• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42 
43 #include "internal.h"
44 
45 struct vfree_deferred {
46 	struct llist_head list;
47 	struct work_struct wq;
48 };
49 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50 
51 static void __vunmap(const void *, int);
52 
free_work(struct work_struct * w)53 static void free_work(struct work_struct *w)
54 {
55 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
56 	struct llist_node *t, *llnode;
57 
58 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
59 		__vunmap((void *)llnode, 1);
60 }
61 
62 /*** Page table manipulation functions ***/
63 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)64 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
65 {
66 	pte_t *pte;
67 
68 	pte = pte_offset_kernel(pmd, addr);
69 	do {
70 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
71 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
72 	} while (pte++, addr += PAGE_SIZE, addr != end);
73 }
74 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)75 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
76 {
77 	pmd_t *pmd;
78 	unsigned long next;
79 
80 	pmd = pmd_offset(pud, addr);
81 	do {
82 		next = pmd_addr_end(addr, end);
83 		if (pmd_clear_huge(pmd))
84 			continue;
85 		if (pmd_none_or_clear_bad(pmd))
86 			continue;
87 		vunmap_pte_range(pmd, addr, next);
88 
89 		cond_resched();
90 	} while (pmd++, addr = next, addr != end);
91 }
92 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end)93 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
94 {
95 	pud_t *pud;
96 	unsigned long next;
97 
98 	pud = pud_offset(p4d, addr);
99 	do {
100 		next = pud_addr_end(addr, end);
101 		if (pud_clear_huge(pud))
102 			continue;
103 		if (pud_none_or_clear_bad(pud))
104 			continue;
105 		vunmap_pmd_range(pud, addr, next);
106 	} while (pud++, addr = next, addr != end);
107 }
108 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end)109 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
110 {
111 	p4d_t *p4d;
112 	unsigned long next;
113 
114 	p4d = p4d_offset(pgd, addr);
115 	do {
116 		next = p4d_addr_end(addr, end);
117 		if (p4d_clear_huge(p4d))
118 			continue;
119 		if (p4d_none_or_clear_bad(p4d))
120 			continue;
121 		vunmap_pud_range(p4d, addr, next);
122 	} while (p4d++, addr = next, addr != end);
123 }
124 
vunmap_page_range(unsigned long addr,unsigned long end)125 static void vunmap_page_range(unsigned long addr, unsigned long end)
126 {
127 	pgd_t *pgd;
128 	unsigned long next;
129 
130 	BUG_ON(addr >= end);
131 	pgd = pgd_offset_k(addr);
132 	do {
133 		next = pgd_addr_end(addr, end);
134 		if (pgd_none_or_clear_bad(pgd))
135 			continue;
136 		vunmap_p4d_range(pgd, addr, next);
137 	} while (pgd++, addr = next, addr != end);
138 }
139 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)140 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
141 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
142 {
143 	pte_t *pte;
144 
145 	/*
146 	 * nr is a running index into the array which helps higher level
147 	 * callers keep track of where we're up to.
148 	 */
149 
150 	pte = pte_alloc_kernel(pmd, addr);
151 	if (!pte)
152 		return -ENOMEM;
153 	do {
154 		struct page *page = pages[*nr];
155 
156 		if (WARN_ON(!pte_none(*pte)))
157 			return -EBUSY;
158 		if (WARN_ON(!page))
159 			return -ENOMEM;
160 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
161 		(*nr)++;
162 	} while (pte++, addr += PAGE_SIZE, addr != end);
163 	return 0;
164 }
165 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)166 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
167 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
168 {
169 	pmd_t *pmd;
170 	unsigned long next;
171 
172 	pmd = pmd_alloc(&init_mm, pud, addr);
173 	if (!pmd)
174 		return -ENOMEM;
175 	do {
176 		next = pmd_addr_end(addr, end);
177 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
178 			return -ENOMEM;
179 	} while (pmd++, addr = next, addr != end);
180 	return 0;
181 }
182 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)183 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
184 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
185 {
186 	pud_t *pud;
187 	unsigned long next;
188 
189 	pud = pud_alloc(&init_mm, p4d, addr);
190 	if (!pud)
191 		return -ENOMEM;
192 	do {
193 		next = pud_addr_end(addr, end);
194 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
195 			return -ENOMEM;
196 	} while (pud++, addr = next, addr != end);
197 	return 0;
198 }
199 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)200 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
201 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
202 {
203 	p4d_t *p4d;
204 	unsigned long next;
205 
206 	p4d = p4d_alloc(&init_mm, pgd, addr);
207 	if (!p4d)
208 		return -ENOMEM;
209 	do {
210 		next = p4d_addr_end(addr, end);
211 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
212 			return -ENOMEM;
213 	} while (p4d++, addr = next, addr != end);
214 	return 0;
215 }
216 
217 /*
218  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
219  * will have pfns corresponding to the "pages" array.
220  *
221  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
222  */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)223 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
224 				   pgprot_t prot, struct page **pages)
225 {
226 	pgd_t *pgd;
227 	unsigned long next;
228 	unsigned long addr = start;
229 	int err = 0;
230 	int nr = 0;
231 
232 	BUG_ON(addr >= end);
233 	pgd = pgd_offset_k(addr);
234 	do {
235 		next = pgd_addr_end(addr, end);
236 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
237 		if (err)
238 			return err;
239 	} while (pgd++, addr = next, addr != end);
240 
241 	return nr;
242 }
243 
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)244 static int vmap_page_range(unsigned long start, unsigned long end,
245 			   pgprot_t prot, struct page **pages)
246 {
247 	int ret;
248 
249 	ret = vmap_page_range_noflush(start, end, prot, pages);
250 	flush_cache_vmap(start, end);
251 	return ret;
252 }
253 
is_vmalloc_or_module_addr(const void * x)254 int is_vmalloc_or_module_addr(const void *x)
255 {
256 	/*
257 	 * ARM, x86-64 and sparc64 put modules in a special place,
258 	 * and fall back on vmalloc() if that fails. Others
259 	 * just put it in the vmalloc space.
260 	 */
261 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
262 	unsigned long addr = (unsigned long)x;
263 	if (addr >= MODULES_VADDR && addr < MODULES_END)
264 		return 1;
265 #endif
266 	return is_vmalloc_addr(x);
267 }
268 
269 /*
270  * Walk a vmap address to the struct page it maps.
271  */
vmalloc_to_page(const void * vmalloc_addr)272 struct page *vmalloc_to_page(const void *vmalloc_addr)
273 {
274 	unsigned long addr = (unsigned long) vmalloc_addr;
275 	struct page *page = NULL;
276 	pgd_t *pgd = pgd_offset_k(addr);
277 	p4d_t *p4d;
278 	pud_t *pud;
279 	pmd_t *pmd;
280 	pte_t *ptep, pte;
281 
282 	/*
283 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
284 	 * architectures that do not vmalloc module space
285 	 */
286 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287 
288 	if (pgd_none(*pgd))
289 		return NULL;
290 	p4d = p4d_offset(pgd, addr);
291 	if (p4d_none(*p4d))
292 		return NULL;
293 	pud = pud_offset(p4d, addr);
294 
295 	/*
296 	 * Don't dereference bad PUD or PMD (below) entries. This will also
297 	 * identify huge mappings, which we may encounter on architectures
298 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
299 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
300 	 * not [unambiguously] associated with a struct page, so there is
301 	 * no correct value to return for them.
302 	 */
303 	WARN_ON_ONCE(pud_bad(*pud));
304 	if (pud_none(*pud) || pud_bad(*pud))
305 		return NULL;
306 	pmd = pmd_offset(pud, addr);
307 	WARN_ON_ONCE(pmd_bad(*pmd));
308 	if (pmd_none(*pmd) || pmd_bad(*pmd))
309 		return NULL;
310 
311 	ptep = pte_offset_map(pmd, addr);
312 	pte = *ptep;
313 	if (pte_present(pte))
314 		page = pte_page(pte);
315 	pte_unmap(ptep);
316 	return page;
317 }
318 EXPORT_SYMBOL(vmalloc_to_page);
319 
320 /*
321  * Map a vmalloc()-space virtual address to the physical page frame number.
322  */
vmalloc_to_pfn(const void * vmalloc_addr)323 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
324 {
325 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
326 }
327 EXPORT_SYMBOL(vmalloc_to_pfn);
328 
329 
330 /*** Global kva allocator ***/
331 
332 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
333 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
334 
335 
336 static DEFINE_SPINLOCK(vmap_area_lock);
337 /* Export for kexec only */
338 LIST_HEAD(vmap_area_list);
339 static LLIST_HEAD(vmap_purge_list);
340 static struct rb_root vmap_area_root = RB_ROOT;
341 static bool vmap_initialized __read_mostly;
342 
343 /*
344  * This kmem_cache is used for vmap_area objects. Instead of
345  * allocating from slab we reuse an object from this cache to
346  * make things faster. Especially in "no edge" splitting of
347  * free block.
348  */
349 static struct kmem_cache *vmap_area_cachep;
350 
351 /*
352  * This linked list is used in pair with free_vmap_area_root.
353  * It gives O(1) access to prev/next to perform fast coalescing.
354  */
355 static LIST_HEAD(free_vmap_area_list);
356 
357 /*
358  * This augment red-black tree represents the free vmap space.
359  * All vmap_area objects in this tree are sorted by va->va_start
360  * address. It is used for allocation and merging when a vmap
361  * object is released.
362  *
363  * Each vmap_area node contains a maximum available free block
364  * of its sub-tree, right or left. Therefore it is possible to
365  * find a lowest match of free area.
366  */
367 static struct rb_root free_vmap_area_root = RB_ROOT;
368 
369 /*
370  * Preload a CPU with one object for "no edge" split case. The
371  * aim is to get rid of allocations from the atomic context, thus
372  * to use more permissive allocation masks.
373  */
374 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
375 
376 static __always_inline unsigned long
va_size(struct vmap_area * va)377 va_size(struct vmap_area *va)
378 {
379 	return (va->va_end - va->va_start);
380 }
381 
382 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)383 get_subtree_max_size(struct rb_node *node)
384 {
385 	struct vmap_area *va;
386 
387 	va = rb_entry_safe(node, struct vmap_area, rb_node);
388 	return va ? va->subtree_max_size : 0;
389 }
390 
391 /*
392  * Gets called when remove the node and rotate.
393  */
394 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)395 compute_subtree_max_size(struct vmap_area *va)
396 {
397 	return max3(va_size(va),
398 		get_subtree_max_size(va->rb_node.rb_left),
399 		get_subtree_max_size(va->rb_node.rb_right));
400 }
401 
402 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
403 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
404 
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
408 
409 static atomic_long_t nr_vmalloc_pages;
410 
vmalloc_nr_pages(void)411 unsigned long vmalloc_nr_pages(void)
412 {
413 	return atomic_long_read(&nr_vmalloc_pages);
414 }
415 
__find_vmap_area(unsigned long addr)416 static struct vmap_area *__find_vmap_area(unsigned long addr)
417 {
418 	struct rb_node *n = vmap_area_root.rb_node;
419 
420 	while (n) {
421 		struct vmap_area *va;
422 
423 		va = rb_entry(n, struct vmap_area, rb_node);
424 		if (addr < va->va_start)
425 			n = n->rb_left;
426 		else if (addr >= va->va_end)
427 			n = n->rb_right;
428 		else
429 			return va;
430 	}
431 
432 	return NULL;
433 }
434 
435 /*
436  * This function returns back addresses of parent node
437  * and its left or right link for further processing.
438  */
439 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)440 find_va_links(struct vmap_area *va,
441 	struct rb_root *root, struct rb_node *from,
442 	struct rb_node **parent)
443 {
444 	struct vmap_area *tmp_va;
445 	struct rb_node **link;
446 
447 	if (root) {
448 		link = &root->rb_node;
449 		if (unlikely(!*link)) {
450 			*parent = NULL;
451 			return link;
452 		}
453 	} else {
454 		link = &from;
455 	}
456 
457 	/*
458 	 * Go to the bottom of the tree. When we hit the last point
459 	 * we end up with parent rb_node and correct direction, i name
460 	 * it link, where the new va->rb_node will be attached to.
461 	 */
462 	do {
463 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464 
465 		/*
466 		 * During the traversal we also do some sanity check.
467 		 * Trigger the BUG() if there are sides(left/right)
468 		 * or full overlaps.
469 		 */
470 		if (va->va_start < tmp_va->va_end &&
471 				va->va_end <= tmp_va->va_start)
472 			link = &(*link)->rb_left;
473 		else if (va->va_end > tmp_va->va_start &&
474 				va->va_start >= tmp_va->va_end)
475 			link = &(*link)->rb_right;
476 		else
477 			BUG();
478 	} while (*link);
479 
480 	*parent = &tmp_va->rb_node;
481 	return link;
482 }
483 
484 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
486 {
487 	struct list_head *list;
488 
489 	if (unlikely(!parent))
490 		/*
491 		 * The red-black tree where we try to find VA neighbors
492 		 * before merging or inserting is empty, i.e. it means
493 		 * there is no free vmap space. Normally it does not
494 		 * happen but we handle this case anyway.
495 		 */
496 		return NULL;
497 
498 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 	return (&parent->rb_right == link ? list->next : list);
500 }
501 
502 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)503 link_va(struct vmap_area *va, struct rb_root *root,
504 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 {
506 	/*
507 	 * VA is still not in the list, but we can
508 	 * identify its future previous list_head node.
509 	 */
510 	if (likely(parent)) {
511 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 		if (&parent->rb_right != link)
513 			head = head->prev;
514 	}
515 
516 	/* Insert to the rb-tree */
517 	rb_link_node(&va->rb_node, parent, link);
518 	if (root == &free_vmap_area_root) {
519 		/*
520 		 * Some explanation here. Just perform simple insertion
521 		 * to the tree. We do not set va->subtree_max_size to
522 		 * its current size before calling rb_insert_augmented().
