1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5 * Internal slab definitions
6 */
7
8 #ifdef CONFIG_SLOB
9 /*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20 struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31 };
32
33 #else /* !CONFIG_SLOB */
34
35 struct memcg_cache_array {
36 struct rcu_head rcu;
37 struct kmem_cache *entries[0];
38 };
39
40 /*
41 * This is the main placeholder for memcg-related information in kmem caches.
42 * Both the root cache and the child caches will have it. For the root cache,
43 * this will hold a dynamically allocated array large enough to hold
44 * information about the currently limited memcgs in the system. To allow the
45 * array to be accessed without taking any locks, on relocation we free the old
46 * version only after a grace period.
47 *
48 * Root and child caches hold different metadata.
49 *
50 * @root_cache: Common to root and child caches. NULL for root, pointer to
51 * the root cache for children.
52 *
53 * The following fields are specific to root caches.
54 *
55 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
56 * used to index child cachces during allocation and cleared
57 * early during shutdown.
58 *
59 * @root_caches_node: List node for slab_root_caches list.
60 *
61 * @children: List of all child caches. While the child caches are also
62 * reachable through @memcg_caches, a child cache remains on
63 * this list until it is actually destroyed.
64 *
65 * The following fields are specific to child caches.
66 *
67 * @memcg: Pointer to the memcg this cache belongs to.
68 *
69 * @children_node: List node for @root_cache->children list.
70 *
71 * @kmem_caches_node: List node for @memcg->kmem_caches list.
72 */
73 struct memcg_cache_params {
74 struct kmem_cache *root_cache;
75 union {
76 struct {
77 struct memcg_cache_array __rcu *memcg_caches;
78 struct list_head __root_caches_node;
79 struct list_head children;
80 bool dying;
81 };
82 struct {
83 struct mem_cgroup *memcg;
84 struct list_head children_node;
85 struct list_head kmem_caches_node;
86 struct percpu_ref refcnt;
87
88 void (*work_fn)(struct kmem_cache *);
89 union {
90 struct rcu_head rcu_head;
91 struct work_struct work;
92 };
93 };
94 };
95 };
96 #endif /* CONFIG_SLOB */
97
98 #ifdef CONFIG_SLAB
99 #include <linux/slab_def.h>
100 #endif
101
102 #ifdef CONFIG_SLUB
103 #include <linux/slub_def.h>
104 #endif
105
106 #include <linux/memcontrol.h>
107 #include <linux/fault-inject.h>
108 #include <linux/kasan.h>
109 #include <linux/kmemleak.h>
110 #include <linux/random.h>
111 #include <linux/sched/mm.h>
112
113 /*
114 * State of the slab allocator.
115 *
116 * This is used to describe the states of the allocator during bootup.
117 * Allocators use this to gradually bootstrap themselves. Most allocators
118 * have the problem that the structures used for managing slab caches are
119 * allocated from slab caches themselves.
