• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21 
22 /*
23  * Permanent SPARSEMEM data:
24  *
25  * 1) mem_section	- memory sections, mem_map's for valid memory
26  */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 	____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34 
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37  * If we did not store the node number in the page then we have to
38  * do a lookup in the section_to_node_table in order to find which
39  * node the page belongs to.
40  */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46 
page_to_nid(const struct page * page)47 int page_to_nid(const struct page *page)
48 {
49 	return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52 
set_section_nid(unsigned long section_nr,int nid)53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 	section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62 
63 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 	struct mem_section *section = NULL;
67 	unsigned long array_size = SECTIONS_PER_ROOT *
68 				   sizeof(struct mem_section);
69 
70 	if (slab_is_available()) {
71 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 	} else {
73 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 					      nid);
75 		if (!section)
76 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 			      __func__, array_size, nid);
78 	}
79 
80 	return section;
81 }
82 
sparse_index_init(unsigned long section_nr,int nid)83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 	struct mem_section *section;
87 
88 	/*
89 	 * An existing section is possible in the sub-section hotplug
90 	 * case. First hot-add instantiates, follow-on hot-add reuses
91 	 * the existing section.
92 	 *
93 	 * The mem_hotplug_lock resolves the apparent race below.
94 	 */
95 	if (mem_section[root])
96 		return 0;
97 
98 	section = sparse_index_alloc(nid);
99 	if (!section)
100 		return -ENOMEM;
101 
102 	mem_section[root] = section;
103 
104 	return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 	return 0;
110 }
111 #endif
112 
113 #ifdef CONFIG_SPARSEMEM_EXTREME
__section_nr(struct mem_section * ms)114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 	unsigned long root_nr;
117 	struct mem_section *root = NULL;
118 
119 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 		if (!root)
122 			continue;
123 
124 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 		     break;
126 	}
127 
128 	VM_BUG_ON(!root);
129 
130 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
__section_nr(struct mem_section * ms)133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 	return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138 
139 /*
140  * During early boot, before section_mem_map is used for an actual
141  * mem_map, we use section_mem_map to store the section's NUMA
142  * node.  This keeps us from having to use another data structure.  The
143  * node information is cleared just before we store the real mem_map.
144  */
sparse_encode_early_nid(int nid)145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 	return (nid << SECTION_NID_SHIFT);
148 }
149 
sparse_early_nid(struct mem_section * section)150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 	return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154 
155 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 						unsigned long *end_pfn)
158 {
159 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160 
161 	/*
162 	 * Sanity checks - do not allow an architecture to pass
163 	 * in larger pfns than the maximum scope of sparsemem:
164 	 */
165 	if (*start_pfn > max_sparsemem_pfn) {
166 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 			*start_pfn, *end_pfn, max_sparsemem_pfn);
169 		WARN_ON_ONCE(1);
170 		*start_pfn = max_sparsemem_pfn;
171 		*end_pfn = max_sparsemem_pfn;
172 	} else if (*end_pfn > max_sparsemem_pfn) {
173 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 			*start_pfn, *end_pfn, max_sparsemem_pfn);
176 		WARN_ON_ONCE(1);
177 		*end_pfn = max_sparsemem_pfn;
178 	}
179 }
180 
181 /*
182  * There are a number of times that we loop over NR_MEM_SECTIONS,
183  * looking for section_present() on each.  But, when we have very
184  * large physical address spaces, NR_MEM_SECTIONS can also be
185  * very large which makes the loops quite long.
186  *
187  * Keeping track of this gives us an easy way to break out of
188  * those loops early.
