• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28 
29 /*
30  * Regular page slots are stabilized by the page lock even without the tree
31  * itself locked.  These unlocked entries need verification under the tree
32  * lock.
33  */
__clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 				pgoff_t index, void *entry)
36 {
37 	XA_STATE(xas, &mapping->i_pages, index);
38 
39 	xas_set_update(&xas, workingset_update_node);
40 	if (xas_load(&xas) != entry)
41 		return;
42 	xas_store(&xas, NULL);
43 	mapping->nrexceptional--;
44 }
45 
clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 			       void *entry)
48 {
49 	xa_lock_irq(&mapping->i_pages);
50 	__clear_shadow_entry(mapping, index, entry);
51 	xa_unlock_irq(&mapping->i_pages);
52 }
53 
54 /*
55  * Unconditionally remove exceptional entries. Usually called from truncate
56  * path. Note that the pagevec may be altered by this function by removing
57  * exceptional entries similar to what pagevec_remove_exceptionals does.
58  */
truncate_exceptional_pvec_entries(struct address_space * mapping,struct pagevec * pvec,pgoff_t * indices,pgoff_t end)59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 				struct pagevec *pvec, pgoff_t *indices,
61 				pgoff_t end)
62 {
63 	int i, j;
64 	bool dax, lock;
65 
66 	/* Handled by shmem itself */
67 	if (shmem_mapping(mapping))
68 		return;
69 
70 	for (j = 0; j < pagevec_count(pvec); j++)
71 		if (xa_is_value(pvec->pages[j]))
72 			break;
73 
74 	if (j == pagevec_count(pvec))
75 		return;
76 
77 	dax = dax_mapping(mapping);
78 	lock = !dax && indices[j] < end;
79 	if (lock)
80 		xa_lock_irq(&mapping->i_pages);
81 
82 	for (i = j; i < pagevec_count(pvec); i++) {
83 		struct page *page = pvec->pages[i];
84 		pgoff_t index = indices[i];
85 
86 		if (!xa_is_value(page)) {
87 			pvec->pages[j++] = page;
88 			continue;
89 		}
90 
91 		if (index >= end)
92 			continue;
93 
94 		if (unlikely(dax)) {
95 			dax_delete_mapping_entry(mapping, index);
96 			continue;
97 		}
98 
99 		__clear_shadow_entry(mapping, index, page);
100 	}
101 
102 	if (lock)
103 		xa_unlock_irq(&mapping->i_pages);
104 	pvec->nr = j;
105 }
106 
107 /*
108  * Invalidate exceptional entry if easily possible. This handles exceptional
109  * entries for invalidate_inode_pages().
110  */
invalidate_exceptional_entry(struct address_space * mapping,pgoff_t index,void * entry)111 static int invalidate_exceptional_entry(struct address_space *mapping,
112 					pgoff_t index, void *entry)
113 {
114 	/* Handled by shmem itself, or for DAX we do nothing. */
115 	if (shmem_mapping(mapping) || dax_mapping(mapping))
116 		return 1;
117 	clear_shadow_entry(mapping, index, entry);
118 	return 1;
119 }
120 
121 /*
122  * Invalidate exceptional entry if clean. This handles exceptional entries for
123  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
124  */
invalidate_exceptional_entry2(struct address_space * mapping,pgoff_t index,void * entry)125 static int invalidate_exceptional_entry2(struct address_space *mapping,
126 					 pgoff_t index, void *entry)
127 {
128 	/* Handled by shmem itself */
129 	if (shmem_mapping(mapping))
130 		return 1;
131 	if (dax_mapping(mapping))
132 		return dax_invalidate_mapping_entry_sync(mapping, index);
133 	clear_shadow_entry(mapping, index, entry);
134 	return 1;
135 }
136 
137 /**
138  * do_invalidatepage - invalidate part or all of a page
139  * @page: the page which is affected
140  * @offset: start of the range to invalidate
141  * @length: length of the range to invalidate
142  *
143  * do_invalidatepage() is called when all or part of the page has become
144  * invalidated by a truncate operation.