523 		 * It is because of we populate the tree from the bottom
524 		 * to parent levels when the node _is_ in the tree.
525 		 *
526 		 * Therefore we set subtree_max_size to zero after insertion,
527 		 * to let __augment_tree_propagate_from() puts everything to
528 		 * the correct order later on.
529 		 */
530 		rb_insert_augmented(&va->rb_node,
531 			root, &free_vmap_area_rb_augment_cb);
532 		va->subtree_max_size = 0;
533 	} else {
534 		rb_insert_color(&va->rb_node, root);
535 	}
536 
537 	/* Address-sort this list */
538 	list_add(&va->list, head);
539 }
540 
541 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)542 unlink_va(struct vmap_area *va, struct rb_root *root)
543 {
544 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 		return;
546 
547 	if (root == &free_vmap_area_root)
548 		rb_erase_augmented(&va->rb_node,
549 			root, &free_vmap_area_rb_augment_cb);
550 	else
551 		rb_erase(&va->rb_node, root);
552 
553 	list_del(&va->list);
554 	RB_CLEAR_NODE(&va->rb_node);
555 }
556 
557 #if DEBUG_AUGMENT_PROPAGATE_CHECK
558 static void
augment_tree_propagate_check(struct rb_node * n)559 augment_tree_propagate_check(struct rb_node *n)
560 {
561 	struct vmap_area *va;
562 	struct rb_node *node;
563 	unsigned long size;
564 	bool found = false;
565 
566 	if (n == NULL)
567 		return;
568 
569 	va = rb_entry(n, struct vmap_area, rb_node);
570 	size = va->subtree_max_size;
571 	node = n;
572 
573 	while (node) {
574 		va = rb_entry(node, struct vmap_area, rb_node);
575 
576 		if (get_subtree_max_size(node->rb_left) == size) {
577 			node = node->rb_left;
578 		} else {
579 			if (va_size(va) == size) {
580 				found = true;
581 				break;
582 			}
583 
584 			node = node->rb_right;
585 		}
586 	}
587 
588 	if (!found) {
589 		va = rb_entry(n, struct vmap_area, rb_node);
590 		pr_emerg("tree is corrupted: %lu, %lu\n",
591 			va_size(va), va->subtree_max_size);
592 	}
593 
594 	augment_tree_propagate_check(n->rb_left);
595 	augment_tree_propagate_check(n->rb_right);
596 }
597 #endif
598 
599 /*
600  * This function populates subtree_max_size from bottom to upper
601  * levels starting from VA point. The propagation must be done
602  * when VA size is modified by changing its va_start/va_end. Or
603  * in case of newly inserting of VA to the tree.
604  *
605  * It means that __augment_tree_propagate_from() must be called:
606  * - After VA has been inserted to the tree(free path);
607  * - After VA has been shrunk(allocation path);
608  * - After VA has been increased(merging path).
609  *
610  * Please note that, it does not mean that upper parent nodes
611  * and their subtree_max_size are recalculated all the time up
612  * to the root node.
613  *
614  *       4--8
615  *        /\
616  *       /  \
617  *      /    \
618  *    2--2  8--8
619  *
620  * For example if we modify the node 4, shrinking it to 2, then
621  * no any modification is required. If we shrink the node 2 to 1
622  * its subtree_max_size is updated only, and set to 1. If we shrink
623  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624  * node becomes 4--6.
625  */
626 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)627 augment_tree_propagate_from(struct vmap_area *va)
628 {
629 	struct rb_node *node = &va->rb_node;
630 	unsigned long new_va_sub_max_size;
631 
632 	while (node) {
633 		va = rb_entry(node, struct vmap_area, rb_node);
634 		new_va_sub_max_size = compute_subtree_max_size(va);
635 
636 		/*
637 		 * If the newly calculated maximum available size of the
638 		 * subtree is equal to the current one, then it means that
639 		 * the tree is propagated correctly. So we have to stop at
640 		 * this point to save cycles.
641 		 */
642 		if (va->subtree_max_size == new_va_sub_max_size)
643 			break;
644 
645 		va->subtree_max_size = new_va_sub_max_size;
646 		node = rb_parent(&va->rb_node);
647 	}
648 
649 #if DEBUG_AUGMENT_PROPAGATE_CHECK
650 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
651 #endif
652 }
653 
654 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)655 insert_vmap_area(struct vmap_area *va,
656 	struct rb_root *root, struct list_head *head)
657 {
658 	struct rb_node **link;
659 	struct rb_node *parent;
660 
661 	link = find_va_links(va, root, NULL, &parent);
662 	link_va(va, root, parent, link, head);
663 }
664 
665 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)666 insert_vmap_area_augment(struct vmap_area *va,
667 	struct rb_node *from, struct rb_root *root,
668 	struct list_head *head)
669 {
670 	struct rb_node **link;
671 	struct rb_node *parent;
672 
673 	if (from)
674 		link = find_va_links(va, NULL, from, &parent);
675 	else
676 		link = find_va_links(va, root, NULL, &parent);
677 
678 	link_va(va, root, parent, link, head);
679 	augment_tree_propagate_from(va);
680 }
681 
682 /*
683  * Merge de-allocated chunk of VA memory with previous
684  * and next free blocks. If coalesce is not done a new
685  * free area is inserted. If VA has been merged, it is
686  * freed.
687  */
688 static __always_inline void
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)689 merge_or_add_vmap_area(struct vmap_area *va,
690 	struct rb_root *root, struct list_head *head)
691 {
692 	struct vmap_area *sibling;
693 	struct list_head *next;
694 	struct rb_node **link;
695 	struct rb_node *parent;
696 	bool merged = false;
697 
698 	/*
699 	 * Find a place in the tree where VA potentially will be
700 	 * inserted, unless it is merged with its sibling/siblings.
701 	 */
702 	link = find_va_links(va, root, NULL, &parent);
703 
704 	/*
705 	 * Get next node of VA to check if merging can be done.
706 	 */
707 	next = get_va_next_sibling(parent, link);
708 	if (unlikely(next == NULL))
709 		goto insert;
710 
711 	/*
712 	 * start            end
713 	 * |                |
714 	 * |<------VA------>|<-----Next----->|
715 	 *                  |                |
716 	 *                  start            end
717 	 */
718 	if (next != head) {
719 		sibling = list_entry(next, struct vmap_area, list);
720 		if (sibling->va_start == va->va_end) {
721 			sibling->va_start = va->va_start;
722 
723 			/* Check and update the tree if needed. */
724 			augment_tree_propagate_from(sibling);
725 
726 			/* Free vmap_area object. */
727 			kmem_cache_free(vmap_area_cachep, va);
728 
729 			/* Point to the new merged area. */
730 			va = sibling;
731 			merged = true;
732 		}
733 	}
734 
735 	/*
736 	 * start            end
737 	 * |                |
738 	 * |<-----Prev----->|<------VA------>|
739 	 *                  |                |
740 	 *                  start            end
741 	 */
742 	if (next->prev != head) {
743 		sibling = list_entry(next->prev, struct vmap_area, list);
744 		if (sibling->va_end == va->va_start) {
745 			sibling->va_end = va->va_end;
746 
747 			/* Check and update the tree if needed. */
748 			augment_tree_propagate_from(sibling);
749 
750 			if (merged)
751 				unlink_va(va, root);
752 
753 			/* Free vmap_area object. */
754 			kmem_cache_free(vmap_area_cachep, va);
755 			return;
756 		}
757 	}
758 
759 insert:
760 	if (!merged) {
761 		link_va(va, root, parent, link, head);
762 		augment_tree_propagate_from(va);
763 	}
764 }
765 
766 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)767 is_within_this_va(struct vmap_area *va, unsigned long size,
768 	unsigned long align, unsigned long vstart)
769 {
770 	unsigned long nva_start_addr;
771 
772 	if (va->va_start > vstart)
773 		nva_start_addr = ALIGN(va->va_start, align);
774 	else
775 		nva_start_addr = ALIGN(vstart, align);
776 
777 	/* Can be overflowed due to big size or alignment. */
778 	if (nva_start_addr + size < nva_start_addr ||
779 			nva_start_addr < vstart)
780 		return false;
781 
782 	return (nva_start_addr + size <= va->va_end);
783 }
784 
785 /*
786  * Find the first free block(lowest start address) in the tree,
787  * that will accomplish the request corresponding to passing
788  * parameters.
789  */
790 static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,unsigned long align,unsigned long vstart)791 find_vmap_lowest_match(unsigned long size,
792 	unsigned long align, unsigned long vstart)
793 {
794 	struct vmap_area *va;
795 	struct rb_node *node;
796 	unsigned long length;
797 
798 	/* Start from the root. */
799 	node = free_vmap_area_root.rb_node;
800 
801 	/* Adjust the search size for alignment overhead. */
802 	length = size + align - 1;
803 
804 	while (node) {
805 		va = rb_entry(node, struct vmap_area, rb_node);
806 
807 		if (get_subtree_max_size(node->rb_left) >= length &&
808 				vstart < va->va_start) {
809 			node = node->rb_left;
810 		} else {
811 			if (is_within_this_va(va, size, align, vstart))
812 				return va;
813 
814 			/*
815 			 * Does not make sense to go deeper towards the right
816 			 * sub-tree if it does not have a free block that is
817 			 * equal or bigger to the requested search length.
818 			 */
819 			if (get_subtree_max_size(node->rb_right) >= length) {
820 				node = node->rb_right;
821 				continue;
822 			}
823 
824 			/*
825 			 * OK. We roll back and find the first right sub-tree,
826 			 * that will satisfy the search criteria. It can happen
827 			 * only once due to "vstart" restriction.
828 			 */
829 			while ((node = rb_parent(node))) {
830 				va = rb_entry(node, struct vmap_area, rb_node);
831 				if (is_within_this_va(va, size, align, vstart))
832 					return va;
833 
834 				if (get_subtree_max_size(node->rb_right) >= length &&
835 						vstart <= va->va_start) {
836 					node = node->rb_right;
837 					break;
838 				}
839 			}
840 		}
841 	}
842 
843 	return NULL;
844 }
845 
846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847 #include <linux/random.h>
848 
849 static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,unsigned long align,unsigned long vstart)850 find_vmap_lowest_linear_match(unsigned long size,
851 	unsigned long align, unsigned long vstart)
852 {
853 	struct vmap_area *va;
854 
855 	list_for_each_entry(va, &free_vmap_area_list, list) {
856 		if (!is_within_this_va(va, size, align, vstart))
857 			continue;
858 
859 		return va;
860 	}
861 
862 	return NULL;
863 }
864 
865 static void
find_vmap_lowest_match_check(unsigned long size)866 find_vmap_lowest_match_check(unsigned long size)
867 {
868 	struct vmap_area *va_1, *va_2;
869 	unsigned long vstart;
870 	unsigned int rnd;
871 
872 	get_random_bytes(&rnd, sizeof(rnd));
873 	vstart = VMALLOC_START + rnd;
874 
875 	va_1 = find_vmap_lowest_match(size, 1, vstart);
876 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877 
878 	if (va_1 != va_2)
879 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 			va_1, va_2, vstart);
881 }
882 #endif
883 
884 enum fit_type {
885 	NOTHING_FIT = 0,
886 	FL_FIT_TYPE = 1,	/* full fit */
887 	LE_FIT_TYPE = 2,	/* left edge fit */
888 	RE_FIT_TYPE = 3,	/* right edge fit */
889 	NE_FIT_TYPE = 4		/* no edge fit */
890 };
891 
892 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)893 classify_va_fit_type(struct vmap_area *va,
894 	unsigned long nva_start_addr, unsigned long size)
895 {
896 	enum fit_type type;
897 
898 	/* Check if it is within VA. */
899 	if (nva_start_addr < va->va_start ||
900 			nva_start_addr + size > va->va_end)
901 		return NOTHING_FIT;
902 
903 	/* Now classify. */
904 	if (va->va_start == nva_start_addr) {
905 		if (va->va_end == nva_start_addr + size)
906 			type = FL_FIT_TYPE;
907 		else
908 			type = LE_FIT_TYPE;
909 	} else if (va->va_end == nva_start_addr + size) {
910 		type = RE_FIT_TYPE;
911 	} else {
912 		type = NE_FIT_TYPE;
913 	}
914 
915 	return type;
916 }
917 
918 static __always_inline int
adjust_va_to_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size,enum fit_type type)919 adjust_va_to_fit_type(struct vmap_area *va,
920 	unsigned long nva_start_addr, unsigned long size,
921 	enum fit_type type)
922 {
923 	struct vmap_area *lva = NULL;
924 
925 	if (type == FL_FIT_TYPE) {
926 		/*
927 		 * No need to split VA, it fully fits.
928 		 *
929 		 * |               |
930 		 * V      NVA      V
931 		 * |---------------|
932 		 */
933 		unlink_va(va, &free_vmap_area_root);
934 		kmem_cache_free(vmap_area_cachep, va);
935 	} else if (type == LE_FIT_TYPE) {
936 		/*
937 		 * Split left edge of fit VA.
938 		 *
939 		 * |       |
940 		 * V  NVA  V   R
941 		 * |-------|-------|
942 		 */
943 		va->va_start += size;
944 	} else if (type == RE_FIT_TYPE) {
945 		/*
946 		 * Split right edge of fit VA.
947 		 *
948 		 *         |       |
949 		 *     L   V  NVA  V
950 		 * |-------|-------|
951 		 */
952 		va->va_end = nva_start_addr;
953 	} else if (type == NE_FIT_TYPE) {
954 		/*
955 		 * Split no edge of fit VA.
