• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97 
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 	pgoff_t start;		/* start of range currently being fallocated */
106 	pgoff_t next;		/* the next page offset to be fallocated */
107 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
108 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
109 };
110 
111 struct shmem_options {
112 	unsigned long long blocks;
113 	unsigned long long inodes;
114 	struct mempolicy *mpol;
115 	kuid_t uid;
116 	kgid_t gid;
117 	umode_t mode;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124 
125 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
shmem_default_max_inodes(void)131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 				struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 			     struct page **pagep, enum sgp_type sgp,
144 			     gfp_t gfp, struct vm_area_struct *vma,
145 			     vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp,
148 		gfp_t gfp, struct vm_area_struct *vma,
149 		struct vm_fault *vmf, vm_fault_t *fault_type);
150 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 		struct page **pagep, enum sgp_type sgp)
153 {
154 	return shmem_getpage_gfp(inode, index, pagep, sgp,
155 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157 
SHMEM_SB(struct super_block * sb)158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 	return sb->s_fs_info;
161 }
162 
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
shmem_acct_size(unsigned long flags,loff_t size)169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 	return (flags & VM_NORESERVE) ?
172 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174 
shmem_unacct_size(unsigned long flags,loff_t size)175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 	if (!(flags & VM_NORESERVE))
178 		vm_unacct_memory(VM_ACCT(size));
179 }
180 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)181 static inline int shmem_reacct_size(unsigned long flags,
182 		loff_t oldsize, loff_t newsize)
183 {
184 	if (!(flags & VM_NORESERVE)) {
185 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 			return security_vm_enough_memory_mm(current->mm,
187 					VM_ACCT(newsize) - VM_ACCT(oldsize));
188 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 	}
191 	return 0;
192 }
193 
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
shmem_acct_block(unsigned long flags,long pages)200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 	if (!(flags & VM_NORESERVE))
203 		return 0;
204 
205 	return security_vm_enough_memory_mm(current->mm,
206 			pages * VM_ACCT(PAGE_SIZE));
207 }
208 
shmem_unacct_blocks(unsigned long flags,long pages)209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214 
shmem_inode_acct_block(struct inode * inode,long pages)215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (shmem_acct_block(info->flags, pages))
221 		return false;
222 
223 	if (sbinfo->max_blocks) {
224 		if (percpu_counter_compare(&sbinfo->used_blocks,
225 					   sbinfo->max_blocks - pages) > 0)
226 			goto unacct;
227 		percpu_counter_add(&sbinfo->used_blocks, pages);
228 	}
229 
230 	return true;
231 
232 unacct:
233 	shmem_unacct_blocks(info->flags, pages);
234 	return false;
235 }
236 
shmem_inode_unacct_blocks(struct inode * inode,long pages)237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 	struct shmem_inode_info *info = SHMEM_I(inode);
240 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 
242 	if (sbinfo->max_blocks)
243 		percpu_counter_sub(&sbinfo->used_blocks, pages);
244 	shmem_unacct_blocks(info->flags, pages);
245 }
246 
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255 
vma_is_shmem(struct vm_area_struct * vma)256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 	return vma->vm_ops == &shmem_vm_ops;
259 }
260 
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263 
shmem_reserve_inode(struct super_block * sb)264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		if (!sbinfo->free_inodes) {
270 			spin_unlock(&sbinfo->stat_lock);
271 			return -ENOSPC;
272 		}
273 		sbinfo->free_inodes--;
274 		spin_unlock(&sbinfo->stat_lock);
275 	}
276 	return 0;
277 }
278 
shmem_free_inode(struct super_block * sb)279 static void shmem_free_inode(struct super_block *sb)
280 {
281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 	if (sbinfo->max_inodes) {
283 		spin_lock(&sbinfo->stat_lock);
284 		sbinfo->free_inodes++;
285 		spin_unlock(&sbinfo->stat_lock);
286 	}
287 }
288 
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
shmem_recalc_inode(struct inode * inode)301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 	struct shmem_inode_info *info = SHMEM_I(inode);
304 	long freed;
305 
306 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 	if (freed > 0) {
308 		info->alloced -= freed;
309 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 		shmem_inode_unacct_blocks(inode, freed);
311 	}
312 }
313 
shmem_charge(struct inode * inode,long pages)314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 	struct shmem_inode_info *info = SHMEM_I(inode);
317 	unsigned long flags;
318 
319 	if (!shmem_inode_acct_block(inode, pages))
320 		return false;
321 
322 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 	inode->i_mapping->nrpages += pages;
324 
325 	spin_lock_irqsave(&info->lock, flags);
326 	info->alloced += pages;
327 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 	shmem_recalc_inode(inode);
329 	spin_unlock_irqrestore(&info->lock, flags);
330 
331 	return true;
332 }
333 
shmem_uncharge(struct inode * inode,long pages)334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 	struct shmem_inode_info *info = SHMEM_I(inode);
337 	unsigned long flags;
338 
339 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
340 
341 	spin_lock_irqsave(&info->lock, flags);
342 	info->alloced -= pages;
343 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 	shmem_recalc_inode(inode);
345 	spin_unlock_irqrestore(&info->lock, flags);
346 
347 	shmem_inode_unacct_blocks(inode, pages);
348 }
349 
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)353 static int shmem_replace_entry(struct address_space *mapping,
354 			pgoff_t index, void *expected, void *replacement)
355 {
356 	XA_STATE(xas, &mapping->i_pages, index);
357 	void *item;
358 
359 	VM_BUG_ON(!expected);
360 	VM_BUG_ON(!replacement);
361 	item = xas_load(&xas);
362 	if (item != expected)
363 		return -ENOENT;
364 	xas_store(&xas, replacement);
365 	return 0;
366 }
367 
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)375 static bool shmem_confirm_swap(struct address_space *mapping,
376 			       pgoff_t index, swp_entry_t swap)
377 {
378 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380 
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *	disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *	enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *	only allocate huge pages if the page will be fully within i_size,
390  *	also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *	only allocate huge pages if requested with fadvise()/madvise();
393  */
394 
395 #define SHMEM_HUGE_NEVER	0
396 #define SHMEM_HUGE_ALWAYS	1
397 #define SHMEM_HUGE_WITHIN_SIZE	2
398 #define SHMEM_HUGE_ADVISE	3
399 
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *	disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY		(-1)
411 #define SHMEM_HUGE_FORCE	(-2)
412 
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415 
416 static int shmem_huge __read_mostly;
417 
418 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)419 static int shmem_parse_huge(const char *str)
420 {
421 	if (!strcmp(str, "never"))
422 		return SHMEM_HUGE_NEVER;
423 	if (!strcmp(str, "always"))
424 		return SHMEM_HUGE_ALWAYS;
425 	if (!strcmp(str, "within_size"))
426 		return SHMEM_HUGE_WITHIN_SIZE;
427 	if (!strcmp(str, "advise"))
428 		return SHMEM_HUGE_ADVISE;
429 	if (!strcmp(str, "deny"))
430 		return SHMEM_HUGE_DENY;
431 	if (!strcmp(str, "force"))
432 		return SHMEM_HUGE_FORCE;
433 	return -EINVAL;
434 }
435 #endif
436 
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)438 static const char *shmem_format_huge(int huge)
439 {
440 	switch (huge) {
441 	case SHMEM_HUGE_NEVER:
442 		return "never";
443 	case SHMEM_HUGE_ALWAYS:
444 		return "always";
445 	case SHMEM_HUGE_WITHIN_SIZE:
446 		return "within_size";
447 	case SHMEM_HUGE_ADVISE:
448 		return "advise";
449 	case SHMEM_HUGE_DENY:
450 		return "deny";
451 	case SHMEM_HUGE_FORCE:
452 		return "force";
453 	default:
454 		VM_BUG_ON(1);
455 		return "bad_val";
456 	}
457 }
458 #endif
459 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 		struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 	LIST_HEAD(list), *pos, *next;
464 	LIST_HEAD(to_remove);
465 	struct inode *inode;
466 	struct shmem_inode_info *info;
467 	struct page *page;
468 	unsigned long batch = sc ? sc->nr_to_scan : 128;
469 	int split = 0;
470 
471 	if (list_empty(&sbinfo->shrinklist))
472 		return SHRINK_STOP;
473 
474 	spin_lock(&sbinfo->shrinklist_lock);
475 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 
478 		/* pin the inode */
479 		inode = igrab(&info->vfs_inode);
480 
481 		/* inode is about to be evicted */
482 		if (!inode) {
483 			list_del_init(&info->shrinklist);
484 			goto next;
485 		}
486 
487 		/* Check if there's anything to gain */
488 		if (round_up(inode->i_size, PAGE_SIZE) ==
489 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490 			list_move(&info->shrinklist, &to_remove);
491 			goto next;
492 		}
493 
494 		list_move(&info->shrinklist, &list);
495 next:
496 		sbinfo->shrinklist_len--;
497 		if (!--batch)
498 			break;
499 	}
500 	spin_unlock(&sbinfo->shrinklist_lock);
501 
502 	list_for_each_safe(pos, next, &to_remove) {
503 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
504 		inode = &info->vfs_inode;
505 		list_del_init(&info->shrinklist);
506 		iput(inode);
507 	}
508 
509 	list_for_each_safe(pos, next, &list) {
510 		int ret;
511 
512 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
513 		inode = &info->vfs_inode;
514 
515 		if (nr_to_split && split >= nr_to_split)
516 			goto move_back;
517 
518 		page = find_get_page(inode->i_mapping,
519 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520 		if (!page)
521 			goto drop;
522 
523 		/* No huge page at the end of the file: nothing to split */
524 		if (!PageTransHuge(page)) {
525 			put_page(page);
526 			goto drop;
527 		}
528 
529 		/*
530 		 * Move the inode on the list back to shrinklist if we failed
531 		 * to lock the page at this time.
532 		 *
533 		 * Waiting for the lock may lead to deadlock in the
534 		 * reclaim path.
535 		 */
536 		if (!trylock_page(page)) {
537 			put_page(page);
538 			goto move_back;
539 		}
540 
541 		ret = split_huge_page(page);
542 		unlock_page(page);
543 		put_page(page);
544 
545 		/* If split failed move the inode on the list back to shrinklist */
546 		if (ret)
547 			goto move_back;
548 
549 		split++;
550 drop:
551 		list_del_init(&info->shrinklist);
552 		goto put;
553 move_back:
554 		/*
555 		 * Make sure the inode is either on the global list or deleted
556 		 * from any local list before iput() since it could be deleted
557 		 * in another thread once we put the inode (then the local list
558 		 * is corrupted).
559 		 */
560 		spin_lock(&sbinfo->shrinklist_lock);
561 		list_move(&info->shrinklist, &sbinfo->shrinklist);
562 		sbinfo->shrinklist_len++;
563 		spin_unlock(&sbinfo->shrinklist_lock);
564 put:
565 		iput(inode);
566 	}
567 
568 	return split;
569 }
570 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)571 static long shmem_unused_huge_scan(struct super_block *sb,
572 		struct shrink_control *sc)
573 {
574 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
575 
576 	if (!READ_ONCE(sbinfo->shrinklist_len))
577 		return SHRINK_STOP;
578 
579 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
580 }
581 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)582 static long shmem_unused_huge_count(struct super_block *sb,
583 		struct shrink_control *sc)
584 {
585 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
586 	return READ_ONCE(sbinfo->shrinklist_len);
587 }
588 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
589 
590 #define shmem_huge SHMEM_HUGE_DENY
591 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)592 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
593 		struct shrink_control *sc, unsigned long nr_to_split)
594 {
595 	return 0;
596 }
597 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
598 
is_huge_enabled(struct shmem_sb_info * sbinfo)599 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
600 {
601 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
602 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
603 	    shmem_huge != SHMEM_HUGE_DENY)
604 		return true;
605 	return false;
606 }
607 
608 /*
609  * Like add_to_page_cache_locked, but error if expected item has gone.
610  */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)611 static int shmem_add_to_page_cache(struct page *page,
612 				   struct address_space *mapping,
613 				   pgoff_t index, void *expected, gfp_t gfp)
614 {
615 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
616 	unsigned long i = 0;
617 	unsigned long nr = compound_nr(page);
618 
619 	VM_BUG_ON_PAGE(PageTail(page), page);
620 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
621 	VM_BUG_ON_PAGE(!PageLocked(page), page);
622 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
623 	VM_BUG_ON(expected && PageTransHuge(page));
624 
625 	page_ref_add(page, nr);
626 	page->mapping = mapping;
627 	page->index = index;
628 
629 	do {
630 		void *entry;
631 		xas_lock_irq(&xas);
632 		entry = xas_find_conflict(&xas);
633 		if (entry != expected)
634 			xas_set_err(&xas, -EEXIST);
635 		xas_create_range(&xas);
636 		if (xas_error(&xas))
637 			goto unlock;
638 next:
639 		xas_store(&xas, page);
640 		if (++i < nr) {
641 			xas_next(&xas);
642 			goto next;
643 		}
644 		if (PageTransHuge(page)) {
645 			count_vm_event(THP_FILE_ALLOC);
646 			__inc_node_page_state(page, NR_SHMEM_THPS);
647 		}
648 		mapping->nrpages += nr;
649 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
650 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
651 unlock:
652 		xas_unlock_irq(&xas);
653 	} while (xas_nomem(&xas, gfp));
654 
655 	if (xas_error(&xas)) {
656 		page->mapping = NULL;
657 		page_ref_sub(page, nr);
658 		return xas_error(&xas);
659 	}
660 
661 	return 0;
662 }
663 
664 /*
665  * Like delete_from_page_cache, but substitutes swap for page.
666  */
shmem_delete_from_page_cache(struct page * page,void * radswap)667 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
668 {
669 	struct address_space *mapping = page->mapping;
670 	int error;
671 
672 	VM_BUG_ON_PAGE(PageCompound(page), page);
673 
674 	xa_lock_irq(&mapping->i_pages);
675 	error = shmem_replace_entry(mapping, page->index, page, radswap);
676 	page->mapping = NULL;
677 	mapping->nrpages--;
678 	__dec_node_page_state(page, NR_FILE_PAGES);
679 	__dec_node_page_state(page, NR_SHMEM);
680 	xa_unlock_irq(&mapping->i_pages);
681 	put_page(page);
682 	BUG_ON(error);
683 }
684 
685 /*
686  * Remove swap entry from page cache, free the swap and its page cache.
687  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)688 static int shmem_free_swap(struct address_space *mapping,
689 			   pgoff_t index, void *radswap)
690 {
691 	void *old;
692 
693 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
694 	if (old != radswap)
695 		return -ENOENT;
696 	free_swap_and_cache(radix_to_swp_entry(radswap));
697 	return 0;
698 }
699 
700 /*
701  * Determine (in bytes) how many of the shmem object's pages mapped by the
702  * given offsets are swapped out.
703  *
704  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
705  * as long as the inode doesn't go away and racy results are not a problem.
706  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)707 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
708 						pgoff_t start, pgoff_t end)
709 {
710 	XA_STATE(xas, &mapping->i_pages, start);
711 	struct page *page;
712 	unsigned long swapped = 0;
713 
714 	rcu_read_lock();
715 	xas_for_each(&xas, page, end - 1) {
716 		if (xas_retry(&xas, page))
717 			continue;
718 		if (xa_is_value(page))
719 			swapped++;
720 
721 		if (need_resched()) {
722 			xas_pause(&xas);
723 			cond_resched_rcu();
724 		}
725 	}
726 
727 	rcu_read_unlock();
728 
729 	return swapped << PAGE_SHIFT;
730 }
731 
732 /*
733  * Determine (in bytes) how many of the shmem object's pages mapped by the
734  * given vma is swapped out.
735  *
736  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
737  * as long as the inode doesn't go away and racy results are not a problem.
738  */
shmem_swap_usage(struct vm_area_struct * vma)739 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
740 {
741 	struct inode *inode = file_inode(vma->vm_file);
742 	struct shmem_inode_info *info = SHMEM_I(inode);
743 	struct address_space *mapping = inode->i_mapping;
744 	unsigned long swapped;
745 
746 	/* Be careful as we don't hold info->lock */
747 	swapped = READ_ONCE(info->swapped);
748 
749 	/*
750 	 * The easier cases are when the shmem object has nothing in swap, or
751 	 * the vma maps it whole. Then we can simply use the stats that we
752 	 * already track.
