1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /*
92 * Cgroup memory below memory.low is protected as long as we
93 * don't threaten to OOM. If any cgroup is reclaimed at
94 * reduced force or passed over entirely due to its memory.low
95 * setting (memcg_low_skipped), and nothing is reclaimed as a
96 * result, then go back for one more cycle that reclaims the protected
97 * memory (memcg_low_reclaim) to avert OOM.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
101
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
134
135 /* for recording the reclaimed slab by now */
136 struct reclaim_state reclaim_state;
137 };
138
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetch(&prev->_field); \
147 } \
148 } while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 100. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171 /*
172 * The total number of pages which are beyond the high watermark within all
173 * zones.
174 */
175 unsigned long vm_total_pages;
176
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)177 static void set_task_reclaim_state(struct task_struct *task,
178 struct reclaim_state *rs)
179 {
180 /* Check for an overwrite */
181 WARN_ON_ONCE(rs && task->reclaim_state);
182
183 /* Check for the nulling of an already-nulled member */
184 WARN_ON_ONCE(!rs && !task->reclaim_state);
185
186 task->reclaim_state = rs;
187 }
188
189 static LIST_HEAD(shrinker_list);
190 static DECLARE_RWSEM(shrinker_rwsem);
191
192 #ifdef CONFIG_MEMCG
193 /*
194 * We allow subsystems to populate their shrinker-related
195 * LRU lists before register_shrinker_prepared() is called
196 * for the shrinker, since we don't want to impose
197 * restrictions on their internal registration order.
198 * In this case shrink_slab_memcg() may find corresponding
199 * bit is set in the shrinkers map.
200 *
201 * This value is used by the function to detect registering
202 * shrinkers and to skip do_shrink_slab() calls for them.
203 */
204 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
205
206 static DEFINE_IDR(shrinker_idr);
207 static int shrinker_nr_max;
208
prealloc_memcg_shrinker(struct shrinker * shrinker)209 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
210 {
211 int id, ret = -ENOMEM;
212
213 down_write(&shrinker_rwsem);
214 /* This may call shrinker, so it must use down_read_trylock() */
215 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
216 if (id < 0)
217 goto unlock;
218
219 if (id >= shrinker_nr_max) {
220 if (memcg_expand_shrinker_maps(id)) {
221 idr_remove(&shrinker_idr, id);
222 goto unlock;
223 }
224
225 shrinker_nr_max = id + 1;
226 }
227 shrinker->id = id;
228 ret = 0;
229 unlock:
230 up_write(&shrinker_rwsem);
231 return ret;
232 }
233
unregister_memcg_shrinker(struct shrinker * shrinker)234 static void unregister_memcg_shrinker(struct shrinker *shrinker)
235 {
236 int id = shrinker->id;
237
238 BUG_ON(id < 0);
239
240 down_write(&shrinker_rwsem);
241 idr_remove(&shrinker_idr, id);
242 up_write(&shrinker_rwsem);
243 }
244
global_reclaim(struct scan_control * sc)245 static bool global_reclaim(struct scan_control *sc)
246 {
247 return !sc->target_mem_cgroup;
248 }
249
250 /**
251 * sane_reclaim - is the usual dirty throttling mechanism operational?
252 * @sc: scan_control in question
253 *
254 * The normal page dirty throttling mechanism in balance_dirty_pages() is
255 * completely broken with the legacy memcg and direct stalling in
256 * shrink_page_list() is used for throttling instead, which lacks all the
257 * niceties such as fairness, adaptive pausing, bandwidth proportional
258 * allocation and configurability.
259 *
260 * This function tests whether the vmscan currently in progress can assume
261 * that the normal dirty throttling mechanism is operational.
262 */
sane_reclaim(struct scan_control * sc)263 static bool sane_reclaim(struct scan_control *sc)
264 {
265 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266
267 if (!memcg)
268 return true;
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 return true;
272 #endif
273 return false;
274 }
275
set_memcg_congestion(pg_data_t * pgdat,struct mem_cgroup * memcg,bool congested)276 static void set_memcg_congestion(pg_data_t *pgdat,
277 struct mem_cgroup *memcg,
278 bool congested)
279 {
280 struct mem_cgroup_per_node *mn;
281
282 if (!memcg)
283 return;
284
285 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
286 WRITE_ONCE(mn->congested, congested);
287 }
288
memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)289 static bool memcg_congested(pg_data_t *pgdat,
290 struct mem_cgroup *memcg)
291 {
292 struct mem_cgroup_per_node *mn;
293
294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 return READ_ONCE(mn->congested);
296
297 }
298 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)299 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
300 {
301 return 0;
302 }
303
unregister_memcg_shrinker(struct shrinker * shrinker)304 static void unregister_memcg_shrinker(struct shrinker *shrinker)
305 {
306 }
307
global_reclaim(struct scan_control * sc)308 static bool global_reclaim(struct scan_control *sc)
309 {
310 return true;
311 }
312
sane_reclaim(struct scan_control * sc)313 static bool sane_reclaim(struct scan_control *sc)
314 {
315 return true;
316 }
317
set_memcg_congestion(struct pglist_data * pgdat,struct mem_cgroup * memcg,bool congested)318 static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 struct mem_cgroup *memcg, bool congested)
320 {
321 }
322
memcg_congested(struct pglist_data * pgdat,struct mem_cgroup * memcg)323 static inline bool memcg_congested(struct pglist_data *pgdat,
324 struct mem_cgroup *memcg)
325 {
326 return false;
327
328 }
329 #endif
330
331 /*
332 * This misses isolated pages which are not accounted for to save counters.
333 * As the data only determines if reclaim or compaction continues, it is
334 * not expected that isolated pages will be a dominating factor.
335 */
zone_reclaimable_pages(struct zone * zone)336 unsigned long zone_reclaimable_pages(struct zone *zone)
337 {
338 unsigned long nr;
339
340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 if (get_nr_swap_pages() > 0)
343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345
346 return nr;
347 }
348
349 /**
350 * lruvec_lru_size - Returns the number of pages on the given LRU list.
351 * @lruvec: lru vector
352 * @lru: lru to use
353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356 {
357 unsigned long lru_size = 0;
358 int zid;
359
360 if (!mem_cgroup_disabled()) {
361 for (zid = 0; zid < MAX_NR_ZONES; zid++)
362 lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 } else
364 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
365
366 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368 unsigned long size;
369
370 if (!managed_zone(zone))
371 continue;
372
373 if (!mem_cgroup_disabled())
374 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
375 else
376 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
377 NR_ZONE_LRU_BASE + lru);
378 lru_size -= min(size, lru_size);
379 }
380
381 return lru_size;
382
383 }
384
385 /*
386 * Add a shrinker callback to be called from the vm.