145  *
146  * do_invalidatepage() does not have to release all buffers, but it must
147  * ensure that no dirty buffer is left outside @offset and that no I/O
148  * is underway against any of the blocks which are outside the truncation
149  * point.  Because the caller is about to free (and possibly reuse) those
150  * blocks on-disk.
151  */
do_invalidatepage(struct page * page,unsigned int offset,unsigned int length)152 void do_invalidatepage(struct page *page, unsigned int offset,
153 		       unsigned int length)
154 {
155 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
156 
157 	invalidatepage = page->mapping->a_ops->invalidatepage;
158 #ifdef CONFIG_BLOCK
159 	if (!invalidatepage)
160 		invalidatepage = block_invalidatepage;
161 #endif
162 	if (invalidatepage)
163 		(*invalidatepage)(page, offset, length);
164 }
165 
166 /*
167  * If truncate cannot remove the fs-private metadata from the page, the page
168  * becomes orphaned.  It will be left on the LRU and may even be mapped into
169  * user pagetables if we're racing with filemap_fault().
170  *
171  * We need to bale out if page->mapping is no longer equal to the original
172  * mapping.  This happens a) when the VM reclaimed the page while we waited on
173  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175  */
truncate_cleanup_page(struct page * page)176 static void truncate_cleanup_page(struct page *page)
177 {
178 	if (page_mapped(page))
179 		unmap_mapping_page(page);
180 
181 	if (page_has_private(page))
182 		do_invalidatepage(page, 0, PAGE_SIZE);
183 
184 	/*
185 	 * Some filesystems seem to re-dirty the page even after
186 	 * the VM has canceled the dirty bit (eg ext3 journaling).
187 	 * Hence dirty accounting check is placed after invalidation.
188 	 */
189 	cancel_dirty_page(page);
190 	ClearPageMappedToDisk(page);
191 }
192 
193 /*
194  * This is for invalidate_mapping_pages().  That function can be called at
195  * any time, and is not supposed to throw away dirty pages.  But pages can
196  * be marked dirty at any time too, so use remove_mapping which safely
197  * discards clean, unused pages.
198  *
199  * Returns non-zero if the page was successfully invalidated.
200  */
201 static int
invalidate_complete_page(struct address_space * mapping,struct page * page)202 invalidate_complete_page(struct address_space *mapping, struct page *page)
203 {
204 	int ret;
205 
206 	if (page->mapping != mapping)
207 		return 0;
208 
209 	if (page_has_private(page) && !try_to_release_page(page, 0))
210 		return 0;
211 
212 	ret = remove_mapping(mapping, page);
213 
214 	return ret;
215 }
216 
truncate_inode_page(struct address_space * mapping,struct page * page)217 int truncate_inode_page(struct address_space *mapping, struct page *page)
218 {
219 	VM_BUG_ON_PAGE(PageTail(page), page);
220 
221 	if (page->mapping != mapping)
222 		return -EIO;
223 
224 	truncate_cleanup_page(page);
225 	delete_from_page_cache(page);
226 	return 0;
227 }
228 
229 /*
230  * Used to get rid of pages on hardware memory corruption.
231  */
generic_error_remove_page(struct address_space * mapping,struct page * page)232 int generic_error_remove_page(struct address_space *mapping, struct page *page)
233 {
234 	if (!mapping)
235 		return -EINVAL;
236 	/*
237 	 * Only punch for normal data pages for now.
238 	 * Handling other types like directories would need more auditing.
239 	 */
240 	if (!S_ISREG(mapping->host->i_mode))
241 		return -EIO;
242 	return truncate_inode_page(mapping, page);
243 }
244 EXPORT_SYMBOL(generic_error_remove_page);
245 
246 /*
247  * Safely invalidate one page from its pagecache mapping.
