * are called without i_mutex protection against truncate
2583 */
2584 nr = PAGE_SIZE;
2585 i_size = i_size_read(inode);
2586 end_index = i_size >> PAGE_SHIFT;
2587 if (index == end_index) {
2588 nr = i_size & ~PAGE_MASK;
2589 if (nr <= offset) {
2590 if (page)
2591 put_page(page);
2592 break;
2593 }
2594 }
2595 nr -= offset;
2596
2597 if (page) {
2598 /*
2599 * If users can be writing to this page using arbitrary
2600 * virtual addresses, take care about potential aliasing
2601 * before reading the page on the kernel side.
2602 */
2603 if (mapping_writably_mapped(mapping))
2604 flush_dcache_page(page);
2605 /*
2606 * Mark the page accessed if we read the beginning.
2607 */
2608 if (!offset)
2609 mark_page_accessed(page);
2610 } else {
2611 page = ZERO_PAGE(0);
2612 get_page(page);
2613 }
2614
2615 /*
2616 * Ok, we have the page, and it's up-to-date, so
2617 * now we can copy it to user space...
2618 */
2619 ret = copy_page_to_iter(page, offset, nr, to);
2620 retval += ret;
2621 offset += ret;
2622 index += offset >> PAGE_SHIFT;
2623 offset &= ~PAGE_MASK;
2624
2625 put_page(page);
2626 if (!iov_iter_count(to))
2627 break;
2628 if (ret < nr) {
2629 error = -EFAULT;
2630 break;
2631 }
2632 cond_resched();
2633 }
2634
2635 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2636 file_accessed(file);
2637 return retval ? retval : error;
2638 }
2639
2640 /*
2641 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2642 */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2643 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2644 pgoff_t index, pgoff_t end, int whence)
2645 {
2646 struct page *page;
2647 struct pagevec pvec;
2648 pgoff_t indices[PAGEVEC_SIZE];
2649 bool done = false;
2650 int i;
2651
2652 pagevec_init(&pvec);
2653 pvec.nr = 1; /* start small: we may be there already */
2654 while (!done) {
2655 pvec.nr = find_get_entries(mapping, index,
2656 pvec.nr, pvec.pages, indices);
2657 if (!pvec.nr) {
2658 if (whence == SEEK_DATA)
2659 index = end;
2660 break;
2661 }
2662 for (i = 0; i < pvec.nr; i++, index++) {
2663 if (index < indices[i]) {
2664 if (whence == SEEK_HOLE) {
2665 done = true;
2666 break;
2667 }
2668 index = indices[i];
2669 }
2670 page = pvec.pages[i];
2671 if (page && !xa_is_value(page)) {
2672 if (!PageUptodate(page))
2673 page = NULL;
2674 }
2675 if (index >= end ||
2676 (page && whence == SEEK_DATA) ||
2677 (!page && whence == SEEK_HOLE)) {
2678 done = true;
2679 break;
2680 }
2681 }
2682 pagevec_remove_exceptionals(&pvec);
2683 pagevec_release(&pvec);
2684 pvec.nr = PAGEVEC_SIZE;
2685 cond_resched();
2686 }
2687 return index;
2688 }
2689
shmem_file_llseek(struct file * file,loff_t offset,int whence)2690 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2691 {
2692 struct address_space *mapping = file->f_mapping;
2693 struct inode *inode = mapping->host;
2694 pgoff_t start, end;
2695 loff_t new_offset;
2696
2697 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2698 return generic_file_llseek_size(file, offset, whence,
2699 MAX_LFS_FILESIZE, i_size_read(inode));
2700 inode_lock(inode);
2701 /* We're holding i_mutex so we can access i_size directly */
2702
2703 if (offset < 0 || offset >= inode->i_size)
2704 offset = -ENXIO;
2705 else {
2706 start = offset >> PAGE_SHIFT;
2707 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2709 new_offset <<= PAGE_SHIFT;
2710 if (new_offset > offset) {
2711 if (new_offset < inode->i_size)
2712 offset = new_offset;
2713 else if (whence == SEEK_DATA)
2714 offset = -ENXIO;
2715 else
2716 offset = inode->i_size;
2717 }
2718 }
2719
2720 if (offset >= 0)
2721 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2722 inode_unlock(inode);
2723 return offset;
2724 }
2725
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2726 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2727 loff_t len)
2728 {
2729 struct inode *inode = file_inode(file);
2730 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2731 struct shmem_inode_info *info = SHMEM_I(inode);
2732 struct shmem_falloc shmem_falloc;
2733 pgoff_t start, index, end;
2734 int error;
2735
2736 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2737 return -EOPNOTSUPP;
2738
2739 inode_lock(inode);
2740
2741 if (mode & FALLOC_FL_PUNCH_HOLE) {
2742 struct address_space *mapping = file->f_mapping;
2743 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2744 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2745 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2746
2747 /* protected by i_mutex */
2748 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2749 error = -EPERM;
2750 goto out;
2751 }
2752
2753 shmem_falloc.waitq = &shmem_falloc_waitq;
2754 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2755 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2756 spin_lock(&inode->i_lock);
2757 inode->i_private = &shmem_falloc;
2758 spin_unlock(&inode->i_lock);
2759
2760 if ((u64)unmap_end > (u64)unmap_start)
2761 unmap_mapping_range(mapping, unmap_start,
2762 1 + unmap_end - unmap_start, 0);
2763 shmem_truncate_range(inode, offset, offset + len - 1);
2764 /* No need to unmap again: hole-punching leaves COWed pages */
2765
2766 spin_lock(&inode->i_lock);
2767 inode->i_private = NULL;
2768 wake_up_all(&shmem_falloc_waitq);
2769 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2770 spin_unlock(&inode->i_lock);
2771 error = 0;
2772 goto out;
2773 }
2774
2775 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2776 error = inode_newsize_ok(inode, offset + len);
2777 if (error)
2778 goto out;
2779
2780 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2781 error = -EPERM;
2782 goto out;
2783 }
2784
2785 start = offset >> PAGE_SHIFT;
2786 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2787 /* Try to avoid a swapstorm if len is impossible to satisfy */
2788 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2789 error = -ENOSPC;
2790 goto out;
2791 }
2792
2793 shmem_falloc.waitq = NULL;
2794 shmem_falloc.start = start;
2795 shmem_falloc.next = start;
2796 shmem_falloc.nr_falloced = 0;
2797 shmem_falloc.nr_unswapped = 0;
2798 spin_lock(&inode->i_lock);
2799 inode->i_private = &shmem_falloc;
2800 spin_unlock(&inode->i_lock);
2801
2802 for (index = start; index < end; index++) {
2803 struct page *page;
2804
2805 /*
2806 * Good, the fallocate(2) manpage permits EINTR: we may have
2807 * been interrupted because we are using up too much memory.