753 	 */
754 	if (!swapped)
755 		return 0;
756 
757 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
758 		return swapped << PAGE_SHIFT;
759 
760 	/* Here comes the more involved part */
761 	return shmem_partial_swap_usage(mapping,
762 			linear_page_index(vma, vma->vm_start),
763 			linear_page_index(vma, vma->vm_end));
764 }
765 
766 /*
767  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
768  */
shmem_unlock_mapping(struct address_space * mapping)769 void shmem_unlock_mapping(struct address_space *mapping)
770 {
771 	struct pagevec pvec;
772 	pgoff_t indices[PAGEVEC_SIZE];
773 	pgoff_t index = 0;
774 
775 	pagevec_init(&pvec);
776 	/*
777 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
778 	 */
779 	while (!mapping_unevictable(mapping)) {
780 		/*
781 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
782 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
783 		 */
784 		pvec.nr = find_get_entries(mapping, index,
785 					   PAGEVEC_SIZE, pvec.pages, indices);
786 		if (!pvec.nr)
787 			break;
788 		index = indices[pvec.nr - 1] + 1;
789 		pagevec_remove_exceptionals(&pvec);
790 		check_move_unevictable_pages(&pvec);
791 		pagevec_release(&pvec);
792 		cond_resched();
793 	}
794 }
795 
796 /*
797  * Remove range of pages and swap entries from page cache, and free them.
798  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
799  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)800 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
801 								 bool unfalloc)
802 {
803 	struct address_space *mapping = inode->i_mapping;
804 	struct shmem_inode_info *info = SHMEM_I(inode);
805 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
806 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
807 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
808 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
809 	struct pagevec pvec;
810 	pgoff_t indices[PAGEVEC_SIZE];
811 	long nr_swaps_freed = 0;
812 	pgoff_t index;
813 	int i;
814 
815 	if (lend == -1)
816 		end = -1;	/* unsigned, so actually very big */
817 
818 	pagevec_init(&pvec);
819 	index = start;
820 	while (index < end) {
821 		pvec.nr = find_get_entries(mapping, index,
822 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
823 			pvec.pages, indices);
824 		if (!pvec.nr)
825 			break;
826 		for (i = 0; i < pagevec_count(&pvec); i++) {
827 			struct page *page = pvec.pages[i];
828 
829 			index = indices[i];
830 			if (index >= end)
831 				break;
832 
833 			if (xa_is_value(page)) {
834 				if (unfalloc)
835 					continue;
836 				nr_swaps_freed += !shmem_free_swap(mapping,
837 								index, page);
838 				continue;
839 			}
840 
841 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
842 
843 			if (!trylock_page(page))
844 				continue;
845 
846 			if (PageTransTail(page)) {
847 				/* Middle of THP: zero out the page */
848 				clear_highpage(page);
849 				unlock_page(page);
850 				continue;
851 			} else if (PageTransHuge(page)) {
852 				if (index == round_down(end, HPAGE_PMD_NR)) {
853 					/*
854 					 * Range ends in the middle of THP:
855 					 * zero out the page
856 					 */
857 					clear_highpage(page);
858 					unlock_page(page);
859 					continue;
860 				}
861 				index += HPAGE_PMD_NR - 1;
862 				i += HPAGE_PMD_NR - 1;
863 			}
864 
865 			if (!unfalloc || !PageUptodate(page)) {
866 				VM_BUG_ON_PAGE(PageTail(page), page);
867 				if (page_mapping(page) == mapping) {
868 					VM_BUG_ON_PAGE(PageWriteback(page), page);
869 					truncate_inode_page(mapping, page);
870 				}
871 			}
872 			unlock_page(page);
873 		}
874 		pagevec_remove_exceptionals(&pvec);
875 		pagevec_release(&pvec);
876 		cond_resched();
877 		index++;
878 	}
879 
880 	if (partial_start) {
881 		struct page *page = NULL;
882 		shmem_getpage(inode, start - 1, &page, SGP_READ);
883 		if (page) {
884 			unsigned int top = PAGE_SIZE;
885 			if (start > end) {
886 				top = partial_end;
887 				partial_end = 0;
888 			}
889 			zero_user_segment(page, partial_start, top);
890 			set_page_dirty(page);
891 			unlock_page(page);
892 			put_page(page);
893 		}
894 	}
895 	if (partial_end) {
896 		struct page *page = NULL;
897 		shmem_getpage(inode, end, &page, SGP_READ);
898 		if (page) {
899 			zero_user_segment(page, 0, partial_end);
900 			set_page_dirty(page);
901 			unlock_page(page);
902 			put_page(page);
903 		}
904 	}
905 	if (start >= end)
906 		return;
907 
908 	index = start;
909 	while (index < end) {
910 		cond_resched();
911 
912 		pvec.nr = find_get_entries(mapping, index,
913 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
914 				pvec.pages, indices);
915 		if (!pvec.nr) {
916 			/* If all gone or hole-punch or unfalloc, we're done */
917 			if (index == start || end != -1)
918 				break;
919 			/* But if truncating, restart to make sure all gone */
920 			index = start;
921 			continue;
922 		}
923 		for (i = 0; i < pagevec_count(&pvec); i++) {
924 			struct page *page = pvec.pages[i];
925 
926 			index = indices[i];
927 			if (index >= end)
928 				break;
929 
930 			if (xa_is_value(page)) {
931 				if (unfalloc)
932 					continue;
933 				if (shmem_free_swap(mapping, index, page)) {
934 					/* Swap was replaced by page: retry */
935 					index--;
936 					break;
937 				}
938 				nr_swaps_freed++;
939 				continue;
940 			}
941 
942 			lock_page(page);
943 
944 			if (PageTransTail(page)) {
945 				/* Middle of THP: zero out the page */
946 				clear_highpage(page);
947 				unlock_page(page);
948 				/*
949 				 * Partial thp truncate due 'start' in middle
950 				 * of THP: don't need to look on these pages
951 				 * again on !pvec.nr restart.
952 				 */
953 				if (index != round_down(end, HPAGE_PMD_NR))
954 					start++;
955 				continue;
956 			} else if (PageTransHuge(page)) {
957 				if (index == round_down(end, HPAGE_PMD_NR)) {
958 					/*
959 					 * Range ends in the middle of THP:
960 					 * zero out the page
961 					 */
962 					clear_highpage(page);
963 					unlock_page(page);
964 					continue;
965 				}
966 				index += HPAGE_PMD_NR - 1;
967 				i += HPAGE_PMD_NR - 1;
968 			}
969 
970 			if (!unfalloc || !PageUptodate(page)) {
971 				VM_BUG_ON_PAGE(PageTail(page), page);
972 				if (page_mapping(page) == mapping) {
973 					VM_BUG_ON_PAGE(PageWriteback(page), page);
974 					truncate_inode_page(mapping, page);
975 				} else {
976 					/* Page was replaced by swap: retry */
977 					unlock_page(page);
978 					index--;
979 					break;
980 				}
981 			}
982 			unlock_page(page);
983 		}
984 		pagevec_remove_exceptionals(&pvec);
985 		pagevec_release(&pvec);
986 		index++;
987 	}
988 
989 	spin_lock_irq(&info->lock);
990 	info->swapped -= nr_swaps_freed;
991 	shmem_recalc_inode(inode);
992 	spin_unlock_irq(&info->lock);
993 }
994 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997 	shmem_undo_range(inode, lstart, lend, false);
998 	inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001 
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 			 u32 request_mask, unsigned int query_flags)
1004 {
1005 	struct inode *inode = path->dentry->d_inode;
1006 	struct shmem_inode_info *info = SHMEM_I(inode);
1007 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008 
1009 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 		spin_lock_irq(&info->lock);
1011 		shmem_recalc_inode(inode);
1012 		spin_unlock_irq(&info->lock);
1013 	}
1014 	generic_fillattr(inode, stat);
1015 
1016 	if (is_huge_enabled(sb_info))
1017 		stat->blksize = HPAGE_PMD_SIZE;
1018 
1019 	return 0;
1020 }
1021 
shmem_setattr(struct dentry * dentry,struct iattr * attr)1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024 	struct inode *inode = d_inode(dentry);
1025 	struct shmem_inode_info *info = SHMEM_I(inode);
1026 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 	int error;
1028 
1029 	error = setattr_prepare(dentry, attr);
1030 	if (error)
1031 		return error;
1032 
1033 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 		loff_t oldsize = inode->i_size;
1035 		loff_t newsize = attr->ia_size;
1036 
1037 		/* protected by i_mutex */
1038 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 			return -EPERM;
1041 
1042 		if (newsize != oldsize) {
1043 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 					oldsize, newsize);
1045 			if (error)
1046 				return error;
1047 			i_size_write(inode, newsize);
1048 			inode->i_ctime = inode->i_mtime = current_time(inode);
1049 		}
1050 		if (newsize <= oldsize) {
1051 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 			if (oldsize > holebegin)
1053 				unmap_mapping_range(inode->i_mapping,
1054 							holebegin, 0, 1);
1055 			if (info->alloced)
1056 				shmem_truncate_range(inode,
1057 							newsize, (loff_t)-1);
1058 			/* unmap again to remove racily COWed private pages */
1059 			if (oldsize > holebegin)
1060 				unmap_mapping_range(inode->i_mapping,
1061 							holebegin, 0, 1);
1062 
1063 			/*
1064 			 * Part of the huge page can be beyond i_size: subject
1065 			 * to shrink under memory pressure.
1066 			 */
1067 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1068 				spin_lock(&sbinfo->shrinklist_lock);
1069 				/*
1070 				 * _careful to defend against unlocked access to
1071 				 * ->shrink_list in shmem_unused_huge_shrink()
1072 				 */
1073 				if (list_empty_careful(&info->shrinklist)) {
1074 					list_add_tail(&info->shrinklist,
1075 							&sbinfo->shrinklist);
1076 					sbinfo->shrinklist_len++;
1077 				}
1078 				spin_unlock(&sbinfo->shrinklist_lock);
1079 			}
1080 		}
1081 	}
1082 
1083 	setattr_copy(inode, attr);
1084 	if (attr->ia_valid & ATTR_MODE)
1085 		error = posix_acl_chmod(inode, inode->i_mode);
1086 	return error;
1087 }
1088 
shmem_evict_inode(struct inode * inode)1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091 	struct shmem_inode_info *info = SHMEM_I(inode);
1092 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093 
1094 	if (inode->i_mapping->a_ops == &shmem_aops) {
1095 		shmem_unacct_size(info->flags, inode->i_size);
1096 		inode->i_size = 0;
1097 		shmem_truncate_range(inode, 0, (loff_t)-1);
1098 		if (!list_empty(&info->shrinklist)) {
1099 			spin_lock(&sbinfo->shrinklist_lock);
1100 			if (!list_empty(&info->shrinklist)) {
1101 				list_del_init(&info->shrinklist);
1102 				sbinfo->shrinklist_len--;
1103 			}
1104 			spin_unlock(&sbinfo->shrinklist_lock);
1105 		}
1106 		while (!list_empty(&info->swaplist)) {
1107 			/* Wait while shmem_unuse() is scanning this inode... */
1108 			wait_var_event(&info->stop_eviction,
1109 				       !atomic_read(&info->stop_eviction));
1110 			mutex_lock(&shmem_swaplist_mutex);
1111 			/* ...but beware of the race if we peeked too early */
1112 			if (!atomic_read(&info->stop_eviction))
1113 				list_del_init(&info->swaplist);
1114 			mutex_unlock(&shmem_swaplist_mutex);
1115 		}
1116 	}
1117 
1118 	simple_xattrs_free(&info->xattrs);
1119 	WARN_ON(inode->i_blocks);
1120 	shmem_free_inode(inode->i_sb);
1121 	clear_inode(inode);
1122 }
1123 
1124 extern struct swap_info_struct *swap_info[];
1125 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127 				   pgoff_t start, unsigned int nr_entries,
1128 				   struct page **entries, pgoff_t *indices,
1129 				   unsigned int type, bool frontswap)
1130 {
1131 	XA_STATE(xas, &mapping->i_pages, start);
1132 	struct page *page;
1133 	swp_entry_t entry;
1134 	unsigned int ret = 0;
1135 
1136 	if (!nr_entries)
1137 		return 0;
1138 
1139 	rcu_read_lock();
1140 	xas_for_each(&xas, page, ULONG_MAX) {
1141 		if (xas_retry(&xas, page))
1142 			continue;
1143 
1144 		if (!xa_is_value(page))
1145 			continue;
1146 
1147 		entry = radix_to_swp_entry(page);
1148 		if (swp_type(entry) != type)
1149 			continue;
1150 		if (frontswap &&
1151 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1152 			continue;
1153 
1154 		indices[ret] = xas.xa_index;
1155 		entries[ret] = page;
1156 
1157 		if (need_resched()) {
1158 			xas_pause(&xas);
1159 			cond_resched_rcu();
1160 		}
1161 		if (++ret == nr_entries)
1162 			break;
1163 	}
1164 	rcu_read_unlock();
1165 
1166 	return ret;
1167 }
1168 
1169 /*
1170  * Move the swapped pages for an inode to page cache. Returns the count
1171  * of pages swapped in, or the error in case of failure.
1172  */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 				    pgoff_t *indices)
1175 {
1176 	int i = 0;
1177 	int ret = 0;
1178 	int error = 0;
1179 	struct address_space *mapping = inode->i_mapping;
1180 
1181 	for (i = 0; i < pvec.nr; i++) {
1182 		struct page *page = pvec.pages[i];
1183 
1184 		if (!xa_is_value(page))
1185 			continue;
1186 		error = shmem_swapin_page(inode, indices[i],
1187 					  &page, SGP_CACHE,
1188 					  mapping_gfp_mask(mapping),
1189 					  NULL, NULL);
1190 		if (error == 0) {
1191 			unlock_page(page);
1192 			put_page(page);
1193 			ret++;
1194 		}
1195 		if (error == -ENOMEM)
1196 			break;
1197 		error = 0;
1198 	}
1199 	return error ? error : ret;
1200 }
1201 
1202 /*
1203  * If swap found in inode, free it and move page from swapcache to filecache.
1204  */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208 	struct address_space *mapping = inode->i_mapping;
1209 	pgoff_t start = 0;
1210 	struct pagevec pvec;
1211 	pgoff_t indices[PAGEVEC_SIZE];
1212 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 	int ret = 0;
1214 
1215 	pagevec_init(&pvec);
1216 	do {
1217 		unsigned int nr_entries = PAGEVEC_SIZE;
1218 
1219 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 			nr_entries = *fs_pages_to_unuse;
1221 
1222 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 						  pvec.pages, indices,
1224 						  type, frontswap);
1225 		if (pvec.nr == 0) {
1226 			ret = 0;
1227 			break;
1228 		}
1229 
1230 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 		if (ret < 0)
1232 			break;
1233 
1234 		if (frontswap_partial) {
1235 			*fs_pages_to_unuse -= ret;
1236 			if (*fs_pages_to_unuse == 0) {
1237 				ret = FRONTSWAP_PAGES_UNUSED;
1238 				break;
1239 			}
1240 		}
1241 
1242 		start = indices[pvec.nr - 1];
1243 	} while (true);
1244 
1245 	return ret;
1246 }
1247 
1248 /*
1249  * Read all the shared memory data that resides in the swap
1250  * device 'type' back into memory, so the swap device can be
1251  * unused.
1252  */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1253 int shmem_unuse(unsigned int type, bool frontswap,
1254 		unsigned long *fs_pages_to_unuse)
1255 {
1256 	struct shmem_inode_info *info, *next;
1257 	int error = 0;
1258 
1259 	if (list_empty(&shmem_swaplist))
1260 		return 0;
1261 
1262 	mutex_lock(&shmem_swaplist_mutex);
1263 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 		if (!info->swapped) {
1265 			list_del_init(&info->swaplist);
1266 			continue;
1267 		}
1268 		/*
1269 		 * Drop the swaplist mutex while searching the inode for swap;
1270 		 * but before doing so, make sure shmem_evict_inode() will not
1271 		 * remove placeholder inode from swaplist, nor let it be freed
1272 		 * (igrab() would protect from unlink, but not from unmount).