387 */
prealloc_shrinker(struct shrinker * shrinker)388 int prealloc_shrinker(struct shrinker *shrinker)
389 {
390 unsigned int size = sizeof(*shrinker->nr_deferred);
391
392 if (shrinker->flags & SHRINKER_NUMA_AWARE)
393 size *= nr_node_ids;
394
395 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
396 if (!shrinker->nr_deferred)
397 return -ENOMEM;
398
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
400 if (prealloc_memcg_shrinker(shrinker))
401 goto free_deferred;
402 }
403
404 return 0;
405
406 free_deferred:
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409 return -ENOMEM;
410 }
411
free_prealloced_shrinker(struct shrinker * shrinker)412 void free_prealloced_shrinker(struct shrinker *shrinker)
413 {
414 if (!shrinker->nr_deferred)
415 return;
416
417 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
418 unregister_memcg_shrinker(shrinker);
419
420 kfree(shrinker->nr_deferred);
421 shrinker->nr_deferred = NULL;
422 }
423
register_shrinker_prepared(struct shrinker * shrinker)424 void register_shrinker_prepared(struct shrinker *shrinker)
425 {
426 down_write(&shrinker_rwsem);
427 list_add_tail(&shrinker->list, &shrinker_list);
428 #ifdef CONFIG_MEMCG
429 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
430 idr_replace(&shrinker_idr, shrinker, shrinker->id);
431 #endif
432 up_write(&shrinker_rwsem);
433 }
434
register_shrinker(struct shrinker * shrinker)435 int register_shrinker(struct shrinker *shrinker)
436 {
437 int err = prealloc_shrinker(shrinker);
438
439 if (err)
440 return err;
441 register_shrinker_prepared(shrinker);
442 return 0;
443 }
444 EXPORT_SYMBOL(register_shrinker);
445
446 /*
447 * Remove one
448 */
unregister_shrinker(struct shrinker * shrinker)449 void unregister_shrinker(struct shrinker *shrinker)
450 {
451 if (!shrinker->nr_deferred)
452 return;
453 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
454 unregister_memcg_shrinker(shrinker);
455 down_write(&shrinker_rwsem);
456 list_del(&shrinker->list);
457 up_write(&shrinker_rwsem);
458 kfree(shrinker->nr_deferred);
459 shrinker->nr_deferred = NULL;
460 }
461 EXPORT_SYMBOL(unregister_shrinker);
462
463 #define SHRINK_BATCH 128
464
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)465 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
466 struct shrinker *shrinker, int priority)
467 {
468 unsigned long freed = 0;
469 unsigned long long delta;
470 long total_scan;
471 long freeable;
472 long nr;
473 long new_nr;
474 int nid = shrinkctl->nid;
475 long batch_size = shrinker->batch ? shrinker->batch
476 : SHRINK_BATCH;
477 long scanned = 0, next_deferred;
478
479 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
480 nid = 0;
481
482 freeable = shrinker->count_objects(shrinker, shrinkctl);
483 if (freeable == 0 || freeable == SHRINK_EMPTY)
484 return freeable;
485
486 /*
487 * copy the current shrinker scan count into a local variable
488 * and zero it so that other concurrent shrinker invocations
489 * don't also do this scanning work.
490 */
491 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
492
493 total_scan = nr;
494 if (shrinker->seeks) {
495 delta = freeable >> priority;
496 delta *= 4;
497 do_div(delta, shrinker->seeks);
498 } else {
499 /*
500 * These objects don't require any IO to create. Trim
501 * them aggressively under memory pressure to keep
502 * them from causing refetches in the IO caches.
503 */
504 delta = freeable / 2;
505 }
506
507 total_scan += delta;
508 if (total_scan < 0) {
509 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
510 shrinker->scan_objects, total_scan);
511 total_scan = freeable;
512 next_deferred = nr;
513 } else
514 next_deferred = total_scan;
515
516 /*
517 * We need to avoid excessive windup on filesystem shrinkers
518 * due to large numbers of GFP_NOFS allocations causing the
519 * shrinkers to return -1 all the time. This results in a large
520 * nr being built up so when a shrink that can do some work
521 * comes along it empties the entire cache due to nr >>>
522 * freeable. This is bad for sustaining a working set in
523 * memory.
524 *
525 * Hence only allow the shrinker to scan the entire cache when
526 * a large delta change is calculated directly.
527 */
528 if (delta < freeable / 4)
529 total_scan = min(total_scan, freeable / 2);
530
531 /*
532 * Avoid risking looping forever due to too large nr value:
533 * never try to free more than twice the estimate number of
534 * freeable entries.
535 */
536 if (total_scan > freeable * 2)
537 total_scan = freeable * 2;
538
539 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
540 freeable, delta, total_scan, priority);
541
542 /*
543 * Normally, we should not scan less than batch_size objects in one
544 * pass to avoid too frequent shrinker calls, but if the slab has less
545 * than batch_size objects in total and we are really tight on memory,
546 * we will try to reclaim all available objects, otherwise we can end
547 * up failing allocations although there are plenty of reclaimable
548 * objects spread over several slabs with usage less than the
549 * batch_size.
550 *
551 * We detect the "tight on memory" situations by looking at the total
552 * number of objects we want to scan (total_scan). If it is greater
553 * than the total number of objects on slab (freeable), we must be
554 * scanning at high prio and therefore should try to reclaim as much as
555 * possible.
556 */
557 while (total_scan >= batch_size ||
558 total_scan >= freeable) {
559 unsigned long ret;
560 unsigned long nr_to_scan = min(batch_size, total_scan);
561
562 shrinkctl->nr_to_scan = nr_to_scan;
563 shrinkctl->nr_scanned = nr_to_scan;
564 ret = shrinker->scan_objects(shrinker, shrinkctl);
565 if (ret == SHRINK_STOP)
566 break;
567 freed += ret;
568
569 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
570 total_scan -= shrinkctl->nr_scanned;
571 scanned += shrinkctl->nr_scanned;
572
573 cond_resched();
574 }
575
576 if (next_deferred >= scanned)
577 next_deferred -= scanned;
578 else
579 next_deferred = 0;
580 /*
581 * move the unused scan count back into the shrinker in a
582 * manner that handles concurrent updates. If we exhausted the
583 * scan, there is no need to do an update.