956 		 *
957 		 *     |       |
958 		 *   L V  NVA  V R
959 		 * |---|-------|---|
960 		 */
961 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 		if (unlikely(!lva)) {
963 			/*
964 			 * For percpu allocator we do not do any pre-allocation
965 			 * and leave it as it is. The reason is it most likely
966 			 * never ends up with NE_FIT_TYPE splitting. In case of
967 			 * percpu allocations offsets and sizes are aligned to
968 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 			 * are its main fitting cases.
970 			 *
971 			 * There are a few exceptions though, as an example it is
972 			 * a first allocation (early boot up) when we have "one"
973 			 * big free space that has to be split.
974 			 */
975 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 			if (!lva)
977 				return -1;
978 		}
979 
980 		/*
981 		 * Build the remainder.
982 		 */
983 		lva->va_start = va->va_start;
984 		lva->va_end = nva_start_addr;
985 
986 		/*
987 		 * Shrink this VA to remaining size.
988 		 */
989 		va->va_start = nva_start_addr + size;
990 	} else {
991 		return -1;
992 	}
993 
994 	if (type != FL_FIT_TYPE) {
995 		augment_tree_propagate_from(va);
996 
997 		if (lva)	/* type == NE_FIT_TYPE */
998 			insert_vmap_area_augment(lva, &va->rb_node,
999 				&free_vmap_area_root, &free_vmap_area_list);
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Returns a start address of the newly allocated area, if success.
1007  * Otherwise a vend is returned that indicates failure.
1008  */
1009 static __always_inline unsigned long
__alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1010 __alloc_vmap_area(unsigned long size, unsigned long align,
1011 	unsigned long vstart, unsigned long vend)
1012 {
1013 	unsigned long nva_start_addr;
1014 	struct vmap_area *va;
1015 	enum fit_type type;
1016 	int ret;
1017 
1018 	va = find_vmap_lowest_match(size, align, vstart);
1019 	if (unlikely(!va))
1020 		return vend;
1021 
1022 	if (va->va_start > vstart)
1023 		nva_start_addr = ALIGN(va->va_start, align);
1024 	else
1025 		nva_start_addr = ALIGN(vstart, align);
1026 
1027 	/* Check the "vend" restriction. */
1028 	if (nva_start_addr + size > vend)
1029 		return vend;
1030 
1031 	/* Classify what we have found. */
1032 	type = classify_va_fit_type(va, nva_start_addr, size);
1033 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 		return vend;
1035 
1036 	/* Update the free vmap_area. */
1037 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 	if (ret)
1039 		return vend;
1040 
1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 	find_vmap_lowest_match_check(size);
1043 #endif
1044 
1045 	return nva_start_addr;
1046 }
1047 
1048 /*
1049  * Allocate a region of KVA of the specified size and alignment, within the
1050  * vstart and vend.
1051  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)1052 static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 				unsigned long align,
1054 				unsigned long vstart, unsigned long vend,
1055 				int node, gfp_t gfp_mask)
1056 {
1057 	struct vmap_area *va, *pva;
1058 	unsigned long addr;
1059 	int purged = 0;
1060 
1061 	BUG_ON(!size);
1062 	BUG_ON(offset_in_page(size));
1063 	BUG_ON(!is_power_of_2(align));
1064 
1065 	if (unlikely(!vmap_initialized))
1066 		return ERR_PTR(-EBUSY);
1067 
1068 	might_sleep();
1069 
1070 	va = kmem_cache_alloc_node(vmap_area_cachep,
1071 			gfp_mask & GFP_RECLAIM_MASK, node);
1072 	if (unlikely(!va))
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	/*
1076 	 * Only scan the relevant parts containing pointers to other objects
1077 	 * to avoid false negatives.
1078 	 */
1079 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080 
1081 retry:
1082 	/*
1083 	 * Preload this CPU with one extra vmap_area object to ensure
1084 	 * that we have it available when fit type of free area is
1085 	 * NE_FIT_TYPE.
1086 	 *
1087 	 * The preload is done in non-atomic context, thus it allows us
1088 	 * to use more permissive allocation masks to be more stable under
1089 	 * low memory condition and high memory pressure.
1090 	 *
1091 	 * Even if it fails we do not really care about that. Just proceed
1092 	 * as it is. "overflow" path will refill the cache we allocate from.
1093 	 */
1094 	preempt_disable();
1095 	if (!__this_cpu_read(ne_fit_preload_node)) {
1096 		preempt_enable();
1097 		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 		preempt_disable();
1099 
1100 		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 			if (pva)
1102 				kmem_cache_free(vmap_area_cachep, pva);
1103 		}
1104 	}
1105 
1106 	spin_lock(&vmap_area_lock);
1107 	preempt_enable();
1108 
1109 	/*
1110 	 * If an allocation fails, the "vend" address is
1111 	 * returned. Therefore trigger the overflow path.
1112 	 */
1113 	addr = __alloc_vmap_area(size, align, vstart, vend);
1114 	if (unlikely(addr == vend))
1115 		goto overflow;
1116 
1117 	va->va_start = addr;
1118 	va->va_end = addr + size;
1119 	va->vm = NULL;
1120 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121 
1122 	spin_unlock(&vmap_area_lock);
1123 
1124 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 	BUG_ON(va->va_start < vstart);
1126 	BUG_ON(va->va_end > vend);
1127 
1128 	return va;
1129 
1130 overflow:
1131 	spin_unlock(&vmap_area_lock);
1132 	if (!purged) {
1133 		purge_vmap_area_lazy();
1134 		purged = 1;
1135 		goto retry;
1136 	}
1137 
1138 	if (gfpflags_allow_blocking(gfp_mask)) {
1139 		unsigned long freed = 0;
1140 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 		if (freed > 0) {
1142 			purged = 0;
1143 			goto retry;
1144 		}
1145 	}
1146 
1147 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 			size);
1150 
1151 	kmem_cache_free(vmap_area_cachep, va);
1152 	return ERR_PTR(-EBUSY);
1153 }
1154 
register_vmap_purge_notifier(struct notifier_block * nb)1155 int register_vmap_purge_notifier(struct notifier_block *nb)
1156 {
1157 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158 }
1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160 
unregister_vmap_purge_notifier(struct notifier_block * nb)1161 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162 {
1163 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164 }
1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166 
__free_vmap_area(struct vmap_area * va)1167 static void __free_vmap_area(struct vmap_area *va)
1168 {
1169 	/*
1170 	 * Remove from the busy tree/list.
1171 	 */
1172 	unlink_va(va, &vmap_area_root);
1173 
1174 	/*
1175 	 * Merge VA with its neighbors, otherwise just add it.
1176 	 */
1177 	merge_or_add_vmap_area(va,
1178 		&free_vmap_area_root, &free_vmap_area_list);
1179 }
1180 
1181 /*
1182  * Free a region of KVA allocated by alloc_vmap_area
1183  */
free_vmap_area(struct vmap_area * va)1184 static void free_vmap_area(struct vmap_area *va)
1185 {
1186 	spin_lock(&vmap_area_lock);
1187 	__free_vmap_area(va);
1188 	spin_unlock(&vmap_area_lock);
1189 }
1190 
1191 /*
1192  * Clear the pagetable entries of a given vmap_area
1193  */
unmap_vmap_area(struct vmap_area * va)1194 static void unmap_vmap_area(struct vmap_area *va)
1195 {
1196 	vunmap_page_range(va->va_start, va->va_end);
1197 }
1198 
1199 /*
1200  * lazy_max_pages is the maximum amount of virtual address space we gather up
1201  * before attempting to purge with a TLB flush.
1202  *
1203  * There is a tradeoff here: a larger number will cover more kernel page tables
1204  * and take slightly longer to purge, but it will linearly reduce the number of
1205  * global TLB flushes that must be performed. It would seem natural to scale
1206  * this number up linearly with the number of CPUs (because vmapping activity
1207  * could also scale linearly with the number of CPUs), however it is likely
1208  * that in practice, workloads might be constrained in other ways that mean
1209  * vmap activity will not scale linearly with CPUs. Also, I want to be
1210  * conservative and not introduce a big latency on huge systems, so go with
1211  * a less aggressive log scale. It will still be an improvement over the old
1212  * code, and it will be simple to change the scale factor if we find that it
1213  * becomes a problem on bigger systems.
1214  */
lazy_max_pages(void)1215 static unsigned long lazy_max_pages(void)
1216 {
1217 	unsigned int log;
1218 
1219 	log = fls(num_online_cpus());
1220 
1221 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222 }
1223 
1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1225 
1226 /*
1227  * Serialize vmap purging.  There is no actual criticial section protected
1228  * by this look, but we want to avoid concurrent calls for performance
1229  * reasons and to make the pcpu_get_vm_areas more deterministic.
1230  */
1231 static DEFINE_MUTEX(vmap_purge_lock);
1232 
1233 /* for per-CPU blocks */
1234 static void purge_fragmented_blocks_allcpus(void);
1235 
1236 /*
1237  * called before a call to iounmap() if the caller wants vm_area_struct's
1238  * immediately freed.
1239  */
set_iounmap_nonlazy(void)1240 void set_iounmap_nonlazy(void)
1241 {
1242 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 }
1244 
1245 /*
1246  * Purges all lazily-freed vmap areas.
1247  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1249 {
1250 	unsigned long resched_threshold;
1251 	struct llist_node *valist;
1252 	struct vmap_area *va;
1253 	struct vmap_area *n_va;
1254 
1255 	lockdep_assert_held(&vmap_purge_lock);
1256 
1257 	valist = llist_del_all(&vmap_purge_list);
1258 	if (unlikely(valist == NULL))
1259 		return false;
1260 
1261 	/*
1262 	 * First make sure the mappings are removed from all page-tables
1263 	 * before they are freed.
1264 	 */
1265 	vmalloc_sync_unmappings();
1266 
1267 	/*
1268 	 * TODO: to calculate a flush range without looping.
1269 	 * The list can be up to lazy_max_pages() elements.
1270 	 */
1271 	llist_for_each_entry(va, valist, purge_list) {
1272 		if (va->va_start < start)
1273 			start = va->va_start;
1274 		if (va->va_end > end)
1275 			end = va->va_end;
1276 	}
1277 
1278 	flush_tlb_kernel_range(start, end);
1279 	resched_threshold = lazy_max_pages() << 1;
1280 
1281 	spin_lock(&vmap_area_lock);
1282 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1283 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1284 
1285 		/*
1286 		 * Finally insert or merge lazily-freed area. It is
1287 		 * detached and there is no need to "unlink" it from
1288 		 * anything.
1289 		 */
1290 		merge_or_add_vmap_area(va,
1291 			&free_vmap_area_root, &free_vmap_area_list);
1292 
1293 		atomic_long_sub(nr, &vmap_lazy_nr);
1294 
1295 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1296 			cond_resched_lock(&vmap_area_lock);
1297 	}
1298 	spin_unlock(&vmap_area_lock);
1299 	return true;
1300 }
1301 
1302 /*
1303  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1304  * is already purging.
1305  */
try_purge_vmap_area_lazy(void)1306 static void try_purge_vmap_area_lazy(void)
1307 {
1308 	if (mutex_trylock(&vmap_purge_lock)) {
1309 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1310 		mutex_unlock(&vmap_purge_lock);
1311 	}
1312 }
1313 
1314 /*
1315  * Kick off a purge of the outstanding lazy areas.
1316  */
purge_vmap_area_lazy(void)1317 static void purge_vmap_area_lazy(void)
1318 {
1319 	mutex_lock(&vmap_purge_lock);
1320 	purge_fragmented_blocks_allcpus();
1321 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1322 	mutex_unlock(&vmap_purge_lock);
1323 }
1324 
1325 /*
1326  * Free a vmap area, caller ensuring that the area has been unmapped
1327  * and flush_cache_vunmap had been called for the correct range
1328  * previously.
1329  */
free_vmap_area_noflush(struct vmap_area * va)1330 static void free_vmap_area_noflush(struct vmap_area *va)
1331 {
1332 	unsigned long nr_lazy;
1333 
1334 	spin_lock(&vmap_area_lock);
1335 	unlink_va(va, &vmap_area_root);
1336 	spin_unlock(&vmap_area_lock);
1337 
1338 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1339 				PAGE_SHIFT, &vmap_lazy_nr);
1340 
1341 	/* After this point, we may free va at any time */
1342 	llist_add(&va->purge_list, &vmap_purge_list);
1343 
1344 	if (unlikely(nr_lazy > lazy_max_pages()))
1345 		try_purge_vmap_area_lazy();
1346 }
1347 
1348 /*
1349  * Free and unmap a vmap area
1350  */
free_unmap_vmap_area(struct vmap_area * va)1351 static void free_unmap_vmap_area(struct vmap_area *va)
1352 {
1353 	flush_cache_vunmap(va->va_start, va->va_end);
1354 	unmap_vmap_area(va);
1355 	if (debug_pagealloc_enabled_static())
1356 		flush_tlb_kernel_range(va->va_start, va->va_end);
1357 
1358 	free_vmap_area_noflush(va);
1359 }
1360 
find_vmap_area(unsigned long addr)1361 static struct vmap_area *find_vmap_area(unsigned long addr)
1362 {
1363 	struct vmap_area *va;
1364 
1365 	spin_lock(&vmap_area_lock);
1366 	va = __find_vmap_area(addr);
1367 	spin_unlock(&vmap_area_lock);
1368 
1369 	return va;
1370 }
1371 
1372 /*** Per cpu kva allocator ***/
1373 
1374 /*
1375  * vmap space is limited especially on 32 bit architectures. Ensure there is
1376  * room for at least 16 percpu vmap blocks per CPU.