2808 */
2809 if (signal_pending(current))
2810 error = -EINTR;
2811 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2812 error = -ENOMEM;
2813 else
2814 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2815 if (error) {
2816 /* Remove the !PageUptodate pages we added */
2817 if (index > start) {
2818 shmem_undo_range(inode,
2819 (loff_t)start << PAGE_SHIFT,
2820 ((loff_t)index << PAGE_SHIFT) - 1, true);
2821 }
2822 goto undone;
2823 }
2824
2825 /*
2826 * Inform shmem_writepage() how far we have reached.
2827 * No need for lock or barrier: we have the page lock.
2828 */
2829 shmem_falloc.next++;
2830 if (!PageUptodate(page))
2831 shmem_falloc.nr_falloced++;
2832
2833 /*
2834 * If !PageUptodate, leave it that way so that freeable pages
2835 * can be recognized if we need to rollback on error later.
2836 * But set_page_dirty so that memory pressure will swap rather
2837 * than free the pages we are allocating (and SGP_CACHE pages
2838 * might still be clean: we now need to mark those dirty too).
2839 */
2840 set_page_dirty(page);
2841 unlock_page(page);
2842 put_page(page);
2843 cond_resched();
2844 }
2845
2846 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2847 i_size_write(inode, offset + len);
2848 inode->i_ctime = current_time(inode);
2849 undone:
2850 spin_lock(&inode->i_lock);
2851 inode->i_private = NULL;
2852 spin_unlock(&inode->i_lock);
2853 out:
2854 inode_unlock(inode);
2855 return error;
2856 }
2857
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2859 {
2860 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2861
2862 buf->f_type = TMPFS_MAGIC;
2863 buf->f_bsize = PAGE_SIZE;
2864 buf->f_namelen = NAME_MAX;
2865 if (sbinfo->max_blocks) {
2866 buf->f_blocks = sbinfo->max_blocks;
2867 buf->f_bavail =
2868 buf->f_bfree = sbinfo->max_blocks -
2869 percpu_counter_sum(&sbinfo->used_blocks);
2870 }
2871 if (sbinfo->max_inodes) {
2872 buf->f_files = sbinfo->max_inodes;
2873 buf->f_ffree = sbinfo->free_inodes;
2874 }
2875 /* else leave those fields 0 like simple_statfs */
2876 return 0;
2877 }
2878
2879 /*
2880 * File creation. Allocate an inode, and we're done..
2881 */
2882 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2883 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2884 {
2885 struct inode *inode;
2886 int error = -ENOSPC;
2887
2888 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2889 if (inode) {
2890 error = simple_acl_create(dir, inode);
2891 if (error)
2892 goto out_iput;
2893 error = security_inode_init_security(inode, dir,
2894 &dentry->d_name,
2895 shmem_initxattrs, NULL);
2896 if (error && error != -EOPNOTSUPP)
2897 goto out_iput;
2898
2899 error = 0;
2900 dir->i_size += BOGO_DIRENT_SIZE;
2901 dir->i_ctime = dir->i_mtime = current_time(dir);
2902 d_instantiate(dentry, inode);
2903 dget(dentry); /* Extra count - pin the dentry in core */
2904 }
2905 return error;
2906 out_iput:
2907 iput(inode);
2908 return error;
2909 }
2910
2911 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2912 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2913 {
2914 struct inode *inode;
2915 int error = -ENOSPC;
2916
2917 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2918 if (inode) {
2919 error = security_inode_init_security(inode, dir,
2920 NULL,
2921 shmem_initxattrs, NULL);
2922 if (error && error != -EOPNOTSUPP)
2923 goto out_iput;
2924 error = simple_acl_create(dir, inode);
2925 if (error)
2926 goto out_iput;
2927 d_tmpfile(dentry, inode);
2928 }
2929 return error;
2930 out_iput:
2931 iput(inode);
2932 return error;
2933 }
2934
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2935 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2936 {
2937 int error;
2938
2939 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2940 return error;
2941 inc_nlink(dir);
2942 return 0;
2943 }
2944
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2945 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2946 bool excl)
2947 {
2948 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2949 }
2950
2951 /*
2952 * Link a file..
2953 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2954 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2955 {
2956 struct inode *inode = d_inode(old_dentry);
2957 int ret = 0;
2958
2959 /*
2960 * No ordinary (disk based) filesystem counts links as inodes;
2961 * but each new link needs a new dentry, pinning lowmem, and
2962 * tmpfs dentries cannot be pruned until they are unlinked.
2963 * But if an O_TMPFILE file is linked into the tmpfs, the
2964 * first link must skip that, to get the accounting right.
2965 */
2966 if (inode->i_nlink) {
2967 ret = shmem_reserve_inode(inode->i_sb);
2968 if (ret)
2969 goto out;
2970 }
2971
2972 dir->i_size += BOGO_DIRENT_SIZE;
2973 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2974 inc_nlink(inode);
2975 ihold(inode); /* New dentry reference */
2976 dget(dentry); /* Extra pinning count for the created dentry */
2977 d_instantiate(dentry, inode);
2978 out:
2979 return ret;
2980 }
2981
shmem_unlink(struct inode * dir,struct dentry * dentry)2982 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2983 {
2984 struct inode *inode = d_inode(dentry);
2985
2986 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2987 shmem_free_inode(inode->i_sb);
2988
2989 dir->i_size -= BOGO_DIRENT_SIZE;
2990 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2991 drop_nlink(inode);
2992 dput(dentry); /* Undo the count from "create" - this does all the work */
2993 return 0;
2994 }
2995
shmem_rmdir(struct inode * dir,struct dentry * dentry)2996 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2997 {
2998 if (!simple_empty(dentry))
2999 return -ENOTEMPTY;
3000
3001 drop_nlink(d_inode(dentry));
3002 drop_nlink(dir);
3003 return shmem_unlink(dir, dentry);
3004 }
3005
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3006 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3007 {
3008 bool old_is_dir = d_is_dir(old_dentry);
3009 bool new_is_dir = d_is_dir(new_dentry);
3010
3011 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3012 if (old_is_dir) {
3013 drop_nlink(old_dir);
3014 inc_nlink(new_dir);
3015 } else {
3016 drop_nlink(new_dir);
3017 inc_nlink(old_dir);
3018 }
3019 }
3020 old_dir->i_ctime = old_dir->i_mtime =
3021 new_dir->i_ctime = new_dir->i_mtime =
3022 d_inode(old_dentry)->i_ctime =
3023 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3024
3025 return 0;
3026 }
3027
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3028 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3029 {
3030 struct dentry *whiteout;
3031 int error;
3032
3033 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3034 if (!whiteout)
3035 return -ENOMEM;
3036
3037 error = shmem_mknod(old_dir, whiteout,
3038 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3039 dput(whiteout);
3040 if (error)
3041 return error;
3042
3043 /*
3044 * Cheat and hash the whiteout while the old dentry is still in
3045 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3046 *
3047 * d_lookup() will consistently find one of them at this point,
3048 * not sure which one, but that isn't even important.