1273 		 */
1274 		atomic_inc(&info->stop_eviction);
1275 		mutex_unlock(&shmem_swaplist_mutex);
1276 
1277 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278 					  fs_pages_to_unuse);
1279 		cond_resched();
1280 
1281 		mutex_lock(&shmem_swaplist_mutex);
1282 		next = list_next_entry(info, swaplist);
1283 		if (!info->swapped)
1284 			list_del_init(&info->swaplist);
1285 		if (atomic_dec_and_test(&info->stop_eviction))
1286 			wake_up_var(&info->stop_eviction);
1287 		if (error)
1288 			break;
1289 	}
1290 	mutex_unlock(&shmem_swaplist_mutex);
1291 
1292 	return error;
1293 }
1294 
1295 /*
1296  * Move the page from the page cache to the swap cache.
1297  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300 	struct shmem_inode_info *info;
1301 	struct address_space *mapping;
1302 	struct inode *inode;
1303 	swp_entry_t swap;
1304 	pgoff_t index;
1305 
1306 	VM_BUG_ON_PAGE(PageCompound(page), page);
1307 	BUG_ON(!PageLocked(page));
1308 	mapping = page->mapping;
1309 	index = page->index;
1310 	inode = mapping->host;
1311 	info = SHMEM_I(inode);
1312 	if (info->flags & VM_LOCKED)
1313 		goto redirty;
1314 	if (!total_swap_pages)
1315 		goto redirty;
1316 
1317 	/*
1318 	 * Our capabilities prevent regular writeback or sync from ever calling
1319 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 	 * its underlying filesystem, in which case tmpfs should write out to
1321 	 * swap only in response to memory pressure, and not for the writeback
1322 	 * threads or sync.
1323 	 */
1324 	if (!wbc->for_reclaim) {
1325 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1326 		goto redirty;
1327 	}
1328 
1329 	/*
1330 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 	 * value into swapfile.c, the only way we can correctly account for a
1332 	 * fallocated page arriving here is now to initialize it and write it.
1333 	 *
1334 	 * That's okay for a page already fallocated earlier, but if we have
1335 	 * not yet completed the fallocation, then (a) we want to keep track
1336 	 * of this page in case we have to undo it, and (b) it may not be a
1337 	 * good idea to continue anyway, once we're pushing into swap.  So
1338 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 	 */
1340 	if (!PageUptodate(page)) {
1341 		if (inode->i_private) {
1342 			struct shmem_falloc *shmem_falloc;
1343 			spin_lock(&inode->i_lock);
1344 			shmem_falloc = inode->i_private;
1345 			if (shmem_falloc &&
1346 			    !shmem_falloc->waitq &&
1347 			    index >= shmem_falloc->start &&
1348 			    index < shmem_falloc->next)
1349 				shmem_falloc->nr_unswapped++;
1350 			else
1351 				shmem_falloc = NULL;
1352 			spin_unlock(&inode->i_lock);
1353 			if (shmem_falloc)
1354 				goto redirty;
1355 		}
1356 		clear_highpage(page);
1357 		flush_dcache_page(page);
1358 		SetPageUptodate(page);
1359 	}
1360 
1361 	swap = get_swap_page(page);
1362 	if (!swap.val)
1363 		goto redirty;
1364 
1365 	/*
1366 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 	 * if it's not already there.  Do it now before the page is
1368 	 * moved to swap cache, when its pagelock no longer protects
1369 	 * the inode from eviction.  But don't unlock the mutex until
1370 	 * we've incremented swapped, because shmem_unuse_inode() will
1371 	 * prune a !swapped inode from the swaplist under this mutex.
1372 	 */
1373 	mutex_lock(&shmem_swaplist_mutex);
1374 	if (list_empty(&info->swaplist))
1375 		list_add(&info->swaplist, &shmem_swaplist);
1376 
1377 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1378 		spin_lock_irq(&info->lock);
1379 		shmem_recalc_inode(inode);
1380 		info->swapped++;
1381 		spin_unlock_irq(&info->lock);
1382 
1383 		swap_shmem_alloc(swap);
1384 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385 
1386 		mutex_unlock(&shmem_swaplist_mutex);
1387 		BUG_ON(page_mapped(page));
1388 		swap_writepage(page, wbc);
1389 		return 0;
1390 	}
1391 
1392 	mutex_unlock(&shmem_swaplist_mutex);
1393 	put_swap_page(page, swap);
1394 redirty:
1395 	set_page_dirty(page);
1396 	if (wbc->for_reclaim)
1397 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1398 	unlock_page(page);
1399 	return 0;
1400 }
1401 
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404 {
1405 	char buffer[64];
1406 
1407 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1408 		return;		/* show nothing */
1409 
1410 	mpol_to_str(buffer, sizeof(buffer), mpol);
1411 
1412 	seq_printf(seq, ",mpol=%s", buffer);
1413 }
1414 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417 	struct mempolicy *mpol = NULL;
1418 	if (sbinfo->mpol) {
1419 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1420 		mpol = sbinfo->mpol;
1421 		mpol_get(mpol);
1422 		spin_unlock(&sbinfo->stat_lock);
1423 	}
1424 	return mpol;
1425 }
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431 {
1432 	return NULL;
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #ifndef CONFIG_NUMA
1436 #define vm_policy vm_private_data
1437 #endif
1438 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440 		struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 	/* Create a pseudo vma that just contains the policy */
1443 	vma_init(vma, NULL);
1444 	/* Bias interleave by inode number to distribute better across nodes */
1445 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447 }
1448 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 {
1451 	/* Drop reference taken by mpol_shared_policy_lookup() */
1452 	mpol_cond_put(vma->vm_policy);
1453 }
1454 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456 			struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 	struct vm_area_struct pvma;
1459 	struct page *page;
1460 	struct vm_fault vmf;
1461 
1462 	shmem_pseudo_vma_init(&pvma, info, index);
1463 	vmf.vma = &pvma;
1464 	vmf.address = 0;
1465 	page = swap_cluster_readahead(swap, gfp, &vmf);
1466 	shmem_pseudo_vma_destroy(&pvma);
1467 
1468 	return page;
1469 }
1470 
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1471 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472 		struct shmem_inode_info *info, pgoff_t index)
1473 {
1474 	struct vm_area_struct pvma;
1475 	struct address_space *mapping = info->vfs_inode.i_mapping;
1476 	pgoff_t hindex;
1477 	struct page *page;
1478 
1479 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1480 		return NULL;
1481 
1482 	hindex = round_down(index, HPAGE_PMD_NR);
1483 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1484 								XA_PRESENT))
1485 		return NULL;
1486 
1487 	shmem_pseudo_vma_init(&pvma, info, hindex);
1488 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1489 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1490 	shmem_pseudo_vma_destroy(&pvma);
1491 	if (page)
1492 		prep_transhuge_page(page);
1493 	return page;
1494 }
1495 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497 			struct shmem_inode_info *info, pgoff_t index)
1498 {
1499 	struct vm_area_struct pvma;
1500 	struct page *page;
1501 
1502 	shmem_pseudo_vma_init(&pvma, info, index);
1503 	page = alloc_page_vma(gfp, &pvma, 0);
1504 	shmem_pseudo_vma_destroy(&pvma);
1505 
1506 	return page;
1507 }
1508 
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 		struct inode *inode,
1511 		pgoff_t index, bool huge)
1512 {
1513 	struct shmem_inode_info *info = SHMEM_I(inode);
1514 	struct page *page;
1515 	int nr;
1516 	int err = -ENOSPC;
1517 
1518 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1519 		huge = false;
1520 	nr = huge ? HPAGE_PMD_NR : 1;
1521 
1522 	if (!shmem_inode_acct_block(inode, nr))
1523 		goto failed;
1524 
1525 	if (huge)
1526 		page = shmem_alloc_hugepage(gfp, info, index);
1527 	else
1528 		page = shmem_alloc_page(gfp, info, index);
1529 	if (page) {
1530 		__SetPageLocked(page);
1531 		__SetPageSwapBacked(page);
1532 		return page;
1533 	}
1534 
1535 	err = -ENOMEM;
1536 	shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538 	return ERR_PTR(err);
1539 }
1540 
1541 /*
1542  * When a page is moved from swapcache to shmem filecache (either by the
1543  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545  * ignorance of the mapping it belongs to.  If that mapping has special
1546  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547  * we may need to copy to a suitable page before moving to filecache.
1548  *
1549  * In a future release, this may well be extended to respect cpuset and
1550  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551  * but for now it is a simple matter of zone.
1552  */
shmem_should_replace_page(struct page * page,gfp_t gfp)1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555 	return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 				struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 	struct page *oldpage, *newpage;
1562 	struct address_space *swap_mapping;
1563 	swp_entry_t entry;
1564 	pgoff_t swap_index;
1565 	int error;
1566 
1567 	oldpage = *pagep;
1568 	entry.val = page_private(oldpage);
1569 	swap_index = swp_offset(entry);
1570 	swap_mapping = page_mapping(oldpage);
1571 
1572 	/*
1573 	 * We have arrived here because our zones are constrained, so don't
1574 	 * limit chance of success by further cpuset and node constraints.
1575 	 */
1576 	gfp &= ~GFP_CONSTRAINT_MASK;
1577 	newpage = shmem_alloc_page(gfp, info, index);
1578 	if (!newpage)
1579 		return -ENOMEM;
1580 
1581 	get_page(newpage);
1582 	copy_highpage(newpage, oldpage);
1583 	flush_dcache_page(newpage);
1584 
1585 	__SetPageLocked(newpage);
1586 	__SetPageSwapBacked(newpage);
1587 	SetPageUptodate(newpage);
1588 	set_page_private(newpage, entry.val);
1589 	SetPageSwapCache(newpage);
1590 
1591 	/*
1592 	 * Our caller will very soon move newpage out of swapcache, but it's
1593 	 * a nice clean interface for us to replace oldpage by newpage there.
1594 	 */
1595 	xa_lock_irq(&swap_mapping->i_pages);
1596 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597 	if (!error) {
1598 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1599 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1600 	}
1601 	xa_unlock_irq(&swap_mapping->i_pages);
1602 
1603 	if (unlikely(error)) {
1604 		/*
1605 		 * Is this possible?  I think not, now that our callers check
1606 		 * both PageSwapCache and page_private after getting page lock;
1607 		 * but be defensive.  Reverse old to newpage for clear and free.
1608 		 */
1609 		oldpage = newpage;
1610 	} else {
1611 		mem_cgroup_migrate(oldpage, newpage);
1612 		lru_cache_add_anon(newpage);
1613 		*pagep = newpage;
1614 	}
1615 
1616 	ClearPageSwapCache(oldpage);
1617 	set_page_private(oldpage, 0);
1618 
1619 	unlock_page(oldpage);
1620 	put_page(oldpage);
1621 	put_page(oldpage);
1622 	return error;
1623 }
1624 
1625 /*
1626  * Swap in the page pointed to by *pagep.
1627  * Caller has to make sure that *pagep contains a valid swapped page.
1628  * Returns 0 and the page in pagep if success. On failure, returns the
1629  * the error code and NULL in *pagep.
1630  */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 			     struct page **pagep, enum sgp_type sgp,
1633 			     gfp_t gfp, struct vm_area_struct *vma,
1634 			     vm_fault_t *fault_type)
1635 {
1636 	struct address_space *mapping = inode->i_mapping;
1637 	struct shmem_inode_info *info = SHMEM_I(inode);
1638 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639 	struct mem_cgroup *memcg;
1640 	struct page *page;
1641 	swp_entry_t swap;
1642 	int error;
1643 
1644 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1645 	swap = radix_to_swp_entry(*pagep);
1646 	*pagep = NULL;
1647 
1648 	/* Look it up and read it in.. */
1649 	page = lookup_swap_cache(swap, NULL, 0);
1650 	if (!page) {
1651 		/* Or update major stats only when swapin succeeds?? */
1652 		if (fault_type) {
1653 			*fault_type |= VM_FAULT_MAJOR;
1654 			count_vm_event(PGMAJFAULT);
1655 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656 		}
1657 		/* Here we actually start the io */
1658 		page = shmem_swapin(swap, gfp, info, index);
1659 		if (!page) {
1660 			error = -ENOMEM;
1661 			goto failed;
1662 		}
1663 	}
1664 
1665 	/* We have to do this with page locked to prevent races */
1666 	lock_page(page);
1667 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668 	    !shmem_confirm_swap(mapping, index, swap)) {
1669 		error = -EEXIST;
1670 		goto unlock;
1671 	}
1672 	if (!PageUptodate(page)) {
1673 		error = -EIO;
1674 		goto failed;
1675 	}
1676 	wait_on_page_writeback(page);
1677 
1678 	if (shmem_should_replace_page(page, gfp)) {
1679 		error = shmem_replace_page(&page, gfp, info, index);
1680 		if (error)
1681 			goto failed;
1682 	}
1683 
1684 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685 					    false);
1686 	if (!error) {
1687 		error = shmem_add_to_page_cache(page, mapping, index,
1688 						swp_to_radix_entry(swap), gfp);
1689 		/*
1690 		 * We already confirmed swap under page lock, and make
1691 		 * no memory allocation here, so usually no possibility
1692 		 * of error; but free_swap_and_cache() only trylocks a
1693 		 * page, so it is just possible that the entry has been
1694 		 * truncated or holepunched since swap was confirmed.
1695 		 * shmem_undo_range() will have done some of the
1696 		 * unaccounting, now delete_from_swap_cache() will do
1697 		 * the rest.
1698 		 */
1699 		if (error) {
1700 			mem_cgroup_cancel_charge(page, memcg, false);
1701 			delete_from_swap_cache(page);
1702 		}
1703 	}
1704 	if (error)
1705 		goto failed;
1706 
1707 	mem_cgroup_commit_charge(page, memcg, true, false);
1708 
1709 	spin_lock_irq(&info->lock);
1710 	info->swapped--;
1711 	shmem_recalc_inode(inode);
1712 	spin_unlock_irq(&info->lock);
1713 
1714 	if (sgp == SGP_WRITE)
1715 		mark_page_accessed(page);
1716 
1717 	delete_from_swap_cache(page);
1718 	set_page_dirty(page);
1719 	swap_free(swap);
1720 
1721 	*pagep = page;
1722 	return 0;
1723 failed:
1724 	if (!shmem_confirm_swap(mapping, index, swap))
1725 		error = -EEXIST;
1726 unlock:
1727 	if (page) {
1728 		unlock_page(page);
1729 		put_page(page);
1730 	}
1731 
1732 	return error;
1733 }
1734 
1735 /*
1736  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1737  *
1738  * If we allocate a new one we do not mark it dirty. That's up to the
1739  * vm. If we swap it in we mark it dirty since we also free the swap
1740  * entry since a page cannot live in both the swap and page cache.
1741  *
1742  * vmf and fault_type are only supplied by shmem_fault:
1743  * otherwise they are NULL.
1744  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1745 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1746 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1747 	struct vm_area_struct *vma, struct vm_fault *vmf,
1748 			vm_fault_t *fault_type)
1749 {
1750 	struct address_space *mapping = inode->i_mapping;
1751 	struct shmem_inode_info *info = SHMEM_I(inode);
1752 	struct shmem_sb_info *sbinfo;
1753 	struct mm_struct *charge_mm;
1754 	struct mem_cgroup *memcg;
1755 	struct page *page;
1756 	enum sgp_type sgp_huge = sgp;
1757 	pgoff_t hindex = index;
1758 	int error;
1759 	int once = 0;
1760 	int alloced = 0;
1761 
1762 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1763 		return -EFBIG;
1764 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1765 		sgp = SGP_CACHE;
1766 repeat:
1767 	if (sgp <= SGP_CACHE &&
1768 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1769 		return -EINVAL;
1770 	}
1771 
1772 	sbinfo = SHMEM_SB(inode->i_sb);
1773 	charge_mm = vma ? vma->vm_mm : current->mm;
1774 
1775 	page = find_lock_entry(mapping, index);
1776 	if (xa_is_value(page)) {
1777 		error = shmem_swapin_page(inode, index, &page,
1778 					  sgp, gfp, vma, fault_type);
1779 		if (error == -EEXIST)
1780 			goto repeat;
1781 
1782 		*pagep = page;
1783 		return error;
1784 	}
1785 
1786 	if (page && sgp == SGP_WRITE)
1787 		mark_page_accessed(page);
1788 
1789 	/* fallocated page? */
1790 	if (page && !PageUptodate(page)) {
1791 		if (sgp != SGP_READ)
1792 			goto clear;
1793 		unlock_page(page);
1794 		put_page(page);
1795 		page = NULL;
1796 	}
1797 	if (page || sgp == SGP_READ) {
1798 		*pagep = page;
1799 		return 0;
1800 	}
1801 
1802 	/*
1803 	 * Fast cache lookup did not find it:
1804 	 * bring it back from swap or allocate.