1377  */
1378 /*
1379  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1380  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1381  * instead (we just need a rough idea)
1382  */
1383 #if BITS_PER_LONG == 32
1384 #define VMALLOC_SPACE		(128UL*1024*1024)
1385 #else
1386 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1387 #endif
1388 
1389 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1390 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1391 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1392 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1393 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1394 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1395 #define VMAP_BBMAP_BITS		\
1396 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1397 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1398 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1399 
1400 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1401 
1402 struct vmap_block_queue {
1403 	spinlock_t lock;
1404 	struct list_head free;
1405 };
1406 
1407 struct vmap_block {
1408 	spinlock_t lock;
1409 	struct vmap_area *va;
1410 	unsigned long free, dirty;
1411 	unsigned long dirty_min, dirty_max; /*< dirty range */
1412 	struct list_head free_list;
1413 	struct rcu_head rcu_head;
1414 	struct list_head purge;
1415 };
1416 
1417 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1418 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1419 
1420 /*
1421  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1422  * in the free path. Could get rid of this if we change the API to return a
1423  * "cookie" from alloc, to be passed to free. But no big deal yet.
1424  */
1425 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1426 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1427 
1428 /*
1429  * We should probably have a fallback mechanism to allocate virtual memory
1430  * out of partially filled vmap blocks. However vmap block sizing should be
1431  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1432  * big problem.
1433  */
1434 
addr_to_vb_idx(unsigned long addr)1435 static unsigned long addr_to_vb_idx(unsigned long addr)
1436 {
1437 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1438 	addr /= VMAP_BLOCK_SIZE;
1439 	return addr;
1440 }
1441 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)1442 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1443 {
1444 	unsigned long addr;
1445 
1446 	addr = va_start + (pages_off << PAGE_SHIFT);
1447 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1448 	return (void *)addr;
1449 }
1450 
1451 /**
1452  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1453  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1454  * @order:    how many 2^order pages should be occupied in newly allocated block
1455  * @gfp_mask: flags for the page level allocator
1456  *
1457  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1458  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)1459 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1460 {
1461 	struct vmap_block_queue *vbq;
1462 	struct vmap_block *vb;
1463 	struct vmap_area *va;
1464 	unsigned long vb_idx;
1465 	int node, err;
1466 	void *vaddr;
1467 
1468 	node = numa_node_id();
1469 
1470 	vb = kmalloc_node(sizeof(struct vmap_block),
1471 			gfp_mask & GFP_RECLAIM_MASK, node);
1472 	if (unlikely(!vb))
1473 		return ERR_PTR(-ENOMEM);
1474 
1475 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1476 					VMALLOC_START, VMALLOC_END,
1477 					node, gfp_mask);
1478 	if (IS_ERR(va)) {
1479 		kfree(vb);
1480 		return ERR_CAST(va);
1481 	}
1482 
1483 	err = radix_tree_preload(gfp_mask);
1484 	if (unlikely(err)) {
1485 		kfree(vb);
1486 		free_vmap_area(va);
1487 		return ERR_PTR(err);
1488 	}
1489 
1490 	vaddr = vmap_block_vaddr(va->va_start, 0);
1491 	spin_lock_init(&vb->lock);
1492 	vb->va = va;
1493 	/* At least something should be left free */
1494 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1495 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1496 	vb->dirty = 0;
1497 	vb->dirty_min = VMAP_BBMAP_BITS;
1498 	vb->dirty_max = 0;
1499 	INIT_LIST_HEAD(&vb->free_list);
1500 
1501 	vb_idx = addr_to_vb_idx(va->va_start);
1502 	spin_lock(&vmap_block_tree_lock);
1503 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1504 	spin_unlock(&vmap_block_tree_lock);
1505 	BUG_ON(err);
1506 	radix_tree_preload_end();
1507 
1508 	vbq = &get_cpu_var(vmap_block_queue);
1509 	spin_lock(&vbq->lock);
1510 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1511 	spin_unlock(&vbq->lock);
1512 	put_cpu_var(vmap_block_queue);
1513 
1514 	return vaddr;
1515 }
1516 
free_vmap_block(struct vmap_block * vb)1517 static void free_vmap_block(struct vmap_block *vb)
1518 {
1519 	struct vmap_block *tmp;
1520 	unsigned long vb_idx;
1521 
1522 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1523 	spin_lock(&vmap_block_tree_lock);
1524 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1525 	spin_unlock(&vmap_block_tree_lock);
1526 	BUG_ON(tmp != vb);
1527 
1528 	free_vmap_area_noflush(vb->va);
1529 	kfree_rcu(vb, rcu_head);
1530 }
1531 
purge_fragmented_blocks(int cpu)1532 static void purge_fragmented_blocks(int cpu)
1533 {
1534 	LIST_HEAD(purge);
1535 	struct vmap_block *vb;
1536 	struct vmap_block *n_vb;
1537 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1538 
1539 	rcu_read_lock();
1540 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1541 
1542 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1543 			continue;
1544 
1545 		spin_lock(&vb->lock);
1546 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1547 			vb->free = 0; /* prevent further allocs after releasing lock */
1548 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1549 			vb->dirty_min = 0;
1550 			vb->dirty_max = VMAP_BBMAP_BITS;
1551 			spin_lock(&vbq->lock);
1552 			list_del_rcu(&vb->free_list);
1553 			spin_unlock(&vbq->lock);
1554 			spin_unlock(&vb->lock);
1555 			list_add_tail(&vb->purge, &purge);
1556 		} else
1557 			spin_unlock(&vb->lock);
1558 	}
1559 	rcu_read_unlock();
1560 
1561 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1562 		list_del(&vb->purge);
1563 		free_vmap_block(vb);
1564 	}
1565 }
1566 
purge_fragmented_blocks_allcpus(void)1567 static void purge_fragmented_blocks_allcpus(void)
1568 {
1569 	int cpu;
1570 
1571 	for_each_possible_cpu(cpu)
1572 		purge_fragmented_blocks(cpu);
1573 }
1574 
vb_alloc(unsigned long size,gfp_t gfp_mask)1575 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1576 {
1577 	struct vmap_block_queue *vbq;
1578 	struct vmap_block *vb;
1579 	void *vaddr = NULL;
1580 	unsigned int order;
1581 
1582 	BUG_ON(offset_in_page(size));
1583 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1584 	if (WARN_ON(size == 0)) {
1585 		/*
1586 		 * Allocating 0 bytes isn't what caller wants since
1587 		 * get_order(0) returns funny result. Just warn and terminate
1588 		 * early.
1589 		 */
1590 		return NULL;
1591 	}
1592 	order = get_order(size);
1593 
1594 	rcu_read_lock();
1595 	vbq = &get_cpu_var(vmap_block_queue);
1596 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1597 		unsigned long pages_off;
1598 
1599 		spin_lock(&vb->lock);
1600 		if (vb->free < (1UL << order)) {
1601 			spin_unlock(&vb->lock);
1602 			continue;
1603 		}
1604 
1605 		pages_off = VMAP_BBMAP_BITS - vb->free;
1606 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1607 		vb->free -= 1UL << order;
1608 		if (vb->free == 0) {
1609 			spin_lock(&vbq->lock);
1610 			list_del_rcu(&vb->free_list);
1611 			spin_unlock(&vbq->lock);
1612 		}
1613 
1614 		spin_unlock(&vb->lock);
1615 		break;
1616 	}
1617 
1618 	put_cpu_var(vmap_block_queue);
1619 	rcu_read_unlock();
1620 
1621 	/* Allocate new block if nothing was found */
1622 	if (!vaddr)
1623 		vaddr = new_vmap_block(order, gfp_mask);
1624 
1625 	return vaddr;
1626 }
1627 
vb_free(const void * addr,unsigned long size)1628 static void vb_free(const void *addr, unsigned long size)
1629 {
1630 	unsigned long offset;
1631 	unsigned long vb_idx;
1632 	unsigned int order;
1633 	struct vmap_block *vb;
1634 
1635 	BUG_ON(offset_in_page(size));
1636 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1637 
1638 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1639 
1640 	order = get_order(size);
1641 
1642 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1643 	offset >>= PAGE_SHIFT;
1644 
1645 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1646 	rcu_read_lock();
1647 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1648 	rcu_read_unlock();
1649 	BUG_ON(!vb);
1650 
1651 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1652 
1653 	if (debug_pagealloc_enabled_static())
1654 		flush_tlb_kernel_range((unsigned long)addr,
1655 					(unsigned long)addr + size);
1656 
1657 	spin_lock(&vb->lock);
1658 
1659 	/* Expand dirty range */
1660 	vb->dirty_min = min(vb->dirty_min, offset);
1661 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1662 
1663 	vb->dirty += 1UL << order;
1664 	if (vb->dirty == VMAP_BBMAP_BITS) {
1665 		BUG_ON(vb->free);
1666 		spin_unlock(&vb->lock);
1667 		free_vmap_block(vb);
1668 	} else
1669 		spin_unlock(&vb->lock);
1670 }
1671 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)1672 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1673 {
1674 	int cpu;
1675 
1676 	if (unlikely(!vmap_initialized))
1677 		return;
1678 
1679 	might_sleep();
1680 
1681 	for_each_possible_cpu(cpu) {
1682 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1683 		struct vmap_block *vb;
1684 
1685 		rcu_read_lock();
1686 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1687 			spin_lock(&vb->lock);
1688 			if (vb->dirty) {
1689 				unsigned long va_start = vb->va->va_start;
1690 				unsigned long s, e;
1691 
1692 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1693 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1694 
1695 				start = min(s, start);
1696 				end   = max(e, end);
1697 
1698 				flush = 1;
1699 			}
1700 			spin_unlock(&vb->lock);
1701 		}
1702 		rcu_read_unlock();
1703 	}
1704 
1705 	mutex_lock(&vmap_purge_lock);
1706 	purge_fragmented_blocks_allcpus();
1707 	if (!__purge_vmap_area_lazy(start, end) && flush)
1708 		flush_tlb_kernel_range(start, end);
1709 	mutex_unlock(&vmap_purge_lock);
1710 }
1711 
1712 /**
1713  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1714  *
1715  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1716  * to amortize TLB flushing overheads. What this means is that any page you
1717  * have now, may, in a former life, have been mapped into kernel virtual
1718  * address by the vmap layer and so there might be some CPUs with TLB entries
1719  * still referencing that page (additional to the regular 1:1 kernel mapping).
1720  *
1721  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1722  * be sure that none of the pages we have control over will have any aliases
1723  * from the vmap layer.
1724  */
vm_unmap_aliases(void)1725 void vm_unmap_aliases(void)
1726 {
1727 	unsigned long start = ULONG_MAX, end = 0;
1728 	int flush = 0;
1729 
1730 	_vm_unmap_aliases(start, end, flush);
1731 }
1732 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1733 
1734 /**
1735  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1736  * @mem: the pointer returned by vm_map_ram
1737  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1738  */
vm_unmap_ram(const void * mem,unsigned int count)1739 void vm_unmap_ram(const void *mem, unsigned int count)
1740 {
1741 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1742 	unsigned long addr = (unsigned long)mem;
1743 	struct vmap_area *va;
1744 
1745 	might_sleep();
1746 	BUG_ON(!addr);
1747 	BUG_ON(addr < VMALLOC_START);
1748 	BUG_ON(addr > VMALLOC_END);
1749 	BUG_ON(!PAGE_ALIGNED(addr));
1750 
1751 	if (likely(count <= VMAP_MAX_ALLOC)) {
1752 		debug_check_no_locks_freed(mem, size);
1753 		vb_free(mem, size);
1754 		return;
1755 	}
1756 
1757 	va = find_vmap_area(addr);
1758 	BUG_ON(!va);
1759 	debug_check_no_locks_freed((void *)va->va_start,
1760 				    (va->va_end - va->va_start));
1761 	free_unmap_vmap_area(va);
1762 }
1763 EXPORT_SYMBOL(vm_unmap_ram);
1764 
1765 /**
1766  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1767  * @pages: an array of pointers to the pages to be mapped
1768  * @count: number of pages
1769  * @node: prefer to allocate data structures on this node
1770  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1771  *
1772  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1773  * faster than vmap so it's good.  But if you mix long-life and short-life
1774  * objects with vm_map_ram(), it could consume lots of address space through
1775  * fragmentation (especially on a 32bit machine).  You could see failures in
1776  * the end.  Please use this function for short-lived objects.
1777  *
1778  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1779  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1780 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1781 {
1782 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1783 	unsigned long addr;
1784 	void *mem;
1785 
1786 	if (likely(count <= VMAP_MAX_ALLOC)) {
1787 		mem = vb_alloc(size, GFP_KERNEL);
1788 		if (IS_ERR(mem))
1789 			return NULL;
1790 		addr = (unsigned long)mem;
1791 	} else {
1792 		struct vmap_area *va;
1793 		va = alloc_vmap_area(size, PAGE_SIZE,
1794 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1795 		if (IS_ERR(va))
1796 			return NULL;
1797 
1798 		addr = va->va_start;
1799 		mem = (void *)addr;
1800 	}
1801 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1802 		vm_unmap_ram(mem, count);
1803 		return NULL;
1804 	}
1805 	return mem;
1806 }
1807 EXPORT_SYMBOL(vm_map_ram);
1808 
1809 static struct vm_struct *vmlist __initdata;
1810 
1811 /**
1812  * vm_area_add_early - add vmap area early during boot
1813  * @vm: vm_struct to add
1814  *
1815  * This function is used to add fixed kernel vm area to vmlist before
1816  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1817  * should contain proper values and the other fields should be zero.
1818  *
1819  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1820  */
vm_area_add_early(struct vm_struct * vm)1821 void __init vm_area_add_early(struct vm_struct *vm)
1822 {
1823 	struct vm_struct *tmp, **p;
1824 
1825 	BUG_ON(vmap_initialized);
1826 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1827 		if (tmp->addr >= vm->addr) {
1828 			BUG_ON(tmp->addr < vm->addr + vm->size);
1829 			break;
1830 		} else
1831 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1832 	}
1833 	vm->next = *p;
1834 	*p = vm;
1835 }
1836 
1837 /**
1838  * vm_area_register_early - register vmap area early during boot
1839  * @vm: vm_struct to register
1840  * @align: requested alignment
1841  *
1842  * This function is used to register kernel vm area before
1843  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1844  * proper values on entry and other fields should be zero.  On return,
1845  * vm->addr contains the allocated address.