3049 */
3050 d_rehash(whiteout);
3051 return 0;
3052 }
3053
3054 /*
3055 * The VFS layer already does all the dentry stuff for rename,
3056 * we just have to decrement the usage count for the target if
3057 * it exists so that the VFS layer correctly free's it when it
3058 * gets overwritten.
3059 */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3060 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3061 {
3062 struct inode *inode = d_inode(old_dentry);
3063 int they_are_dirs = S_ISDIR(inode->i_mode);
3064
3065 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3066 return -EINVAL;
3067
3068 if (flags & RENAME_EXCHANGE)
3069 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3070
3071 if (!simple_empty(new_dentry))
3072 return -ENOTEMPTY;
3073
3074 if (flags & RENAME_WHITEOUT) {
3075 int error;
3076
3077 error = shmem_whiteout(old_dir, old_dentry);
3078 if (error)
3079 return error;
3080 }
3081
3082 if (d_really_is_positive(new_dentry)) {
3083 (void) shmem_unlink(new_dir, new_dentry);
3084 if (they_are_dirs) {
3085 drop_nlink(d_inode(new_dentry));
3086 drop_nlink(old_dir);
3087 }
3088 } else if (they_are_dirs) {
3089 drop_nlink(old_dir);
3090 inc_nlink(new_dir);
3091 }
3092
3093 old_dir->i_size -= BOGO_DIRENT_SIZE;
3094 new_dir->i_size += BOGO_DIRENT_SIZE;
3095 old_dir->i_ctime = old_dir->i_mtime =
3096 new_dir->i_ctime = new_dir->i_mtime =
3097 inode->i_ctime = current_time(old_dir);
3098 return 0;
3099 }
3100
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3101 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3102 {
3103 int error;
3104 int len;
3105 struct inode *inode;
3106 struct page *page;
3107
3108 len = strlen(symname) + 1;
3109 if (len > PAGE_SIZE)
3110 return -ENAMETOOLONG;
3111
3112 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3113 VM_NORESERVE);
3114 if (!inode)
3115 return -ENOSPC;
3116
3117 error = security_inode_init_security(inode, dir, &dentry->d_name,
3118 shmem_initxattrs, NULL);
3119 if (error) {
3120 if (error != -EOPNOTSUPP) {
3121 iput(inode);
3122 return error;
3123 }
3124 error = 0;
3125 }
3126
3127 inode->i_size = len-1;
3128 if (len <= SHORT_SYMLINK_LEN) {
3129 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3130 if (!inode->i_link) {
3131 iput(inode);
3132 return -ENOMEM;
3133 }
3134 inode->i_op = &shmem_short_symlink_operations;
3135 } else {
3136 inode_nohighmem(inode);
3137 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3138 if (error) {
3139 iput(inode);
3140 return error;
3141 }
3142 inode->i_mapping->a_ops = &shmem_aops;
3143 inode->i_op = &shmem_symlink_inode_operations;
3144 memcpy(page_address(page), symname, len);
3145 SetPageUptodate(page);
3146 set_page_dirty(page);
3147 unlock_page(page);
3148 put_page(page);
3149 }
3150 dir->i_size += BOGO_DIRENT_SIZE;
3151 dir->i_ctime = dir->i_mtime = current_time(dir);
3152 d_instantiate(dentry, inode);
3153 dget(dentry);
3154 return 0;
3155 }
3156
shmem_put_link(void * arg)3157 static void shmem_put_link(void *arg)
3158 {
3159 mark_page_accessed(arg);
3160 put_page(arg);
3161 }
3162
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3163 static const char *shmem_get_link(struct dentry *dentry,
3164 struct inode *inode,
3165 struct delayed_call *done)
3166 {
3167 struct page *page = NULL;
3168 int error;
3169 if (!dentry) {
3170 page = find_get_page(inode->i_mapping, 0);
3171 if (!page)
3172 return ERR_PTR(-ECHILD);
3173 if (!PageUptodate(page)) {
3174 put_page(page);
3175 return ERR_PTR(-ECHILD);
3176 }
3177 } else {
3178 error = shmem_getpage(inode, 0, &page, SGP_READ);
3179 if (error)
3180 return ERR_PTR(error);
3181 unlock_page(page);
3182 }
3183 set_delayed_call(done, shmem_put_link, page);
3184 return page_address(page);
3185 }
3186
3187 #ifdef CONFIG_TMPFS_XATTR
3188 /*
3189 * Superblocks without xattr inode operations may get some security.* xattr
3190 * support from the LSM "for free". As soon as we have any other xattrs
3191 * like ACLs, we also need to implement the security.* handlers at
3192 * filesystem level, though.
3193 */
3194
3195 /*
3196 * Callback for security_inode_init_security() for acquiring xattrs.