1805 	 */
1806 
1807 	if (vma && userfaultfd_missing(vma)) {
1808 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1809 		return 0;
1810 	}
1811 
1812 	/* shmem_symlink() */
1813 	if (mapping->a_ops != &shmem_aops)
1814 		goto alloc_nohuge;
1815 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1816 		goto alloc_nohuge;
1817 	if (shmem_huge == SHMEM_HUGE_FORCE)
1818 		goto alloc_huge;
1819 	switch (sbinfo->huge) {
1820 		loff_t i_size;
1821 		pgoff_t off;
1822 	case SHMEM_HUGE_NEVER:
1823 		goto alloc_nohuge;
1824 	case SHMEM_HUGE_WITHIN_SIZE:
1825 		off = round_up(index, HPAGE_PMD_NR);
1826 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1827 		if (i_size >= HPAGE_PMD_SIZE &&
1828 		    i_size >> PAGE_SHIFT >= off)
1829 			goto alloc_huge;
1830 		/* fallthrough */
1831 	case SHMEM_HUGE_ADVISE:
1832 		if (sgp_huge == SGP_HUGE)
1833 			goto alloc_huge;
1834 		/* TODO: implement fadvise() hints */
1835 		goto alloc_nohuge;
1836 	}
1837 
1838 alloc_huge:
1839 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1840 	if (IS_ERR(page)) {
1841 alloc_nohuge:
1842 		page = shmem_alloc_and_acct_page(gfp, inode,
1843 						 index, false);
1844 	}
1845 	if (IS_ERR(page)) {
1846 		int retry = 5;
1847 
1848 		error = PTR_ERR(page);
1849 		page = NULL;
1850 		if (error != -ENOSPC)
1851 			goto unlock;
1852 		/*
1853 		 * Try to reclaim some space by splitting a huge page
1854 		 * beyond i_size on the filesystem.
1855 		 */
1856 		while (retry--) {
1857 			int ret;
1858 
1859 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1860 			if (ret == SHRINK_STOP)
1861 				break;
1862 			if (ret)
1863 				goto alloc_nohuge;
1864 		}
1865 		goto unlock;
1866 	}
1867 
1868 	if (PageTransHuge(page))
1869 		hindex = round_down(index, HPAGE_PMD_NR);
1870 	else
1871 		hindex = index;
1872 
1873 	if (sgp == SGP_WRITE)
1874 		__SetPageReferenced(page);
1875 
1876 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1877 					    PageTransHuge(page));
1878 	if (error)
1879 		goto unacct;
1880 	error = shmem_add_to_page_cache(page, mapping, hindex,
1881 					NULL, gfp & GFP_RECLAIM_MASK);
1882 	if (error) {
1883 		mem_cgroup_cancel_charge(page, memcg,
1884 					 PageTransHuge(page));
1885 		goto unacct;
1886 	}
1887 	mem_cgroup_commit_charge(page, memcg, false,
1888 				 PageTransHuge(page));
1889 	lru_cache_add_anon(page);
1890 
1891 	spin_lock_irq(&info->lock);
1892 	info->alloced += compound_nr(page);
1893 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1894 	shmem_recalc_inode(inode);
1895 	spin_unlock_irq(&info->lock);
1896 	alloced = true;
1897 
1898 	if (PageTransHuge(page) &&
1899 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1900 			hindex + HPAGE_PMD_NR - 1) {
1901 		/*
1902 		 * Part of the huge page is beyond i_size: subject
1903 		 * to shrink under memory pressure.
1904 		 */
1905 		spin_lock(&sbinfo->shrinklist_lock);
1906 		/*
1907 		 * _careful to defend against unlocked access to
1908 		 * ->shrink_list in shmem_unused_huge_shrink()
1909 		 */
1910 		if (list_empty_careful(&info->shrinklist)) {
1911 			list_add_tail(&info->shrinklist,
1912 				      &sbinfo->shrinklist);
1913 			sbinfo->shrinklist_len++;
1914 		}
1915 		spin_unlock(&sbinfo->shrinklist_lock);
1916 	}
1917 
1918 	/*
1919 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1920 	 */
1921 	if (sgp == SGP_FALLOC)
1922 		sgp = SGP_WRITE;
1923 clear:
1924 	/*
1925 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1926 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1927 	 * it now, lest undo on failure cancel our earlier guarantee.
1928 	 */
1929 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1930 		struct page *head = compound_head(page);
1931 		int i;
1932 
1933 		for (i = 0; i < compound_nr(head); i++) {
1934 			clear_highpage(head + i);
1935 			flush_dcache_page(head + i);
1936 		}
1937 		SetPageUptodate(head);
1938 	}
1939 
1940 	/* Perhaps the file has been truncated since we checked */
1941 	if (sgp <= SGP_CACHE &&
1942 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1943 		if (alloced) {
1944 			ClearPageDirty(page);
1945 			delete_from_page_cache(page);
1946 			spin_lock_irq(&info->lock);
1947 			shmem_recalc_inode(inode);
1948 			spin_unlock_irq(&info->lock);
1949 		}
1950 		error = -EINVAL;
1951 		goto unlock;
1952 	}
1953 	*pagep = page + index - hindex;
1954 	return 0;
1955 
1956 	/*
1957 	 * Error recovery.
1958 	 */
1959 unacct:
1960 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1961 
1962 	if (PageTransHuge(page)) {
1963 		unlock_page(page);
1964 		put_page(page);
1965 		goto alloc_nohuge;
1966 	}
1967 unlock:
1968 	if (page) {
1969 		unlock_page(page);
1970 		put_page(page);
1971 	}
1972 	if (error == -ENOSPC && !once++) {
1973 		spin_lock_irq(&info->lock);
1974 		shmem_recalc_inode(inode);
1975 		spin_unlock_irq(&info->lock);
1976 		goto repeat;
1977 	}
1978 	if (error == -EEXIST)
1979 		goto repeat;
1980 	return error;
1981 }
1982 
1983 /*
1984  * This is like autoremove_wake_function, but it removes the wait queue
1985  * entry unconditionally - even if something else had already woken the
1986  * target.
1987  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1988 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1989 {
1990 	int ret = default_wake_function(wait, mode, sync, key);
1991 	list_del_init(&wait->entry);
1992 	return ret;
1993 }
1994 
shmem_fault(struct vm_fault * vmf)1995 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1996 {
1997 	struct vm_area_struct *vma = vmf->vma;
1998 	struct inode *inode = file_inode(vma->vm_file);
1999 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2000 	enum sgp_type sgp;
2001 	int err;
2002 	vm_fault_t ret = VM_FAULT_LOCKED;
2003 
2004 	/*
2005 	 * Trinity finds that probing a hole which tmpfs is punching can
2006 	 * prevent the hole-punch from ever completing: which in turn
2007 	 * locks writers out with its hold on i_mutex.  So refrain from
2008 	 * faulting pages into the hole while it's being punched.  Although
2009 	 * shmem_undo_range() does remove the additions, it may be unable to
2010 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2011 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2012 	 *
2013 	 * It does not matter if we sometimes reach this check just before the
2014 	 * hole-punch begins, so that one fault then races with the punch:
2015 	 * we just need to make racing faults a rare case.
2016 	 *
2017 	 * The implementation below would be much simpler if we just used a
2018 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2019 	 * and bloating every shmem inode for this unlikely case would be sad.
2020 	 */
2021 	if (unlikely(inode->i_private)) {
2022 		struct shmem_falloc *shmem_falloc;
2023 
2024 		spin_lock(&inode->i_lock);
2025 		shmem_falloc = inode->i_private;
2026 		if (shmem_falloc &&
2027 		    shmem_falloc->waitq &&
2028 		    vmf->pgoff >= shmem_falloc->start &&
2029 		    vmf->pgoff < shmem_falloc->next) {
2030 			struct file *fpin;
2031 			wait_queue_head_t *shmem_falloc_waitq;
2032 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2033 
2034 			ret = VM_FAULT_NOPAGE;
2035 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2036 			if (fpin)
2037 				ret = VM_FAULT_RETRY;
2038 
2039 			shmem_falloc_waitq = shmem_falloc->waitq;
2040 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2041 					TASK_UNINTERRUPTIBLE);
2042 			spin_unlock(&inode->i_lock);
2043 			schedule();
2044 
2045 			/*
2046 			 * shmem_falloc_waitq points into the shmem_fallocate()
2047 			 * stack of the hole-punching task: shmem_falloc_waitq
2048 			 * is usually invalid by the time we reach here, but
2049 			 * finish_wait() does not dereference it in that case;
2050 			 * though i_lock needed lest racing with wake_up_all().
2051 			 */
2052 			spin_lock(&inode->i_lock);
2053 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2054 			spin_unlock(&inode->i_lock);
2055 
2056 			if (fpin)
2057 				fput(fpin);
2058 			return ret;
2059 		}
2060 		spin_unlock(&inode->i_lock);
2061 	}
2062 
2063 	sgp = SGP_CACHE;
2064 
2065 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2066 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2067 		sgp = SGP_NOHUGE;
2068 	else if (vma->vm_flags & VM_HUGEPAGE)
2069 		sgp = SGP_HUGE;
2070 
2071 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2072 				  gfp, vma, vmf, &ret);
2073 	if (err)
2074 		return vmf_error(err);
2075 	return ret;
2076 }
2077 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2078 unsigned long shmem_get_unmapped_area(struct file *file,
2079 				      unsigned long uaddr, unsigned long len,
2080 				      unsigned long pgoff, unsigned long flags)
2081 {
2082 	unsigned long (*get_area)(struct file *,
2083 		unsigned long, unsigned long, unsigned long, unsigned long);
2084 	unsigned long addr;
2085 	unsigned long offset;
2086 	unsigned long inflated_len;
2087 	unsigned long inflated_addr;
2088 	unsigned long inflated_offset;
2089 
2090 	if (len > TASK_SIZE)
2091 		return -ENOMEM;
2092 
2093 	get_area = current->mm->get_unmapped_area;
2094 	addr = get_area(file, uaddr, len, pgoff, flags);
2095 
2096 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2097 		return addr;
2098 	if (IS_ERR_VALUE(addr))
2099 		return addr;
2100 	if (addr & ~PAGE_MASK)
2101 		return addr;
2102 	if (addr > TASK_SIZE - len)
2103 		return addr;
2104 
2105 	if (shmem_huge == SHMEM_HUGE_DENY)
2106 		return addr;
2107 	if (len < HPAGE_PMD_SIZE)
2108 		return addr;
2109 	if (flags & MAP_FIXED)
2110 		return addr;
2111 	/*
2112 	 * Our priority is to support MAP_SHARED mapped hugely;
2113 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2114 	 * But if caller specified an address hint and we allocated area there
2115 	 * successfully, respect that as before.
2116 	 */
2117 	if (uaddr == addr)
2118 		return addr;
2119 
2120 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2121 		struct super_block *sb;
2122 
2123 		if (file) {
2124 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2125 			sb = file_inode(file)->i_sb;
2126 		} else {
2127 			/*
2128 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2129 			 * for "/dev/zero", to create a shared anonymous object.
2130 			 */
2131 			if (IS_ERR(shm_mnt))
2132 				return addr;
2133 			sb = shm_mnt->mnt_sb;
2134 		}
2135 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2136 			return addr;
2137 	}
2138 
2139 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2140 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2141 		return addr;
2142 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2143 		return addr;
2144 
2145 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2146 	if (inflated_len > TASK_SIZE)
2147 		return addr;
2148 	if (inflated_len < len)
2149 		return addr;
2150 
2151 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2152 	if (IS_ERR_VALUE(inflated_addr))
2153 		return addr;
2154 	if (inflated_addr & ~PAGE_MASK)
2155 		return addr;
2156 
2157 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2158 	inflated_addr += offset - inflated_offset;
2159 	if (inflated_offset > offset)
2160 		inflated_addr += HPAGE_PMD_SIZE;
2161 
2162 	if (inflated_addr > TASK_SIZE - len)
2163 		return addr;
2164 	return inflated_addr;
2165 }
2166 
2167 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2168 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2169 {
2170 	struct inode *inode = file_inode(vma->vm_file);
2171 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2172 }
2173 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2174 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2175 					  unsigned long addr)
2176 {
2177 	struct inode *inode = file_inode(vma->vm_file);
2178 	pgoff_t index;
2179 
2180 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2181 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2182 }
2183 #endif
2184 
shmem_lock(struct file * file,int lock,struct user_struct * user)2185 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2186 {
2187 	struct inode *inode = file_inode(file);
2188 	struct shmem_inode_info *info = SHMEM_I(inode);
2189 	int retval = -ENOMEM;
2190 
2191 	/*
2192 	 * What serializes the accesses to info->flags?
2193 	 * ipc_lock_object() when called from shmctl_do_lock(),
2194 	 * no serialization needed when called from shm_destroy().
2195 	 */
2196 	if (lock && !(info->flags & VM_LOCKED)) {
2197 		if (!user_shm_lock(inode->i_size, user))
2198 			goto out_nomem;
2199 		info->flags |= VM_LOCKED;
2200 		mapping_set_unevictable(file->f_mapping);
2201 	}
2202 	if (!lock && (info->flags & VM_LOCKED) && user) {
2203 		user_shm_unlock(inode->i_size, user);
2204 		info->flags &= ~VM_LOCKED;
2205 		mapping_clear_unevictable(file->f_mapping);
2206 	}
2207 	retval = 0;
2208 
2209 out_nomem:
2210 	return retval;
2211 }
2212 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2213 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2216 	int ret;
2217 
2218 	ret = seal_check_future_write(info->seals, vma);
2219 	if (ret)
2220 		return ret;
2221 
2222 	file_accessed(file);
2223 	vma->vm_ops = &shmem_vm_ops;
2224 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2225 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2226 			(vma->vm_end & HPAGE_PMD_MASK)) {
2227 		khugepaged_enter(vma, vma->vm_flags);
2228 	}
2229 	return 0;
2230 }
2231 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2232 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2233 				     umode_t mode, dev_t dev, unsigned long flags)
2234 {
2235 	struct inode *inode;
2236 	struct shmem_inode_info *info;
2237 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2238 
2239 	if (shmem_reserve_inode(sb))
2240 		return NULL;
2241 
2242 	inode = new_inode(sb);
2243 	if (inode) {
2244 		inode->i_ino = get_next_ino();
2245 		inode_init_owner(inode, dir, mode);
2246 		inode->i_blocks = 0;
2247 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2248 		inode->i_generation = prandom_u32();
2249 		info = SHMEM_I(inode);
2250 		memset(info, 0, (char *)inode - (char *)info);
2251 		spin_lock_init(&info->lock);
2252 		atomic_set(&info->stop_eviction, 0);
2253 		info->seals = F_SEAL_SEAL;
2254 		info->flags = flags & VM_NORESERVE;
2255 		INIT_LIST_HEAD(&info->shrinklist);
2256 		INIT_LIST_HEAD(&info->swaplist);
2257 		simple_xattrs_init(&info->xattrs);
2258 		cache_no_acl(inode);
2259 
2260 		switch (mode & S_IFMT) {
2261 		default:
2262 			inode->i_op = &shmem_special_inode_operations;
2263 			init_special_inode(inode, mode, dev);
2264 			break;
2265 		case S_IFREG:
2266 			inode->i_mapping->a_ops = &shmem_aops;
2267 			inode->i_op = &shmem_inode_operations;
2268 			inode->i_fop = &shmem_file_operations;
2269 			mpol_shared_policy_init(&info->policy,
2270 						 shmem_get_sbmpol(sbinfo));
2271 			break;
2272 		case S_IFDIR:
2273 			inc_nlink(inode);
2274 			/* Some things misbehave if size == 0 on a directory */
2275 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2276 			inode->i_op = &shmem_dir_inode_operations;
2277 			inode->i_fop = &simple_dir_operations;
2278 			break;
2279 		case S_IFLNK:
2280 			/*
2281 			 * Must not load anything in the rbtree,
2282 			 * mpol_free_shared_policy will not be called.