1846  *
1847  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1848  */
vm_area_register_early(struct vm_struct * vm,size_t align)1849 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1850 {
1851 	static size_t vm_init_off __initdata;
1852 	unsigned long addr;
1853 
1854 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1855 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1856 
1857 	vm->addr = (void *)addr;
1858 
1859 	vm_area_add_early(vm);
1860 }
1861 
vmap_init_free_space(void)1862 static void vmap_init_free_space(void)
1863 {
1864 	unsigned long vmap_start = 1;
1865 	const unsigned long vmap_end = ULONG_MAX;
1866 	struct vmap_area *busy, *free;
1867 
1868 	/*
1869 	 *     B     F     B     B     B     F
1870 	 * -|-----|.....|-----|-----|-----|.....|-
1871 	 *  |           The KVA space           |
1872 	 *  |<--------------------------------->|
1873 	 */
1874 	list_for_each_entry(busy, &vmap_area_list, list) {
1875 		if (busy->va_start - vmap_start > 0) {
1876 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1877 			if (!WARN_ON_ONCE(!free)) {
1878 				free->va_start = vmap_start;
1879 				free->va_end = busy->va_start;
1880 
1881 				insert_vmap_area_augment(free, NULL,
1882 					&free_vmap_area_root,
1883 						&free_vmap_area_list);
1884 			}
1885 		}
1886 
1887 		vmap_start = busy->va_end;
1888 	}
1889 
1890 	if (vmap_end - vmap_start > 0) {
1891 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1892 		if (!WARN_ON_ONCE(!free)) {
1893 			free->va_start = vmap_start;
1894 			free->va_end = vmap_end;
1895 
1896 			insert_vmap_area_augment(free, NULL,
1897 				&free_vmap_area_root,
1898 					&free_vmap_area_list);
1899 		}
1900 	}
1901 }
1902 
vmalloc_init(void)1903 void __init vmalloc_init(void)
1904 {
1905 	struct vmap_area *va;
1906 	struct vm_struct *tmp;
1907 	int i;
1908 
1909 	/*
1910 	 * Create the cache for vmap_area objects.
1911 	 */
1912 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1913 
1914 	for_each_possible_cpu(i) {
1915 		struct vmap_block_queue *vbq;
1916 		struct vfree_deferred *p;
1917 
1918 		vbq = &per_cpu(vmap_block_queue, i);
1919 		spin_lock_init(&vbq->lock);
1920 		INIT_LIST_HEAD(&vbq->free);
1921 		p = &per_cpu(vfree_deferred, i);
1922 		init_llist_head(&p->list);
1923 		INIT_WORK(&p->wq, free_work);
1924 	}
1925 
1926 	/* Import existing vmlist entries. */
1927 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1928 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1929 		if (WARN_ON_ONCE(!va))
1930 			continue;
1931 
1932 		va->va_start = (unsigned long)tmp->addr;
1933 		va->va_end = va->va_start + tmp->size;
1934 		va->vm = tmp;
1935 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1936 	}
1937 
1938 	/*
1939 	 * Now we can initialize a free vmap space.
1940 	 */
1941 	vmap_init_free_space();
1942 	vmap_initialized = true;
1943 }
1944 
1945 /**
1946  * map_kernel_range_noflush - map kernel VM area with the specified pages
1947  * @addr: start of the VM area to map
1948  * @size: size of the VM area to map
1949  * @prot: page protection flags to use
1950  * @pages: pages to map
1951  *
1952  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1953  * specify should have been allocated using get_vm_area() and its
1954  * friends.
1955  *
1956  * NOTE:
1957  * This function does NOT do any cache flushing.  The caller is
1958  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1959  * before calling this function.
1960  *
1961  * RETURNS:
1962  * The number of pages mapped on success, -errno on failure.
1963  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1964 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1965 			     pgprot_t prot, struct page **pages)
1966 {
1967 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1968 }
1969 
1970 /**
1971  * unmap_kernel_range_noflush - unmap kernel VM area
1972  * @addr: start of the VM area to unmap
1973  * @size: size of the VM area to unmap
1974  *
1975  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1976  * specify should have been allocated using get_vm_area() and its
1977  * friends.
1978  *
1979  * NOTE:
1980  * This function does NOT do any cache flushing.  The caller is
1981  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1982  * before calling this function and flush_tlb_kernel_range() after.
1983  */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1984 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1985 {
1986 	vunmap_page_range(addr, addr + size);
1987 }
1988 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1989 
1990 /**
1991  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1992  * @addr: start of the VM area to unmap
1993  * @size: size of the VM area to unmap
1994  *
1995  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1996  * the unmapping and tlb after.
1997  */
unmap_kernel_range(unsigned long addr,unsigned long size)1998 void unmap_kernel_range(unsigned long addr, unsigned long size)
1999 {
2000 	unsigned long end = addr + size;
2001 
2002 	flush_cache_vunmap(addr, end);
2003 	vunmap_page_range(addr, end);
2004 	flush_tlb_kernel_range(addr, end);
2005 }
2006 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2007 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)2008 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2009 {
2010 	unsigned long addr = (unsigned long)area->addr;
2011 	unsigned long end = addr + get_vm_area_size(area);
2012 	int err;
2013 
2014 	err = vmap_page_range(addr, end, prot, pages);
2015 
2016 	return err > 0 ? 0 : err;
2017 }
2018 EXPORT_SYMBOL_GPL(map_vm_area);
2019 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2020 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2021 			      unsigned long flags, const void *caller)
2022 {
2023 	spin_lock(&vmap_area_lock);
2024 	vm->flags = flags;
2025 	vm->addr = (void *)va->va_start;
2026 	vm->size = va->va_end - va->va_start;
2027 	vm->caller = caller;
2028 	va->vm = vm;
2029 	spin_unlock(&vmap_area_lock);
2030 }
2031 
clear_vm_uninitialized_flag(struct vm_struct * vm)2032 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2033 {
2034 	/*
2035 	 * Before removing VM_UNINITIALIZED,
2036 	 * we should make sure that vm has proper values.
2037 	 * Pair with smp_rmb() in show_numa_info().
2038 	 */
2039 	smp_wmb();
2040 	vm->flags &= ~VM_UNINITIALIZED;
2041 }
2042 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2043 static struct vm_struct *__get_vm_area_node(unsigned long size,
2044 		unsigned long align, unsigned long flags, unsigned long start,
2045 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2046 {
2047 	struct vmap_area *va;
2048 	struct vm_struct *area;
2049 
2050 	BUG_ON(in_interrupt());
2051 	size = PAGE_ALIGN(size);
2052 	if (unlikely(!size))
2053 		return NULL;
2054 
2055 	if (flags & VM_IOREMAP)
2056 		align = 1ul << clamp_t(int, get_count_order_long(size),
2057 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2058 
2059 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2060 	if (unlikely(!area))
2061 		return NULL;
2062 
2063 	if (!(flags & VM_NO_GUARD))
2064 		size += PAGE_SIZE;
2065 
2066 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2067 	if (IS_ERR(va)) {
2068 		kfree(area);
2069 		return NULL;
2070 	}
2071 
2072 	setup_vmalloc_vm(area, va, flags, caller);
2073 
2074 	return area;
2075 }
2076 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)2077 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2078 				unsigned long start, unsigned long end)
2079 {
2080 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2081 				  GFP_KERNEL, __builtin_return_address(0));
2082 }
2083 EXPORT_SYMBOL_GPL(__get_vm_area);
2084 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2085 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2086 				       unsigned long start, unsigned long end,
2087 				       const void *caller)
2088 {
2089 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2090 				  GFP_KERNEL, caller);
2091 }
2092 
2093 /**
2094  * get_vm_area - reserve a contiguous kernel virtual area
2095  * @size:	 size of the area
2096  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2097  *
2098  * Search an area of @size in the kernel virtual mapping area,
2099  * and reserved it for out purposes.  Returns the area descriptor
2100  * on success or %NULL on failure.
2101  *
2102  * Return: the area descriptor on success or %NULL on failure.
2103  */
get_vm_area(unsigned long size,unsigned long flags)2104 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2105 {
2106 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2107 				  NUMA_NO_NODE, GFP_KERNEL,
2108 				  __builtin_return_address(0));
2109 }
2110 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2111 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2112 				const void *caller)
2113 {
2114 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2115 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2116 }
2117 
2118 /**
2119  * find_vm_area - find a continuous kernel virtual area
2120  * @addr:	  base address
2121  *
2122  * Search for the kernel VM area starting at @addr, and return it.
2123  * It is up to the caller to do all required locking to keep the returned
2124  * pointer valid.
2125  *
2126  * Return: pointer to the found area or %NULL on faulure
2127  */
find_vm_area(const void * addr)2128 struct vm_struct *find_vm_area(const void *addr)
2129 {
2130 	struct vmap_area *va;
2131 
2132 	va = find_vmap_area((unsigned long)addr);
2133 	if (!va)
2134 		return NULL;
2135 
2136 	return va->vm;
2137 }
2138 
2139 /**
2140  * remove_vm_area - find and remove a continuous kernel virtual area
2141  * @addr:	    base address
2142  *
2143  * Search for the kernel VM area starting at @addr, and remove it.
2144  * This function returns the found VM area, but using it is NOT safe
2145  * on SMP machines, except for its size or flags.
2146  *
2147  * Return: pointer to the found area or %NULL on faulure
2148  */
remove_vm_area(const void * addr)2149 struct vm_struct *remove_vm_area(const void *addr)
2150 {
2151 	struct vmap_area *va;
2152 
2153 	might_sleep();
2154 
2155 	spin_lock(&vmap_area_lock);
2156 	va = __find_vmap_area((unsigned long)addr);
2157 	if (va && va->vm) {
2158 		struct vm_struct *vm = va->vm;
2159 
2160 		va->vm = NULL;
2161 		spin_unlock(&vmap_area_lock);
2162 
2163 		kasan_free_shadow(vm);
2164 		free_unmap_vmap_area(va);
2165 
2166 		return vm;
2167 	}
2168 
2169 	spin_unlock(&vmap_area_lock);
2170 	return NULL;
2171 }
2172 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2173 static inline void set_area_direct_map(const struct vm_struct *area,
2174 				       int (*set_direct_map)(struct page *page))
2175 {
2176 	int i;
2177 
2178 	for (i = 0; i < area->nr_pages; i++)
2179 		if (page_address(area->pages[i]))
2180 			set_direct_map(area->pages[i]);
2181 }
2182 
2183 /* Handle removing and resetting vm mappings related to the vm_struct. */
vm_remove_mappings(struct vm_struct * area,int deallocate_pages)2184 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2185 {
2186 	unsigned long start = ULONG_MAX, end = 0;
2187 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2188 	int flush_dmap = 0;
2189 	int i;
2190 
2191 	remove_vm_area(area->addr);
2192 
2193 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2194 	if (!flush_reset)
2195 		return;
2196 
2197 	/*
2198 	 * If not deallocating pages, just do the flush of the VM area and
2199 	 * return.
2200 	 */
2201 	if (!deallocate_pages) {
2202 		vm_unmap_aliases();
2203 		return;
2204 	}
2205 
2206 	/*
2207 	 * If execution gets here, flush the vm mapping and reset the direct
2208 	 * map. Find the start and end range of the direct mappings to make sure
2209 	 * the vm_unmap_aliases() flush includes the direct map.
2210 	 */
2211 	for (i = 0; i < area->nr_pages; i++) {
2212 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2213 		if (addr) {
2214 			start = min(addr, start);
2215 			end = max(addr + PAGE_SIZE, end);
2216 			flush_dmap = 1;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * Set direct map to something invalid so that it won't be cached if
2222 	 * there are any accesses after the TLB flush, then flush the TLB and
2223 	 * reset the direct map permissions to the default.
2224 	 */
2225 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2226 	_vm_unmap_aliases(start, end, flush_dmap);
2227 	set_area_direct_map(area, set_direct_map_default_noflush);
2228 }
2229 
__vunmap(const void * addr,int deallocate_pages)2230 static void __vunmap(const void *addr, int deallocate_pages)
2231 {
2232 	struct vm_struct *area;
2233 
2234 	if (!addr)
2235 		return;
2236 
2237 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2238 			addr))
2239 		return;
2240 
2241 	area = find_vm_area(addr);
2242 	if (unlikely(!area)) {
2243 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2244 				addr);
2245 		return;
2246 	}
2247 
2248 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2249 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2250 
2251 	vm_remove_mappings(area, deallocate_pages);
2252 
2253 	if (deallocate_pages) {
2254 		int i;
2255 
2256 		for (i = 0; i < area->nr_pages; i++) {
2257 			struct page *page = area->pages[i];
2258 
2259 			BUG_ON(!page);
2260 			__free_pages(page, 0);
2261 		}
2262 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2263 
2264 		kvfree(area->pages);
2265 	}
2266 
2267 	kfree(area);
2268 	return;
2269 }
2270 
__vfree_deferred(const void * addr)2271 static inline void __vfree_deferred(const void *addr)
2272 {
2273 	/*
2274 	 * Use raw_cpu_ptr() because this can be called from preemptible
2275 	 * context. Preemption is absolutely fine here, because the llist_add()
2276 	 * implementation is lockless, so it works even if we are adding to
2277 	 * nother cpu's list.  schedule_work() should be fine with this too.