3197 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3198 static int shmem_initxattrs(struct inode *inode,
3199 const struct xattr *xattr_array,
3200 void *fs_info)
3201 {
3202 struct shmem_inode_info *info = SHMEM_I(inode);
3203 const struct xattr *xattr;
3204 struct simple_xattr *new_xattr;
3205 size_t len;
3206
3207 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3208 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3209 if (!new_xattr)
3210 return -ENOMEM;
3211
3212 len = strlen(xattr->name) + 1;
3213 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3214 GFP_KERNEL);
3215 if (!new_xattr->name) {
3216 kfree(new_xattr);
3217 return -ENOMEM;
3218 }
3219
3220 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3221 XATTR_SECURITY_PREFIX_LEN);
3222 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3223 xattr->name, len);
3224
3225 simple_xattr_list_add(&info->xattrs, new_xattr);
3226 }
3227
3228 return 0;
3229 }
3230
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)3231 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3232 struct dentry *unused, struct inode *inode,
3233 const char *name, void *buffer, size_t size,
3234 int flags)
3235 {
3236 struct shmem_inode_info *info = SHMEM_I(inode);
3237
3238 name = xattr_full_name(handler, name);
3239 return simple_xattr_get(&info->xattrs, name, buffer, size);
3240 }
3241
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3242 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3243 struct dentry *unused, struct inode *inode,
3244 const char *name, const void *value,
3245 size_t size, int flags)
3246 {
3247 struct shmem_inode_info *info = SHMEM_I(inode);
3248
3249 name = xattr_full_name(handler, name);
3250 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3251 }
3252
3253 static const struct xattr_handler shmem_security_xattr_handler = {
3254 .prefix = XATTR_SECURITY_PREFIX,
3255 .get = shmem_xattr_handler_get,
3256 .set = shmem_xattr_handler_set,
3257 };
3258
3259 static const struct xattr_handler shmem_trusted_xattr_handler = {
3260 .prefix = XATTR_TRUSTED_PREFIX,
3261 .get = shmem_xattr_handler_get,
3262 .set = shmem_xattr_handler_set,
3263 };
3264
3265 static const struct xattr_handler *shmem_xattr_handlers[] = {
3266 #ifdef CONFIG_TMPFS_POSIX_ACL
3267 &posix_acl_access_xattr_handler,
3268 &posix_acl_default_xattr_handler,
3269 #endif
3270 &shmem_security_xattr_handler,
3271 &shmem_trusted_xattr_handler,
3272 NULL
3273 };
3274
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3276 {
3277 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3278 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3279 }
3280 #endif /* CONFIG_TMPFS_XATTR */
3281
3282 static const struct inode_operations shmem_short_symlink_operations = {
3283 .get_link = simple_get_link,
3284 #ifdef CONFIG_TMPFS_XATTR
3285 .listxattr = shmem_listxattr,
3286 #endif
3287 };
3288
3289 static const struct inode_operations shmem_symlink_inode_operations = {
3290 .get_link = shmem_get_link,
3291 #ifdef CONFIG_TMPFS_XATTR
3292 .listxattr = shmem_listxattr,
3293 #endif
3294 };
3295
shmem_get_parent(struct dentry * child)3296 static struct dentry *shmem_get_parent(struct dentry *child)
3297 {
3298 return ERR_PTR(-ESTALE);
3299 }
3300
shmem_match(struct inode * ino,void * vfh)3301 static int shmem_match(struct inode *ino, void *vfh)
3302 {
3303 __u32 *fh = vfh;
3304 __u64 inum = fh[2];
3305 inum = (inum << 32) | fh[1];
3306 return ino->i_ino == inum && fh[0] == ino->i_generation;
3307 }
3308
3309 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3310 static struct dentry *shmem_find_alias(struct inode *inode)
3311 {
3312 struct dentry *alias = d_find_alias(inode);
3313
3314 return alias ?: d_find_any_alias(inode);
3315 }
3316
3317
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3318 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3319 struct fid *fid, int fh_len, int fh_type)
3320 {
3321 struct inode *inode;
3322 struct dentry *dentry = NULL;
3323 u64 inum;
3324
3325 if (fh_len < 3)
3326 return NULL;
3327
3328 inum = fid->raw[2];
3329 inum = (inum << 32) | fid->raw[1];
3330
3331 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3332 shmem_match, fid->raw);
3333 if (inode) {
3334 dentry = shmem_find_alias(inode);
3335 iput(inode);
3336 }
3337
3338 return dentry;
3339 }
3340
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3341 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3342 struct inode *parent)
3343 {
3344 if (*len < 3) {
3345 *len = 3;
3346 return FILEID_INVALID;
3347 }
3348
3349 if (inode_unhashed(inode)) {
3350 /* Unfortunately insert_inode_hash is not idempotent,
3351 * so as we hash inodes here rather than at creation
3352 * time, we need a lock to ensure we only try
3353 * to do it once
3354 */
3355 static DEFINE_SPINLOCK(lock);
3356 spin_lock(&lock);
3357 if (inode_unhashed(inode))
3358 __insert_inode_hash(inode,
3359 inode->i_ino + inode->i_generation);
3360 spin_unlock(&lock);
3361 }
3362
3363 fh[0] = inode->i_generation;
3364 fh[1] = inode->i_ino;
3365 fh[2] = ((__u64)inode->i_ino) >> 32;
3366
3367 *len = 3;
3368 return 1;
3369 }
3370
3371 static const struct export_operations shmem_export_ops = {
3372 .get_parent = shmem_get_parent,
3373 .encode_fh = shmem_encode_fh,
3374 .fh_to_dentry = shmem_fh_to_dentry,
3375 };
3376
3377 enum shmem_param {
3378 Opt_gid,
3379 Opt_huge,
3380 Opt_mode,
3381 Opt_mpol,
3382 Opt_nr_blocks,
3383 Opt_nr_inodes,
3384 Opt_size,
3385 Opt_uid,
3386 };
3387
3388 static const struct fs_parameter_spec shmem_param_specs[] = {
3389 fsparam_u32 ("gid", Opt_gid),
3390 fsparam_enum ("huge", Opt_huge),
3391 fsparam_u32oct("mode", Opt_mode),
3392 fsparam_string("mpol", Opt_mpol),
3393 fsparam_string("nr_blocks", Opt_nr_blocks),
3394 fsparam_string("nr_inodes", Opt_nr_inodes),
3395 fsparam_string("size", Opt_size),
3396 fsparam_u32 ("uid", Opt_uid),
3397 {}
3398 };
3399
3400 static const struct fs_parameter_enum shmem_param_enums[] = {
3401 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3402 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3403 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3404 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3405 {}
3406 };
3407
3408 const struct fs_parameter_description shmem_fs_parameters = {
3409 .name = "tmpfs",
3410 .specs = shmem_param_specs,
3411 .enums = shmem_param_enums,
3412 };
3413
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3414 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3415 {
3416 struct shmem_options *ctx = fc->fs_private;
3417 struct fs_parse_result result;
3418 unsigned long long size;
3419 char *rest;
3420 int opt;
3421 kuid_t kuid;
3422 kgid_t kgid;
3423
3424 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3425 if (opt < 0)
3426 return opt;
3427
3428 switch (opt) {
3429 case Opt_size:
3430 size = memparse(param->string, &rest);
3431 if (*rest == '%') {
3432 size <<= PAGE_SHIFT;
3433 size *= totalram_pages();
3434 do_div(size, 100);
3435 rest++;
3436 }
3437 if (*rest)
3438 goto bad_value;
3439 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3440 ctx->seen |= SHMEM_SEEN_BLOCKS;
3441 break;
3442 case Opt_nr_blocks:
3443 ctx->blocks = memparse(param->string, &rest);
3444 if (*rest)
3445 goto bad_value;
3446 ctx->seen |= SHMEM_SEEN_BLOCKS;
3447 break;
3448 case Opt_nr_inodes:
3449 ctx->inodes = memparse(param->string, &rest);
3450 if (*rest)
3451 goto bad_value;
3452 ctx->seen |= SHMEM_SEEN_INODES;
3453 break;
3454 case Opt_mode:
3455 ctx->mode = result.uint_32 & 07777;
3456 break;
3457 case Opt_uid:
3458 kuid = make_kuid(current_user_ns(), result.uint_32);
3459 if (!uid_valid(kuid))
3460 goto bad_value;
3461
3462 /*
3463 * The requested uid must be representable in the
3464 * filesystem's idmapping.