248  * It only drops clean, unused pages. The page must be locked.
249  *
250  * Returns 1 if the page is successfully invalidated, otherwise 0.
251  */
invalidate_inode_page(struct page * page)252 int invalidate_inode_page(struct page *page)
253 {
254 	struct address_space *mapping = page_mapping(page);
255 	if (!mapping)
256 		return 0;
257 	if (PageDirty(page) || PageWriteback(page))
258 		return 0;
259 	if (page_mapped(page))
260 		return 0;
261 	return invalidate_complete_page(mapping, page);
262 }
263 
264 /**
265  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266  * @mapping: mapping to truncate
267  * @lstart: offset from which to truncate
268  * @lend: offset to which to truncate (inclusive)
269  *
270  * Truncate the page cache, removing the pages that are between
271  * specified offsets (and zeroing out partial pages
272  * if lstart or lend + 1 is not page aligned).
273  *
274  * Truncate takes two passes - the first pass is nonblocking.  It will not
275  * block on page locks and it will not block on writeback.  The second pass
276  * will wait.  This is to prevent as much IO as possible in the affected region.
277  * The first pass will remove most pages, so the search cost of the second pass
278  * is low.
279  *
280  * We pass down the cache-hot hint to the page freeing code.  Even if the
281  * mapping is large, it is probably the case that the final pages are the most
282  * recently touched, and freeing happens in ascending file offset order.
283  *
284  * Note that since ->invalidatepage() accepts range to invalidate
285  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286  * page aligned properly.
287  */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)288 void truncate_inode_pages_range(struct address_space *mapping,
289 				loff_t lstart, loff_t lend)
290 {
291 	pgoff_t		start;		/* inclusive */
292 	pgoff_t		end;		/* exclusive */
293 	unsigned int	partial_start;	/* inclusive */
294 	unsigned int	partial_end;	/* exclusive */
295 	struct pagevec	pvec;
296 	pgoff_t		indices[PAGEVEC_SIZE];
297 	pgoff_t		index;
298 	int		i;
299 
300 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
301 		goto out;
302 
303 	/* Offsets within partial pages */
304 	partial_start = lstart & (PAGE_SIZE - 1);
305 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
306 
307 	/*
308 	 * 'start' and 'end' always covers the range of pages to be fully
309 	 * truncated. Partial pages are covered with 'partial_start' at the
310 	 * start of the range and 'partial_end' at the end of the range.
311 	 * Note that 'end' is exclusive while 'lend' is inclusive.
312 	 */
313 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
314 	if (lend == -1)
315 		/*
316 		 * lend == -1 indicates end-of-file so we have to set 'end'
317 		 * to the highest possible pgoff_t and since the type is
318 		 * unsigned we're using -1.
319 		 */
320 		end = -1;
321 	else
322 		end = (lend + 1) >> PAGE_SHIFT;
323 
324 	pagevec_init(&pvec);
325 	index = start;
326 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
327 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
328 			indices)) {
329 		/*
330 		 * Pagevec array has exceptional entries and we may also fail
331 		 * to lock some pages. So we store pages that can be deleted
332 		 * in a new pagevec.