120 */
121 enum slab_state {
122 DOWN, /* No slab functionality yet */
123 PARTIAL, /* SLUB: kmem_cache_node available */
124 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
125 UP, /* Slab caches usable but not all extras yet */
126 FULL /* Everything is working */
127 };
128
129 extern enum slab_state slab_state;
130
131 /* The slab cache mutex protects the management structures during changes */
132 extern struct mutex slab_mutex;
133
134 /* The list of all slab caches on the system */
135 extern struct list_head slab_caches;
136
137 /* The slab cache that manages slab cache information */
138 extern struct kmem_cache *kmem_cache;
139
140 /* A table of kmalloc cache names and sizes */
141 extern const struct kmalloc_info_struct {
142 const char *name;
143 unsigned int size;
144 } kmalloc_info[];
145
146 #ifndef CONFIG_SLOB
147 /* Kmalloc array related functions */
148 void setup_kmalloc_cache_index_table(void);
149 void create_kmalloc_caches(slab_flags_t);
150
151 /* Find the kmalloc slab corresponding for a certain size */
152 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
153 #endif
154
155
156 /* Functions provided by the slab allocators */
157 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
158
159 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
160 slab_flags_t flags, unsigned int useroffset,
161 unsigned int usersize);
162 extern void create_boot_cache(struct kmem_cache *, const char *name,
163 unsigned int size, slab_flags_t flags,
164 unsigned int useroffset, unsigned int usersize);
165
166 int slab_unmergeable(struct kmem_cache *s);
167 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
168 slab_flags_t flags, const char *name, void (*ctor)(void *));
169 #ifndef CONFIG_SLOB
170 struct kmem_cache *
171 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
172 slab_flags_t flags, void (*ctor)(void *));
173
174 slab_flags_t kmem_cache_flags(unsigned int object_size,
175 slab_flags_t flags, const char *name,
176 void (*ctor)(void *));
177 #else
178 static inline struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))179 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
180 slab_flags_t flags, void (*ctor)(void *))
181 { return NULL; }
182
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))183 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
184 slab_flags_t flags, const char *name,
185 void (*ctor)(void *))
186 {
187 return flags;
188 }
189 #endif
190
191
192 /* Legal flag mask for kmem_cache_create(), for various configurations */
193 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
194 SLAB_CACHE_DMA32 | SLAB_PANIC | \
195 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
196
197 #if defined(CONFIG_DEBUG_SLAB)
198 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
199 #elif defined(CONFIG_SLUB_DEBUG)
200 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
201 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
202 #else
203 #define SLAB_DEBUG_FLAGS (0)
204 #endif
205
206 #if defined(CONFIG_SLAB)
207 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
208 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
209 SLAB_ACCOUNT)
210 #elif defined(CONFIG_SLUB)
211 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
212 SLAB_TEMPORARY | SLAB_ACCOUNT)
213 #else
214 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
215 #endif
216
217 /* Common flags available with current configuration */
218 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
219
220 /* Common flags permitted for kmem_cache_create */
221 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
222 SLAB_RED_ZONE | \
223 SLAB_POISON | \
224 SLAB_STORE_USER | \
225 SLAB_TRACE | \
226 SLAB_CONSISTENCY_CHECKS | \
227 SLAB_MEM_SPREAD | \
228 SLAB_NOLEAKTRACE | \
229 SLAB_RECLAIM_ACCOUNT | \
230 SLAB_TEMPORARY | \
231 SLAB_ACCOUNT)
232
233 bool __kmem_cache_empty(struct kmem_cache *);
234 int __kmem_cache_shutdown(struct kmem_cache *);
235 void __kmem_cache_release(struct kmem_cache *);
236 int __kmem_cache_shrink(struct kmem_cache *);
237 void __kmemcg_cache_deactivate(struct kmem_cache *s);
238 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
239 void slab_kmem_cache_release(struct kmem_cache *);
240 void kmem_cache_shrink_all(struct kmem_cache *s);
241
242 struct seq_file;
243 struct file;
244
245 struct slabinfo {
246 unsigned long active_objs;
247 unsigned long num_objs;
248 unsigned long active_slabs;
249 unsigned long num_slabs;
250 unsigned long shared_avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int shared;
254 unsigned int objects_per_slab;
255 unsigned int cache_order;
256 };
257
258 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
259 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
260 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
261 size_t count, loff_t *ppos);
262
263 /*
264 * Generic implementation of bulk operations
265 * These are useful for situations in which the allocator cannot
266 * perform optimizations. In that case segments of the object listed
267 * may be allocated or freed using these operations.
268 */
269 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
270 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
271
cache_vmstat_idx(struct kmem_cache * s)272 static inline int cache_vmstat_idx(struct kmem_cache *s)
273 {
274 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
275 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
276 }
277
278 #ifdef CONFIG_MEMCG_KMEM
279
280 /* List of all root caches. */
281 extern struct list_head slab_root_caches;
282 #define root_caches_node memcg_params.__root_caches_node
283
284 /*
285 * Iterate over all memcg caches of the given root cache. The caller must hold
286 * slab_mutex.