2278 	 */
2279 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2280 
2281 	if (llist_add((struct llist_node *)addr, &p->list))
2282 		schedule_work(&p->wq);
2283 }
2284 
2285 /**
2286  * vfree_atomic - release memory allocated by vmalloc()
2287  * @addr:	  memory base address
2288  *
2289  * This one is just like vfree() but can be called in any atomic context
2290  * except NMIs.
2291  */
vfree_atomic(const void * addr)2292 void vfree_atomic(const void *addr)
2293 {
2294 	BUG_ON(in_nmi());
2295 
2296 	kmemleak_free(addr);
2297 
2298 	if (!addr)
2299 		return;
2300 	__vfree_deferred(addr);
2301 }
2302 
__vfree(const void * addr)2303 static void __vfree(const void *addr)
2304 {
2305 	if (unlikely(in_interrupt()))
2306 		__vfree_deferred(addr);
2307 	else
2308 		__vunmap(addr, 1);
2309 }
2310 
2311 /**
2312  * vfree - release memory allocated by vmalloc()
2313  * @addr:  memory base address
2314  *
2315  * Free the virtually continuous memory area starting at @addr, as
2316  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2317  * NULL, no operation is performed.
2318  *
2319  * Must not be called in NMI context (strictly speaking, only if we don't
2320  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2321  * conventions for vfree() arch-depenedent would be a really bad idea)
2322  *
2323  * May sleep if called *not* from interrupt context.
2324  *
2325  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2326  */
vfree(const void * addr)2327 void vfree(const void *addr)
2328 {
2329 	BUG_ON(in_nmi());
2330 
2331 	kmemleak_free(addr);
2332 
2333 	might_sleep_if(!in_interrupt());
2334 
2335 	if (!addr)
2336 		return;
2337 
2338 	__vfree(addr);
2339 }
2340 EXPORT_SYMBOL(vfree);
2341 
2342 /**
2343  * vunmap - release virtual mapping obtained by vmap()
2344  * @addr:   memory base address
2345  *
2346  * Free the virtually contiguous memory area starting at @addr,
2347  * which was created from the page array passed to vmap().
2348  *
2349  * Must not be called in interrupt context.
2350  */
vunmap(const void * addr)2351 void vunmap(const void *addr)
2352 {
2353 	BUG_ON(in_interrupt());
2354 	might_sleep();
2355 	if (addr)
2356 		__vunmap(addr, 0);
2357 }
2358 EXPORT_SYMBOL(vunmap);
2359 
2360 /**
2361  * vmap - map an array of pages into virtually contiguous space
2362  * @pages: array of page pointers
2363  * @count: number of pages to map
2364  * @flags: vm_area->flags
2365  * @prot: page protection for the mapping
2366  *
2367  * Maps @count pages from @pages into contiguous kernel virtual
2368  * space.
2369  *
2370  * Return: the address of the area or %NULL on failure
2371  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2372 void *vmap(struct page **pages, unsigned int count,
2373 	   unsigned long flags, pgprot_t prot)
2374 {
2375 	struct vm_struct *area;
2376 	unsigned long size;		/* In bytes */
2377 
2378 	might_sleep();
2379 
2380 	if (count > totalram_pages())
2381 		return NULL;
2382 
2383 	size = (unsigned long)count << PAGE_SHIFT;
2384 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2385 	if (!area)
2386 		return NULL;
2387 
2388 	if (map_vm_area(area, prot, pages)) {
2389 		vunmap(area->addr);
2390 		return NULL;
2391 	}
2392 
2393 	return area->addr;
2394 }
2395 EXPORT_SYMBOL(vmap);
2396 
2397 static void *__vmalloc_node(unsigned long size, unsigned long align,
2398 			    gfp_t gfp_mask, pgprot_t prot,
2399 			    int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)2400 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2401 				 pgprot_t prot, int node)
2402 {
2403 	struct page **pages;
2404 	unsigned int nr_pages, array_size, i;
2405 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2406 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2407 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2408 					0 :
2409 					__GFP_HIGHMEM;
2410 
2411 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2412 	array_size = (nr_pages * sizeof(struct page *));
2413 
2414 	/* Please note that the recursion is strictly bounded. */
2415 	if (array_size > PAGE_SIZE) {
2416 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2417 				PAGE_KERNEL, node, area->caller);
2418 	} else {
2419 		pages = kmalloc_node(array_size, nested_gfp, node);
2420 	}
2421 
2422 	if (!pages) {
2423 		remove_vm_area(area->addr);
2424 		kfree(area);
2425 		return NULL;
2426 	}
2427 
2428 	area->pages = pages;
2429 	area->nr_pages = nr_pages;
2430 
2431 	for (i = 0; i < area->nr_pages; i++) {
2432 		struct page *page;
2433 
2434 		if (node == NUMA_NO_NODE)
2435 			page = alloc_page(alloc_mask|highmem_mask);
2436 		else
2437 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2438 
2439 		if (unlikely(!page)) {
2440 			/* Successfully allocated i pages, free them in __vunmap() */
2441 			area->nr_pages = i;
2442 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2443 			goto fail;
2444 		}
2445 		area->pages[i] = page;
2446 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2447 			cond_resched();
2448 	}
2449 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2450 
2451 	if (map_vm_area(area, prot, pages))
2452 		goto fail;
2453 	return area->addr;
2454 
2455 fail:
2456 	warn_alloc(gfp_mask, NULL,
2457 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2458 			  (area->nr_pages*PAGE_SIZE), area->size);
2459 	__vfree(area->addr);
2460 	return NULL;
2461 }
2462 
2463 /**
2464  * __vmalloc_node_range - allocate virtually contiguous memory
2465  * @size:		  allocation size
2466  * @align:		  desired alignment
2467  * @start:		  vm area range start
2468  * @end:		  vm area range end
2469  * @gfp_mask:		  flags for the page level allocator
2470  * @prot:		  protection mask for the allocated pages
2471  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2472  * @node:		  node to use for allocation or NUMA_NO_NODE
2473  * @caller:		  caller's return address
2474  *
2475  * Allocate enough pages to cover @size from the page level
2476  * allocator with @gfp_mask flags.  Map them into contiguous
2477  * kernel virtual space, using a pagetable protection of @prot.
2478  *
2479  * Return: the address of the area or %NULL on failure
2480  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)2481 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2482 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2483 			pgprot_t prot, unsigned long vm_flags, int node,
2484 			const void *caller)
2485 {
2486 	struct vm_struct *area;
2487 	void *addr;
2488 	unsigned long real_size = size;
2489 
2490 	size = PAGE_ALIGN(size);
2491 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2492 		goto fail;
2493 
2494 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2495 				vm_flags, start, end, node, gfp_mask, caller);
2496 	if (!area)
2497 		goto fail;
2498 
2499 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2500 	if (!addr)
2501 		return NULL;
2502 
2503 	/*
2504 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2505 	 * flag. It means that vm_struct is not fully initialized.
2506 	 * Now, it is fully initialized, so remove this flag here.
2507 	 */
2508 	clear_vm_uninitialized_flag(area);
2509 
2510 	kmemleak_vmalloc(area, size, gfp_mask);
2511 
2512 	return addr;
2513 
2514 fail:
2515 	warn_alloc(gfp_mask, NULL,
2516 			  "vmalloc: allocation failure: %lu bytes", real_size);
2517 	return NULL;
2518 }
2519 
2520 /*
2521  * This is only for performance analysis of vmalloc and stress purpose.
2522  * It is required by vmalloc test module, therefore do not use it other
2523  * than that.
2524  */
2525 #ifdef CONFIG_TEST_VMALLOC_MODULE
2526 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2527 #endif
2528 
2529 /**
2530  * __vmalloc_node - allocate virtually contiguous memory
2531  * @size:	    allocation size
2532  * @align:	    desired alignment
2533  * @gfp_mask:	    flags for the page level allocator
2534  * @prot:	    protection mask for the allocated pages
2535  * @node:	    node to use for allocation or NUMA_NO_NODE
2536  * @caller:	    caller's return address
2537  *
2538  * Allocate enough pages to cover @size from the page level
2539  * allocator with @gfp_mask flags.  Map them into contiguous
2540  * kernel virtual space, using a pagetable protection of @prot.
2541  *
2542  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2543  * and __GFP_NOFAIL are not supported
2544  *
2545  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2546  * with mm people.
2547  *
2548  * Return: pointer to the allocated memory or %NULL on error
2549  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)2550 static void *__vmalloc_node(unsigned long size, unsigned long align,
2551 			    gfp_t gfp_mask, pgprot_t prot,
2552 			    int node, const void *caller)
2553 {
2554 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555 				gfp_mask, prot, 0, node, caller);
2556 }
2557 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)2558 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2559 {
2560 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2561 				__builtin_return_address(0));
2562 }
2563 EXPORT_SYMBOL(__vmalloc);
2564 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)2565 static inline void *__vmalloc_node_flags(unsigned long size,
2566 					int node, gfp_t flags)
2567 {
2568 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2569 					node, __builtin_return_address(0));
2570 }
2571 
2572 
__vmalloc_node_flags_caller(unsigned long size,int node,gfp_t flags,void * caller)2573 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2574 				  void *caller)
2575 {
2576 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2577 }
2578 
2579 /**
2580  * vmalloc - allocate virtually contiguous memory
2581  * @size:    allocation size
2582  *
2583  * Allocate enough pages to cover @size from the page level
2584  * allocator and map them into contiguous kernel virtual space.
2585  *
2586  * For tight control over page level allocator and protection flags
2587  * use __vmalloc() instead.
2588  *
2589  * Return: pointer to the allocated memory or %NULL on error
2590  */
vmalloc(unsigned long size)2591 void *vmalloc(unsigned long size)
2592 {
2593 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2594 				    GFP_KERNEL);
2595 }
2596 EXPORT_SYMBOL(vmalloc);
2597 
2598 /**
2599  * vzalloc - allocate virtually contiguous memory with zero fill
2600  * @size:    allocation size
2601  *
2602  * Allocate enough pages to cover @size from the page level
2603  * allocator and map them into contiguous kernel virtual space.
2604  * The memory allocated is set to zero.
2605  *
2606  * For tight control over page level allocator and protection flags
2607  * use __vmalloc() instead.
2608  *
2609  * Return: pointer to the allocated memory or %NULL on error
2610  */
vzalloc(unsigned long size)2611 void *vzalloc(unsigned long size)
2612 {
2613 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2614 				GFP_KERNEL | __GFP_ZERO);
2615 }
2616 EXPORT_SYMBOL(vzalloc);
2617 
2618 /**
2619  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2620  * @size: allocation size
2621  *
2622  * The resulting memory area is zeroed so it can be mapped to userspace
2623  * without leaking data.
2624  *
2625  * Return: pointer to the allocated memory or %NULL on error
2626  */
vmalloc_user(unsigned long size)2627 void *vmalloc_user(unsigned long size)
2628 {
2629 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2630 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2631 				    VM_USERMAP, NUMA_NO_NODE,
2632 				    __builtin_return_address(0));
2633 }
2634 EXPORT_SYMBOL(vmalloc_user);
2635 
2636 /**
2637  * vmalloc_node - allocate memory on a specific node
2638  * @size:	  allocation size
2639  * @node:	  numa node
2640  *
2641  * Allocate enough pages to cover @size from the page level
2642  * allocator and map them into contiguous kernel virtual space.
2643  *
2644  * For tight control over page level allocator and protection flags
2645  * use __vmalloc() instead.
2646  *
2647  * Return: pointer to the allocated memory or %NULL on error
2648  */
vmalloc_node(unsigned long size,int node)2649 void *vmalloc_node(unsigned long size, int node)
2650 {
2651 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2652 					node, __builtin_return_address(0));
2653 }
2654 EXPORT_SYMBOL(vmalloc_node);
2655 
2656 /**
2657  * vzalloc_node - allocate memory on a specific node with zero fill
2658  * @size:	allocation size
2659  * @node:	numa node
2660  *
2661  * Allocate enough pages to cover @size from the page level
2662  * allocator and map them into contiguous kernel virtual space.
2663  * The memory allocated is set to zero.
2664  *
2665  * For tight control over page level allocator and protection flags
2666  * use __vmalloc_node() instead.
2667  *
2668  * Return: pointer to the allocated memory or %NULL on error
2669  */
vzalloc_node(unsigned long size,int node)2670 void *vzalloc_node(unsigned long size, int node)
2671 {
2672 	return __vmalloc_node_flags(size, node,
2673 			 GFP_KERNEL | __GFP_ZERO);
2674 }
2675 EXPORT_SYMBOL(vzalloc_node);
2676 
2677 /**
2678  * vmalloc_exec - allocate virtually contiguous, executable memory
2679  * @size:	  allocation size
2680  *
2681  * Kernel-internal function to allocate enough pages to cover @size
2682  * the page level allocator and map them into contiguous and
2683  * executable kernel virtual space.
2684  *
2685  * For tight control over page level allocator and protection flags
2686  * use __vmalloc() instead.
2687  *
2688  * Return: pointer to the allocated memory or %NULL on error
2689  */
vmalloc_exec(unsigned long size)2690 void *vmalloc_exec(unsigned long size)
2691 {
2692 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2693 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2694 			NUMA_NO_NODE, __builtin_return_address(0));
2695 }
2696 
2697 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2698 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2699 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2700 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2701 #else
2702 /*
2703  * 64b systems should always have either DMA or DMA32 zones. For others
2704  * GFP_DMA32 should do the right thing and use the normal zone.
2705  */
2706 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2707 #endif
2708 
2709 /**
2710  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2711  * @size:	allocation size
2712  *
2713  * Allocate enough 32bit PA addressable pages to cover @size from the
2714  * page level allocator and map them into contiguous kernel virtual space.