333 		 */
334 		struct pagevec locked_pvec;
335 
336 		pagevec_init(&locked_pvec);
337 		for (i = 0; i < pagevec_count(&pvec); i++) {
338 			struct page *page = pvec.pages[i];
339 
340 			/* We rely upon deletion not changing page->index */
341 			index = indices[i];
342 			if (index >= end)
343 				break;
344 
345 			if (xa_is_value(page))
346 				continue;
347 
348 			if (!trylock_page(page))
349 				continue;
350 			WARN_ON(page_to_index(page) != index);
351 			if (PageWriteback(page)) {
352 				unlock_page(page);
353 				continue;
354 			}
355 			if (page->mapping != mapping) {
356 				unlock_page(page);
357 				continue;
358 			}
359 			pagevec_add(&locked_pvec, page);
360 		}
361 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
362 			truncate_cleanup_page(locked_pvec.pages[i]);
363 		delete_from_page_cache_batch(mapping, &locked_pvec);
364 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 			unlock_page(locked_pvec.pages[i]);
366 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
367 		pagevec_release(&pvec);
368 		cond_resched();
369 		index++;
370 	}
371 	if (partial_start) {
372 		struct page *page = find_lock_page(mapping, start - 1);
373 		if (page) {
374 			unsigned int top = PAGE_SIZE;
375 			if (start > end) {
376 				/* Truncation within a single page */
377 				top = partial_end;
378 				partial_end = 0;
379 			}
380 			wait_on_page_writeback(page);
381 			zero_user_segment(page, partial_start, top);
382 			cleancache_invalidate_page(mapping, page);
383 			if (page_has_private(page))
384 				do_invalidatepage(page, partial_start,
385 						  top - partial_start);
386 			unlock_page(page);
387 			put_page(page);
388 		}
389 	}
390 	if (partial_end) {
391 		struct page *page = find_lock_page(mapping, end);
392 		if (page) {
393 			wait_on_page_writeback(page);
394 			zero_user_segment(page, 0, partial_end);
395 			cleancache_invalidate_page(mapping, page);
396 			if (page_has_private(page))
397 				do_invalidatepage(page, 0,
398 						  partial_end);
399 			unlock_page(page);
400 			put_page(page);
401 		}
402 	}
403 	/*
404 	 * If the truncation happened within a single page no pages
405 	 * will be released, just zeroed, so we can bail out now.
406 	 */
407 	if (start >= end)
408 		goto out;
409 
410 	index = start;
411 	for ( ; ; ) {
412 		cond_resched();
413 		if (!pagevec_lookup_entries(&pvec, mapping, index,
414 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
415 			/* If all gone from start onwards, we're done */
416 			if (index == start)
417 				break;
418 			/* Otherwise restart to make sure all gone */
419 			index = start;
420 			continue;
421 		}
422 		if (index == start && indices[0] >= end) {
423 			/* All gone out of hole to be punched, we're done */
424 			pagevec_remove_exceptionals(&pvec);
425 			pagevec_release(&pvec);
426 			break;
427 		}
428 
429 		for (i = 0; i < pagevec_count(&pvec); i++) {
430 			struct page *page = pvec.pages[i];
431 
432 			/* We rely upon deletion not changing page->index */
433 			index = indices[i];
434 			if (index >= end) {
435 				/* Restart punch to make sure all gone */
436 				index = start - 1;
437 				break;
438 			}
439 
440 			if (xa_is_value(page))
441 				continue;
442 
443 			lock_page(page);
444 			WARN_ON(page_to_index(page) != index);
445 			wait_on_page_writeback(page);
446 			truncate_inode_page(mapping, page);
447 			unlock_page(page);
448 		}
449 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
450 		pagevec_release(&pvec);
451 		index++;
452 	}
453 
454 out:
455 	cleancache_invalidate_inode(mapping);
456 }
457 EXPORT_SYMBOL(truncate_inode_pages_range);
458 
459 /**
460  * truncate_inode_pages - truncate *all* the pages from an offset
461  * @mapping: mapping to truncate
462  * @lstart: offset from which to truncate
463  *
464  * Called under (and serialised by) inode->i_mutex.
465  *
466  * Note: When this function returns, there can be a page in the process of
467  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
468  * mapping->nrpages can be non-zero when this function returns even after
469  * truncation of the whole mapping.
470  */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)471 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
472 {
473 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
474 }
475 EXPORT_SYMBOL(truncate_inode_pages);
476 
477 /**
478  * truncate_inode_pages_final - truncate *all* pages before inode dies
479  * @mapping: mapping to truncate
480  *
481  * Called under (and serialized by) inode->i_mutex.