3465 */
3466 if (!kuid_has_mapping(fc->user_ns, kuid))
3467 goto bad_value;
3468
3469 ctx->uid = kuid;
3470 break;
3471 case Opt_gid:
3472 kgid = make_kgid(current_user_ns(), result.uint_32);
3473 if (!gid_valid(kgid))
3474 goto bad_value;
3475
3476 /*
3477 * The requested gid must be representable in the
3478 * filesystem's idmapping.
3479 */
3480 if (!kgid_has_mapping(fc->user_ns, kgid))
3481 goto bad_value;
3482
3483 ctx->gid = kgid;
3484 break;
3485 case Opt_huge:
3486 ctx->huge = result.uint_32;
3487 if (ctx->huge != SHMEM_HUGE_NEVER &&
3488 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3489 has_transparent_hugepage()))
3490 goto unsupported_parameter;
3491 ctx->seen |= SHMEM_SEEN_HUGE;
3492 break;
3493 case Opt_mpol:
3494 if (IS_ENABLED(CONFIG_NUMA)) {
3495 mpol_put(ctx->mpol);
3496 ctx->mpol = NULL;
3497 if (mpol_parse_str(param->string, &ctx->mpol))
3498 goto bad_value;
3499 break;
3500 }
3501 goto unsupported_parameter;
3502 }
3503 return 0;
3504
3505 unsupported_parameter:
3506 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3507 bad_value:
3508 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3509 }
3510
shmem_parse_options(struct fs_context * fc,void * data)3511 static int shmem_parse_options(struct fs_context *fc, void *data)
3512 {
3513 char *options = data;
3514
3515 if (options) {
3516 int err = security_sb_eat_lsm_opts(options, &fc->security);
3517 if (err)
3518 return err;
3519 }
3520
3521 while (options != NULL) {
3522 char *this_char = options;
3523 for (;;) {
3524 /*
3525 * NUL-terminate this option: unfortunately,
3526 * mount options form a comma-separated list,
3527 * but mpol's nodelist may also contain commas.
3528 */
3529 options = strchr(options, ',');
3530 if (options == NULL)
3531 break;
3532 options++;
3533 if (!isdigit(*options)) {
3534 options[-1] = '\0';
3535 break;
3536 }
3537 }
3538 if (*this_char) {
3539 char *value = strchr(this_char,'=');
3540 size_t len = 0;
3541 int err;
3542
3543 if (value) {
3544 *value++ = '\0';
3545 len = strlen(value);
3546 }
3547 err = vfs_parse_fs_string(fc, this_char, value, len);
3548 if (err < 0)
3549 return err;
3550 }
3551 }
3552 return 0;
3553 }
3554
3555 /*
3556 * Reconfigure a shmem filesystem.
3557 *
3558 * Note that we disallow change from limited->unlimited blocks/inodes while any
3559 * are in use; but we must separately disallow unlimited->limited, because in
3560 * that case we have no record of how much is already in use.
3561 */
shmem_reconfigure(struct fs_context * fc)3562 static int shmem_reconfigure(struct fs_context *fc)
3563 {
3564 struct shmem_options *ctx = fc->fs_private;
3565 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3566 unsigned long inodes;
3567 const char *err;
3568
3569 spin_lock(&sbinfo->stat_lock);
3570 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3571 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3572 if (!sbinfo->max_blocks) {
3573 err = "Cannot retroactively limit size";
3574 goto out;
3575 }
3576 if (percpu_counter_compare(&sbinfo->used_blocks,
3577 ctx->blocks) > 0) {
3578 err = "Too small a size for current use";
3579 goto out;
3580 }
3581 }
3582 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3583 if (!sbinfo->max_inodes) {
3584 err = "Cannot retroactively limit inodes";
3585 goto out;
3586 }
3587 if (ctx->inodes < inodes) {
3588 err = "Too few inodes for current use";
3589 goto out;
3590 }
3591 }
3592
3593 if (ctx->seen & SHMEM_SEEN_HUGE)
3594 sbinfo->huge = ctx->huge;
3595 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3596 sbinfo->max_blocks = ctx->blocks;
3597 if (ctx->seen & SHMEM_SEEN_INODES) {
3598 sbinfo->max_inodes = ctx->inodes;
3599 sbinfo->free_inodes = ctx->inodes - inodes;
3600 }
3601
3602 /*
3603 * Preserve previous mempolicy unless mpol remount option was specified.
3604 */
3605 if (ctx->mpol) {
3606 mpol_put(sbinfo->mpol);
3607 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3608 ctx->mpol = NULL;
3609 }
3610 spin_unlock(&sbinfo->stat_lock);
3611 return 0;
3612 out:
3613 spin_unlock(&sbinfo->stat_lock);
3614 return invalf(fc, "tmpfs: %s", err);
3615 }
3616
shmem_show_options(struct seq_file * seq,struct dentry * root)3617 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3618 {
3619 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3620
3621 if (sbinfo->max_blocks != shmem_default_max_blocks())
3622 seq_printf(seq, ",size=%luk",
3623 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3624 if (sbinfo->max_inodes != shmem_default_max_inodes())
3625 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3626 if (sbinfo->mode != (0777 | S_ISVTX))
3627 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3628 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3629 seq_printf(seq, ",uid=%u",
3630 from_kuid_munged(&init_user_ns, sbinfo->uid));
3631 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3632 seq_printf(seq, ",gid=%u",
3633 from_kgid_munged(&init_user_ns, sbinfo->gid));
3634 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3635 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3636 if (sbinfo->huge)
3637 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3638 #endif
3639 shmem_show_mpol(seq, sbinfo->mpol);
3640 return 0;
3641 }
3642
3643 #endif /* CONFIG_TMPFS */
3644
shmem_put_super(struct super_block * sb)3645 static void shmem_put_super(struct super_block *sb)
3646 {
3647 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3648
3649 percpu_counter_destroy(&sbinfo->used_blocks);
3650 mpol_put(sbinfo->mpol);
3651 kfree(sbinfo);
3652 sb->s_fs_info = NULL;
3653 }
3654
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3655 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3656 {
3657 struct shmem_options *ctx = fc->fs_private;
3658 struct inode *inode;
3659 struct shmem_sb_info *sbinfo;
3660 int err = -ENOMEM;
3661
3662 /* Round up to L1_CACHE_BYTES to resist false sharing */
3663 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3664 L1_CACHE_BYTES), GFP_KERNEL);
3665 if (!sbinfo)
3666 return -ENOMEM;
3667
3668 sb->s_fs_info = sbinfo;
3669
3670 #ifdef CONFIG_TMPFS
3671 /*
3672 * Per default we only allow half of the physical ram per
3673 * tmpfs instance, limiting inodes to one per page of lowmem;
3674 * but the internal instance is left unlimited.