189  */
190 unsigned long __highest_present_section_nr;
section_mark_present(struct mem_section * ms)191 static void section_mark_present(struct mem_section *ms)
192 {
193 	unsigned long section_nr = __section_nr(ms);
194 
195 	if (section_nr > __highest_present_section_nr)
196 		__highest_present_section_nr = section_nr;
197 
198 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200 
next_present_section_nr(unsigned long section_nr)201 static inline unsigned long next_present_section_nr(unsigned long section_nr)
202 {
203 	do {
204 		section_nr++;
205 		if (present_section_nr(section_nr))
206 			return section_nr;
207 	} while ((section_nr <= __highest_present_section_nr));
208 
209 	return -1;
210 }
211 #define for_each_present_section_nr(start, section_nr)		\
212 	for (section_nr = next_present_section_nr(start-1);	\
213 	     ((section_nr != -1) &&				\
214 	      (section_nr <= __highest_present_section_nr));	\
215 	     section_nr = next_present_section_nr(section_nr))
216 
first_present_section_nr(void)217 static inline unsigned long first_present_section_nr(void)
218 {
219 	return next_present_section_nr(-1);
220 }
221 
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)222 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223 		unsigned long nr_pages)
224 {
225 	int idx = subsection_map_index(pfn);
226 	int end = subsection_map_index(pfn + nr_pages - 1);
227 
228 	bitmap_set(map, idx, end - idx + 1);
229 }
230 
subsection_map_init(unsigned long pfn,unsigned long nr_pages)231 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232 {
233 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235 
236 	if (!nr_pages)
237 		return;
238 
239 	for (nr = start_sec; nr <= end_sec; nr++) {
240 		struct mem_section *ms;
241 		unsigned long pfns;
242 
243 		pfns = min(nr_pages, PAGES_PER_SECTION
244 				- (pfn & ~PAGE_SECTION_MASK));
245 		ms = __nr_to_section(nr);
246 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247 
248 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249 				pfns, subsection_map_index(pfn),
250 				subsection_map_index(pfn + pfns - 1));
251 
252 		pfn += pfns;
253 		nr_pages -= pfns;
254 	}
255 }
256 
257 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)258 void __init memory_present(int nid, unsigned long start, unsigned long end)
259 {
260 	unsigned long pfn;
261 
262 #ifdef CONFIG_SPARSEMEM_EXTREME
263 	if (unlikely(!mem_section)) {
264 		unsigned long size, align;
265 
266 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267 		align = 1 << (INTERNODE_CACHE_SHIFT);
268 		mem_section = memblock_alloc(size, align);
269 		if (!mem_section)
270 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271 			      __func__, size, align);
272 	}
273 #endif
274 
275 	start &= PAGE_SECTION_MASK;
276 	mminit_validate_memmodel_limits(&start, &end);
277 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278 		unsigned long section = pfn_to_section_nr(pfn);
279 		struct mem_section *ms;
280 
281 		sparse_index_init(section, nid);
282 		set_section_nid(section, nid);
283 
284 		ms = __nr_to_section(section);
285 		if (!ms->section_mem_map) {
286 			ms->section_mem_map = sparse_encode_early_nid(nid) |
287 							SECTION_IS_ONLINE;
288 			section_mark_present(ms);
289 		}
290 	}
291 }
292 
293 /*
294  * Mark all memblocks as present using memory_present(). This is a
295  * convienence function that is useful for a number of arches
296  * to mark all of the systems memory as present during initialization.
297  */
memblocks_present(void)298 void __init memblocks_present(void)
299 {
300 	struct memblock_region *reg;
301 
302 	for_each_memblock(memory, reg) {
303 		memory_present(memblock_get_region_node(reg),
304 			       memblock_region_memory_base_pfn(reg),
305 			       memblock_region_memory_end_pfn(reg));
306 	}
307 }
308 
309 /*
310  * Subtle, we encode the real pfn into the mem_map such that
311  * the identity pfn - section_mem_map will return the actual
312  * physical page frame number.
313  */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)314 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315 {
316 	unsigned long coded_mem_map =
317 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320 	return coded_mem_map;
321 }
322 
323 /*
324  * Decode mem_map from the coded memmap
325  */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)326 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327 {
328 	/* mask off the extra low bits of information */
329 	coded_mem_map &= SECTION_MAP_MASK;
330 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331 }
332 
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)333 static void __meminit sparse_init_one_section(struct mem_section *ms,
334 		unsigned long pnum, struct page *mem_map,
335 		struct mem_section_usage *usage, unsigned long flags)
336 {
337 	ms->section_mem_map &= ~SECTION_MAP_MASK;
338 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339 		| SECTION_HAS_MEM_MAP | flags;
340 	ms->usage = usage;
341 }
342 
usemap_size(void)343 static unsigned long usemap_size(void)
344 {
345 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346 }
347 
mem_section_usage_size(void)348 size_t mem_section_usage_size(void)
349 {
350 	return sizeof(struct mem_section_usage) + usemap_size();
351 }
352 
353 #ifdef CONFIG_MEMORY_HOTREMOVE
354 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)355 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356 					 unsigned long size)
357 {
358 	struct mem_section_usage *usage;
359 	unsigned long goal, limit;
360 	int nid;
361 	/*
362 	 * A page may contain usemaps for other sections preventing the
363 	 * page being freed and making a section unremovable while
364 	 * other sections referencing the usemap remain active. Similarly,
365 	 * a pgdat can prevent a section being removed. If section A
366 	 * contains a pgdat and section B contains the usemap, both
367 	 * sections become inter-dependent. This allocates usemaps
368 	 * from the same section as the pgdat where possible to avoid
369 	 * this problem.