287 */
288 #define for_each_memcg_cache(iter, root) \
289 list_for_each_entry(iter, &(root)->memcg_params.children, \
290 memcg_params.children_node)
291
is_root_cache(struct kmem_cache * s)292 static inline bool is_root_cache(struct kmem_cache *s)
293 {
294 return !s->memcg_params.root_cache;
295 }
296
slab_equal_or_root(struct kmem_cache * s,struct kmem_cache * p)297 static inline bool slab_equal_or_root(struct kmem_cache *s,
298 struct kmem_cache *p)
299 {
300 return p == s || p == s->memcg_params.root_cache;
301 }
302
303 /*
304 * We use suffixes to the name in memcg because we can't have caches
305 * created in the system with the same name. But when we print them
306 * locally, better refer to them with the base name
307 */
cache_name(struct kmem_cache * s)308 static inline const char *cache_name(struct kmem_cache *s)
309 {
310 if (!is_root_cache(s))
311 s = s->memcg_params.root_cache;
312 return s->name;
313 }
314
memcg_root_cache(struct kmem_cache * s)315 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
316 {
317 if (is_root_cache(s))
318 return s;
319 return s->memcg_params.root_cache;
320 }
321
322 /*
323 * Expects a pointer to a slab page. Please note, that PageSlab() check
324 * isn't sufficient, as it returns true also for tail compound slab pages,
325 * which do not have slab_cache pointer set.
326 * So this function assumes that the page can pass PageSlab() && !PageTail()
327 * check.
328 *
329 * The kmem_cache can be reparented asynchronously. The caller must ensure
330 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
331 */
memcg_from_slab_page(struct page * page)332 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
333 {
334 struct kmem_cache *s;
335
336 s = READ_ONCE(page->slab_cache);
337 if (s && !is_root_cache(s))
338 return READ_ONCE(s->memcg_params.memcg);
339
340 return NULL;
341 }
342
343 /*
344 * Charge the slab page belonging to the non-root kmem_cache.
345 * Can be called for non-root kmem_caches only.
346 */
memcg_charge_slab(struct page * page,gfp_t gfp,int order,struct kmem_cache * s)347 static __always_inline int memcg_charge_slab(struct page *page,
348 gfp_t gfp, int order,
349 struct kmem_cache *s)
350 {
351 struct mem_cgroup *memcg;
352 struct lruvec *lruvec;
353 int ret;
354
355 rcu_read_lock();
356 memcg = READ_ONCE(s->memcg_params.memcg);
357 while (memcg && !css_tryget_online(&memcg->css))
358 memcg = parent_mem_cgroup(memcg);
359 rcu_read_unlock();
360
361 if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
362 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
363 (1 << order));
364 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
365 return 0;
366 }
367
368 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
369 if (ret)
370 goto out;
371
372 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
373 mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
374
375 /* transer try_charge() page references to kmem_cache */
376 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
377 css_put_many(&memcg->css, 1 << order);
378 out:
379 css_put(&memcg->css);
380 return ret;
381 }
382
383 /*
384 * Uncharge a slab page belonging to a non-root kmem_cache.
385 * Can be called for non-root kmem_caches only.