2283 			 */
2284 			mpol_shared_policy_init(&info->policy, NULL);
2285 			break;
2286 		}
2287 
2288 		lockdep_annotate_inode_mutex_key(inode);
2289 	} else
2290 		shmem_free_inode(sb);
2291 	return inode;
2292 }
2293 
shmem_mapping(struct address_space * mapping)2294 bool shmem_mapping(struct address_space *mapping)
2295 {
2296 	return mapping->a_ops == &shmem_aops;
2297 }
2298 
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2299 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2300 				  pmd_t *dst_pmd,
2301 				  struct vm_area_struct *dst_vma,
2302 				  unsigned long dst_addr,
2303 				  unsigned long src_addr,
2304 				  bool zeropage,
2305 				  struct page **pagep)
2306 {
2307 	struct inode *inode = file_inode(dst_vma->vm_file);
2308 	struct shmem_inode_info *info = SHMEM_I(inode);
2309 	struct address_space *mapping = inode->i_mapping;
2310 	gfp_t gfp = mapping_gfp_mask(mapping);
2311 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2312 	struct mem_cgroup *memcg;
2313 	spinlock_t *ptl;
2314 	void *page_kaddr;
2315 	struct page *page;
2316 	pte_t _dst_pte, *dst_pte;
2317 	int ret;
2318 	pgoff_t offset, max_off;
2319 
2320 	ret = -ENOMEM;
2321 	if (!shmem_inode_acct_block(inode, 1)) {
2322 		/*
2323 		 * We may have got a page, returned -ENOENT triggering a retry,
2324 		 * and now we find ourselves with -ENOMEM. Release the page, to
2325 		 * avoid a BUG_ON in our caller.
2326 		 */
2327 		if (unlikely(*pagep)) {
2328 			put_page(*pagep);
2329 			*pagep = NULL;
2330 		}
2331 		goto out;
2332 	}
2333 
2334 	if (!*pagep) {
2335 		page = shmem_alloc_page(gfp, info, pgoff);
2336 		if (!page)
2337 			goto out_unacct_blocks;
2338 
2339 		if (!zeropage) {	/* mcopy_atomic */
2340 			page_kaddr = kmap_atomic(page);
2341 			ret = copy_from_user(page_kaddr,
2342 					     (const void __user *)src_addr,
2343 					     PAGE_SIZE);
2344 			kunmap_atomic(page_kaddr);
2345 
2346 			/* fallback to copy_from_user outside mmap_sem */
2347 			if (unlikely(ret)) {
2348 				*pagep = page;
2349 				shmem_inode_unacct_blocks(inode, 1);
2350 				/* don't free the page */
2351 				return -ENOENT;
2352 			}
2353 		} else {		/* mfill_zeropage_atomic */
2354 			clear_highpage(page);
2355 		}
2356 	} else {
2357 		page = *pagep;
2358 		*pagep = NULL;
2359 	}
2360 
2361 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2362 	__SetPageLocked(page);
2363 	__SetPageSwapBacked(page);
2364 	__SetPageUptodate(page);
2365 
2366 	ret = -EFAULT;
2367 	offset = linear_page_index(dst_vma, dst_addr);
2368 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2369 	if (unlikely(offset >= max_off))
2370 		goto out_release;
2371 
2372 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2373 	if (ret)
2374 		goto out_release;
2375 
2376 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2377 						gfp & GFP_RECLAIM_MASK);
2378 	if (ret)
2379 		goto out_release_uncharge;
2380 
2381 	mem_cgroup_commit_charge(page, memcg, false, false);
2382 
2383 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2384 	if (dst_vma->vm_flags & VM_WRITE)
2385 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2386 	else {
2387 		/*
2388 		 * We don't set the pte dirty if the vma has no
2389 		 * VM_WRITE permission, so mark the page dirty or it
2390 		 * could be freed from under us. We could do it
2391 		 * unconditionally before unlock_page(), but doing it
2392 		 * only if VM_WRITE is not set is faster.
2393 		 */
2394 		set_page_dirty(page);
2395 	}
2396 
2397 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2398 
2399 	ret = -EFAULT;
2400 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2401 	if (unlikely(offset >= max_off))
2402 		goto out_release_uncharge_unlock;
2403 
2404 	ret = -EEXIST;
2405 	if (!pte_none(*dst_pte))
2406 		goto out_release_uncharge_unlock;
2407 
2408 	lru_cache_add_anon(page);
2409 
2410 	spin_lock_irq(&info->lock);
2411 	info->alloced++;
2412 	inode->i_blocks += BLOCKS_PER_PAGE;
2413 	shmem_recalc_inode(inode);
2414 	spin_unlock_irq(&info->lock);
2415 
2416 	inc_mm_counter(dst_mm, mm_counter_file(page));
2417 	page_add_file_rmap(page, false);
2418 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2419 
2420 	/* No need to invalidate - it was non-present before */
2421 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2422 	pte_unmap_unlock(dst_pte, ptl);
2423 	unlock_page(page);
2424 	ret = 0;
2425 out:
2426 	return ret;
2427 out_release_uncharge_unlock:
2428 	pte_unmap_unlock(dst_pte, ptl);
2429 	ClearPageDirty(page);
2430 	delete_from_page_cache(page);
2431 out_release_uncharge:
2432 	mem_cgroup_cancel_charge(page, memcg, false);
2433 out_release:
2434 	unlock_page(page);
2435 	put_page(page);
2436 out_unacct_blocks:
2437 	shmem_inode_unacct_blocks(inode, 1);
2438 	goto out;
2439 }
2440 
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2441 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2442 			   pmd_t *dst_pmd,
2443 			   struct vm_area_struct *dst_vma,
2444 			   unsigned long dst_addr,
2445 			   unsigned long src_addr,
2446 			   struct page **pagep)
2447 {
2448 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2449 				      dst_addr, src_addr, false, pagep);
2450 }
2451 
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2452 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2453 			     pmd_t *dst_pmd,
2454 			     struct vm_area_struct *dst_vma,
2455 			     unsigned long dst_addr)
2456 {
2457 	struct page *page = NULL;
2458 
2459 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2460 				      dst_addr, 0, true, &page);
2461 }
2462 
2463 #ifdef CONFIG_TMPFS
2464 static const struct inode_operations shmem_symlink_inode_operations;
2465 static const struct inode_operations shmem_short_symlink_operations;
2466 
2467 #ifdef CONFIG_TMPFS_XATTR
2468 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2469 #else
2470 #define shmem_initxattrs NULL
2471 #endif
2472 
2473 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2474 shmem_write_begin(struct file *file, struct address_space *mapping,
2475 			loff_t pos, unsigned len, unsigned flags,
2476 			struct page **pagep, void **fsdata)
2477 {
2478 	struct inode *inode = mapping->host;
2479 	struct shmem_inode_info *info = SHMEM_I(inode);
2480 	pgoff_t index = pos >> PAGE_SHIFT;
2481 
2482 	/* i_mutex is held by caller */
2483 	if (unlikely(info->seals & (F_SEAL_GROW |
2484 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2485 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2486 			return -EPERM;
2487 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2488 			return -EPERM;
2489 	}
2490 
2491 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2492 }
2493 
2494 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2495 shmem_write_end(struct file *file, struct address_space *mapping,
2496 			loff_t pos, unsigned len, unsigned copied,
2497 			struct page *page, void *fsdata)
2498 {
2499 	struct inode *inode = mapping->host;
2500 
2501 	if (pos + copied > inode->i_size)
2502 		i_size_write(inode, pos + copied);
2503 
2504 	if (!PageUptodate(page)) {
2505 		struct page *head = compound_head(page);
2506 		if (PageTransCompound(page)) {
2507 			int i;
2508 
2509 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2510 				if (head + i == page)
2511 					continue;
2512 				clear_highpage(head + i);
2513 				flush_dcache_page(head + i);
2514 			}
2515 		}
2516 		if (copied < PAGE_SIZE) {
2517 			unsigned from = pos & (PAGE_SIZE - 1);
2518 			zero_user_segments(page, 0, from,
2519 					from + copied, PAGE_SIZE);
2520 		}
2521 		SetPageUptodate(head);
2522 	}
2523 	set_page_dirty(page);
2524 	unlock_page(page);
2525 	put_page(page);
2526 
2527 	return copied;
2528 }
2529 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2530 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2531 {
2532 	struct file *file = iocb->ki_filp;
2533 	struct inode *inode = file_inode(file);
2534 	struct address_space *mapping = inode->i_mapping;
2535 	pgoff_t index;
2536 	unsigned long offset;
2537 	enum sgp_type sgp = SGP_READ;
2538 	int error = 0;
2539 	ssize_t retval = 0;
2540 	loff_t *ppos = &iocb->ki_pos;
2541 
2542 	/*
2543 	 * Might this read be for a stacking filesystem?  Then when reading
2544 	 * holes of a sparse file, we actually need to allocate those pages,
2545 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2546 	 */
2547 	if (!iter_is_iovec(to))
2548 		sgp = SGP_CACHE;
2549 
2550 	index = *ppos >> PAGE_SHIFT;
2551 	offset = *ppos & ~PAGE_MASK;
2552 
2553 	for (;;) {
2554 		struct page *page = NULL;
2555 		pgoff_t end_index;
2556 		unsigned long nr, ret;
2557 		loff_t i_size = i_size_read(inode);
2558 
2559 		end_index = i_size >> PAGE_SHIFT;
2560 		if (index > end_index)
2561 			break;
2562 		if (index == end_index) {
2563 			nr = i_size & ~PAGE_MASK;
2564 			if (nr <= offset)
2565 				break;
2566 		}
2567 
2568 		error = shmem_getpage(inode, index, &page, sgp);
2569 		if (error) {
2570 			if (error == -EINVAL)
2571 				error = 0;
2572 			break;
2573 		}
2574 		if (page) {
2575 			if (sgp == SGP_CACHE)
2576 				set_page_dirty(page);
2577 			unlock_page(page);
2578 		}
2579 
2580 		/*
2581 		 * We must evaluate after, since reads (unlike writes)
2582 		 * are called without i_mutex protection against truncate
2583 		 */
2584 		nr = PAGE_SIZE;
2585 		i_size = i_size_read(inode);
2586 		end_index = i_size >> PAGE_SHIFT;
2587 		if (index == end_index) {
2588 			nr = i_size & ~PAGE_MASK;
2589 			if (nr <= offset) {
2590 				if (page)
2591 					put_page(page);
2592 				break;
2593 			}
2594 		}
2595 		nr -= offset;
2596 
2597 		if (page) {
2598 			/*
2599 			 * If users can be writing to this page using arbitrary
2600 			 * virtual addresses, take care about potential aliasing
2601 			 * before reading the page on the kernel side.
2602 			 */
2603 			if (mapping_writably_mapped(mapping))
2604 				flush_dcache_page(page);
2605 			/*
2606 			 * Mark the page accessed if we read the beginning.
2607 			 */
2608 			if (!offset)
2609 				mark_page_accessed(page);
2610 		} else {
2611 			page = ZERO_PAGE(0);
2612 			get_page(page);
2613 		}
2614 
2615 		/*
2616 		 * Ok, we have the page, and it's up-to-date, so
2617 		 * now we can copy it to user space...
2618 		 */
2619 		ret = copy_page_to_iter(page, offset, nr, to);
2620 		retval += ret;
2621 		offset += ret;
2622 		index += offset >> PAGE_SHIFT;
2623 		offset &= ~PAGE_MASK;
2624 
2625 		put_page(page);
2626 		if (!iov_iter_count(to))
2627 			break;
2628 		if (ret < nr) {
2629 			error = -EFAULT;
2630 			break;
2631 		}
2632 		cond_resched();
2633 	}
2634 
2635 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2636 	file_accessed(file);
2637 	return retval ? retval : error;
2638 }
2639 
2640 /*
2641  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2642  */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2643 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2644 				    pgoff_t index, pgoff_t end, int whence)
2645 {
2646 	struct page *page;
2647 	struct pagevec pvec;
2648 	pgoff_t indices[PAGEVEC_SIZE];
2649 	bool done = false;
2650 	int i;
2651 
2652 	pagevec_init(&pvec);
2653 	pvec.nr = 1;		/* start small: we may be there already */
2654 	while (!done) {
2655 		pvec.nr = find_get_entries(mapping, index,
2656 					pvec.nr, pvec.pages, indices);
2657 		if (!pvec.nr) {
2658 			if (whence == SEEK_DATA)
2659 				index = end;
2660 			break;
2661 		}
2662 		for (i = 0; i < pvec.nr; i++, index++) {
2663 			if (index < indices[i]) {
2664 				if (whence == SEEK_HOLE) {
2665 					done = true;
2666 					break;
2667 				}
2668 				index = indices[i];
2669 			}
2670 			page = pvec.pages[i];
2671 			if (page && !xa_is_value(page)) {
2672 				if (!PageUptodate(page))
2673 					page = NULL;
2674 			}
2675 			if (index >= end ||
2676 			    (page && whence == SEEK_DATA) ||
2677 			    (!page && whence == SEEK_HOLE)) {
2678 				done = true;
2679 				break;
2680 			}
2681 		}
2682 		pagevec_remove_exceptionals(&pvec);
2683 		pagevec_release(&pvec);
2684 		pvec.nr = PAGEVEC_SIZE;
2685 		cond_resched();
2686 	}
2687 	return index;
2688 }
2689 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2690 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2691 {
2692 	struct address_space *mapping = file->f_mapping;
2693 	struct inode *inode = mapping->host;
2694 	pgoff_t start, end;
2695 	loff_t new_offset;
2696 
2697 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2698 		return generic_file_llseek_size(file, offset, whence,
2699 					MAX_LFS_FILESIZE, i_size_read(inode));
2700 	inode_lock(inode);
2701 	/* We're holding i_mutex so we can access i_size directly */
2702 
2703 	if (offset < 0 || offset >= inode->i_size)
2704 		offset = -ENXIO;
2705 	else {
2706 		start = offset >> PAGE_SHIFT;
2707 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2709 		new_offset <<= PAGE_SHIFT;
2710 		if (new_offset > offset) {
2711 			if (new_offset < inode->i_size)
2712 				offset = new_offset;
2713 			else if (whence == SEEK_DATA)
2714 				offset = -ENXIO;
2715 			else
2716 				offset = inode->i_size;
2717 		}
2718 	}
2719 
2720 	if (offset >= 0)
2721 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2722 	inode_unlock(inode);
2723 	return offset;
2724 }
2725 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2726 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2727 							 loff_t len)
2728 {
2729 	struct inode *inode = file_inode(file);
2730 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2731 	struct shmem_inode_info *info = SHMEM_I(inode);
2732 	struct shmem_falloc shmem_falloc;
2733 	pgoff_t start, index, end;
2734 	int error;
2735 
2736 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2737 		return -EOPNOTSUPP;
2738 
2739 	inode_lock(inode);
2740 
2741 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2742 		struct address_space *mapping = file->f_mapping;
2743 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2744 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2745 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2746 
2747 		/* protected by i_mutex */
2748 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2749 			error = -EPERM;
2750 			goto out;
2751 		}
2752 
2753 		shmem_falloc.waitq = &shmem_falloc_waitq;
2754 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2755 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2756 		spin_lock(&inode->i_lock);
2757 		inode->i_private = &shmem_falloc;
2758 		spin_unlock(&inode->i_lock);
2759 
2760 		if ((u64)unmap_end > (u64)unmap_start)
2761 			unmap_mapping_range(mapping, unmap_start,
2762 					    1 + unmap_end - unmap_start, 0);
2763 		shmem_truncate_range(inode, offset, offset + len - 1);
2764 		/* No need to unmap again: hole-punching leaves COWed pages */
2765 
2766 		spin_lock(&inode->i_lock);
2767 		inode->i_private = NULL;
2768 		wake_up_all(&shmem_falloc_waitq);
2769 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2770 		spin_unlock(&inode->i_lock);
2771 		error = 0;
2772 		goto out;
2773 	}
2774 
2775 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2776 	error = inode_newsize_ok(inode, offset + len);
2777 	if (error)
2778 		goto out;
2779 
2780 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2781 		error = -EPERM;
2782 		goto out;
2783 	}
2784 
2785 	start = offset >> PAGE_SHIFT;
2786 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2787 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2788 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2789 		error = -ENOSPC;
2790 		goto out;
2791 	}
2792 
2793 	shmem_falloc.waitq = NULL;
2794 	shmem_falloc.start = start;
2795 	shmem_falloc.next  = start;
2796 	shmem_falloc.nr_falloced = 0;
2797 	shmem_falloc.nr_unswapped = 0;
2798 	spin_lock(&inode->i_lock);
2799 	inode->i_private = &shmem_falloc;
2800 	spin_unlock(&inode->i_lock);
2801 
2802 	for (index = start; index < end; index++) {
2803 		struct page *page;
2804 
2805 		/*
2806 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2807 		 * been interrupted because we are using up too much memory.