584 */
585 if (next_deferred > 0)
586 new_nr = atomic_long_add_return(next_deferred,
587 &shrinker->nr_deferred[nid]);
588 else
589 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
590
591 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
592 return freed;
593 }
594
595 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)596 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
597 struct mem_cgroup *memcg, int priority)
598 {
599 struct memcg_shrinker_map *map;
600 unsigned long ret, freed = 0;
601 int i;
602
603 if (!mem_cgroup_online(memcg))
604 return 0;
605
606 if (!down_read_trylock(&shrinker_rwsem))
607 return 0;
608
609 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
610 true);
611 if (unlikely(!map))
612 goto unlock;
613
614 for_each_set_bit(i, map->map, shrinker_nr_max) {
615 struct shrink_control sc = {
616 .gfp_mask = gfp_mask,
617 .nid = nid,
618 .memcg = memcg,
619 };
620 struct shrinker *shrinker;
621
622 shrinker = idr_find(&shrinker_idr, i);
623 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
624 if (!shrinker)
625 clear_bit(i, map->map);
626 continue;
627 }
628
629 /* Call non-slab shrinkers even though kmem is disabled */
630 if (!memcg_kmem_enabled() &&
631 !(shrinker->flags & SHRINKER_NONSLAB))
632 continue;
633
634 ret = do_shrink_slab(&sc, shrinker, priority);
635 if (ret == SHRINK_EMPTY) {
636 clear_bit(i, map->map);
637 /*
638 * After the shrinker reported that it had no objects to
639 * free, but before we cleared the corresponding bit in
640 * the memcg shrinker map, a new object might have been
641 * added. To make sure, we have the bit set in this
642 * case, we invoke the shrinker one more time and reset
643 * the bit if it reports that it is not empty anymore.
644 * The memory barrier here pairs with the barrier in
645 * memcg_set_shrinker_bit():
646 *
647 * list_lru_add() shrink_slab_memcg()
648 * list_add_tail() clear_bit()
649 * <MB> <MB>
650 * set_bit() do_shrink_slab()
651 */
652 smp_mb__after_atomic();
653 ret = do_shrink_slab(&sc, shrinker, priority);
654 if (ret == SHRINK_EMPTY)
655 ret = 0;
656 else
657 memcg_set_shrinker_bit(memcg, nid, i);
658 }
659 freed += ret;
660
661 if (rwsem_is_contended(&shrinker_rwsem)) {
662 freed = freed ? : 1;
663 break;
664 }
665 }
666 unlock:
667 up_read(&shrinker_rwsem);
668 return freed;
669 }
670 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)671 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
672 struct mem_cgroup *memcg, int priority)
673 {
674 return 0;
675 }
676 #endif /* CONFIG_MEMCG */
677
678 /**
679 * shrink_slab - shrink slab caches
680 * @gfp_mask: allocation context
681 * @nid: node whose slab caches to target
682 * @memcg: memory cgroup whose slab caches to target
683 * @priority: the reclaim priority
684 *
685 * Call the shrink functions to age shrinkable caches.
686 *
687 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
688 * unaware shrinkers will receive a node id of 0 instead.
689 *
690 * @memcg specifies the memory cgroup to target. Unaware shrinkers
691 * are called only if it is the root cgroup.
692 *
693 * @priority is sc->priority, we take the number of objects and >> by priority
694 * in order to get the scan target.
695 *
696 * Returns the number of reclaimed slab objects.
697 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)698 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
699 struct mem_cgroup *memcg,
700 int priority)
701 {
702 unsigned long ret, freed = 0;
703 struct shrinker *shrinker;
704
705 /*
706 * The root memcg might be allocated even though memcg is disabled
707 * via "cgroup_disable=memory" boot parameter. This could make
708 * mem_cgroup_is_root() return false, then just run memcg slab
709 * shrink, but skip global shrink. This may result in premature
710 * oom.
711 */
712 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
713 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
714
715 if (!down_read_trylock(&shrinker_rwsem))
716 goto out;
717
718 list_for_each_entry(shrinker, &shrinker_list, list) {
719 struct shrink_control sc = {
720 .gfp_mask = gfp_mask,
721 .nid = nid,
722 .memcg = memcg,
723 };
724
725 ret = do_shrink_slab(&sc, shrinker, priority);
726 if (ret == SHRINK_EMPTY)
727 ret = 0;
728 freed += ret;
729 /*
730 * Bail out if someone want to register a new shrinker to
731 * prevent the regsitration from being stalled for long periods
732 * by parallel ongoing shrinking.
733 */
734 if (rwsem_is_contended(&shrinker_rwsem)) {
735 freed = freed ? : 1;
736 break;
737 }
738 }
739
740 up_read(&shrinker_rwsem);
741 out:
742 cond_resched();
743 return freed;
744 }
745
drop_slab_node(int nid)746 void drop_slab_node(int nid)
747 {
748 unsigned long freed;
749
750 do {
751 struct mem_cgroup *memcg = NULL;
752
753 freed = 0;
754 memcg = mem_cgroup_iter(NULL, NULL, NULL);
755 do {
756 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
757 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
758 } while (freed > 10);
759 }
760
drop_slab(void)761 void drop_slab(void)
762 {
763 int nid;
764
765 for_each_online_node(nid)
766 drop_slab_node(nid);
767 }
768
is_page_cache_freeable(struct page * page)769 static inline int is_page_cache_freeable(struct page *page)
770 {
771 /*
772 * A freeable page cache page is referenced only by the caller
773 * that isolated the page, the page cache and optional buffer
774 * heads at page->private.
775 */
776 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
777 HPAGE_PMD_NR : 1;
778 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
779 }
780
may_write_to_inode(struct inode * inode,struct scan_control * sc)781 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
782 {
783 if (current->flags & PF_SWAPWRITE)
784 return 1;
785 if (!inode_write_congested(inode))
786 return 1;
787 if (inode_to_bdi(inode) == current->backing_dev_info)
788 return 1;
789 return 0;
790 }
791
792 /*
793 * We detected a synchronous write error writing a page out. Probably
794 * -ENOSPC. We need to propagate that into the address_space for a subsequent
795 * fsync(), msync() or close().