482  *
483  * Filesystems have to use this in the .evict_inode path to inform the
484  * VM that this is the final truncate and the inode is going away.
485  */
truncate_inode_pages_final(struct address_space * mapping)486 void truncate_inode_pages_final(struct address_space *mapping)
487 {
488 	unsigned long nrexceptional;
489 	unsigned long nrpages;
490 
491 	/*
492 	 * Page reclaim can not participate in regular inode lifetime
493 	 * management (can't call iput()) and thus can race with the
494 	 * inode teardown.  Tell it when the address space is exiting,
495 	 * so that it does not install eviction information after the
496 	 * final truncate has begun.
497 	 */
498 	mapping_set_exiting(mapping);
499 
500 	/*
501 	 * When reclaim installs eviction entries, it increases
502 	 * nrexceptional first, then decreases nrpages.  Make sure we see
503 	 * this in the right order or we might miss an entry.
504 	 */
505 	nrpages = mapping->nrpages;
506 	smp_rmb();
507 	nrexceptional = mapping->nrexceptional;
508 
509 	if (nrpages || nrexceptional) {
510 		/*
511 		 * As truncation uses a lockless tree lookup, cycle
512 		 * the tree lock to make sure any ongoing tree
513 		 * modification that does not see AS_EXITING is
514 		 * completed before starting the final truncate.
515 		 */
516 		xa_lock_irq(&mapping->i_pages);
517 		xa_unlock_irq(&mapping->i_pages);
518 	}
519 
520 	/*
521 	 * Cleancache needs notification even if there are no pages or shadow
522 	 * entries.
523 	 */
524 	truncate_inode_pages(mapping, 0);
525 }
526 EXPORT_SYMBOL(truncate_inode_pages_final);
527 
528 /**
529  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
530  * @mapping: the address_space which holds the pages to invalidate
531  * @start: the offset 'from' which to invalidate
532  * @end: the offset 'to' which to invalidate (inclusive)
533  *
534  * This function only removes the unlocked pages, if you want to
535  * remove all the pages of one inode, you must call truncate_inode_pages.
536  *
537  * invalidate_mapping_pages() will not block on IO activity. It will not
538  * invalidate pages which are dirty, locked, under writeback or mapped into
539  * pagetables.
540  *
541  * Return: the number of the pages that were invalidated
542  */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)543 unsigned long invalidate_mapping_pages(struct address_space *mapping,
544 		pgoff_t start, pgoff_t end)
545 {
546 	pgoff_t indices[PAGEVEC_SIZE];
547 	struct pagevec pvec;
548 	pgoff_t index = start;
549 	unsigned long ret;
550 	unsigned long count = 0;
551 	int i;
552 
553 	pagevec_init(&pvec);
554 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
555 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
556 			indices)) {
557 		for (i = 0; i < pagevec_count(&pvec); i++) {
558 			struct page *page = pvec.pages[i];
559 
560 			/* We rely upon deletion not changing page->index */
561 			index = indices[i];
562 			if (index > end)
563 				break;
564 
565 			if (xa_is_value(page)) {
566 				invalidate_exceptional_entry(mapping, index,
567 							     page);
568 				continue;
569 			}
570 
571 			if (!trylock_page(page))
572 				continue;
573 
574 			WARN_ON(page_to_index(page) != index);
575 
576 			/* Middle of THP: skip */
577 			if (PageTransTail(page)) {
578 				unlock_page(page);
579 				continue;
580 			} else if (PageTransHuge(page)) {
581 				index += HPAGE_PMD_NR - 1;
582 				i += HPAGE_PMD_NR - 1;
583 				/*
584 				 * 'end' is in the middle of THP. Don't
585 				 * invalidate the page as the part outside of
586 				 * 'end' could be still useful.
587 				 */
588 				if (index > end) {
589 					unlock_page(page);
590 					continue;
591 				}
592 
593 				/* Take a pin outside pagevec */
594 				get_page(page);
595 
596 				/*
597 				 * Drop extra pins before trying to invalidate
598 				 * the huge page.