2808 		 */
2809 		if (signal_pending(current))
2810 			error = -EINTR;
2811 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2812 			error = -ENOMEM;
2813 		else
2814 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2815 		if (error) {
2816 			/* Remove the !PageUptodate pages we added */
2817 			if (index > start) {
2818 				shmem_undo_range(inode,
2819 				    (loff_t)start << PAGE_SHIFT,
2820 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2821 			}
2822 			goto undone;
2823 		}
2824 
2825 		/*
2826 		 * Inform shmem_writepage() how far we have reached.
2827 		 * No need for lock or barrier: we have the page lock.
2828 		 */
2829 		shmem_falloc.next++;
2830 		if (!PageUptodate(page))
2831 			shmem_falloc.nr_falloced++;
2832 
2833 		/*
2834 		 * If !PageUptodate, leave it that way so that freeable pages
2835 		 * can be recognized if we need to rollback on error later.
2836 		 * But set_page_dirty so that memory pressure will swap rather
2837 		 * than free the pages we are allocating (and SGP_CACHE pages
2838 		 * might still be clean: we now need to mark those dirty too).
2839 		 */
2840 		set_page_dirty(page);
2841 		unlock_page(page);
2842 		put_page(page);
2843 		cond_resched();
2844 	}
2845 
2846 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2847 		i_size_write(inode, offset + len);
2848 	inode->i_ctime = current_time(inode);
2849 undone:
2850 	spin_lock(&inode->i_lock);
2851 	inode->i_private = NULL;
2852 	spin_unlock(&inode->i_lock);
2853 out:
2854 	inode_unlock(inode);
2855 	return error;
2856 }
2857 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2859 {
2860 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2861 
2862 	buf->f_type = TMPFS_MAGIC;
2863 	buf->f_bsize = PAGE_SIZE;
2864 	buf->f_namelen = NAME_MAX;
2865 	if (sbinfo->max_blocks) {
2866 		buf->f_blocks = sbinfo->max_blocks;
2867 		buf->f_bavail =
2868 		buf->f_bfree  = sbinfo->max_blocks -
2869 				percpu_counter_sum(&sbinfo->used_blocks);
2870 	}
2871 	if (sbinfo->max_inodes) {
2872 		buf->f_files = sbinfo->max_inodes;
2873 		buf->f_ffree = sbinfo->free_inodes;
2874 	}
2875 	/* else leave those fields 0 like simple_statfs */
2876 	return 0;
2877 }
2878 
2879 /*
2880  * File creation. Allocate an inode, and we're done..
2881  */
2882 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2883 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2884 {
2885 	struct inode *inode;
2886 	int error = -ENOSPC;
2887 
2888 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2889 	if (inode) {
2890 		error = simple_acl_create(dir, inode);
2891 		if (error)
2892 			goto out_iput;
2893 		error = security_inode_init_security(inode, dir,
2894 						     &dentry->d_name,
2895 						     shmem_initxattrs, NULL);
2896 		if (error && error != -EOPNOTSUPP)
2897 			goto out_iput;
2898 
2899 		error = 0;
2900 		dir->i_size += BOGO_DIRENT_SIZE;
2901 		dir->i_ctime = dir->i_mtime = current_time(dir);
2902 		d_instantiate(dentry, inode);
2903 		dget(dentry); /* Extra count - pin the dentry in core */
2904 	}
2905 	return error;
2906 out_iput:
2907 	iput(inode);
2908 	return error;
2909 }
2910 
2911 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2912 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2913 {
2914 	struct inode *inode;
2915 	int error = -ENOSPC;
2916 
2917 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2918 	if (inode) {
2919 		error = security_inode_init_security(inode, dir,
2920 						     NULL,
2921 						     shmem_initxattrs, NULL);
2922 		if (error && error != -EOPNOTSUPP)
2923 			goto out_iput;
2924 		error = simple_acl_create(dir, inode);
2925 		if (error)
2926 			goto out_iput;
2927 		d_tmpfile(dentry, inode);
2928 	}
2929 	return error;
2930 out_iput:
2931 	iput(inode);
2932 	return error;
2933 }
2934 
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2935 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2936 {
2937 	int error;
2938 
2939 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2940 		return error;
2941 	inc_nlink(dir);
2942 	return 0;
2943 }
2944 
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2945 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2946 		bool excl)
2947 {
2948 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2949 }
2950 
2951 /*
2952  * Link a file..
2953  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2954 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2955 {
2956 	struct inode *inode = d_inode(old_dentry);
2957 	int ret = 0;
2958 
2959 	/*
2960 	 * No ordinary (disk based) filesystem counts links as inodes;
2961 	 * but each new link needs a new dentry, pinning lowmem, and
2962 	 * tmpfs dentries cannot be pruned until they are unlinked.
2963 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2964 	 * first link must skip that, to get the accounting right.
2965 	 */
2966 	if (inode->i_nlink) {
2967 		ret = shmem_reserve_inode(inode->i_sb);
2968 		if (ret)
2969 			goto out;
2970 	}
2971 
2972 	dir->i_size += BOGO_DIRENT_SIZE;
2973 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2974 	inc_nlink(inode);
2975 	ihold(inode);	/* New dentry reference */
2976 	dget(dentry);		/* Extra pinning count for the created dentry */
2977 	d_instantiate(dentry, inode);
2978 out:
2979 	return ret;
2980 }
2981 
shmem_unlink(struct inode * dir,struct dentry * dentry)2982 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2983 {
2984 	struct inode *inode = d_inode(dentry);
2985 
2986 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2987 		shmem_free_inode(inode->i_sb);
2988 
2989 	dir->i_size -= BOGO_DIRENT_SIZE;
2990 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2991 	drop_nlink(inode);
2992 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2993 	return 0;
2994 }
2995 
shmem_rmdir(struct inode * dir,struct dentry * dentry)2996 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2997 {
2998 	if (!simple_empty(dentry))
2999 		return -ENOTEMPTY;
3000 
3001 	drop_nlink(d_inode(dentry));
3002 	drop_nlink(dir);
3003 	return shmem_unlink(dir, dentry);
3004 }
3005 
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3006 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3007 {
3008 	bool old_is_dir = d_is_dir(old_dentry);
3009 	bool new_is_dir = d_is_dir(new_dentry);
3010 
3011 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3012 		if (old_is_dir) {
3013 			drop_nlink(old_dir);
3014 			inc_nlink(new_dir);
3015 		} else {
3016 			drop_nlink(new_dir);
3017 			inc_nlink(old_dir);
3018 		}
3019 	}
3020 	old_dir->i_ctime = old_dir->i_mtime =
3021 	new_dir->i_ctime = new_dir->i_mtime =
3022 	d_inode(old_dentry)->i_ctime =
3023 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3024 
3025 	return 0;
3026 }
3027 
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3028 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3029 {
3030 	struct dentry *whiteout;
3031 	int error;
3032 
3033 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3034 	if (!whiteout)
3035 		return -ENOMEM;
3036 
3037 	error = shmem_mknod(old_dir, whiteout,
3038 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3039 	dput(whiteout);
3040 	if (error)
3041 		return error;
3042 
3043 	/*
3044 	 * Cheat and hash the whiteout while the old dentry is still in
3045 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3046 	 *
3047 	 * d_lookup() will consistently find one of them at this point,
3048 	 * not sure which one, but that isn't even important.
3049 	 */
3050 	d_rehash(whiteout);
3051 	return 0;
3052 }
3053 
3054 /*
3055  * The VFS layer already does all the dentry stuff for rename,
3056  * we just have to decrement the usage count for the target if
3057  * it exists so that the VFS layer correctly free's it when it
3058  * gets overwritten.
3059  */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3060 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3061 {
3062 	struct inode *inode = d_inode(old_dentry);
3063 	int they_are_dirs = S_ISDIR(inode->i_mode);
3064 
3065 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3066 		return -EINVAL;
3067 
3068 	if (flags & RENAME_EXCHANGE)
3069 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3070 
3071 	if (!simple_empty(new_dentry))
3072 		return -ENOTEMPTY;
3073 
3074 	if (flags & RENAME_WHITEOUT) {
3075 		int error;
3076 
3077 		error = shmem_whiteout(old_dir, old_dentry);
3078 		if (error)
3079 			return error;
3080 	}
3081 
3082 	if (d_really_is_positive(new_dentry)) {
3083 		(void) shmem_unlink(new_dir, new_dentry);
3084 		if (they_are_dirs) {
3085 			drop_nlink(d_inode(new_dentry));
3086 			drop_nlink(old_dir);
3087 		}
3088 	} else if (they_are_dirs) {
3089 		drop_nlink(old_dir);
3090 		inc_nlink(new_dir);
3091 	}
3092 
3093 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3094 	new_dir->i_size += BOGO_DIRENT_SIZE;
3095 	old_dir->i_ctime = old_dir->i_mtime =
3096 	new_dir->i_ctime = new_dir->i_mtime =
3097 	inode->i_ctime = current_time(old_dir);
3098 	return 0;
3099 }
3100 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3101 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3102 {
3103 	int error;
3104 	int len;
3105 	struct inode *inode;
3106 	struct page *page;
3107 
3108 	len = strlen(symname) + 1;
3109 	if (len > PAGE_SIZE)
3110 		return -ENAMETOOLONG;
3111 
3112 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3113 				VM_NORESERVE);
3114 	if (!inode)
3115 		return -ENOSPC;
3116 
3117 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3118 					     shmem_initxattrs, NULL);
3119 	if (error) {
3120 		if (error != -EOPNOTSUPP) {
3121 			iput(inode);
3122 			return error;
3123 		}
3124 		error = 0;
3125 	}
3126 
3127 	inode->i_size = len-1;
3128 	if (len <= SHORT_SYMLINK_LEN) {
3129 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3130 		if (!inode->i_link) {
3131 			iput(inode);
3132 			return -ENOMEM;
3133 		}
3134 		inode->i_op = &shmem_short_symlink_operations;
3135 	} else {
3136 		inode_nohighmem(inode);
3137 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3138 		if (error) {
3139 			iput(inode);
3140 			return error;
3141 		}
3142 		inode->i_mapping->a_ops = &shmem_aops;
3143 		inode->i_op = &shmem_symlink_inode_operations;
3144 		memcpy(page_address(page), symname, len);
3145 		SetPageUptodate(page);
3146 		set_page_dirty(page);
3147 		unlock_page(page);
3148 		put_page(page);
3149 	}
3150 	dir->i_size += BOGO_DIRENT_SIZE;
3151 	dir->i_ctime = dir->i_mtime = current_time(dir);
3152 	d_instantiate(dentry, inode);
3153 	dget(dentry);
3154 	return 0;
3155 }
3156 
shmem_put_link(void * arg)3157 static void shmem_put_link(void *arg)
3158 {
3159 	mark_page_accessed(arg);
3160 	put_page(arg);
3161 }
3162 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3163 static const char *shmem_get_link(struct dentry *dentry,
3164 				  struct inode *inode,
3165 				  struct delayed_call *done)
3166 {
3167 	struct page *page = NULL;
3168 	int error;
3169 	if (!dentry) {
3170 		page = find_get_page(inode->i_mapping, 0);
3171 		if (!page)
3172 			return ERR_PTR(-ECHILD);
3173 		if (!PageUptodate(page)) {
3174 			put_page(page);
3175 			return ERR_PTR(-ECHILD);
3176 		}
3177 	} else {
3178 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3179 		if (error)
3180 			return ERR_PTR(error);
3181 		unlock_page(page);
3182 	}
3183 	set_delayed_call(done, shmem_put_link, page);
3184 	return page_address(page);
3185 }
3186 
3187 #ifdef CONFIG_TMPFS_XATTR
3188 /*
3189  * Superblocks without xattr inode operations may get some security.* xattr
3190  * support from the LSM "for free". As soon as we have any other xattrs
3191  * like ACLs, we also need to implement the security.* handlers at
3192  * filesystem level, though.
3193  */
3194 
3195 /*
3196  * Callback for security_inode_init_security() for acquiring xattrs.