2715  *
2716  * Return: pointer to the allocated memory or %NULL on error
2717  */
vmalloc_32(unsigned long size)2718 void *vmalloc_32(unsigned long size)
2719 {
2720 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2721 			      NUMA_NO_NODE, __builtin_return_address(0));
2722 }
2723 EXPORT_SYMBOL(vmalloc_32);
2724 
2725 /**
2726  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2727  * @size:	     allocation size
2728  *
2729  * The resulting memory area is 32bit addressable and zeroed so it can be
2730  * mapped to userspace without leaking data.
2731  *
2732  * Return: pointer to the allocated memory or %NULL on error
2733  */
vmalloc_32_user(unsigned long size)2734 void *vmalloc_32_user(unsigned long size)
2735 {
2736 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2737 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2738 				    VM_USERMAP, NUMA_NO_NODE,
2739 				    __builtin_return_address(0));
2740 }
2741 EXPORT_SYMBOL(vmalloc_32_user);
2742 
2743 /*
2744  * small helper routine , copy contents to buf from addr.
2745  * If the page is not present, fill zero.
2746  */
2747 
aligned_vread(char * buf,char * addr,unsigned long count)2748 static int aligned_vread(char *buf, char *addr, unsigned long count)
2749 {
2750 	struct page *p;
2751 	int copied = 0;
2752 
2753 	while (count) {
2754 		unsigned long offset, length;
2755 
2756 		offset = offset_in_page(addr);
2757 		length = PAGE_SIZE - offset;
2758 		if (length > count)
2759 			length = count;
2760 		p = vmalloc_to_page(addr);
2761 		/*
2762 		 * To do safe access to this _mapped_ area, we need
2763 		 * lock. But adding lock here means that we need to add
2764 		 * overhead of vmalloc()/vfree() calles for this _debug_
2765 		 * interface, rarely used. Instead of that, we'll use
2766 		 * kmap() and get small overhead in this access function.
2767 		 */
2768 		if (p) {
2769 			/*
2770 			 * we can expect USER0 is not used (see vread/vwrite's
2771 			 * function description)
2772 			 */
2773 			void *map = kmap_atomic(p);
2774 			memcpy(buf, map + offset, length);
2775 			kunmap_atomic(map);
2776 		} else
2777 			memset(buf, 0, length);
2778 
2779 		addr += length;
2780 		buf += length;
2781 		copied += length;
2782 		count -= length;
2783 	}
2784 	return copied;
2785 }
2786 
aligned_vwrite(char * buf,char * addr,unsigned long count)2787 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2788 {
2789 	struct page *p;
2790 	int copied = 0;
2791 
2792 	while (count) {
2793 		unsigned long offset, length;
2794 
2795 		offset = offset_in_page(addr);
2796 		length = PAGE_SIZE - offset;
2797 		if (length > count)
2798 			length = count;
2799 		p = vmalloc_to_page(addr);
2800 		/*
2801 		 * To do safe access to this _mapped_ area, we need
2802 		 * lock. But adding lock here means that we need to add
2803 		 * overhead of vmalloc()/vfree() calles for this _debug_
2804 		 * interface, rarely used. Instead of that, we'll use
2805 		 * kmap() and get small overhead in this access function.
2806 		 */
2807 		if (p) {
2808 			/*
2809 			 * we can expect USER0 is not used (see vread/vwrite's
2810 			 * function description)
2811 			 */
2812 			void *map = kmap_atomic(p);
2813 			memcpy(map + offset, buf, length);
2814 			kunmap_atomic(map);
2815 		}
2816 		addr += length;
2817 		buf += length;
2818 		copied += length;
2819 		count -= length;
2820 	}
2821 	return copied;
2822 }
2823 
2824 /**
2825  * vread() - read vmalloc area in a safe way.
2826  * @buf:     buffer for reading data
2827  * @addr:    vm address.
2828  * @count:   number of bytes to be read.
2829  *
2830  * This function checks that addr is a valid vmalloc'ed area, and
2831  * copy data from that area to a given buffer. If the given memory range
2832  * of [addr...addr+count) includes some valid address, data is copied to
2833  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2834  * IOREMAP area is treated as memory hole and no copy is done.
2835  *
2836  * If [addr...addr+count) doesn't includes any intersects with alive
2837  * vm_struct area, returns 0. @buf should be kernel's buffer.
2838  *
2839  * Note: In usual ops, vread() is never necessary because the caller
2840  * should know vmalloc() area is valid and can use memcpy().
2841  * This is for routines which have to access vmalloc area without
2842  * any information, as /dev/kmem.
2843  *
2844  * Return: number of bytes for which addr and buf should be increased
2845  * (same number as @count) or %0 if [addr...addr+count) doesn't
2846  * include any intersection with valid vmalloc area
2847  */
vread(char * buf,char * addr,unsigned long count)2848 long vread(char *buf, char *addr, unsigned long count)
2849 {
2850 	struct vmap_area *va;
2851 	struct vm_struct *vm;
2852 	char *vaddr, *buf_start = buf;
2853 	unsigned long buflen = count;
2854 	unsigned long n;
2855 
2856 	/* Don't allow overflow */
2857 	if ((unsigned long) addr + count < count)
2858 		count = -(unsigned long) addr;
2859 
2860 	spin_lock(&vmap_area_lock);
2861 	list_for_each_entry(va, &vmap_area_list, list) {
2862 		if (!count)
2863 			break;
2864 
2865 		if (!va->vm)
2866 			continue;
2867 
2868 		vm = va->vm;
2869 		vaddr = (char *) vm->addr;
2870 		if (addr >= vaddr + get_vm_area_size(vm))
2871 			continue;
2872 		while (addr < vaddr) {
2873 			if (count == 0)
2874 				goto finished;
2875 			*buf = '\0';
2876 			buf++;
2877 			addr++;
2878 			count--;
2879 		}
2880 		n = vaddr + get_vm_area_size(vm) - addr;
2881 		if (n > count)
2882 			n = count;
2883 		if (!(vm->flags & VM_IOREMAP))
2884 			aligned_vread(buf, addr, n);
2885 		else /* IOREMAP area is treated as memory hole */
2886 			memset(buf, 0, n);
2887 		buf += n;
2888 		addr += n;
2889 		count -= n;
2890 	}
2891 finished:
2892 	spin_unlock(&vmap_area_lock);
2893 
2894 	if (buf == buf_start)
2895 		return 0;
2896 	/* zero-fill memory holes */
2897 	if (buf != buf_start + buflen)
2898 		memset(buf, 0, buflen - (buf - buf_start));
2899 
2900 	return buflen;
2901 }
2902 
2903 /**
2904  * vwrite() - write vmalloc area in a safe way.
2905  * @buf:      buffer for source data
2906  * @addr:     vm address.
2907  * @count:    number of bytes to be read.
2908  *
2909  * This function checks that addr is a valid vmalloc'ed area, and
2910  * copy data from a buffer to the given addr. If specified range of
2911  * [addr...addr+count) includes some valid address, data is copied from
2912  * proper area of @buf. If there are memory holes, no copy to hole.
2913  * IOREMAP area is treated as memory hole and no copy is done.
2914  *
2915  * If [addr...addr+count) doesn't includes any intersects with alive
2916  * vm_struct area, returns 0. @buf should be kernel's buffer.
2917  *
2918  * Note: In usual ops, vwrite() is never necessary because the caller
2919  * should know vmalloc() area is valid and can use memcpy().
2920  * This is for routines which have to access vmalloc area without
2921  * any information, as /dev/kmem.
2922  *
2923  * Return: number of bytes for which addr and buf should be
2924  * increased (same number as @count) or %0 if [addr...addr+count)
2925  * doesn't include any intersection with valid vmalloc area
2926  */
vwrite(char * buf,char * addr,unsigned long count)2927 long vwrite(char *buf, char *addr, unsigned long count)
2928 {
2929 	struct vmap_area *va;
2930 	struct vm_struct *vm;
2931 	char *vaddr;
2932 	unsigned long n, buflen;
2933 	int copied = 0;
2934 
2935 	/* Don't allow overflow */
2936 	if ((unsigned long) addr + count < count)
2937 		count = -(unsigned long) addr;
2938 	buflen = count;
2939 
2940 	spin_lock(&vmap_area_lock);
2941 	list_for_each_entry(va, &vmap_area_list, list) {
2942 		if (!count)
2943 			break;
2944 
2945 		if (!va->vm)
2946 			continue;
2947 
2948 		vm = va->vm;
2949 		vaddr = (char *) vm->addr;
2950 		if (addr >= vaddr + get_vm_area_size(vm))
2951 			continue;
2952 		while (addr < vaddr) {
2953 			if (count == 0)
2954 				goto finished;
2955 			buf++;
2956 			addr++;
2957 			count--;
2958 		}
2959 		n = vaddr + get_vm_area_size(vm) - addr;
2960 		if (n > count)
2961 			n = count;
2962 		if (!(vm->flags & VM_IOREMAP)) {
2963 			aligned_vwrite(buf, addr, n);
2964 			copied++;
2965 		}
2966 		buf += n;
2967 		addr += n;
2968 		count -= n;
2969 	}
2970 finished:
2971 	spin_unlock(&vmap_area_lock);
2972 	if (!copied)
2973 		return 0;
2974 	return buflen;
2975 }
2976 
2977 /**
2978  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2979  * @vma:		vma to cover
2980  * @uaddr:		target user address to start at
2981  * @kaddr:		virtual address of vmalloc kernel memory
2982  * @pgoff:		offset from @kaddr to start at
2983  * @size:		size of map area
2984  *
2985  * Returns:	0 for success, -Exxx on failure
2986  *
2987  * This function checks that @kaddr is a valid vmalloc'ed area,
2988  * and that it is big enough to cover the range starting at
2989  * @uaddr in @vma. Will return failure if that criteria isn't
2990  * met.
2991  *
2992  * Similar to remap_pfn_range() (see mm/memory.c)
2993  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)2994 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2995 				void *kaddr, unsigned long pgoff,
2996 				unsigned long size)
2997 {
2998 	struct vm_struct *area;
2999 	unsigned long off;
3000 	unsigned long end_index;
3001 
3002 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3003 		return -EINVAL;
3004 
3005 	size = PAGE_ALIGN(size);
3006 
3007 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3008 		return -EINVAL;
3009 
3010 	area = find_vm_area(kaddr);
3011 	if (!area)
3012 		return -EINVAL;
3013 
3014 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3015 		return -EINVAL;
3016 
3017 	if (check_add_overflow(size, off, &end_index) ||
3018 	    end_index > get_vm_area_size(area))
3019 		return -EINVAL;
3020 	kaddr += off;
3021 
3022 	do {
3023 		struct page *page = vmalloc_to_page(kaddr);
3024 		int ret;
3025 
3026 		ret = vm_insert_page(vma, uaddr, page);
3027 		if (ret)
3028 			return ret;
3029 
3030 		uaddr += PAGE_SIZE;
3031 		kaddr += PAGE_SIZE;
3032 		size -= PAGE_SIZE;
3033 	} while (size > 0);
3034 
3035 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3036 
3037 	return 0;
3038 }
3039 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3040 
3041 /**
3042  * remap_vmalloc_range - map vmalloc pages to userspace
3043  * @vma:		vma to cover (map full range of vma)
3044  * @addr:		vmalloc memory
3045  * @pgoff:		number of pages into addr before first page to map
3046  *
3047  * Returns:	0 for success, -Exxx on failure
3048  *
3049  * This function checks that addr is a valid vmalloc'ed area, and
3050  * that it is big enough to cover the vma. Will return failure if
3051  * that criteria isn't met.
3052  *
3053  * Similar to remap_pfn_range() (see mm/memory.c)
3054  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3055 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3056 						unsigned long pgoff)
3057 {
3058 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3059 					   addr, pgoff,
3060 					   vma->vm_end - vma->vm_start);
3061 }
3062 EXPORT_SYMBOL(remap_vmalloc_range);
3063 
3064 /*
3065  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3066  * not to have one.
3067  *
3068  * The purpose of this function is to make sure the vmalloc area
3069  * mappings are identical in all page-tables in the system.
3070  */
vmalloc_sync_mappings(void)3071 void __weak vmalloc_sync_mappings(void)
3072 {
3073 }
3074 
vmalloc_sync_unmappings(void)3075 void __weak vmalloc_sync_unmappings(void)
3076 {
3077 }
3078 
f(pte_t * pte,unsigned long addr,void * data)3079 static int f(pte_t *pte, unsigned long addr, void *data)
3080 {
3081 	pte_t ***p = data;
3082 
3083 	if (p) {
3084 		*(*p) = pte;
3085 		(*p)++;
3086 	}
3087 	return 0;
3088 }
3089 
3090 /**
3091  * alloc_vm_area - allocate a range of kernel address space
3092  * @size:	   size of the area
3093  * @ptes:	   returns the PTEs for the address space
3094  *
3095  * Returns:	NULL on failure, vm_struct on success
3096  *
3097  * This function reserves a range of kernel address space, and
3098  * allocates pagetables to map that range.  No actual mappings
3099  * are created.
3100  *
3101  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3102  * allocated for the VM area are returned.
3103  */
alloc_vm_area(size_t size,pte_t ** ptes)3104 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3105 {
3106 	struct vm_struct *area;
3107 
3108 	area = get_vm_area_caller(size, VM_IOREMAP,
3109 				__builtin_return_address(0));
3110 	if (area == NULL)
3111 		return NULL;
3112 
3113 	/*
3114 	 * This ensures that page tables are constructed for this region
3115 	 * of kernel virtual address space and mapped into init_mm.