599 				 */
600 				pagevec_remove_exceptionals(&pvec);
601 				pagevec_release(&pvec);
602 			}
603 
604 			ret = invalidate_inode_page(page);
605 			unlock_page(page);
606 			/*
607 			 * Invalidation is a hint that the page is no longer
608 			 * of interest and try to speed up its reclaim.
609 			 */
610 			if (!ret)
611 				deactivate_file_page(page);
612 			if (PageTransHuge(page))
613 				put_page(page);
614 			count += ret;
615 		}
616 		pagevec_remove_exceptionals(&pvec);
617 		pagevec_release(&pvec);
618 		cond_resched();
619 		index++;
620 	}
621 	return count;
622 }
623 EXPORT_SYMBOL(invalidate_mapping_pages);
624 
625 /*
626  * This is like invalidate_complete_page(), except it ignores the page's
627  * refcount.  We do this because invalidate_inode_pages2() needs stronger
628  * invalidation guarantees, and cannot afford to leave pages behind because
629  * shrink_page_list() has a temp ref on them, or because they're transiently
630  * sitting in the lru_cache_add() pagevecs.
631  */
632 static int
invalidate_complete_page2(struct address_space * mapping,struct page * page)633 invalidate_complete_page2(struct address_space *mapping, struct page *page)
634 {
635 	unsigned long flags;
636 
637 	if (page->mapping != mapping)
638 		return 0;
639 
640 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
641 		return 0;
642 
643 	xa_lock_irqsave(&mapping->i_pages, flags);
644 	if (PageDirty(page))
645 		goto failed;
646 
647 	BUG_ON(page_has_private(page));
648 	__delete_from_page_cache(page, NULL);
649 	xa_unlock_irqrestore(&mapping->i_pages, flags);
650 
651 	if (mapping->a_ops->freepage)
652 		mapping->a_ops->freepage(page);
653 
654 	put_page(page);	/* pagecache ref */
655 	return 1;
656 failed:
657 	xa_unlock_irqrestore(&mapping->i_pages, flags);
658 	return 0;
659 }
660 
do_launder_page(struct address_space * mapping,struct page * page)661 static int do_launder_page(struct address_space *mapping, struct page *page)
662 {
663 	if (!PageDirty(page))
664 		return 0;
665 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
666 		return 0;
667 	return mapping->a_ops->launder_page(page);
668 }
669 
670 /**
671  * invalidate_inode_pages2_range - remove range of pages from an address_space
672  * @mapping: the address_space
673  * @start: the page offset 'from' which to invalidate
674  * @end: the page offset 'to' which to invalidate (inclusive)
675  *
676  * Any pages which are found to be mapped into pagetables are unmapped prior to
677  * invalidation.
678  *
679  * Return: -EBUSY if any pages could not be invalidated.
680  */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)681 int invalidate_inode_pages2_range(struct address_space *mapping,
682 				  pgoff_t start, pgoff_t end)
683 {
684 	pgoff_t indices[PAGEVEC_SIZE];
685 	struct pagevec pvec;
686 	pgoff_t index;
687 	int i;
688 	int ret = 0;
689 	int ret2 = 0;
690 	int did_range_unmap = 0;
691 
692 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
693 		goto out;
694 
695 	pagevec_init(&pvec);
696 	index = start;
697 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
698 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
699 			indices)) {
700 		for (i = 0; i < pagevec_count(&pvec); i++) {
701 			struct page *page = pvec.pages[i];
702 
703 			/* We rely upon deletion not changing page->index */
704 			index = indices[i];
705 			if (index > end)
706 				break;
707 
708 			if (xa_is_value(page)) {
709 				if (!invalidate_exceptional_entry2(mapping,
710 								   index, page))
711 					ret = -EBUSY;
712 				continue;
713 			}
714 
715 			if (!did_range_unmap && page_mapped(page)) {
716 				/*
717 				 * If page is mapped, before taking its lock,
718 				 * zap the rest of the file in one hit.