3197  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3198 static int shmem_initxattrs(struct inode *inode,
3199 			    const struct xattr *xattr_array,
3200 			    void *fs_info)
3201 {
3202 	struct shmem_inode_info *info = SHMEM_I(inode);
3203 	const struct xattr *xattr;
3204 	struct simple_xattr *new_xattr;
3205 	size_t len;
3206 
3207 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3208 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3209 		if (!new_xattr)
3210 			return -ENOMEM;
3211 
3212 		len = strlen(xattr->name) + 1;
3213 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3214 					  GFP_KERNEL);
3215 		if (!new_xattr->name) {
3216 			kfree(new_xattr);
3217 			return -ENOMEM;
3218 		}
3219 
3220 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3221 		       XATTR_SECURITY_PREFIX_LEN);
3222 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3223 		       xattr->name, len);
3224 
3225 		simple_xattr_list_add(&info->xattrs, new_xattr);
3226 	}
3227 
3228 	return 0;
3229 }
3230 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)3231 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3232 				   struct dentry *unused, struct inode *inode,
3233 				   const char *name, void *buffer, size_t size,
3234 				   int flags)
3235 {
3236 	struct shmem_inode_info *info = SHMEM_I(inode);
3237 
3238 	name = xattr_full_name(handler, name);
3239 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3240 }
3241 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3242 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3243 				   struct dentry *unused, struct inode *inode,
3244 				   const char *name, const void *value,
3245 				   size_t size, int flags)
3246 {
3247 	struct shmem_inode_info *info = SHMEM_I(inode);
3248 
3249 	name = xattr_full_name(handler, name);
3250 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3251 }
3252 
3253 static const struct xattr_handler shmem_security_xattr_handler = {
3254 	.prefix = XATTR_SECURITY_PREFIX,
3255 	.get = shmem_xattr_handler_get,
3256 	.set = shmem_xattr_handler_set,
3257 };
3258 
3259 static const struct xattr_handler shmem_trusted_xattr_handler = {
3260 	.prefix = XATTR_TRUSTED_PREFIX,
3261 	.get = shmem_xattr_handler_get,
3262 	.set = shmem_xattr_handler_set,
3263 };
3264 
3265 static const struct xattr_handler *shmem_xattr_handlers[] = {
3266 #ifdef CONFIG_TMPFS_POSIX_ACL
3267 	&posix_acl_access_xattr_handler,
3268 	&posix_acl_default_xattr_handler,
3269 #endif
3270 	&shmem_security_xattr_handler,
3271 	&shmem_trusted_xattr_handler,
3272 	NULL
3273 };
3274 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3276 {
3277 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3278 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3279 }
3280 #endif /* CONFIG_TMPFS_XATTR */
3281 
3282 static const struct inode_operations shmem_short_symlink_operations = {
3283 	.get_link	= simple_get_link,
3284 #ifdef CONFIG_TMPFS_XATTR
3285 	.listxattr	= shmem_listxattr,
3286 #endif
3287 };
3288 
3289 static const struct inode_operations shmem_symlink_inode_operations = {
3290 	.get_link	= shmem_get_link,
3291 #ifdef CONFIG_TMPFS_XATTR
3292 	.listxattr	= shmem_listxattr,
3293 #endif
3294 };
3295 
shmem_get_parent(struct dentry * child)3296 static struct dentry *shmem_get_parent(struct dentry *child)
3297 {
3298 	return ERR_PTR(-ESTALE);
3299 }
3300 
shmem_match(struct inode * ino,void * vfh)3301 static int shmem_match(struct inode *ino, void *vfh)
3302 {
3303 	__u32 *fh = vfh;
3304 	__u64 inum = fh[2];
3305 	inum = (inum << 32) | fh[1];
3306 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3307 }
3308 
3309 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3310 static struct dentry *shmem_find_alias(struct inode *inode)
3311 {
3312 	struct dentry *alias = d_find_alias(inode);
3313 
3314 	return alias ?: d_find_any_alias(inode);
3315 }
3316 
3317 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3318 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3319 		struct fid *fid, int fh_len, int fh_type)
3320 {
3321 	struct inode *inode;
3322 	struct dentry *dentry = NULL;
3323 	u64 inum;
3324 
3325 	if (fh_len < 3)
3326 		return NULL;
3327 
3328 	inum = fid->raw[2];
3329 	inum = (inum << 32) | fid->raw[1];
3330 
3331 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3332 			shmem_match, fid->raw);
3333 	if (inode) {
3334 		dentry = shmem_find_alias(inode);
3335 		iput(inode);
3336 	}
3337 
3338 	return dentry;
3339 }
3340 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3341 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3342 				struct inode *parent)
3343 {
3344 	if (*len < 3) {
3345 		*len = 3;
3346 		return FILEID_INVALID;
3347 	}
3348 
3349 	if (inode_unhashed(inode)) {
3350 		/* Unfortunately insert_inode_hash is not idempotent,
3351 		 * so as we hash inodes here rather than at creation
3352 		 * time, we need a lock to ensure we only try
3353 		 * to do it once
3354 		 */
3355 		static DEFINE_SPINLOCK(lock);
3356 		spin_lock(&lock);
3357 		if (inode_unhashed(inode))
3358 			__insert_inode_hash(inode,
3359 					    inode->i_ino + inode->i_generation);
3360 		spin_unlock(&lock);
3361 	}
3362 
3363 	fh[0] = inode->i_generation;
3364 	fh[1] = inode->i_ino;
3365 	fh[2] = ((__u64)inode->i_ino) >> 32;
3366 
3367 	*len = 3;
3368 	return 1;
3369 }
3370 
3371 static const struct export_operations shmem_export_ops = {
3372 	.get_parent     = shmem_get_parent,
3373 	.encode_fh      = shmem_encode_fh,
3374 	.fh_to_dentry	= shmem_fh_to_dentry,
3375 };
3376 
3377 enum shmem_param {
3378 	Opt_gid,
3379 	Opt_huge,
3380 	Opt_mode,
3381 	Opt_mpol,
3382 	Opt_nr_blocks,
3383 	Opt_nr_inodes,
3384 	Opt_size,
3385 	Opt_uid,
3386 };
3387 
3388 static const struct fs_parameter_spec shmem_param_specs[] = {
3389 	fsparam_u32   ("gid",		Opt_gid),
3390 	fsparam_enum  ("huge",		Opt_huge),
3391 	fsparam_u32oct("mode",		Opt_mode),
3392 	fsparam_string("mpol",		Opt_mpol),
3393 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3394 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3395 	fsparam_string("size",		Opt_size),
3396 	fsparam_u32   ("uid",		Opt_uid),
3397 	{}
3398 };
3399 
3400 static const struct fs_parameter_enum shmem_param_enums[] = {
3401 	{ Opt_huge,	"never",	SHMEM_HUGE_NEVER },
3402 	{ Opt_huge,	"always",	SHMEM_HUGE_ALWAYS },
3403 	{ Opt_huge,	"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3404 	{ Opt_huge,	"advise",	SHMEM_HUGE_ADVISE },
3405 	{}
3406 };
3407 
3408 const struct fs_parameter_description shmem_fs_parameters = {
3409 	.name		= "tmpfs",
3410 	.specs		= shmem_param_specs,
3411 	.enums		= shmem_param_enums,
3412 };
3413 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3414 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3415 {
3416 	struct shmem_options *ctx = fc->fs_private;
3417 	struct fs_parse_result result;
3418 	unsigned long long size;
3419 	char *rest;
3420 	int opt;
3421 	kuid_t kuid;
3422 	kgid_t kgid;
3423 
3424 	opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3425 	if (opt < 0)
3426 		return opt;
3427 
3428 	switch (opt) {
3429 	case Opt_size:
3430 		size = memparse(param->string, &rest);
3431 		if (*rest == '%') {
3432 			size <<= PAGE_SHIFT;
3433 			size *= totalram_pages();
3434 			do_div(size, 100);
3435 			rest++;
3436 		}
3437 		if (*rest)
3438 			goto bad_value;
3439 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3440 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3441 		break;
3442 	case Opt_nr_blocks:
3443 		ctx->blocks = memparse(param->string, &rest);
3444 		if (*rest)
3445 			goto bad_value;
3446 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3447 		break;
3448 	case Opt_nr_inodes:
3449 		ctx->inodes = memparse(param->string, &rest);
3450 		if (*rest)
3451 			goto bad_value;
3452 		ctx->seen |= SHMEM_SEEN_INODES;
3453 		break;
3454 	case Opt_mode:
3455 		ctx->mode = result.uint_32 & 07777;
3456 		break;
3457 	case Opt_uid:
3458 		kuid = make_kuid(current_user_ns(), result.uint_32);
3459 		if (!uid_valid(kuid))
3460 			goto bad_value;
3461 
3462 		/*
3463 		 * The requested uid must be representable in the
3464 		 * filesystem's idmapping.
3465 		 */
3466 		if (!kuid_has_mapping(fc->user_ns, kuid))
3467 			goto bad_value;
3468 
3469 		ctx->uid = kuid;
3470 		break;
3471 	case Opt_gid:
3472 		kgid = make_kgid(current_user_ns(), result.uint_32);
3473 		if (!gid_valid(kgid))
3474 			goto bad_value;
3475 
3476 		/*
3477 		 * The requested gid must be representable in the
3478 		 * filesystem's idmapping.
3479 		 */
3480 		if (!kgid_has_mapping(fc->user_ns, kgid))
3481 			goto bad_value;
3482 
3483 		ctx->gid = kgid;
3484 		break;
3485 	case Opt_huge:
3486 		ctx->huge = result.uint_32;
3487 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3488 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3489 		      has_transparent_hugepage()))
3490 			goto unsupported_parameter;
3491 		ctx->seen |= SHMEM_SEEN_HUGE;
3492 		break;
3493 	case Opt_mpol:
3494 		if (IS_ENABLED(CONFIG_NUMA)) {
3495 			mpol_put(ctx->mpol);
3496 			ctx->mpol = NULL;
3497 			if (mpol_parse_str(param->string, &ctx->mpol))
3498 				goto bad_value;
3499 			break;
3500 		}
3501 		goto unsupported_parameter;
3502 	}
3503 	return 0;
3504 
3505 unsupported_parameter:
3506 	return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3507 bad_value:
3508 	return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3509 }
3510 
shmem_parse_options(struct fs_context * fc,void * data)3511 static int shmem_parse_options(struct fs_context *fc, void *data)
3512 {
3513 	char *options = data;
3514 
3515 	if (options) {
3516 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3517 		if (err)
3518 			return err;
3519 	}
3520 
3521 	while (options != NULL) {
3522 		char *this_char = options;
3523 		for (;;) {
3524 			/*
3525 			 * NUL-terminate this option: unfortunately,
3526 			 * mount options form a comma-separated list,
3527 			 * but mpol's nodelist may also contain commas.
3528 			 */
3529 			options = strchr(options, ',');
3530 			if (options == NULL)
3531 				break;
3532 			options++;
3533 			if (!isdigit(*options)) {
3534 				options[-1] = '\0';
3535 				break;
3536 			}
3537 		}
3538 		if (*this_char) {
3539 			char *value = strchr(this_char,'=');
3540 			size_t len = 0;
3541 			int err;
3542 
3543 			if (value) {
3544 				*value++ = '\0';
3545 				len = strlen(value);
3546 			}
3547 			err = vfs_parse_fs_string(fc, this_char, value, len);
3548 			if (err < 0)
3549 				return err;
3550 		}
3551 	}
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Reconfigure a shmem filesystem.
3557  *
3558  * Note that we disallow change from limited->unlimited blocks/inodes while any
3559  * are in use; but we must separately disallow unlimited->limited, because in
3560  * that case we have no record of how much is already in use.
3561  */
shmem_reconfigure(struct fs_context * fc)3562 static int shmem_reconfigure(struct fs_context *fc)
3563 {
3564 	struct shmem_options *ctx = fc->fs_private;
3565 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3566 	unsigned long inodes;
3567 	const char *err;
3568 
3569 	spin_lock(&sbinfo->stat_lock);
3570 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3571 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3572 		if (!sbinfo->max_blocks) {
3573 			err = "Cannot retroactively limit size";
3574 			goto out;
3575 		}
3576 		if (percpu_counter_compare(&sbinfo->used_blocks,
3577 					   ctx->blocks) > 0) {
3578 			err = "Too small a size for current use";
3579 			goto out;
3580 		}
3581 	}
3582 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3583 		if (!sbinfo->max_inodes) {
3584 			err = "Cannot retroactively limit inodes";
3585 			goto out;
3586 		}
3587 		if (ctx->inodes < inodes) {
3588 			err = "Too few inodes for current use";
3589 			goto out;
3590 		}
3591 	}
3592 
3593 	if (ctx->seen & SHMEM_SEEN_HUGE)
3594 		sbinfo->huge = ctx->huge;
3595 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3596 		sbinfo->max_blocks  = ctx->blocks;
3597 	if (ctx->seen & SHMEM_SEEN_INODES) {
3598 		sbinfo->max_inodes  = ctx->inodes;
3599 		sbinfo->free_inodes = ctx->inodes - inodes;
3600 	}
3601 
3602 	/*
3603 	 * Preserve previous mempolicy unless mpol remount option was specified.
3604 	 */
3605 	if (ctx->mpol) {
3606 		mpol_put(sbinfo->mpol);
3607 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3608 		ctx->mpol = NULL;
3609 	}
3610 	spin_unlock(&sbinfo->stat_lock);
3611 	return 0;
3612 out:
3613 	spin_unlock(&sbinfo->stat_lock);
3614 	return invalf(fc, "tmpfs: %s", err);
3615 }
3616 
shmem_show_options(struct seq_file * seq,struct dentry * root)3617 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3618 {
3619 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3620 
3621 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3622 		seq_printf(seq, ",size=%luk",
3623 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3624 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3625 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3626 	if (sbinfo->mode != (0777 | S_ISVTX))
3627 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3628 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3629 		seq_printf(seq, ",uid=%u",
3630 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3631 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3632 		seq_printf(seq, ",gid=%u",
3633 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3634 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3635 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3636 	if (sbinfo->huge)
3637 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3638 #endif
3639 	shmem_show_mpol(seq, sbinfo->mpol);
3640 	return 0;
3641 }
3642 
3643 #endif /* CONFIG_TMPFS */
3644 
shmem_put_super(struct super_block * sb)3645 static void shmem_put_super(struct super_block *sb)
3646 {
3647 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3648 
3649 	percpu_counter_destroy(&sbinfo->used_blocks);
3650 	mpol_put(sbinfo->mpol);
3651 	kfree(sbinfo);
3652 	sb->s_fs_info = NULL;
3653 }
3654 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3655 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3656 {
3657 	struct shmem_options *ctx = fc->fs_private;
3658 	struct inode *inode;
3659 	struct shmem_sb_info *sbinfo;
3660 	int err = -ENOMEM;
3661 
3662 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3663 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3664 				L1_CACHE_BYTES), GFP_KERNEL);
3665 	if (!sbinfo)
3666 		return -ENOMEM;
3667 
3668 	sb->s_fs_info = sbinfo;
3669 
3670 #ifdef CONFIG_TMPFS
3671 	/*
3672 	 * Per default we only allow half of the physical ram per
3673 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3674 	 * but the internal instance is left unlimited.