3675 */
3676 if (!(sb->s_flags & SB_KERNMOUNT)) {
3677 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3678 ctx->blocks = shmem_default_max_blocks();
3679 if (!(ctx->seen & SHMEM_SEEN_INODES))
3680 ctx->inodes = shmem_default_max_inodes();
3681 } else {
3682 sb->s_flags |= SB_NOUSER;
3683 }
3684 sb->s_export_op = &shmem_export_ops;
3685 sb->s_flags |= SB_NOSEC;
3686 #else
3687 sb->s_flags |= SB_NOUSER;
3688 #endif
3689 sbinfo->max_blocks = ctx->blocks;
3690 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3691 sbinfo->uid = ctx->uid;
3692 sbinfo->gid = ctx->gid;
3693 sbinfo->mode = ctx->mode;
3694 sbinfo->huge = ctx->huge;
3695 sbinfo->mpol = ctx->mpol;
3696 ctx->mpol = NULL;
3697
3698 spin_lock_init(&sbinfo->stat_lock);
3699 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3700 goto failed;
3701 spin_lock_init(&sbinfo->shrinklist_lock);
3702 INIT_LIST_HEAD(&sbinfo->shrinklist);
3703
3704 sb->s_maxbytes = MAX_LFS_FILESIZE;
3705 sb->s_blocksize = PAGE_SIZE;
3706 sb->s_blocksize_bits = PAGE_SHIFT;
3707 sb->s_magic = TMPFS_MAGIC;
3708 sb->s_op = &shmem_ops;
3709 sb->s_time_gran = 1;
3710 #ifdef CONFIG_TMPFS_XATTR
3711 sb->s_xattr = shmem_xattr_handlers;
3712 #endif
3713 #ifdef CONFIG_TMPFS_POSIX_ACL
3714 sb->s_flags |= SB_POSIXACL;
3715 #endif
3716 uuid_gen(&sb->s_uuid);
3717
3718 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3719 if (!inode)
3720 goto failed;
3721 inode->i_uid = sbinfo->uid;
3722 inode->i_gid = sbinfo->gid;
3723 sb->s_root = d_make_root(inode);
3724 if (!sb->s_root)
3725 goto failed;
3726 return 0;
3727
3728 failed:
3729 shmem_put_super(sb);
3730 return err;
3731 }
3732
shmem_get_tree(struct fs_context * fc)3733 static int shmem_get_tree(struct fs_context *fc)
3734 {
3735 return get_tree_nodev(fc, shmem_fill_super);
3736 }
3737
shmem_free_fc(struct fs_context * fc)3738 static void shmem_free_fc(struct fs_context *fc)
3739 {
3740 struct shmem_options *ctx = fc->fs_private;
3741
3742 if (ctx) {
3743 mpol_put(ctx->mpol);
3744 kfree(ctx);
3745 }
3746 }
3747
3748 static const struct fs_context_operations shmem_fs_context_ops = {
3749 .free = shmem_free_fc,
3750 .get_tree = shmem_get_tree,
3751 #ifdef CONFIG_TMPFS
3752 .parse_monolithic = shmem_parse_options,
3753 .parse_param = shmem_parse_one,
3754 .reconfigure = shmem_reconfigure,
3755 #endif
3756 };
3757
3758 static struct kmem_cache *shmem_inode_cachep;
3759
shmem_alloc_inode(struct super_block * sb)3760 static struct inode *shmem_alloc_inode(struct super_block *sb)
3761 {
3762 struct shmem_inode_info *info;
3763 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3764 if (!info)
3765 return NULL;
3766 return &info->vfs_inode;
3767 }
3768
shmem_free_in_core_inode(struct inode * inode)3769 static void shmem_free_in_core_inode(struct inode *inode)
3770 {
3771 if (S_ISLNK(inode->i_mode))
3772 kfree(inode->i_link);
3773 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3774 }
3775
shmem_destroy_inode(struct inode * inode)3776 static void shmem_destroy_inode(struct inode *inode)
3777 {
3778 if (S_ISREG(inode->i_mode))
3779 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3780 }
3781
shmem_init_inode(void * foo)3782 static void shmem_init_inode(void *foo)
3783 {
3784 struct shmem_inode_info *info = foo;
3785 inode_init_once(&info->vfs_inode);
3786 }
3787
shmem_init_inodecache(void)3788 static void shmem_init_inodecache(void)
3789 {
3790 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3791 sizeof(struct shmem_inode_info),
3792 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3793 }
3794
shmem_destroy_inodecache(void)3795 static void shmem_destroy_inodecache(void)
3796 {
3797 kmem_cache_destroy(shmem_inode_cachep);
3798 }
3799
3800 static const struct address_space_operations shmem_aops = {
3801 .writepage = shmem_writepage,
3802 .set_page_dirty = __set_page_dirty_no_writeback,
3803 #ifdef CONFIG_TMPFS
3804 .write_begin = shmem_write_begin,
3805 .write_end = shmem_write_end,
3806 #endif
3807 #ifdef CONFIG_MIGRATION
3808 .migratepage = migrate_page,
3809 #endif
3810 .error_remove_page = generic_error_remove_page,
3811 };
3812
3813 static const struct file_operations shmem_file_operations = {
3814 .mmap = shmem_mmap,
3815 .get_unmapped_area = shmem_get_unmapped_area,
3816 #ifdef CONFIG_TMPFS
3817 .llseek = shmem_file_llseek,
3818 .read_iter = shmem_file_read_iter,
3819 .write_iter = generic_file_write_iter,
3820 .fsync = noop_fsync,
3821 .splice_read = generic_file_splice_read,
3822 .splice_write = iter_file_splice_write,
3823 .fallocate = shmem_fallocate,
3824 #endif
3825 };
3826
3827 static const struct inode_operations shmem_inode_operations = {
3828 .getattr = shmem_getattr,
3829 .setattr = shmem_setattr,
3830 #ifdef CONFIG_TMPFS_XATTR
3831 .listxattr = shmem_listxattr,
3832 .set_acl = simple_set_acl,
3833 #endif
3834 };
3835
3836 static const struct inode_operations shmem_dir_inode_operations = {
3837 #ifdef CONFIG_TMPFS
3838 .create = shmem_create,
3839 .lookup = simple_lookup,
3840 .link = shmem_link,
3841 .unlink = shmem_unlink,
3842 .symlink = shmem_symlink,
3843 .mkdir = shmem_mkdir,
3844 .rmdir = shmem_rmdir,
3845 .mknod = shmem_mknod,
3846 .rename = shmem_rename2,
3847 .tmpfile = shmem_tmpfile,
3848 #endif
3849 #ifdef CONFIG_TMPFS_XATTR
3850 .listxattr = shmem_listxattr,
3851 #endif
3852 #ifdef CONFIG_TMPFS_POSIX_ACL
3853 .setattr = shmem_setattr,
3854 .set_acl = simple_set_acl,
3855 #endif
3856 };
3857
3858 static const struct inode_operations shmem_special_inode_operations = {
3859 #ifdef CONFIG_TMPFS_XATTR
3860 .listxattr = shmem_listxattr,
3861 #endif
3862 #ifdef CONFIG_TMPFS_POSIX_ACL
3863 .setattr = shmem_setattr,