386 */
memcg_uncharge_slab(struct page * page,int order,struct kmem_cache * s)387 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
388 struct kmem_cache *s)
389 {
390 struct mem_cgroup *memcg;
391 struct lruvec *lruvec;
392
393 rcu_read_lock();
394 memcg = READ_ONCE(s->memcg_params.memcg);
395 if (likely(!mem_cgroup_is_root(memcg))) {
396 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
397 mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
398 memcg_kmem_uncharge_memcg(page, order, memcg);
399 } else {
400 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
401 -(1 << order));
402 }
403 rcu_read_unlock();
404
405 percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
406 }
407
408 extern void slab_init_memcg_params(struct kmem_cache *);
409 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
410
411 #else /* CONFIG_MEMCG_KMEM */
412
413 /* If !memcg, all caches are root. */
414 #define slab_root_caches slab_caches
415 #define root_caches_node list
416
417 #define for_each_memcg_cache(iter, root) \
418 for ((void)(iter), (void)(root); 0; )
419
is_root_cache(struct kmem_cache * s)420 static inline bool is_root_cache(struct kmem_cache *s)
421 {
422 return true;
423 }
424
slab_equal_or_root(struct kmem_cache * s,struct kmem_cache * p)425 static inline bool slab_equal_or_root(struct kmem_cache *s,
426 struct kmem_cache *p)
427 {
428 return s == p;
429 }
430
cache_name(struct kmem_cache * s)431 static inline const char *cache_name(struct kmem_cache *s)
432 {
433 return s->name;
434 }
435
memcg_root_cache(struct kmem_cache * s)436 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
437 {
438 return s;
439 }
440
memcg_from_slab_page(struct page * page)441 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
442 {
443 return NULL;
444 }
445
memcg_charge_slab(struct page * page,gfp_t gfp,int order,struct kmem_cache * s)446 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
447 struct kmem_cache *s)
448 {
449 return 0;
450 }
451
memcg_uncharge_slab(struct page * page,int order,struct kmem_cache * s)452 static inline void memcg_uncharge_slab(struct page *page, int order,
453 struct kmem_cache *s)
454 {
455 }
456
slab_init_memcg_params(struct kmem_cache * s)457 static inline void slab_init_memcg_params(struct kmem_cache *s)
458 {
459 }
460
memcg_link_cache(struct kmem_cache * s,struct mem_cgroup * memcg)461 static inline void memcg_link_cache(struct kmem_cache *s,
462 struct mem_cgroup *memcg)
463 {
464 }
465
466 #endif /* CONFIG_MEMCG_KMEM */
467
virt_to_cache(const void * obj)468 static inline struct kmem_cache *virt_to_cache(const void *obj)
469 {
470 struct page *page;
471
472 page = virt_to_head_page(obj);
473 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
474 __func__))
475 return NULL;
476 return page->slab_cache;
477 }
478
charge_slab_page(struct page * page,gfp_t gfp,int order,struct kmem_cache * s)479 static __always_inline int charge_slab_page(struct page *page,
480 gfp_t gfp, int order,
481 struct kmem_cache *s)
482 {
483 if (is_root_cache(s)) {
484 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
485 1 << order);
486 return 0;
487 }
488
489 return memcg_charge_slab(page, gfp, order, s);
490 }
491
uncharge_slab_page(struct page * page,int order,struct kmem_cache * s)492 static __always_inline void uncharge_slab_page(struct page *page, int order,
493 struct kmem_cache *s)
494 {
495 if (is_root_cache(s)) {
496 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
497 -(1 << order));
498 return;
499 }
500
501 memcg_uncharge_slab(page, order, s);
502 }
503
cache_from_obj(struct kmem_cache * s,void * x)504 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
505 {
506 struct kmem_cache *cachep;
507
508 /*
509 * When kmemcg is not being used, both assignments should return the
510 * same value. but we don't want to pay the assignment price in that
511 * case. If it is not compiled in, the compiler should be smart enough
512 * to not do even the assignment. In that case, slab_equal_or_root
513 * will also be a constant.
514 */
515 if (!memcg_kmem_enabled() &&
516 !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
517 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
518 return s;
519
520 cachep = virt_to_cache(x);
521 WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
522 "%s: Wrong slab cache. %s but object is from %s\n",
523 __func__, s->name, cachep->name);
524 return cachep;
525 }
526
slab_ksize(const struct kmem_cache * s)527 static inline size_t slab_ksize(const struct kmem_cache *s)
528 {
529 #ifndef CONFIG_SLUB
530 return s->object_size;
531
532 #else /* CONFIG_SLUB */
533 # ifdef CONFIG_SLUB_DEBUG
534 /*
535 * Debugging requires use of the padding between object
536 * and whatever may come after it.
537 */
538 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
539 return s->object_size;
540 # endif
541 if (s->flags & SLAB_KASAN)
542 return s->object_size;
543 /*
544 * If we have the need to store the freelist pointer
545 * back there or track user information then we can
546 * only use the space before that information.