3675 	 */
3676 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3677 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3678 			ctx->blocks = shmem_default_max_blocks();
3679 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3680 			ctx->inodes = shmem_default_max_inodes();
3681 	} else {
3682 		sb->s_flags |= SB_NOUSER;
3683 	}
3684 	sb->s_export_op = &shmem_export_ops;
3685 	sb->s_flags |= SB_NOSEC;
3686 #else
3687 	sb->s_flags |= SB_NOUSER;
3688 #endif
3689 	sbinfo->max_blocks = ctx->blocks;
3690 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3691 	sbinfo->uid = ctx->uid;
3692 	sbinfo->gid = ctx->gid;
3693 	sbinfo->mode = ctx->mode;
3694 	sbinfo->huge = ctx->huge;
3695 	sbinfo->mpol = ctx->mpol;
3696 	ctx->mpol = NULL;
3697 
3698 	spin_lock_init(&sbinfo->stat_lock);
3699 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3700 		goto failed;
3701 	spin_lock_init(&sbinfo->shrinklist_lock);
3702 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3703 
3704 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3705 	sb->s_blocksize = PAGE_SIZE;
3706 	sb->s_blocksize_bits = PAGE_SHIFT;
3707 	sb->s_magic = TMPFS_MAGIC;
3708 	sb->s_op = &shmem_ops;
3709 	sb->s_time_gran = 1;
3710 #ifdef CONFIG_TMPFS_XATTR
3711 	sb->s_xattr = shmem_xattr_handlers;
3712 #endif
3713 #ifdef CONFIG_TMPFS_POSIX_ACL
3714 	sb->s_flags |= SB_POSIXACL;
3715 #endif
3716 	uuid_gen(&sb->s_uuid);
3717 
3718 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3719 	if (!inode)
3720 		goto failed;
3721 	inode->i_uid = sbinfo->uid;
3722 	inode->i_gid = sbinfo->gid;
3723 	sb->s_root = d_make_root(inode);
3724 	if (!sb->s_root)
3725 		goto failed;
3726 	return 0;
3727 
3728 failed:
3729 	shmem_put_super(sb);
3730 	return err;
3731 }
3732 
shmem_get_tree(struct fs_context * fc)3733 static int shmem_get_tree(struct fs_context *fc)
3734 {
3735 	return get_tree_nodev(fc, shmem_fill_super);
3736 }
3737 
shmem_free_fc(struct fs_context * fc)3738 static void shmem_free_fc(struct fs_context *fc)
3739 {
3740 	struct shmem_options *ctx = fc->fs_private;
3741 
3742 	if (ctx) {
3743 		mpol_put(ctx->mpol);
3744 		kfree(ctx);
3745 	}
3746 }
3747 
3748 static const struct fs_context_operations shmem_fs_context_ops = {
3749 	.free			= shmem_free_fc,
3750 	.get_tree		= shmem_get_tree,
3751 #ifdef CONFIG_TMPFS
3752 	.parse_monolithic	= shmem_parse_options,
3753 	.parse_param		= shmem_parse_one,
3754 	.reconfigure		= shmem_reconfigure,
3755 #endif
3756 };
3757 
3758 static struct kmem_cache *shmem_inode_cachep;
3759 
shmem_alloc_inode(struct super_block * sb)3760 static struct inode *shmem_alloc_inode(struct super_block *sb)
3761 {
3762 	struct shmem_inode_info *info;
3763 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3764 	if (!info)
3765 		return NULL;
3766 	return &info->vfs_inode;
3767 }
3768 
shmem_free_in_core_inode(struct inode * inode)3769 static void shmem_free_in_core_inode(struct inode *inode)
3770 {
3771 	if (S_ISLNK(inode->i_mode))
3772 		kfree(inode->i_link);
3773 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3774 }
3775 
shmem_destroy_inode(struct inode * inode)3776 static void shmem_destroy_inode(struct inode *inode)
3777 {
3778 	if (S_ISREG(inode->i_mode))
3779 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3780 }
3781 
shmem_init_inode(void * foo)3782 static void shmem_init_inode(void *foo)
3783 {
3784 	struct shmem_inode_info *info = foo;
3785 	inode_init_once(&info->vfs_inode);
3786 }
3787 
shmem_init_inodecache(void)3788 static void shmem_init_inodecache(void)
3789 {
3790 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3791 				sizeof(struct shmem_inode_info),
3792 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3793 }
3794 
shmem_destroy_inodecache(void)3795 static void shmem_destroy_inodecache(void)
3796 {
3797 	kmem_cache_destroy(shmem_inode_cachep);
3798 }
3799 
3800 static const struct address_space_operations shmem_aops = {
3801 	.writepage	= shmem_writepage,
3802 	.set_page_dirty	= __set_page_dirty_no_writeback,
3803 #ifdef CONFIG_TMPFS
3804 	.write_begin	= shmem_write_begin,
3805 	.write_end	= shmem_write_end,
3806 #endif
3807 #ifdef CONFIG_MIGRATION
3808 	.migratepage	= migrate_page,
3809 #endif
3810 	.error_remove_page = generic_error_remove_page,
3811 };
3812 
3813 static const struct file_operations shmem_file_operations = {
3814 	.mmap		= shmem_mmap,
3815 	.get_unmapped_area = shmem_get_unmapped_area,
3816 #ifdef CONFIG_TMPFS
3817 	.llseek		= shmem_file_llseek,
3818 	.read_iter	= shmem_file_read_iter,
3819 	.write_iter	= generic_file_write_iter,
3820 	.fsync		= noop_fsync,
3821 	.splice_read	= generic_file_splice_read,
3822 	.splice_write	= iter_file_splice_write,
3823 	.fallocate	= shmem_fallocate,
3824 #endif
3825 };
3826 
3827 static const struct inode_operations shmem_inode_operations = {
3828 	.getattr	= shmem_getattr,
3829 	.setattr	= shmem_setattr,
3830 #ifdef CONFIG_TMPFS_XATTR
3831 	.listxattr	= shmem_listxattr,
3832 	.set_acl	= simple_set_acl,
3833 #endif
3834 };
3835 
3836 static const struct inode_operations shmem_dir_inode_operations = {
3837 #ifdef CONFIG_TMPFS
3838 	.create		= shmem_create,
3839 	.lookup		= simple_lookup,
3840 	.link		= shmem_link,
3841 	.unlink		= shmem_unlink,
3842 	.symlink	= shmem_symlink,
3843 	.mkdir		= shmem_mkdir,
3844 	.rmdir		= shmem_rmdir,
3845 	.mknod		= shmem_mknod,
3846 	.rename		= shmem_rename2,
3847 	.tmpfile	= shmem_tmpfile,
3848 #endif
3849 #ifdef CONFIG_TMPFS_XATTR
3850 	.listxattr	= shmem_listxattr,
3851 #endif
3852 #ifdef CONFIG_TMPFS_POSIX_ACL
3853 	.setattr	= shmem_setattr,
3854 	.set_acl	= simple_set_acl,
3855 #endif
3856 };
3857 
3858 static const struct inode_operations shmem_special_inode_operations = {
3859 #ifdef CONFIG_TMPFS_XATTR
3860 	.listxattr	= shmem_listxattr,
3861 #endif
3862 #ifdef CONFIG_TMPFS_POSIX_ACL
3863 	.setattr	= shmem_setattr,
3864 	.set_acl	= simple_set_acl,
3865 #endif
3866 };
3867 
3868 static const struct super_operations shmem_ops = {
3869 	.alloc_inode	= shmem_alloc_inode,
3870 	.free_inode	= shmem_free_in_core_inode,
3871 	.destroy_inode	= shmem_destroy_inode,
3872 #ifdef CONFIG_TMPFS
3873 	.statfs		= shmem_statfs,
3874 	.show_options	= shmem_show_options,
3875 #endif
3876 	.evict_inode	= shmem_evict_inode,
3877 	.drop_inode	= generic_delete_inode,
3878 	.put_super	= shmem_put_super,
3879 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3880 	.nr_cached_objects	= shmem_unused_huge_count,
3881 	.free_cached_objects	= shmem_unused_huge_scan,
3882 #endif
3883 };
3884 
3885 static const struct vm_operations_struct shmem_vm_ops = {
3886 	.fault		= shmem_fault,
3887 	.map_pages	= filemap_map_pages,
3888 #ifdef CONFIG_NUMA
3889 	.set_policy     = shmem_set_policy,
3890 	.get_policy     = shmem_get_policy,
3891 #endif
3892 };
3893 
shmem_init_fs_context(struct fs_context * fc)3894 int shmem_init_fs_context(struct fs_context *fc)
3895 {
3896 	struct shmem_options *ctx;
3897 
3898 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3899 	if (!ctx)
3900 		return -ENOMEM;
3901 
3902 	ctx->mode = 0777 | S_ISVTX;
3903 	ctx->uid = current_fsuid();
3904 	ctx->gid = current_fsgid();
3905 
3906 	fc->fs_private = ctx;
3907 	fc->ops = &shmem_fs_context_ops;
3908 	return 0;
3909 }
3910 
3911 static struct file_system_type shmem_fs_type = {
3912 	.owner		= THIS_MODULE,
3913 	.name		= "tmpfs",
3914 	.init_fs_context = shmem_init_fs_context,
3915 #ifdef CONFIG_TMPFS
3916 	.parameters	= &shmem_fs_parameters,
3917 #endif
3918 	.kill_sb	= kill_litter_super,
3919 	.fs_flags	= FS_USERNS_MOUNT,
3920 };
3921 
shmem_init(void)3922 int __init shmem_init(void)
3923 {
3924 	int error;
3925 
3926 	shmem_init_inodecache();
3927 
3928 	error = register_filesystem(&shmem_fs_type);
3929 	if (error) {
3930 		pr_err("Could not register tmpfs\n");
3931 		goto out2;
3932 	}
3933 
3934 	shm_mnt = kern_mount(&shmem_fs_type);
3935 	if (IS_ERR(shm_mnt)) {
3936 		error = PTR_ERR(shm_mnt);
3937 		pr_err("Could not kern_mount tmpfs\n");
3938 		goto out1;
3939 	}
3940 
3941 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3942 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3943 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944 	else
3945 		shmem_huge = 0; /* just in case it was patched */
3946 #endif
3947 	return 0;
3948 
3949 out1:
3950 	unregister_filesystem(&shmem_fs_type);
3951 out2:
3952 	shmem_destroy_inodecache();
3953 	shm_mnt = ERR_PTR(error);
3954 	return error;
3955 }
3956 
3957 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3958 static ssize_t shmem_enabled_show(struct kobject *kobj,
3959 		struct kobj_attribute *attr, char *buf)
3960 {
3961 	int values[] = {
3962 		SHMEM_HUGE_ALWAYS,
3963 		SHMEM_HUGE_WITHIN_SIZE,
3964 		SHMEM_HUGE_ADVISE,
3965 		SHMEM_HUGE_NEVER,
3966 		SHMEM_HUGE_DENY,
3967 		SHMEM_HUGE_FORCE,
3968 	};
3969 	int i, count;
3970 
3971 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3972 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3973 
3974 		count += sprintf(buf + count, fmt,
3975 				shmem_format_huge(values[i]));
3976 	}
3977 	buf[count - 1] = '\n';
3978 	return count;
3979 }
3980 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3981 static ssize_t shmem_enabled_store(struct kobject *kobj,
3982 		struct kobj_attribute *attr, const char *buf, size_t count)
3983 {
3984 	char tmp[16];
3985 	int huge;
3986 
3987 	if (count + 1 > sizeof(tmp))
3988 		return -EINVAL;
3989 	memcpy(tmp, buf, count);
3990 	tmp[count] = '\0';
3991 	if (count && tmp[count - 1] == '\n')
3992 		tmp[count - 1] = '\0';
3993 
3994 	huge = shmem_parse_huge(tmp);
3995 	if (huge == -EINVAL)
3996 		return -EINVAL;
3997 	if (!has_transparent_hugepage() &&
3998 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3999 		return -EINVAL;
4000 
4001 	shmem_huge = huge;
4002 	if (shmem_huge > SHMEM_HUGE_DENY)
4003 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4004 	return count;
4005 }
4006 
4007 struct kobj_attribute shmem_enabled_attr =
4008 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4009 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4010 
4011 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
shmem_huge_enabled(struct vm_area_struct * vma)4012 bool shmem_huge_enabled(struct vm_area_struct *vma)
4013 {
4014 	struct inode *inode = file_inode(vma->vm_file);
4015 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4016 	loff_t i_size;
4017 	pgoff_t off;
4018 
4019 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4020 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4021 		return false;
4022 	if (shmem_huge == SHMEM_HUGE_FORCE)
4023 		return true;
4024 	if (shmem_huge == SHMEM_HUGE_DENY)
4025 		return false;
4026 	switch (sbinfo->huge) {
4027 		case SHMEM_HUGE_NEVER:
4028 			return false;
4029 		case SHMEM_HUGE_ALWAYS:
4030 			return true;
4031 		case SHMEM_HUGE_WITHIN_SIZE:
4032 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4033 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4034 			if (i_size >= HPAGE_PMD_SIZE &&
4035 					i_size >> PAGE_SHIFT >= off)
4036 				return true;
4037 			/* fall through */
4038 		case SHMEM_HUGE_ADVISE:
4039 			/* TODO: implement fadvise() hints */
4040 			return (vma->vm_flags & VM_HUGEPAGE);
4041 		default:
4042 			VM_BUG_ON(1);
4043 			return false;
4044 	}
4045 }
4046 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4047 
4048 #else /* !CONFIG_SHMEM */
4049 
4050 /*
4051  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4052  *
4053  * This is intended for small system where the benefits of the full
4054  * shmem code (swap-backed and resource-limited) are outweighed by
4055  * their complexity. On systems without swap this code should be
4056  * effectively equivalent, but much lighter weight.
4057  */
4058 
4059 static struct file_system_type shmem_fs_type = {
4060 	.name		= "tmpfs",
4061 	.init_fs_context = ramfs_init_fs_context,
4062 	.parameters	= &ramfs_fs_parameters,
4063 	.kill_sb	= kill_litter_super,
4064 	.fs_flags	= FS_USERNS_MOUNT,
4065 };
4066 
shmem_init(void)4067 int __init shmem_init(void)
4068 {
4069 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4070 
4071 	shm_mnt = kern_mount(&shmem_fs_type);
4072 	BUG_ON(IS_ERR(shm_mnt));
4073 
4074 	return 0;
4075 }
4076 
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4077 int shmem_unuse(unsigned int type, bool frontswap,
4078 		unsigned long *fs_pages_to_unuse)
4079 {
4080 	return 0;
4081 }
4082 
shmem_lock(struct file * file,int lock,struct user_struct * user)4083 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4084 {
4085 	return 0;
4086 }
4087 
shmem_unlock_mapping(struct address_space * mapping)4088 void shmem_unlock_mapping(struct address_space *mapping)
4089 {
4090 }
4091 
4092 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4093 unsigned long shmem_get_unmapped_area(struct file *file,
4094 				      unsigned long addr, unsigned long len,
4095 				      unsigned long pgoff, unsigned long flags)
4096 {
4097 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4098 }
4099 #endif
4100 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4101 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4102 {
4103 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4104 }
4105 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4106 
4107 #define shmem_vm_ops				generic_file_vm_ops
4108 #define shmem_file_operations			ramfs_file_operations
4109 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4110 #define shmem_acct_size(flags, size)		0
4111 #define shmem_unacct_size(flags, size)		do {} while (0)
4112 
4113 #endif /* CONFIG_SHMEM */
4114 
4115 /* common code */
4116 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4117 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4118 				       unsigned long flags, unsigned int i_flags)
4119 {
4120 	struct inode *inode;
4121 	struct file *res;
4122 
4123 	if (IS_ERR(mnt))
4124 		return ERR_CAST(mnt);
4125 
4126 	if (size < 0 || size > MAX_LFS_FILESIZE)
4127 		return ERR_PTR(-EINVAL);
4128 
4129 	if (shmem_acct_size(flags, size))
4130 		return ERR_PTR(-ENOMEM);
4131 
4132 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4133 				flags);
4134 	if (unlikely(!inode)) {
4135 		shmem_unacct_size(flags, size);
4136 		return ERR_PTR(-ENOSPC);
4137 	}
4138 	inode->i_flags |= i_flags;
4139 	inode->i_size = size;
4140 	clear_nlink(inode);	/* It is unlinked */
4141 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4142 	if (!IS_ERR(res))
4143 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4144 				&shmem_file_operations);
4145 	if (IS_ERR(res))
4146 		iput(inode);
4147 	return res;
4148 }
4149 
4150 /**
4151  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4152  * 	kernel internal.  There will be NO LSM permission checks against the
4153  * 	underlying inode.  So users of this interface must do LSM checks at a
4154  *	higher layer.  The users are the big_key and shm implementations.  LSM
4155  *	checks are provided at the key or shm level rather than the inode.
4156  * @name: name for dentry (to be seen in /proc/<pid>/maps
4157  * @size: size to be set for the file
4158  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4159  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4160 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4161 {
4162 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4163 }
4164 
4165 /**
4166  * shmem_file_setup - get an unlinked file living in tmpfs
4167  * @name: name for dentry (to be seen in /proc/<pid>/maps
4168  * @size: size to be set for the file
4169  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4170  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4171 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4172 {
4173 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4174 }
4175 EXPORT_SYMBOL_GPL(shmem_file_setup);
4176 
4177 /**
4178  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4179  * @mnt: the tmpfs mount where the file will be created
4180  * @name: name for dentry (to be seen in /proc/<pid>/maps
4181  * @size: size to be set for the file
4182  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4184 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4185 				       loff_t size, unsigned long flags)
4186 {
4187 	return __shmem_file_setup(mnt, name, size, flags, 0);
4188 }
4189 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4190 
4191 /**
4192  * shmem_zero_setup - setup a shared anonymous mapping
4193  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4194  */
shmem_zero_setup(struct vm_area_struct * vma)4195 int shmem_zero_setup(struct vm_area_struct *vma)
4196 {
4197 	struct file *file;
4198 	loff_t size = vma->vm_end - vma->vm_start;
4199 
4200 	/*
4201 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4202 	 * between XFS directory reading and selinux: since this file is only
4203 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4204 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4205 	 */
4206 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4207 	if (IS_ERR(file))
4208 		return PTR_ERR(file);
4209 
4210 	if (vma->vm_file)
4211 		fput(vma->vm_file);
4212 	vma->vm_file = file;
4213 	vma->vm_ops = &shmem_vm_ops;
4214 
4215 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4216 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4217 			(vma->vm_end & HPAGE_PMD_MASK)) {
4218 		khugepaged_enter(vma, vma->vm_flags);
4219 	}
4220 
4221 	return 0;
4222 }
4223 
4224 /**
4225  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4226  * @mapping:	the page's address_space
4227  * @index:	the page index
4228  * @gfp:	the page allocator flags to use if allocating
4229  *
4230  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4231  * with any new page allocations done using the specified allocation flags.
4232  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4233  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4234  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4235  *
4236  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4237  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4238  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4239 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4240 					 pgoff_t index, gfp_t gfp)
4241 {
4242 #ifdef CONFIG_SHMEM
4243 	struct inode *inode = mapping->host;
4244 	struct page *page;
4245 	int error;
4246 
4247 	BUG_ON(mapping->a_ops != &shmem_aops);
4248 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4249 				  gfp, NULL, NULL, NULL);
4250 	if (error)
4251 		page = ERR_PTR(error);
4252 	else
4253 		unlock_page(page);
4254 	return page;
4255 #else
4256 	/*
4257 	 * The tiny !SHMEM case uses ramfs without swap
4258 	 */
4259 	return read_cache_page_gfp(mapping, index, gfp);
4260 #endif
4261 }
4262 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4263