3864 .set_acl = simple_set_acl,
3865 #endif
3866 };
3867
3868 static const struct super_operations shmem_ops = {
3869 .alloc_inode = shmem_alloc_inode,
3870 .free_inode = shmem_free_in_core_inode,
3871 .destroy_inode = shmem_destroy_inode,
3872 #ifdef CONFIG_TMPFS
3873 .statfs = shmem_statfs,
3874 .show_options = shmem_show_options,
3875 #endif
3876 .evict_inode = shmem_evict_inode,
3877 .drop_inode = generic_delete_inode,
3878 .put_super = shmem_put_super,
3879 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3880 .nr_cached_objects = shmem_unused_huge_count,
3881 .free_cached_objects = shmem_unused_huge_scan,
3882 #endif
3883 };
3884
3885 static const struct vm_operations_struct shmem_vm_ops = {
3886 .fault = shmem_fault,
3887 .map_pages = filemap_map_pages,
3888 #ifdef CONFIG_NUMA
3889 .set_policy = shmem_set_policy,
3890 .get_policy = shmem_get_policy,
3891 #endif
3892 };
3893
shmem_init_fs_context(struct fs_context * fc)3894 int shmem_init_fs_context(struct fs_context *fc)
3895 {
3896 struct shmem_options *ctx;
3897
3898 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3899 if (!ctx)
3900 return -ENOMEM;
3901
3902 ctx->mode = 0777 | S_ISVTX;
3903 ctx->uid = current_fsuid();
3904 ctx->gid = current_fsgid();
3905
3906 fc->fs_private = ctx;
3907 fc->ops = &shmem_fs_context_ops;
3908 return 0;
3909 }
3910
3911 static struct file_system_type shmem_fs_type = {
3912 .owner = THIS_MODULE,
3913 .name = "tmpfs",
3914 .init_fs_context = shmem_init_fs_context,
3915 #ifdef CONFIG_TMPFS
3916 .parameters = &shmem_fs_parameters,
3917 #endif
3918 .kill_sb = kill_litter_super,
3919 .fs_flags = FS_USERNS_MOUNT,
3920 };
3921
shmem_init(void)3922 int __init shmem_init(void)
3923 {
3924 int error;
3925
3926 shmem_init_inodecache();
3927
3928 error = register_filesystem(&shmem_fs_type);
3929 if (error) {
3930 pr_err("Could not register tmpfs\n");
3931 goto out2;
3932 }
3933
3934 shm_mnt = kern_mount(&shmem_fs_type);
3935 if (IS_ERR(shm_mnt)) {
3936 error = PTR_ERR(shm_mnt);
3937 pr_err("Could not kern_mount tmpfs\n");
3938 goto out1;
3939 }
3940
3941 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3942 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3943 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944 else
3945 shmem_huge = 0; /* just in case it was patched */
3946 #endif
3947 return 0;
3948
3949 out1:
3950 unregister_filesystem(&shmem_fs_type);
3951 out2:
3952 shmem_destroy_inodecache();
3953 shm_mnt = ERR_PTR(error);
3954 return error;
3955 }
3956
3957 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3958 static ssize_t shmem_enabled_show(struct kobject *kobj,
3959 struct kobj_attribute *attr, char *buf)
3960 {
3961 int values[] = {
3962 SHMEM_HUGE_ALWAYS,
3963 SHMEM_HUGE_WITHIN_SIZE,
3964 SHMEM_HUGE_ADVISE,
3965 SHMEM_HUGE_NEVER,
3966 SHMEM_HUGE_DENY,
3967 SHMEM_HUGE_FORCE,
3968 };
3969 int i, count;
3970
3971 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3972 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3973
3974 count += sprintf(buf + count, fmt,
3975 shmem_format_huge(values[i]));
3976 }
3977 buf[count - 1] = '\n';
3978 return count;
3979 }
3980
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3981 static ssize_t shmem_enabled_store(struct kobject *kobj,
3982 struct kobj_attribute *attr, const char *buf, size_t count)
3983 {
3984 char tmp[16];
3985 int huge;
3986
3987 if (count + 1 > sizeof(tmp))
3988 return -EINVAL;
3989 memcpy(tmp, buf, count);
3990 tmp[count] = '\0';
3991 if (count && tmp[count - 1] == '\n')
3992 tmp[count - 1] = '\0';
3993
3994 huge = shmem_parse_huge(tmp);
3995 if (huge == -EINVAL)
3996 return -EINVAL;
3997 if (!has_transparent_hugepage() &&
3998 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3999 return -EINVAL;
4000
4001 shmem_huge = huge;
4002 if (shmem_huge > SHMEM_HUGE_DENY)
4003 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4004 return count;
4005 }
4006
4007 struct kobj_attribute shmem_enabled_attr =
4008 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4009 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4010
4011 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
shmem_huge_enabled(struct vm_area_struct * vma)4012 bool shmem_huge_enabled(struct vm_area_struct *vma)
4013 {
4014 struct inode *inode = file_inode(vma->vm_file);
4015 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4016 loff_t i_size;
4017 pgoff_t off;
4018
4019 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4020 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4021 return false;
4022 if (shmem_huge == SHMEM_HUGE_FORCE)
4023 return true;
4024 if (shmem_huge == SHMEM_HUGE_DENY)
4025 return false;
4026 switch (sbinfo->huge) {
4027 case SHMEM_HUGE_NEVER:
4028 return false;
4029 case SHMEM_HUGE_ALWAYS:
4030 return true;
4031 case SHMEM_HUGE_WITHIN_SIZE:
4032 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4033 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4034 if (i_size >= HPAGE_PMD_SIZE &&
4035 i_size >> PAGE_SHIFT >= off)
4036 return true;
4037 /* fall through */
4038 case SHMEM_HUGE_ADVISE:
4039 /* TODO: implement fadvise() hints */
4040 return (vma->vm_flags & VM_HUGEPAGE);
4041 default:
4042 VM_BUG_ON(1);
4043 return false;
4044 }
4045 }
4046 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4047
4048 #else /* !CONFIG_SHMEM */
4049
4050 /*
4051 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4052 *
4053 * This is intended for small system where the benefits of the full
4054 * shmem code (swap-backed and resource-limited) are outweighed by
4055 * their complexity. On systems without swap this code should be
4056 * effectively equivalent, but much lighter weight.