719 				 */
720 				unmap_mapping_pages(mapping, index,
721 						(1 + end - index), false);
722 				did_range_unmap = 1;
723 			}
724 
725 			lock_page(page);
726 			WARN_ON(page_to_index(page) != index);
727 			if (page->mapping != mapping) {
728 				unlock_page(page);
729 				continue;
730 			}
731 			wait_on_page_writeback(page);
732 
733 			if (page_mapped(page))
734 				unmap_mapping_page(page);
735 			BUG_ON(page_mapped(page));
736 
737 			ret2 = do_launder_page(mapping, page);
738 			if (ret2 == 0) {
739 				if (!invalidate_complete_page2(mapping, page))
740 					ret2 = -EBUSY;
741 			}
742 			if (ret2 < 0)
743 				ret = ret2;
744 			unlock_page(page);
745 		}
746 		pagevec_remove_exceptionals(&pvec);
747 		pagevec_release(&pvec);
748 		cond_resched();
749 		index++;
750 	}
751 	/*
752 	 * For DAX we invalidate page tables after invalidating page cache.  We
753 	 * could invalidate page tables while invalidating each entry however
754 	 * that would be expensive. And doing range unmapping before doesn't
755 	 * work as we have no cheap way to find whether page cache entry didn't
756 	 * get remapped later.
757 	 */
758 	if (dax_mapping(mapping)) {
759 		unmap_mapping_pages(mapping, start, end - start + 1, false);
760 	}
761 out:
762 	cleancache_invalidate_inode(mapping);
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
766 
767 /**
768  * invalidate_inode_pages2 - remove all pages from an address_space
769  * @mapping: the address_space
770  *
771  * Any pages which are found to be mapped into pagetables are unmapped prior to
772  * invalidation.
773  *
774  * Return: -EBUSY if any pages could not be invalidated.
775  */
invalidate_inode_pages2(struct address_space * mapping)776 int invalidate_inode_pages2(struct address_space *mapping)
777 {
778 	return invalidate_inode_pages2_range(mapping, 0, -1);
779 }
780 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
781 
782 /**
783  * truncate_pagecache - unmap and remove pagecache that has been truncated
784  * @inode: inode
785  * @newsize: new file size
786  *
787  * inode's new i_size must already be written before truncate_pagecache
788  * is called.
789  *
790  * This function should typically be called before the filesystem
791  * releases resources associated with the freed range (eg. deallocates
792  * blocks). This way, pagecache will always stay logically coherent
793  * with on-disk format, and the filesystem would not have to deal with
794  * situations such as writepage being called for a page that has already
795  * had its underlying blocks deallocated.
796  */
truncate_pagecache(struct inode * inode,loff_t newsize)797 void truncate_pagecache(struct inode *inode, loff_t newsize)
798 {
799 	struct address_space *mapping = inode->i_mapping;
800 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
801 
802 	/*
803 	 * unmap_mapping_range is called twice, first simply for
804 	 * efficiency so that truncate_inode_pages does fewer
805 	 * single-page unmaps.  However after this first call, and
806 	 * before truncate_inode_pages finishes, it is possible for
807 	 * private pages to be COWed, which remain after
808 	 * truncate_inode_pages finishes, hence the second
809 	 * unmap_mapping_range call must be made for correctness.
810 	 */
811 	unmap_mapping_range(mapping, holebegin, 0, 1);
812 	truncate_inode_pages(mapping, newsize);
813 	unmap_mapping_range(mapping, holebegin, 0, 1);
814 }
815 EXPORT_SYMBOL(truncate_pagecache);
816 
817 /**
818  * truncate_setsize - update inode and pagecache for a new file size
819  * @inode: inode
820  * @newsize: new file size
821  *
822  * truncate_setsize updates i_size and performs pagecache truncation (if
823  * necessary) to @newsize. It will be typically be called from the filesystem's
824  * setattr function when ATTR_SIZE is passed in.