796 *
797 * The tricky part is that after writepage we cannot touch the mapping: nothing
798 * prevents it from being freed up. But we have a ref on the page and once
799 * that page is locked, the mapping is pinned.
800 *
801 * We're allowed to run sleeping lock_page() here because we know the caller has
802 * __GFP_FS.
803 */
handle_write_error(struct address_space * mapping,struct page * page,int error)804 static void handle_write_error(struct address_space *mapping,
805 struct page *page, int error)
806 {
807 lock_page(page);
808 if (page_mapping(page) == mapping)
809 mapping_set_error(mapping, error);
810 unlock_page(page);
811 }
812
813 /* possible outcome of pageout() */
814 typedef enum {
815 /* failed to write page out, page is locked */
816 PAGE_KEEP,
817 /* move page to the active list, page is locked */
818 PAGE_ACTIVATE,
819 /* page has been sent to the disk successfully, page is unlocked */
820 PAGE_SUCCESS,
821 /* page is clean and locked */
822 PAGE_CLEAN,
823 } pageout_t;
824
825 /*
826 * pageout is called by shrink_page_list() for each dirty page.
827 * Calls ->writepage().
828 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)829 static pageout_t pageout(struct page *page, struct address_space *mapping,
830 struct scan_control *sc)
831 {
832 /*
833 * If the page is dirty, only perform writeback if that write
834 * will be non-blocking. To prevent this allocation from being
835 * stalled by pagecache activity. But note that there may be
836 * stalls if we need to run get_block(). We could test
837 * PagePrivate for that.
838 *
839 * If this process is currently in __generic_file_write_iter() against
840 * this page's queue, we can perform writeback even if that
841 * will block.
842 *
843 * If the page is swapcache, write it back even if that would
844 * block, for some throttling. This happens by accident, because
845 * swap_backing_dev_info is bust: it doesn't reflect the
846 * congestion state of the swapdevs. Easy to fix, if needed.
847 */
848 if (!is_page_cache_freeable(page))
849 return PAGE_KEEP;
850 if (!mapping) {
851 /*
852 * Some data journaling orphaned pages can have
853 * page->mapping == NULL while being dirty with clean buffers.
854 */
855 if (page_has_private(page)) {
856 if (try_to_free_buffers(page)) {
857 ClearPageDirty(page);
858 pr_info("%s: orphaned page\n", __func__);
859 return PAGE_CLEAN;
860 }
861 }
862 return PAGE_KEEP;
863 }
864 if (mapping->a_ops->writepage == NULL)
865 return PAGE_ACTIVATE;
866 if (!may_write_to_inode(mapping->host, sc))
867 return PAGE_KEEP;
868
869 if (clear_page_dirty_for_io(page)) {
870 int res;
871 struct writeback_control wbc = {
872 .sync_mode = WB_SYNC_NONE,
873 .nr_to_write = SWAP_CLUSTER_MAX,
874 .range_start = 0,
875 .range_end = LLONG_MAX,
876 .for_reclaim = 1,
877 };
878
879 SetPageReclaim(page);
880 res = mapping->a_ops->writepage(page, &wbc);
881 if (res < 0)
882 handle_write_error(mapping, page, res);
883 if (res == AOP_WRITEPAGE_ACTIVATE) {
884 ClearPageReclaim(page);
885 return PAGE_ACTIVATE;
886 }
887
888 if (!PageWriteback(page)) {
889 /* synchronous write or broken a_ops? */
890 ClearPageReclaim(page);
891 }
892 trace_mm_vmscan_writepage(page);
893 inc_node_page_state(page, NR_VMSCAN_WRITE);
894 return PAGE_SUCCESS;
895 }
896
897 return PAGE_CLEAN;
898 }
899
900 /*
901 * Same as remove_mapping, but if the page is removed from the mapping, it
902 * gets returned with a refcount of 0.
903 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)904 static int __remove_mapping(struct address_space *mapping, struct page *page,
905 bool reclaimed)
906 {
907 unsigned long flags;
908 int refcount;
909
910 BUG_ON(!PageLocked(page));
911 BUG_ON(mapping != page_mapping(page));
912
913 xa_lock_irqsave(&mapping->i_pages, flags);
914 /*
915 * The non racy check for a busy page.
916 *
917 * Must be careful with the order of the tests. When someone has
918 * a ref to the page, it may be possible that they dirty it then
919 * drop the reference. So if PageDirty is tested before page_count
920 * here, then the following race may occur:
921 *
922 * get_user_pages(&page);
923 * [user mapping goes away]
924 * write_to(page);
925 * !PageDirty(page) [good]
926 * SetPageDirty(page);
927 * put_page(page);
928 * !page_count(page) [good, discard it]
929 *
930 * [oops, our write_to data is lost]
931 *
932 * Reversing the order of the tests ensures such a situation cannot
933 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
934 * load is not satisfied before that of page->_refcount.
935 *
936 * Note that if SetPageDirty is always performed via set_page_dirty,
937 * and thus under the i_pages lock, then this ordering is not required.
938 */
939 refcount = 1 + compound_nr(page);
940 if (!page_ref_freeze(page, refcount))
941 goto cannot_free;
942 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
943 if (unlikely(PageDirty(page))) {
944 page_ref_unfreeze(page, refcount);
945 goto cannot_free;
946 }
947
948 if (PageSwapCache(page)) {
949 swp_entry_t swap = { .val = page_private(page) };
950 mem_cgroup_swapout(page, swap);
951 __delete_from_swap_cache(page, swap);
952 xa_unlock_irqrestore(&mapping->i_pages, flags);
953 put_swap_page(page, swap);
954 } else {
955 void (*freepage)(struct page *);
956 void *shadow = NULL;
957
958 freepage = mapping->a_ops->freepage;
959 /*
960 * Remember a shadow entry for reclaimed file cache in
961 * order to detect refaults, thus thrashing, later on.
962 *
963 * But don't store shadows in an address space that is
964 * already exiting. This is not just an optizimation,
965 * inode reclaim needs to empty out the radix tree or
966 * the nodes are lost. Don't plant shadows behind its
967 * back.
968 *
969 * We also don't store shadows for DAX mappings because the
970 * only page cache pages found in these are zero pages
971 * covering holes, and because we don't want to mix DAX
972 * exceptional entries and shadow exceptional entries in the
973 * same address_space.