370 	 */
371 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372 	limit = goal + (1UL << PA_SECTION_SHIFT);
373 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374 again:
375 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376 	if (!usage && limit) {
377 		limit = 0;
378 		goto again;
379 	}
380 	return usage;
381 }
382 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)383 static void __init check_usemap_section_nr(int nid,
384 		struct mem_section_usage *usage)
385 {
386 	unsigned long usemap_snr, pgdat_snr;
387 	static unsigned long old_usemap_snr;
388 	static unsigned long old_pgdat_snr;
389 	struct pglist_data *pgdat = NODE_DATA(nid);
390 	int usemap_nid;
391 
392 	/* First call */
393 	if (!old_usemap_snr) {
394 		old_usemap_snr = NR_MEM_SECTIONS;
395 		old_pgdat_snr = NR_MEM_SECTIONS;
396 	}
397 
398 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400 	if (usemap_snr == pgdat_snr)
401 		return;
402 
403 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404 		/* skip redundant message */
405 		return;
406 
407 	old_usemap_snr = usemap_snr;
408 	old_pgdat_snr = pgdat_snr;
409 
410 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411 	if (usemap_nid != nid) {
412 		pr_info("node %d must be removed before remove section %ld\n",
413 			nid, usemap_snr);
414 		return;
415 	}
416 	/*
417 	 * There is a circular dependency.
418 	 * Some platforms allow un-removable section because they will just
419 	 * gather other removable sections for dynamic partitioning.
420 	 * Just notify un-removable section's number here.
421 	 */
422 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423 		usemap_snr, pgdat_snr, nid);
424 }
425 #else
426 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)427 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428 					 unsigned long size)
429 {
430 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431 }
432 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)433 static void __init check_usemap_section_nr(int nid,
434 		struct mem_section_usage *usage)
435 {
436 }
437 #endif /* CONFIG_MEMORY_HOTREMOVE */
438 
439 #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)440 static unsigned long __init section_map_size(void)
441 {
442 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443 }
444 
445 #else
section_map_size(void)446 static unsigned long __init section_map_size(void)
447 {
448 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449 }
450 
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)451 struct page __init *__populate_section_memmap(unsigned long pfn,
452 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
453 {
454 	unsigned long size = section_map_size();
455 	struct page *map = sparse_buffer_alloc(size);
456 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457 
458 	if (map)
459 		return map;
460 
461 	map = memblock_alloc_try_nid(size,
462 					  PAGE_SIZE, addr,
463 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464 	if (!map)
465 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
466 		      __func__, size, PAGE_SIZE, nid, &addr);
467 
468 	return map;
469 }
470 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471 
472 static void *sparsemap_buf __meminitdata;
473 static void *sparsemap_buf_end __meminitdata;
474 
sparse_buffer_free(unsigned long size)475 static inline void __meminit sparse_buffer_free(unsigned long size)
476 {
477 	WARN_ON(!sparsemap_buf || size == 0);
478 	memblock_free_early(__pa(sparsemap_buf), size);
479 }
480 
sparse_buffer_init(unsigned long size,int nid)481 static void __init sparse_buffer_init(unsigned long size, int nid)
482 {
483 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
484 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
485 	sparsemap_buf =
486 		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
487 						addr,
488 						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
489 	sparsemap_buf_end = sparsemap_buf + size;
490 }
491 
sparse_buffer_fini(void)492 static void __init sparse_buffer_fini(void)
493 {
494 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
495 
496 	if (sparsemap_buf && size > 0)
497 		sparse_buffer_free(size);
498 	sparsemap_buf = NULL;
499 }
500 
sparse_buffer_alloc(unsigned long size)501 void * __meminit sparse_buffer_alloc(unsigned long size)
502 {
503 	void *ptr = NULL;
504 
505 	if (sparsemap_buf) {
506 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
507 		if (ptr + size > sparsemap_buf_end)
508 			ptr = NULL;
509 		else {
510 			/* Free redundant aligned space */
511 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
512 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
513 			sparsemap_buf = ptr + size;
514 		}
515 	}
516 	return ptr;
517 }
518 
vmemmap_populate_print_last(void)519 void __weak __meminit vmemmap_populate_print_last(void)
520 {
521 }
522 
523 /*
524  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
525  * And number of present sections in this node is map_count.