4057 */
4058
4059 static struct file_system_type shmem_fs_type = {
4060 .name = "tmpfs",
4061 .init_fs_context = ramfs_init_fs_context,
4062 .parameters = &ramfs_fs_parameters,
4063 .kill_sb = kill_litter_super,
4064 .fs_flags = FS_USERNS_MOUNT,
4065 };
4066
shmem_init(void)4067 int __init shmem_init(void)
4068 {
4069 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4070
4071 shm_mnt = kern_mount(&shmem_fs_type);
4072 BUG_ON(IS_ERR(shm_mnt));
4073
4074 return 0;
4075 }
4076
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4077 int shmem_unuse(unsigned int type, bool frontswap,
4078 unsigned long *fs_pages_to_unuse)
4079 {
4080 return 0;
4081 }
4082
shmem_lock(struct file * file,int lock,struct user_struct * user)4083 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4084 {
4085 return 0;
4086 }
4087
shmem_unlock_mapping(struct address_space * mapping)4088 void shmem_unlock_mapping(struct address_space *mapping)
4089 {
4090 }
4091
4092 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4093 unsigned long shmem_get_unmapped_area(struct file *file,
4094 unsigned long addr, unsigned long len,
4095 unsigned long pgoff, unsigned long flags)
4096 {
4097 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4098 }
4099 #endif
4100
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4101 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4102 {
4103 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4104 }
4105 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4106
4107 #define shmem_vm_ops generic_file_vm_ops
4108 #define shmem_file_operations ramfs_file_operations
4109 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4110 #define shmem_acct_size(flags, size) 0
4111 #define shmem_unacct_size(flags, size) do {} while (0)
4112
4113 #endif /* CONFIG_SHMEM */
4114
4115 /* common code */
4116
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4117 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4118 unsigned long flags, unsigned int i_flags)
4119 {
4120 struct inode *inode;
4121 struct file *res;
4122
4123 if (IS_ERR(mnt))
4124 return ERR_CAST(mnt);
4125
4126 if (size < 0 || size > MAX_LFS_FILESIZE)
4127 return ERR_PTR(-EINVAL);
4128
4129 if (shmem_acct_size(flags, size))
4130 return ERR_PTR(-ENOMEM);
4131
4132 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4133 flags);
4134 if (unlikely(!inode)) {
4135 shmem_unacct_size(flags, size);
4136 return ERR_PTR(-ENOSPC);
4137 }
4138 inode->i_flags |= i_flags;
4139 inode->i_size = size;
4140 clear_nlink(inode); /* It is unlinked */
4141 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4142 if (!IS_ERR(res))
4143 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4144 &shmem_file_operations);
4145 if (IS_ERR(res))
4146 iput(inode);
4147 return res;
4148 }
4149
4150 /**
4151 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4152 * kernel internal. There will be NO LSM permission checks against the
4153 * underlying inode. So users of this interface must do LSM checks at a
4154 * higher layer. The users are the big_key and shm implementations. LSM
4155 * checks are provided at the key or shm level rather than the inode.
4156 * @name: name for dentry (to be seen in /proc/<pid>/maps
4157 * @size: size to be set for the file
4158 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4159 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4160 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4161 {
4162 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4163 }
4164
4165 /**
4166 * shmem_file_setup - get an unlinked file living in tmpfs
4167 * @name: name for dentry (to be seen in /proc/<pid>/maps
4168 * @size: size to be set for the file
4169 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4170 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4171 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4172 {
4173 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4174 }
4175 EXPORT_SYMBOL_GPL(shmem_file_setup);
4176
4177 /**
4178 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4179 * @mnt: the tmpfs mount where the file will be created
4180 * @name: name for dentry (to be seen in /proc/<pid>/maps
4181 * @size: size to be set for the file
4182 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4184 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4185 loff_t size, unsigned long flags)
4186 {
4187 return __shmem_file_setup(mnt, name, size, flags, 0);
4188 }
4189 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4190
4191 /**
4192 * shmem_zero_setup - setup a shared anonymous mapping
4193 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4194 */
shmem_zero_setup(struct vm_area_struct * vma)4195 int shmem_zero_setup(struct vm_area_struct *vma)
4196 {
4197 struct file *file;
4198 loff_t size = vma->vm_end - vma->vm_start;
4199
4200 /*
4201 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4202 * between XFS directory reading and selinux: since this file is only
4203 * accessible to the user through its mapping, use S_PRIVATE flag to
4204 * bypass file security, in the same way as shmem_kernel_file_setup().
4205 */
4206 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4207 if (IS_ERR(file))
4208 return PTR_ERR(file);
4209
4210 if (vma->vm_file)
4211 fput(vma->vm_file);
4212 vma->vm_file = file;
4213 vma->vm_ops = &shmem_vm_ops;
4214
4215 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4216 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4217 (vma->vm_end & HPAGE_PMD_MASK)) {
4218 khugepaged_enter(vma, vma->vm_flags);
4219 }
4220
4221 return 0;
4222 }
4223
4224 /**
4225 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4226 * @mapping: the page's address_space
4227 * @index: the page index
4228 * @gfp: the page allocator flags to use if allocating
4229 *
4230 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4231 * with any new page allocations done using the specified allocation flags.
4232 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4233 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4234 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4235 *
4236 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4237 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4238 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4239 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4240 pgoff_t index, gfp_t gfp)
4241 {
4242 #ifdef CONFIG_SHMEM
4243 struct inode *inode = mapping->host;
4244 struct page *page;
4245 int error;
4246
4247 BUG_ON(mapping->a_ops != &shmem_aops);
4248 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4249 gfp, NULL, NULL, NULL);
4250 if (error)
4251 page = ERR_PTR(error);
4252 else
4253 unlock_page(page);
4254 return page;
4255 #else
4256 /*
4257 * The tiny !SHMEM case uses ramfs without swap
4258 */
4259 return read_cache_page_gfp(mapping, index, gfp);
4260 #endif
4261 }
4262 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4263