974 */
975 if (reclaimed && page_is_file_cache(page) &&
976 !mapping_exiting(mapping) && !dax_mapping(mapping))
977 shadow = workingset_eviction(page);
978 __delete_from_page_cache(page, shadow);
979 xa_unlock_irqrestore(&mapping->i_pages, flags);
980
981 if (freepage != NULL)
982 freepage(page);
983 }
984
985 return 1;
986
987 cannot_free:
988 xa_unlock_irqrestore(&mapping->i_pages, flags);
989 return 0;
990 }
991
992 /*
993 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
994 * someone else has a ref on the page, abort and return 0. If it was
995 * successfully detached, return 1. Assumes the caller has a single ref on
996 * this page.
997 */
remove_mapping(struct address_space * mapping,struct page * page)998 int remove_mapping(struct address_space *mapping, struct page *page)
999 {
1000 if (__remove_mapping(mapping, page, false)) {
1001 /*
1002 * Unfreezing the refcount with 1 rather than 2 effectively
1003 * drops the pagecache ref for us without requiring another
1004 * atomic operation.
1005 */
1006 page_ref_unfreeze(page, 1);
1007 return 1;
1008 }
1009 return 0;
1010 }
1011
1012 /**
1013 * putback_lru_page - put previously isolated page onto appropriate LRU list
1014 * @page: page to be put back to appropriate lru list
1015 *
1016 * Add previously isolated @page to appropriate LRU list.
1017 * Page may still be unevictable for other reasons.
1018 *
1019 * lru_lock must not be held, interrupts must be enabled.
1020 */
putback_lru_page(struct page * page)1021 void putback_lru_page(struct page *page)
1022 {
1023 lru_cache_add(page);
1024 put_page(page); /* drop ref from isolate */
1025 }
1026
1027 enum page_references {
1028 PAGEREF_RECLAIM,
1029 PAGEREF_RECLAIM_CLEAN,
1030 PAGEREF_KEEP,
1031 PAGEREF_ACTIVATE,
1032 };
1033
page_check_references(struct page * page,struct scan_control * sc)1034 static enum page_references page_check_references(struct page *page,
1035 struct scan_control *sc)
1036 {
1037 int referenced_ptes, referenced_page;
1038 unsigned long vm_flags;
1039
1040 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1041 &vm_flags);
1042 referenced_page = TestClearPageReferenced(page);
1043
1044 /*
1045 * Mlock lost the isolation race with us. Let try_to_unmap()
1046 * move the page to the unevictable list.
1047 */
1048 if (vm_flags & VM_LOCKED)
1049 return PAGEREF_RECLAIM;
1050
1051 /* rmap lock contention: rotate */
1052 if (referenced_ptes == -1)
1053 return PAGEREF_KEEP;
1054
1055 if (referenced_ptes) {
1056 if (PageSwapBacked(page))
1057 return PAGEREF_ACTIVATE;
1058 /*
1059 * All mapped pages start out with page table
1060 * references from the instantiating fault, so we need
1061 * to look twice if a mapped file page is used more
1062 * than once.
1063 *
1064 * Mark it and spare it for another trip around the
1065 * inactive list. Another page table reference will
1066 * lead to its activation.
1067 *
1068 * Note: the mark is set for activated pages as well
1069 * so that recently deactivated but used pages are
1070 * quickly recovered.
1071 */
1072 SetPageReferenced(page);
1073
1074 if (referenced_page || referenced_ptes > 1)
1075 return PAGEREF_ACTIVATE;
1076
1077 /*
1078 * Activate file-backed executable pages after first usage.
1079 */
1080 if (vm_flags & VM_EXEC)
1081 return PAGEREF_ACTIVATE;
1082
1083 return PAGEREF_KEEP;
1084 }
1085
1086 /* Reclaim if clean, defer dirty pages to writeback */
1087 if (referenced_page && !PageSwapBacked(page))
1088 return PAGEREF_RECLAIM_CLEAN;
1089
1090 return PAGEREF_RECLAIM;
1091 }
1092
1093 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1094 static void page_check_dirty_writeback(struct page *page,
1095 bool *dirty, bool *writeback)
1096 {
1097 struct address_space *mapping;
1098
1099 /*
1100 * Anonymous pages are not handled by flushers and must be written
1101 * from reclaim context. Do not stall reclaim based on them
1102 */
1103 if (!page_is_file_cache(page) ||
1104 (PageAnon(page) && !PageSwapBacked(page))) {
1105 *dirty = false;
1106 *writeback = false;
1107 return;
1108 }
1109
1110 /* By default assume that the page flags are accurate */
1111 *dirty = PageDirty(page);
1112 *writeback = PageWriteback(page);
1113
1114 /* Verify dirty/writeback state if the filesystem supports it */
1115 if (!page_has_private(page))
1116 return;
1117
1118 mapping = page_mapping(page);
1119 if (mapping && mapping->a_ops->is_dirty_writeback)
1120 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1121 }
1122
1123 /*
1124 * shrink_page_list() returns the number of reclaimed pages
1125 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool ignore_references)1126 static unsigned long shrink_page_list(struct list_head *page_list,
1127 struct pglist_data *pgdat,
1128 struct scan_control *sc,
1129 enum ttu_flags ttu_flags,
1130 struct reclaim_stat *stat,
1131 bool ignore_references)
1132 {
1133 LIST_HEAD(ret_pages);
1134 LIST_HEAD(free_pages);
1135 unsigned nr_reclaimed = 0;
1136 unsigned pgactivate = 0;
1137
1138 memset(stat, 0, sizeof(*stat));
1139 cond_resched();
1140
1141 while (!list_empty(page_list)) {
1142 struct address_space *mapping;
1143 struct page *page;
1144 int may_enter_fs;
1145 enum page_references references = PAGEREF_RECLAIM;
1146 bool dirty, writeback;
1147 unsigned int nr_pages;
1148
1149 cond_resched();
1150
1151 page = lru_to_page(page_list);
1152 list_del(&page->lru);
1153
1154 if (!trylock_page(page))
1155 goto keep;
1156
1157 VM_BUG_ON_PAGE(PageActive(page), page);
1158
1159 nr_pages = compound_nr(page);
1160
1161 /* Account the number of base pages even though THP */
1162 sc->nr_scanned += nr_pages;
1163
1164 if (unlikely(!page_evictable(page)))
1165 goto activate_locked;
1166
1167 if (!sc->may_unmap && page_mapped(page))
1168 goto keep_locked;
1169
1170 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1171 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1172
1173 /*
1174 * The number of dirty pages determines if a node is marked
1175 * reclaim_congested which affects wait_iff_congested. kswapd
1176 * will stall and start writing pages if the tail of the LRU
1177 * is all dirty unqueued pages.