526  */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)527 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
528 				   unsigned long pnum_end,
529 				   unsigned long map_count)
530 {
531 	struct mem_section_usage *usage;
532 	unsigned long pnum;
533 	struct page *map;
534 
535 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
536 			mem_section_usage_size() * map_count);
537 	if (!usage) {
538 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
539 		goto failed;
540 	}
541 	sparse_buffer_init(map_count * section_map_size(), nid);
542 	for_each_present_section_nr(pnum_begin, pnum) {
543 		unsigned long pfn = section_nr_to_pfn(pnum);
544 
545 		if (pnum >= pnum_end)
546 			break;
547 
548 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
549 				nid, NULL);
550 		if (!map) {
551 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552 			       __func__, nid);
553 			pnum_begin = pnum;
554 			sparse_buffer_fini();
555 			goto failed;
556 		}
557 		check_usemap_section_nr(nid, usage);
558 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
559 				SECTION_IS_EARLY);
560 		usage = (void *) usage + mem_section_usage_size();
561 	}
562 	sparse_buffer_fini();
563 	return;
564 failed:
565 	/* We failed to allocate, mark all the following pnums as not present */
566 	for_each_present_section_nr(pnum_begin, pnum) {
567 		struct mem_section *ms;
568 
569 		if (pnum >= pnum_end)
570 			break;
571 		ms = __nr_to_section(pnum);
572 		ms->section_mem_map = 0;
573 	}
574 }
575 
576 /*
577  * Allocate the accumulated non-linear sections, allocate a mem_map
578  * for each and record the physical to section mapping.
579  */
sparse_init(void)580 void __init sparse_init(void)
581 {
582 	unsigned long pnum_begin = first_present_section_nr();
583 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584 	unsigned long pnum_end, map_count = 1;
585 
586 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587 	set_pageblock_order();
588 
589 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
590 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
591 
592 		if (nid == nid_begin) {
593 			map_count++;
594 			continue;
595 		}
596 		/* Init node with sections in range [pnum_begin, pnum_end) */
597 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
598 		nid_begin = nid;
599 		pnum_begin = pnum_end;
600 		map_count = 1;
601 	}
602 	/* cover the last node */
603 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
604 	vmemmap_populate_print_last();
605 }
606 
607 #ifdef CONFIG_MEMORY_HOTPLUG
608 
609 /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)610 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611 {
612 	unsigned long pfn;
613 
614 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615 		unsigned long section_nr = pfn_to_section_nr(pfn);
616 		struct mem_section *ms;
617 
618 		/* onlining code should never touch invalid ranges */
619 		if (WARN_ON(!valid_section_nr(section_nr)))
620 			continue;
621 
622 		ms = __nr_to_section(section_nr);
623 		ms->section_mem_map |= SECTION_IS_ONLINE;
624 	}
625 }
626 
627 #ifdef CONFIG_MEMORY_HOTREMOVE
628 /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)629 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
630 {
631 	unsigned long pfn;
632 
633 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
634 		unsigned long section_nr = pfn_to_section_nr(pfn);
635 		struct mem_section *ms;
636 
637 		/*
638 		 * TODO this needs some double checking. Offlining code makes
639 		 * sure to check pfn_valid but those checks might be just bogus
640 		 */
641 		if (WARN_ON(!valid_section_nr(section_nr)))
642 			continue;
643 
644 		ms = __nr_to_section(section_nr);
645 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
646 	}
647 }
648 #endif
649 
650 #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)651 static struct page * __meminit populate_section_memmap(unsigned long pfn,
652 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
653 {
654 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
655 }
656 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)657 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
658 		struct vmem_altmap *altmap)
659 {
660 	unsigned long start = (unsigned long) pfn_to_page(pfn);
661 	unsigned long end = start + nr_pages * sizeof(struct page);
662 
663 	vmemmap_free(start, end, altmap);
664 }
free_map_bootmem(struct page * memmap)665 static void free_map_bootmem(struct page *memmap)
666 {
667 	unsigned long start = (unsigned long)memmap;