3116 	 */
3117 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3118 				size, f, ptes ? &ptes : NULL)) {
3119 		free_vm_area(area);
3120 		return NULL;
3121 	}
3122 
3123 	return area;
3124 }
3125 EXPORT_SYMBOL_GPL(alloc_vm_area);
3126 
free_vm_area(struct vm_struct * area)3127 void free_vm_area(struct vm_struct *area)
3128 {
3129 	struct vm_struct *ret;
3130 	ret = remove_vm_area(area->addr);
3131 	BUG_ON(ret != area);
3132 	kfree(area);
3133 }
3134 EXPORT_SYMBOL_GPL(free_vm_area);
3135 
3136 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3137 static struct vmap_area *node_to_va(struct rb_node *n)
3138 {
3139 	return rb_entry_safe(n, struct vmap_area, rb_node);
3140 }
3141 
3142 /**
3143  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3144  * @addr: target address
3145  *
3146  * Returns: vmap_area if it is found. If there is no such area
3147  *   the first highest(reverse order) vmap_area is returned
3148  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3149  *   if there are no any areas before @addr.
3150  */
3151 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3152 pvm_find_va_enclose_addr(unsigned long addr)
3153 {
3154 	struct vmap_area *va, *tmp;
3155 	struct rb_node *n;
3156 
3157 	n = free_vmap_area_root.rb_node;
3158 	va = NULL;
3159 
3160 	while (n) {
3161 		tmp = rb_entry(n, struct vmap_area, rb_node);
3162 		if (tmp->va_start <= addr) {
3163 			va = tmp;
3164 			if (tmp->va_end >= addr)
3165 				break;
3166 
3167 			n = n->rb_right;
3168 		} else {
3169 			n = n->rb_left;
3170 		}
3171 	}
3172 
3173 	return va;
3174 }
3175 
3176 /**
3177  * pvm_determine_end_from_reverse - find the highest aligned address
3178  * of free block below VMALLOC_END
3179  * @va:
3180  *   in - the VA we start the search(reverse order);
3181  *   out - the VA with the highest aligned end address.
3182  *
3183  * Returns: determined end address within vmap_area
3184  */
3185 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)3186 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3187 {
3188 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3189 	unsigned long addr;
3190 
3191 	if (likely(*va)) {
3192 		list_for_each_entry_from_reverse((*va),
3193 				&free_vmap_area_list, list) {
3194 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3195 			if ((*va)->va_start < addr)
3196 				return addr;
3197 		}
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3205  * @offsets: array containing offset of each area
3206  * @sizes: array containing size of each area
3207  * @nr_vms: the number of areas to allocate
3208  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3209  *
3210  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3211  *	    vm_structs on success, %NULL on failure
3212  *
3213  * Percpu allocator wants to use congruent vm areas so that it can
3214  * maintain the offsets among percpu areas.  This function allocates
3215  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3216  * be scattered pretty far, distance between two areas easily going up
3217  * to gigabytes.  To avoid interacting with regular vmallocs, these
3218  * areas are allocated from top.
3219  *
3220  * Despite its complicated look, this allocator is rather simple. It
3221  * does everything top-down and scans free blocks from the end looking
3222  * for matching base. While scanning, if any of the areas do not fit the
3223  * base address is pulled down to fit the area. Scanning is repeated till
3224  * all the areas fit and then all necessary data structures are inserted
3225  * and the result is returned.
3226  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)3227 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3228 				     const size_t *sizes, int nr_vms,
3229 				     size_t align)
3230 {
3231 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3232 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3233 	struct vmap_area **vas, *va;
3234 	struct vm_struct **vms;
3235 	int area, area2, last_area, term_area;
3236 	unsigned long base, start, size, end, last_end;
3237 	bool purged = false;
3238 	enum fit_type type;
3239 
3240 	/* verify parameters and allocate data structures */
3241 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3242 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3243 		start = offsets[area];
3244 		end = start + sizes[area];
3245 
3246 		/* is everything aligned properly? */
3247 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3248 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3249 
3250 		/* detect the area with the highest address */
3251 		if (start > offsets[last_area])
3252 			last_area = area;
3253 
3254 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3255 			unsigned long start2 = offsets[area2];
3256 			unsigned long end2 = start2 + sizes[area2];
3257 
3258 			BUG_ON(start2 < end && start < end2);
3259 		}
3260 	}
3261 	last_end = offsets[last_area] + sizes[last_area];
3262 
3263 	if (vmalloc_end - vmalloc_start < last_end) {
3264 		WARN_ON(true);
3265 		return NULL;
3266 	}
3267 
3268 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3269 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3270 	if (!vas || !vms)
3271 		goto err_free2;
3272 
3273 	for (area = 0; area < nr_vms; area++) {
3274 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3275 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3276 		if (!vas[area] || !vms[area])
3277 			goto err_free;
3278 	}
3279 retry:
3280 	spin_lock(&vmap_area_lock);
3281 
3282 	/* start scanning - we scan from the top, begin with the last area */
3283 	area = term_area = last_area;
3284 	start = offsets[area];
3285 	end = start + sizes[area];
3286 
3287 	va = pvm_find_va_enclose_addr(vmalloc_end);
3288 	base = pvm_determine_end_from_reverse(&va, align) - end;
3289 
3290 	while (true) {
3291 		/*
3292 		 * base might have underflowed, add last_end before
3293 		 * comparing.
3294 		 */
3295 		if (base + last_end < vmalloc_start + last_end)
3296 			goto overflow;
3297 
3298 		/*
3299 		 * Fitting base has not been found.
3300 		 */
3301 		if (va == NULL)
3302 			goto overflow;
3303 
3304 		/*
3305 		 * If required width exeeds current VA block, move
3306 		 * base downwards and then recheck.
3307 		 */
3308 		if (base + end > va->va_end) {
3309 			base = pvm_determine_end_from_reverse(&va, align) - end;
3310 			term_area = area;
3311 			continue;
3312 		}
3313 
3314 		/*
3315 		 * If this VA does not fit, move base downwards and recheck.
3316 		 */
3317 		if (base + start < va->va_start) {
3318 			va = node_to_va(rb_prev(&va->rb_node));
3319 			base = pvm_determine_end_from_reverse(&va, align) - end;
3320 			term_area = area;
3321 			continue;
3322 		}
3323 
3324 		/*
3325 		 * This area fits, move on to the previous one.  If
3326 		 * the previous one is the terminal one, we're done.
3327 		 */
3328 		area = (area + nr_vms - 1) % nr_vms;
3329 		if (area == term_area)
3330 			break;
3331 
3332 		start = offsets[area];
3333 		end = start + sizes[area];
3334 		va = pvm_find_va_enclose_addr(base + end);
3335 	}
3336 
3337 	/* we've found a fitting base, insert all va's */
3338 	for (area = 0; area < nr_vms; area++) {
3339 		int ret;
3340 
3341 		start = base + offsets[area];
3342 		size = sizes[area];
3343 
3344 		va = pvm_find_va_enclose_addr(start);
3345 		if (WARN_ON_ONCE(va == NULL))
3346 			/* It is a BUG(), but trigger recovery instead. */
3347 			goto recovery;
3348 
3349 		type = classify_va_fit_type(va, start, size);
3350 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3351 			/* It is a BUG(), but trigger recovery instead. */
3352 			goto recovery;
3353 
3354 		ret = adjust_va_to_fit_type(va, start, size, type);
3355 		if (unlikely(ret))
3356 			goto recovery;
3357 
3358 		/* Allocated area. */
3359 		va = vas[area];
3360 		va->va_start = start;
3361 		va->va_end = start + size;
3362 
3363 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3364 	}
3365 
3366 	spin_unlock(&vmap_area_lock);
3367 
3368 	/* insert all vm's */
3369 	for (area = 0; area < nr_vms; area++)
3370 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3371 				 pcpu_get_vm_areas);
3372 
3373 	kfree(vas);
3374 	return vms;
3375 
3376 recovery:
3377 	/* Remove previously inserted areas. */
3378 	while (area--) {
3379 		__free_vmap_area(vas[area]);
3380 		vas[area] = NULL;
3381 	}
3382 
3383 overflow:
3384 	spin_unlock(&vmap_area_lock);
3385 	if (!purged) {
3386 		purge_vmap_area_lazy();
3387 		purged = true;
3388 
3389 		/* Before "retry", check if we recover. */
3390 		for (area = 0; area < nr_vms; area++) {
3391 			if (vas[area])
3392 				continue;
3393 
3394 			vas[area] = kmem_cache_zalloc(
3395 				vmap_area_cachep, GFP_KERNEL);
3396 			if (!vas[area])
3397 				goto err_free;
3398 		}
3399 
3400 		goto retry;
3401 	}
3402 
3403 err_free:
3404 	for (area = 0; area < nr_vms; area++) {
3405 		if (vas[area])
3406 			kmem_cache_free(vmap_area_cachep, vas[area]);
3407 
3408 		kfree(vms[area]);
3409 	}
3410 err_free2:
3411 	kfree(vas);
3412 	kfree(vms);
3413 	return NULL;
3414 }
3415 
3416 /**
3417  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3418  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3419  * @nr_vms: the number of allocated areas
3420  *
3421  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3422  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)3423 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3424 {
3425 	int i;
3426 
3427 	for (i = 0; i < nr_vms; i++)
3428 		free_vm_area(vms[i]);
3429 	kfree(vms);
3430 }
3431 #endif	/* CONFIG_SMP */
3432 
3433 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)3434 static void *s_start(struct seq_file *m, loff_t *pos)
3435 	__acquires(&vmap_area_lock)
3436 {
3437 	spin_lock(&vmap_area_lock);
3438 	return seq_list_start(&vmap_area_list, *pos);
3439 }
3440 
s_next(struct seq_file * m,void * p,loff_t * pos)3441 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3442 {
3443 	return seq_list_next(p, &vmap_area_list, pos);
3444 }
3445 
s_stop(struct seq_file * m,void * p)3446 static void s_stop(struct seq_file *m, void *p)
3447 	__releases(&vmap_area_lock)
3448 {
3449 	spin_unlock(&vmap_area_lock);
3450 }
3451 
show_numa_info(struct seq_file * m,struct vm_struct * v)3452 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3453 {
3454 	if (IS_ENABLED(CONFIG_NUMA)) {
3455 		unsigned int nr, *counters = m->private;
3456 
3457 		if (!counters)
3458 			return;
3459 
3460 		if (v->flags & VM_UNINITIALIZED)
3461 			return;
3462 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3463 		smp_rmb();
3464 
3465 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3466 
3467 		for (nr = 0; nr < v->nr_pages; nr++)
3468 			counters[page_to_nid(v->pages[nr])]++;
3469 
3470 		for_each_node_state(nr, N_HIGH_MEMORY)
3471 			if (counters[nr])
3472 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3473 	}
3474 }
3475 
show_purge_info(struct seq_file * m)3476 static void show_purge_info(struct seq_file *m)
3477 {
3478 	struct llist_node *head;
3479 	struct vmap_area *va;
3480 
3481 	head = READ_ONCE(vmap_purge_list.first);
3482 	if (head == NULL)
3483 		return;
3484 
3485 	llist_for_each_entry(va, head, purge_list) {
3486 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3487 			(void *)va->va_start, (void *)va->va_end,
3488 			va->va_end - va->va_start);
3489 	}
3490 }
3491 
s_show(struct seq_file * m,void * p)3492 static int s_show(struct seq_file *m, void *p)
3493 {
3494 	struct vmap_area *va;
3495 	struct vm_struct *v;
3496 
3497 	va = list_entry(p, struct vmap_area, list);
3498 
3499 	/*
3500 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3501 	 * of vmap area is being tear down or vm_map_ram allocation.
3502 	 */
3503 	if (!va->vm) {
3504 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3505 			(void *)va->va_start, (void *)va->va_end,
3506 			va->va_end - va->va_start);
3507 
3508 		return 0;
3509 	}
3510 
3511 	v = va->vm;
3512 
3513 	seq_printf(m, "0x%pK-0x%pK %7ld",
3514 		v->addr, v->addr + v->size, v->size);
3515 
3516 	if (v->caller)
3517 		seq_printf(m, " %pS", v->caller);
3518 
3519 	if (v->nr_pages)
3520 		seq_printf(m, " pages=%d", v->nr_pages);
3521 
3522 	if (v->phys_addr)
3523 		seq_printf(m, " phys=%pa", &v->phys_addr);
3524 
3525 	if (v->flags & VM_IOREMAP)
3526 		seq_puts(m, " ioremap");
3527 
3528 	if (v->flags & VM_ALLOC)
3529 		seq_puts(m, " vmalloc");
3530 
3531 	if (v->flags & VM_MAP)
3532 		seq_puts(m, " vmap");
3533 
3534 	if (v->flags & VM_USERMAP)
3535 		seq_puts(m, " user");
3536 
3537 	if (v->flags & VM_DMA_COHERENT)
3538 		seq_puts(m, " dma-coherent");
3539 
3540 	if (is_vmalloc_addr(v->pages))
3541 		seq_puts(m, " vpages");
3542 
3543 	show_numa_info(m, v);
3544 	seq_putc(m, '\n');
3545 
3546 	/*
3547 	 * As a final step, dump "unpurged" areas. Note,
3548 	 * that entire "/proc/vmallocinfo" output will not
3549 	 * be address sorted, because the purge list is not
3550 	 * sorted.
3551 	 */
3552 	if (list_is_last(&va->list, &vmap_area_list))
3553 		show_purge_info(m);
3554 
3555 	return 0;
3556 }
3557 
3558 static const struct seq_operations vmalloc_op = {
3559 	.start = s_start,
3560 	.next = s_next,
3561 	.stop = s_stop,
3562 	.show = s_show,
3563 };
3564 
proc_vmalloc_init(void)3565 static int __init proc_vmalloc_init(void)
3566 {
3567 	if (IS_ENABLED(CONFIG_NUMA))
3568 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3569 				&vmalloc_op,
3570 				nr_node_ids * sizeof(unsigned int), NULL);
3571 	else
3572 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3573 	return 0;
3574 }
3575 module_init(proc_vmalloc_init);
3576 
3577 #endif
3578