1178 */
1179 page_check_dirty_writeback(page, &dirty, &writeback);
1180 if (dirty || writeback)
1181 stat->nr_dirty++;
1182
1183 if (dirty && !writeback)
1184 stat->nr_unqueued_dirty++;
1185
1186 /*
1187 * Treat this page as congested if the underlying BDI is or if
1188 * pages are cycling through the LRU so quickly that the
1189 * pages marked for immediate reclaim are making it to the
1190 * end of the LRU a second time.
1191 */
1192 mapping = page_mapping(page);
1193 if (((dirty || writeback) && mapping &&
1194 inode_write_congested(mapping->host)) ||
1195 (writeback && PageReclaim(page)))
1196 stat->nr_congested++;
1197
1198 /*
1199 * If a page at the tail of the LRU is under writeback, there
1200 * are three cases to consider.
1201 *
1202 * 1) If reclaim is encountering an excessive number of pages
1203 * under writeback and this page is both under writeback and
1204 * PageReclaim then it indicates that pages are being queued
1205 * for IO but are being recycled through the LRU before the
1206 * IO can complete. Waiting on the page itself risks an
1207 * indefinite stall if it is impossible to writeback the
1208 * page due to IO error or disconnected storage so instead
1209 * note that the LRU is being scanned too quickly and the
1210 * caller can stall after page list has been processed.
1211 *
1212 * 2) Global or new memcg reclaim encounters a page that is
1213 * not marked for immediate reclaim, or the caller does not
1214 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1215 * not to fs). In this case mark the page for immediate
1216 * reclaim and continue scanning.
1217 *
1218 * Require may_enter_fs because we would wait on fs, which
1219 * may not have submitted IO yet. And the loop driver might
1220 * enter reclaim, and deadlock if it waits on a page for
1221 * which it is needed to do the write (loop masks off
1222 * __GFP_IO|__GFP_FS for this reason); but more thought
1223 * would probably show more reasons.
1224 *
1225 * 3) Legacy memcg encounters a page that is already marked
1226 * PageReclaim. memcg does not have any dirty pages
1227 * throttling so we could easily OOM just because too many
1228 * pages are in writeback and there is nothing else to
1229 * reclaim. Wait for the writeback to complete.
1230 *
1231 * In cases 1) and 2) we activate the pages to get them out of
1232 * the way while we continue scanning for clean pages on the
1233 * inactive list and refilling from the active list. The
1234 * observation here is that waiting for disk writes is more
1235 * expensive than potentially causing reloads down the line.
1236 * Since they're marked for immediate reclaim, they won't put
1237 * memory pressure on the cache working set any longer than it
1238 * takes to write them to disk.
1239 */
1240 if (PageWriteback(page)) {
1241 /* Case 1 above */
1242 if (current_is_kswapd() &&
1243 PageReclaim(page) &&
1244 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1245 stat->nr_immediate++;
1246 goto activate_locked;
1247
1248 /* Case 2 above */
1249 } else if (sane_reclaim(sc) ||
1250 !PageReclaim(page) || !may_enter_fs) {
1251 /*
1252 * This is slightly racy - end_page_writeback()
1253 * might have just cleared PageReclaim, then
1254 * setting PageReclaim here end up interpreted
1255 * as PageReadahead - but that does not matter
1256 * enough to care. What we do want is for this
1257 * page to have PageReclaim set next time memcg
1258 * reclaim reaches the tests above, so it will
1259 * then wait_on_page_writeback() to avoid OOM;
1260 * and it's also appropriate in global reclaim.
1261 */
1262 SetPageReclaim(page);
1263 stat->nr_writeback++;
1264 goto activate_locked;
1265
1266 /* Case 3 above */
1267 } else {
1268 unlock_page(page);
1269 wait_on_page_writeback(page);
1270 /* then go back and try same page again */
1271 list_add_tail(&page->lru, page_list);
1272 continue;
1273 }
1274 }
1275
1276 if (!ignore_references)
1277 references = page_check_references(page, sc);
1278
1279 switch (references) {
1280 case PAGEREF_ACTIVATE:
1281 goto activate_locked;
1282 case PAGEREF_KEEP:
1283 stat->nr_ref_keep += nr_pages;
1284 goto keep_locked;
1285 case PAGEREF_RECLAIM:
1286 case PAGEREF_RECLAIM_CLEAN:
1287 ; /* try to reclaim the page below */
1288 }
1289
1290 /*
1291 * Anonymous process memory has backing store?
1292 * Try to allocate it some swap space here.
1293 * Lazyfree page could be freed directly
1294 */
1295 if (PageAnon(page) && PageSwapBacked(page)) {
1296 if (!PageSwapCache(page)) {
1297 if (!(sc->gfp_mask & __GFP_IO))
1298 goto keep_locked;
1299 if (PageTransHuge(page)) {
1300 /* cannot split THP, skip it */
1301 if (!can_split_huge_page(page, NULL))
1302 goto activate_locked;
1303 /*
1304 * Split pages without a PMD map right
1305 * away. Chances are some or all of the
1306 * tail pages can be freed without IO.
1307 */
1308 if (!compound_mapcount(page) &&
1309 split_huge_page_to_list(page,
1310 page_list))
1311 goto activate_locked;
1312 }
1313 if (!add_to_swap(page)) {
1314 if (!PageTransHuge(page))
1315 goto activate_locked_split;
1316 /* Fallback to swap normal pages */
1317 if (split_huge_page_to_list(page,
1318 page_list))
1319 goto activate_locked;
1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321 count_vm_event(THP_SWPOUT_FALLBACK);
1322 #endif
1323 if (!add_to_swap(page))
1324 goto activate_locked_split;
1325 }
1326
1327 may_enter_fs = 1;
1328
1329 /* Adding to swap updated mapping */
1330 mapping = page_mapping(page);
1331 }
1332 } else if (unlikely(PageTransHuge(page))) {
1333 /* Split file THP */
1334 if (split_huge_page_to_list(page, page_list))
1335 goto keep_locked;
1336 }
1337
1338 /*
1339 * THP may get split above, need minus tail pages and update
1340 * nr_pages to avoid accounting tail pages twice.
1341 *
1342 * The tail pages that are added into swap cache successfully
1343 * reach here.