668 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
669 
670 	vmemmap_free(start, end, NULL);
671 }
672 #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)673 struct page * __meminit populate_section_memmap(unsigned long pfn,
674 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
675 {
676 	struct page *page, *ret;
677 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
678 
679 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
680 	if (page)
681 		goto got_map_page;
682 
683 	ret = vmalloc(memmap_size);
684 	if (ret)
685 		goto got_map_ptr;
686 
687 	return NULL;
688 got_map_page:
689 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
690 got_map_ptr:
691 
692 	return ret;
693 }
694 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)695 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
696 		struct vmem_altmap *altmap)
697 {
698 	struct page *memmap = pfn_to_page(pfn);
699 
700 	if (is_vmalloc_addr(memmap))
701 		vfree(memmap);
702 	else
703 		free_pages((unsigned long)memmap,
704 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
705 }
706 
free_map_bootmem(struct page * memmap)707 static void free_map_bootmem(struct page *memmap)
708 {
709 	unsigned long maps_section_nr, removing_section_nr, i;
710 	unsigned long magic, nr_pages;
711 	struct page *page = virt_to_page(memmap);
712 
713 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
714 		>> PAGE_SHIFT;
715 
716 	for (i = 0; i < nr_pages; i++, page++) {
717 		magic = (unsigned long) page->freelist;
718 
719 		BUG_ON(magic == NODE_INFO);
720 
721 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
722 		removing_section_nr = page_private(page);
723 
724 		/*
725 		 * When this function is called, the removing section is
726 		 * logical offlined state. This means all pages are isolated
727 		 * from page allocator. If removing section's memmap is placed
728 		 * on the same section, it must not be freed.
729 		 * If it is freed, page allocator may allocate it which will
730 		 * be removed physically soon.
731 		 */
732 		if (maps_section_nr != removing_section_nr)
733 			put_page_bootmem(page);
734 	}
735 }
736 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
737 
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)738 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
739 		struct vmem_altmap *altmap)
740 {
741 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
742 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
743 	struct mem_section *ms = __pfn_to_section(pfn);
744 	bool section_is_early = early_section(ms);
745 	struct page *memmap = NULL;
746 	bool empty;
747 	unsigned long *subsection_map = ms->usage
748 		? &ms->usage->subsection_map[0] : NULL;
749 
750 	subsection_mask_set(map, pfn, nr_pages);
751 	if (subsection_map)
752 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
753 
754 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755 				"section already deactivated (%#lx + %ld)\n",
756 				pfn, nr_pages))
757 		return;
758 
759 	/*
760 	 * There are 3 cases to handle across two configurations
761 	 * (SPARSEMEM_VMEMMAP={y,n}):
762 	 *
763 	 * 1/ deactivation of a partial hot-added section (only possible
764 	 * in the SPARSEMEM_VMEMMAP=y case).
765 	 *    a/ section was present at memory init
766 	 *    b/ section was hot-added post memory init
767 	 * 2/ deactivation of a complete hot-added section
768 	 * 3/ deactivation of a complete section from memory init
769 	 *
770 	 * For 1/, when subsection_map does not empty we will not be
771 	 * freeing the usage map, but still need to free the vmemmap
772 	 * range.
773 	 *
774 	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
775 	 */
776 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777 	empty = bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION);
778 	if (empty) {
779 		unsigned long section_nr = pfn_to_section_nr(pfn);
780 
781 		/*
782 		 * When removing an early section, the usage map is kept (as the
783 		 * usage maps of other sections fall into the same page). It
784 		 * will be re-used when re-adding the section - which is then no
785 		 * longer an early section. If the usage map is PageReserved, it
786 		 * was allocated during boot.
787 		 */
788 		if (!PageReserved(virt_to_page(ms->usage))) {
789 			kfree(ms->usage);
790 			ms->usage = NULL;
791 		}
792 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
793 		/*
794 		 * Mark the section invalid so that valid_section()
795 		 * return false. This prevents code from dereferencing
796 		 * ms->usage array.