825  *
826  * Must be called with a lock serializing truncates and writes (generally
827  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
828  * specific block truncation has been performed.
829  */
truncate_setsize(struct inode * inode,loff_t newsize)830 void truncate_setsize(struct inode *inode, loff_t newsize)
831 {
832 	loff_t oldsize = inode->i_size;
833 
834 	i_size_write(inode, newsize);
835 	if (newsize > oldsize)
836 		pagecache_isize_extended(inode, oldsize, newsize);
837 	truncate_pagecache(inode, newsize);
838 }
839 EXPORT_SYMBOL(truncate_setsize);
840 
841 /**
842  * pagecache_isize_extended - update pagecache after extension of i_size
843  * @inode:	inode for which i_size was extended
844  * @from:	original inode size
845  * @to:		new inode size
846  *
847  * Handle extension of inode size either caused by extending truncate or by
848  * write starting after current i_size. We mark the page straddling current
849  * i_size RO so that page_mkwrite() is called on the nearest write access to
850  * the page.  This way filesystem can be sure that page_mkwrite() is called on
851  * the page before user writes to the page via mmap after the i_size has been
852  * changed.
853  *
854  * The function must be called after i_size is updated so that page fault
855  * coming after we unlock the page will already see the new i_size.
856  * The function must be called while we still hold i_mutex - this not only
857  * makes sure i_size is stable but also that userspace cannot observe new
858  * i_size value before we are prepared to store mmap writes at new inode size.
859  */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)860 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
861 {
862 	int bsize = i_blocksize(inode);
863 	loff_t rounded_from;
864 	struct page *page;
865 	pgoff_t index;
866 
867 	WARN_ON(to > inode->i_size);
868 
869 	if (from >= to || bsize == PAGE_SIZE)
870 		return;
871 	/* Page straddling @from will not have any hole block created? */
872 	rounded_from = round_up(from, bsize);
873 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
874 		return;
875 
876 	index = from >> PAGE_SHIFT;
877 	page = find_lock_page(inode->i_mapping, index);
878 	/* Page not cached? Nothing to do */
879 	if (!page)
880 		return;
881 	/*
882 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
883 	 * is needed.
884 	 */
885 	if (page_mkclean(page))
886 		set_page_dirty(page);
887 	unlock_page(page);
888 	put_page(page);
889 }
890 EXPORT_SYMBOL(pagecache_isize_extended);
891 
892 /**
893  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
894  * @inode: inode
895  * @lstart: offset of beginning of hole
896  * @lend: offset of last byte of hole
897  *
898  * This function should typically be called before the filesystem
899  * releases resources associated with the freed range (eg. deallocates
900  * blocks). This way, pagecache will always stay logically coherent
901  * with on-disk format, and the filesystem would not have to deal with
902  * situations such as writepage being called for a page that has already
903  * had its underlying blocks deallocated.
904  */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)905 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
906 {
907 	struct address_space *mapping = inode->i_mapping;
908 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
909 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
910 	/*
911 	 * This rounding is currently just for example: unmap_mapping_range
912 	 * expands its hole outwards, whereas we want it to contract the hole
913 	 * inwards.  However, existing callers of truncate_pagecache_range are
914 	 * doing their own page rounding first.  Note that unmap_mapping_range
915 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
916 	 */
917 
918 	/*
919 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
920 	 * once (before truncating pagecache), and without "even_cows" flag:
921 	 * hole-punching should not remove private COWed pages from the hole.
922 	 */
923 	if ((u64)unmap_end > (u64)unmap_start)
924 		unmap_mapping_range(mapping, unmap_start,
925 				    1 + unmap_end - unmap_start, 0);
926 	truncate_inode_pages_range(mapping, lstart, lend);
927 }
928 EXPORT_SYMBOL(truncate_pagecache_range);
929