1344 */
1345 if ((nr_pages > 1) && !PageTransHuge(page)) {
1346 sc->nr_scanned -= (nr_pages - 1);
1347 nr_pages = 1;
1348 }
1349
1350 /*
1351 * The page is mapped into the page tables of one or more
1352 * processes. Try to unmap it here.
1353 */
1354 if (page_mapped(page)) {
1355 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1356
1357 if (unlikely(PageTransHuge(page)))
1358 flags |= TTU_SPLIT_HUGE_PMD;
1359 if (!try_to_unmap(page, flags)) {
1360 stat->nr_unmap_fail += nr_pages;
1361 goto activate_locked;
1362 }
1363 }
1364
1365 if (PageDirty(page)) {
1366 /*
1367 * Only kswapd can writeback filesystem pages
1368 * to avoid risk of stack overflow. But avoid
1369 * injecting inefficient single-page IO into
1370 * flusher writeback as much as possible: only
1371 * write pages when we've encountered many
1372 * dirty pages, and when we've already scanned
1373 * the rest of the LRU for clean pages and see
1374 * the same dirty pages again (PageReclaim).
1375 */
1376 if (page_is_file_cache(page) &&
1377 (!current_is_kswapd() || !PageReclaim(page) ||
1378 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1379 /*
1380 * Immediately reclaim when written back.
1381 * Similar in principal to deactivate_page()
1382 * except we already have the page isolated
1383 * and know it's dirty
1384 */
1385 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1386 SetPageReclaim(page);
1387
1388 goto activate_locked;
1389 }
1390
1391 if (references == PAGEREF_RECLAIM_CLEAN)
1392 goto keep_locked;
1393 if (!may_enter_fs)
1394 goto keep_locked;
1395 if (!sc->may_writepage)
1396 goto keep_locked;
1397
1398 /*
1399 * Page is dirty. Flush the TLB if a writable entry
1400 * potentially exists to avoid CPU writes after IO
1401 * starts and then write it out here.
1402 */
1403 try_to_unmap_flush_dirty();
1404 switch (pageout(page, mapping, sc)) {
1405 case PAGE_KEEP:
1406 goto keep_locked;
1407 case PAGE_ACTIVATE:
1408 goto activate_locked;
1409 case PAGE_SUCCESS:
1410 if (PageWriteback(page))
1411 goto keep;
1412 if (PageDirty(page))
1413 goto keep;
1414
1415 /*
1416 * A synchronous write - probably a ramdisk. Go
1417 * ahead and try to reclaim the page.
1418 */
1419 if (!trylock_page(page))
1420 goto keep;
1421 if (PageDirty(page) || PageWriteback(page))
1422 goto keep_locked;
1423 mapping = page_mapping(page);
1424 case PAGE_CLEAN:
1425 ; /* try to free the page below */
1426 }
1427 }
1428
1429 /*
1430 * If the page has buffers, try to free the buffer mappings
1431 * associated with this page. If we succeed we try to free
1432 * the page as well.
1433 *
1434 * We do this even if the page is PageDirty().
1435 * try_to_release_page() does not perform I/O, but it is
1436 * possible for a page to have PageDirty set, but it is actually
1437 * clean (all its buffers are clean). This happens if the
1438 * buffers were written out directly, with submit_bh(). ext3
1439 * will do this, as well as the blockdev mapping.
1440 * try_to_release_page() will discover that cleanness and will
1441 * drop the buffers and mark the page clean - it can be freed.
1442 *
1443 * Rarely, pages can have buffers and no ->mapping. These are
1444 * the pages which were not successfully invalidated in
1445 * truncate_complete_page(). We try to drop those buffers here
1446 * and if that worked, and the page is no longer mapped into
1447 * process address space (page_count == 1) it can be freed.
1448 * Otherwise, leave the page on the LRU so it is swappable.
1449 */
1450 if (page_has_private(page)) {
1451 if (!try_to_release_page(page, sc->gfp_mask))
1452 goto activate_locked;
1453 if (!mapping && page_count(page) == 1) {
1454 unlock_page(page);
1455 if (put_page_testzero(page))
1456 goto free_it;
1457 else {
1458 /*
1459 * rare race with speculative reference.
1460 * the speculative reference will free
1461 * this page shortly, so we may
1462 * increment nr_reclaimed here (and
1463 * leave it off the LRU).
1464 */
1465 nr_reclaimed++;
1466 continue;
1467 }
1468 }
1469 }
1470
1471 if (PageAnon(page) && !PageSwapBacked(page)) {
1472 /* follow __remove_mapping for reference */
1473 if (!page_ref_freeze(page, 1))
1474 goto keep_locked;
1475 if (PageDirty(page)) {
1476 page_ref_unfreeze(page, 1);
1477 goto keep_locked;
1478 }
1479
1480 count_vm_event(PGLAZYFREED);
1481 count_memcg_page_event(page, PGLAZYFREED);
1482 } else if (!mapping || !__remove_mapping(mapping, page, true))
1483 goto keep_locked;
1484
1485 unlock_page(page);
1486 free_it:
1487 /*
1488 * THP may get swapped out in a whole, need account
1489 * all base pages.
1490 */
1491 nr_reclaimed += nr_pages;
1492
1493 /*
1494 * Is there need to periodically free_page_list? It would
1495 * appear not as the counts should be low
1496 */
1497 if (unlikely(PageTransHuge(page)))
1498 (*get_compound_page_dtor(page))(page);
1499 else
1500 list_add(&page->lru, &free_pages);
1501 continue;
1502
1503 activate_locked_split:
1504 /*
1505 * The tail pages that are failed to add into swap cache
1506 * reach here. Fixup nr_scanned and nr_pages.