797 		 */
798 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
799 	}
800 
801 	if (section_is_early && memmap)
802 		free_map_bootmem(memmap);
803 	else
804 		depopulate_section_memmap(pfn, nr_pages, altmap);
805 
806 	if (empty)
807 		ms->section_mem_map = (unsigned long)NULL;
808 }
809 
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)810 static struct page * __meminit section_activate(int nid, unsigned long pfn,
811 		unsigned long nr_pages, struct vmem_altmap *altmap)
812 {
813 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
814 	struct mem_section *ms = __pfn_to_section(pfn);
815 	struct mem_section_usage *usage = NULL;
816 	unsigned long *subsection_map;
817 	struct page *memmap;
818 	int rc = 0;
819 
820 	subsection_mask_set(map, pfn, nr_pages);
821 
822 	if (!ms->usage) {
823 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
824 		if (!usage)
825 			return ERR_PTR(-ENOMEM);
826 		ms->usage = usage;
827 	}
828 	subsection_map = &ms->usage->subsection_map[0];
829 
830 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
831 		rc = -EINVAL;
832 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
833 		rc = -EEXIST;
834 	else
835 		bitmap_or(subsection_map, map, subsection_map,
836 				SUBSECTIONS_PER_SECTION);
837 
838 	if (rc) {
839 		if (usage)
840 			ms->usage = NULL;
841 		kfree(usage);
842 		return ERR_PTR(rc);
843 	}
844 
845 	/*
846 	 * The early init code does not consider partially populated
847 	 * initial sections, it simply assumes that memory will never be
848 	 * referenced.  If we hot-add memory into such a section then we
849 	 * do not need to populate the memmap and can simply reuse what
850 	 * is already there.
851 	 */
852 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
853 		return pfn_to_page(pfn);
854 
855 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
856 	if (!memmap) {
857 		section_deactivate(pfn, nr_pages, altmap);
858 		return ERR_PTR(-ENOMEM);
859 	}
860 
861 	return memmap;
862 }
863 
864 /**
865  * sparse_add_section - add a memory section, or populate an existing one
866  * @nid: The node to add section on
867  * @start_pfn: start pfn of the memory range
868  * @nr_pages: number of pfns to add in the section
869  * @altmap: device page map
870  *
871  * This is only intended for hotplug.
872  *
873  * Return:
874  * * 0		- On success.
875  * * -EEXIST	- Section has been present.
876  * * -ENOMEM	- Out of memory.
877  */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap)878 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
879 		unsigned long nr_pages, struct vmem_altmap *altmap)
880 {
881 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
882 	struct mem_section *ms;
883 	struct page *memmap;
884 	int ret;
885 
886 	ret = sparse_index_init(section_nr, nid);
887 	if (ret < 0)
888 		return ret;
889 
890 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
891 	if (IS_ERR(memmap))
892 		return PTR_ERR(memmap);
893 
894 	/*
895 	 * Poison uninitialized struct pages in order to catch invalid flags
896 	 * combinations.
897 	 */
898 	page_init_poison(memmap, sizeof(struct page) * nr_pages);
899 
900 	ms = __nr_to_section(section_nr);
901 	set_section_nid(section_nr, nid);
902 	section_mark_present(ms);
903 
904 	/* Align memmap to section boundary in the subsection case */
905 	if (section_nr_to_pfn(section_nr) != start_pfn)
906 		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
907 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
908 
909 	return 0;
910 }
911 
912 #ifdef CONFIG_MEMORY_FAILURE
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)913 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
914 {
915 	int i;
916 
917 	/*
918 	 * A further optimization is to have per section refcounted
919 	 * num_poisoned_pages.  But that would need more space per memmap, so
920 	 * for now just do a quick global check to speed up this routine in the
921 	 * absence of bad pages.
922 	 */
923 	if (atomic_long_read(&num_poisoned_pages) == 0)
924 		return;
925 
926 	for (i = 0; i < nr_pages; i++) {
927 		if (PageHWPoison(&memmap[i])) {
928 			num_poisoned_pages_dec();
929 			ClearPageHWPoison(&memmap[i]);
930 		}
931 	}
932 }
933 #else
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)934 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
935 {
936 }
937 #endif
938 
sparse_remove_section(struct mem_section * ms,unsigned long pfn,unsigned long nr_pages,unsigned long map_offset,struct vmem_altmap * altmap)939 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
940 		unsigned long nr_pages, unsigned long map_offset,
941 		struct vmem_altmap *altmap)
942 {
943 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
944 			nr_pages - map_offset);
945 	section_deactivate(pfn, nr_pages, altmap);
946 }
947 #endif /* CONFIG_MEMORY_HOTPLUG */
948