547 */
548 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
549 return s->inuse;
550 /*
551 * Else we can use all the padding etc for the allocation
552 */
553 return s->size;
554 #endif
555 }
556
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)557 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
558 gfp_t flags)
559 {
560 flags &= gfp_allowed_mask;
561
562 fs_reclaim_acquire(flags);
563 fs_reclaim_release(flags);
564
565 might_sleep_if(gfpflags_allow_blocking(flags));
566
567 if (should_failslab(s, flags))
568 return NULL;
569
570 if (memcg_kmem_enabled() &&
571 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
572 return memcg_kmem_get_cache(s);
573
574 return s;
575 }
576
slab_post_alloc_hook(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)577 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
578 size_t size, void **p)
579 {
580 size_t i;
581
582 flags &= gfp_allowed_mask;
583 for (i = 0; i < size; i++) {
584 p[i] = kasan_slab_alloc(s, p[i], flags);
585 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
586 kmemleak_alloc_recursive(p[i], s->object_size, 1,
587 s->flags, flags);
588 }
589
590 if (memcg_kmem_enabled())
591 memcg_kmem_put_cache(s);
592 }
593
594 #ifndef CONFIG_SLOB
595 /*
596 * The slab lists for all objects.
597 */
598 struct kmem_cache_node {
599 spinlock_t list_lock;
600
601 #ifdef CONFIG_SLAB
602 struct list_head slabs_partial; /* partial list first, better asm code */
603 struct list_head slabs_full;
604 struct list_head slabs_free;
605 unsigned long total_slabs; /* length of all slab lists */
606 unsigned long free_slabs; /* length of free slab list only */
607 unsigned long free_objects;
608 unsigned int free_limit;
609 unsigned int colour_next; /* Per-node cache coloring */
610 struct array_cache *shared; /* shared per node */
611 struct alien_cache **alien; /* on other nodes */
612 unsigned long next_reap; /* updated without locking */
613 int free_touched; /* updated without locking */
614 #endif
615
616 #ifdef CONFIG_SLUB
617 unsigned long nr_partial;
618 struct list_head partial;
619 #ifdef CONFIG_SLUB_DEBUG
620 atomic_long_t nr_slabs;
621 atomic_long_t total_objects;
622 struct list_head full;
623 #endif
624 #endif
625
626 };
627
get_node(struct kmem_cache * s,int node)628 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
629 {
630 return s->node[node];
631 }
632
633 /*
634 * Iterator over all nodes. The body will be executed for each node that has
635 * a kmem_cache_node structure allocated (which is true for all online nodes)
636 */
637 #define for_each_kmem_cache_node(__s, __node, __n) \
638 for (__node = 0; __node < nr_node_ids; __node++) \
639 if ((__n = get_node(__s, __node)))
640
641 #endif
642
643 void *slab_start(struct seq_file *m, loff_t *pos);
644 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
645 void slab_stop(struct seq_file *m, void *p);
646 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
647 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
648 void memcg_slab_stop(struct seq_file *m, void *p);
649 int memcg_slab_show(struct seq_file *m, void *p);
650
651 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
652 void dump_unreclaimable_slab(void);
653 #else
dump_unreclaimable_slab(void)654 static inline void dump_unreclaimable_slab(void)
655 {
656 }
657 #endif
658
659 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
660
661 #ifdef CONFIG_SLAB_FREELIST_RANDOM
662 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
663 gfp_t gfp);
664 void cache_random_seq_destroy(struct kmem_cache *cachep);
665 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)666 static inline int cache_random_seq_create(struct kmem_cache *cachep,
667 unsigned int count, gfp_t gfp)
668 {
669 return 0;
670 }
cache_random_seq_destroy(struct kmem_cache * cachep)671 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
672 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
673
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)674 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
675 {
676 if (static_branch_unlikely(&init_on_alloc)) {
677 if (c->ctor)
678 return false;
679 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
680 return flags & __GFP_ZERO;
681 return true;
682 }
683 return flags & __GFP_ZERO;
684 }
685
slab_want_init_on_free(struct kmem_cache * c)686 static inline bool slab_want_init_on_free(struct kmem_cache *c)
687 {
688 if (static_branch_unlikely(&init_on_free))
689 return !(c->ctor ||
690 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
691 return false;
692 }
693
694 #endif /* MM_SLAB_H */
695