1507 */
1508 if (nr_pages > 1) {
1509 sc->nr_scanned -= (nr_pages - 1);
1510 nr_pages = 1;
1511 }
1512 activate_locked:
1513 /* Not a candidate for swapping, so reclaim swap space. */
1514 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1515 PageMlocked(page)))
1516 try_to_free_swap(page);
1517 VM_BUG_ON_PAGE(PageActive(page), page);
1518 if (!PageMlocked(page)) {
1519 int type = page_is_file_cache(page);
1520 SetPageActive(page);
1521 stat->nr_activate[type] += nr_pages;
1522 count_memcg_page_event(page, PGACTIVATE);
1523 }
1524 keep_locked:
1525 unlock_page(page);
1526 keep:
1527 list_add(&page->lru, &ret_pages);
1528 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1529 }
1530
1531 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1532
1533 mem_cgroup_uncharge_list(&free_pages);
1534 try_to_unmap_flush();
1535 free_unref_page_list(&free_pages);
1536
1537 list_splice(&ret_pages, page_list);
1538 count_vm_events(PGACTIVATE, pgactivate);
1539
1540 return nr_reclaimed;
1541 }
1542
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1543 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1544 struct list_head *page_list)
1545 {
1546 struct scan_control sc = {
1547 .gfp_mask = GFP_KERNEL,
1548 .priority = DEF_PRIORITY,
1549 .may_unmap = 1,
1550 };
1551 struct reclaim_stat dummy_stat;
1552 unsigned long ret;
1553 struct page *page, *next;
1554 LIST_HEAD(clean_pages);
1555
1556 list_for_each_entry_safe(page, next, page_list, lru) {
1557 if (page_is_file_cache(page) && !PageDirty(page) &&
1558 !__PageMovable(page) && !PageUnevictable(page)) {
1559 ClearPageActive(page);
1560 list_move(&page->lru, &clean_pages);
1561 }
1562 }
1563
1564 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1565 TTU_IGNORE_ACCESS, &dummy_stat, true);
1566 list_splice(&clean_pages, page_list);
1567 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1568 return ret;
1569 }
1570
1571 /*
1572 * Attempt to remove the specified page from its LRU. Only take this page
1573 * if it is of the appropriate PageActive status. Pages which are being
1574 * freed elsewhere are also ignored.
1575 *
1576 * page: page to consider
1577 * mode: one of the LRU isolation modes defined above
1578 *
1579 * returns 0 on success, -ve errno on failure.
1580 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1581 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1582 {
1583 int ret = -EINVAL;
1584
1585 /* Only take pages on the LRU. */
1586 if (!PageLRU(page))
1587 return ret;
1588
1589 /* Compaction should not handle unevictable pages but CMA can do so */
1590 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1591 return ret;
1592
1593 ret = -EBUSY;
1594
1595 /*
1596 * To minimise LRU disruption, the caller can indicate that it only
1597 * wants to isolate pages it will be able to operate on without
1598 * blocking - clean pages for the most part.
1599 *
1600 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1601 * that it is possible to migrate without blocking
1602 */
1603 if (mode & ISOLATE_ASYNC_MIGRATE) {
1604 /* All the caller can do on PageWriteback is block */
1605 if (PageWriteback(page))
1606 return ret;
1607
1608 if (PageDirty(page)) {
1609 struct address_space *mapping;
1610 bool migrate_dirty;
1611
1612 /*
1613 * Only pages without mappings or that have a
1614 * ->migratepage callback are possible to migrate
1615 * without blocking. However, we can be racing with
1616 * truncation so it's necessary to lock the page
1617 * to stabilise the mapping as truncation holds
1618 * the page lock until after the page is removed
1619 * from the page cache.
1620 */
1621 if (!trylock_page(page))
1622 return ret;
1623
1624 mapping = page_mapping(page);
1625 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1626 unlock_page(page);
1627 if (!migrate_dirty)
1628 return ret;
1629 }
1630 }
1631
1632 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1633 return ret;
1634
1635 if (likely(get_page_unless_zero(page))) {
1636 /*
1637 * Be careful not to clear PageLRU until after we're
1638 * sure the page is not being freed elsewhere -- the
1639 * page release code relies on it.
1640 */
1641 ClearPageLRU(page);
1642 ret = 0;
1643 }
1644
1645 return ret;
1646 }
1647
1648
1649 /*
1650 * Update LRU sizes after isolating pages. The LRU size updates must
1651 * be complete before mem_cgroup_update_lru_size due to a santity check.
1652 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1653 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1654 enum lru_list lru, unsigned long *nr_zone_taken)
1655 {
1656 int zid;
1657
1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 if (!nr_zone_taken[zid])
1660 continue;
1661
1662 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1663 #ifdef CONFIG_MEMCG
1664 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1665 #endif
1666 }
1667
1668 }
1669
1670 /**
1671 * pgdat->lru_lock is heavily contended. Some of the functions that
1672 * shrink the lists perform better by taking out a batch of pages
1673 * and working on them outside the LRU lock.
1674 *
1675 * For pagecache intensive workloads, this function is the hottest
1676 * spot in the kernel (apart from copy_*_user functions).
1677 *
1678 * Appropriate locks must be held before calling this function.
1679 *
1680 * @nr_to_scan: The number of eligible pages to look through on the list.
1681 * @lruvec: The LRU vector to pull pages from.
1682 * @dst: The temp list to put pages on to.
1683 * @nr_scanned: The number of pages that were scanned.
1684 * @sc: The scan_control struct for this reclaim session
1685 * @mode: One of the LRU isolation modes
1686 * @lru: LRU list id for isolating
1687 *
1688 * returns how many pages were moved onto *@dst.
1689 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1690 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1691 struct lruvec *lruvec, struct list_head *dst,
1692 unsigned long *nr_scanned, struct scan_control *sc,
1693 enum lru_list lru)
1694 {
1695 struct list_head *src = &lruvec->lists[lru];
1696 unsigned long nr_taken = 0;
1697 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1698 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1699 unsigned long skipped = 0;
1700 unsigned long scan, total_scan, nr_pages;
1701 LIST_HEAD(pages_skipped);
1702 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1703
1704 total_scan = 0;
1705 scan = 0;
1706 while (scan < nr_to_scan && !list_empty(src)) {
1707 struct page *page;
1708
1709 page = lru_to_page(src);
1710 prefetchw_prev_lru_page(page, src, flags);
1711
1712 VM_BUG_ON_PAGE(!PageLRU(page), page);
1713
1714 nr_pages = compound_nr(page);
1715 total_scan += nr_pages;
1716
1717 if (page_zonenum(page) > sc->reclaim_idx) {
1718 list_move(&page->lru, &pages_skipped);
1719 nr_skipped[page_zonenum(page)] += nr_pages;
1720 continue;
1721 }
1722
1723 /*
1724 * Do not count skipped pages because that makes the function
1725 * return with no isolated pages if the LRU mostly contains
1726 * ineligible pages. This causes the VM to not reclaim any
1727 * pages, triggering a premature OOM.
1728 *
1729 * Account all tail pages of THP. This would not cause
1730 * premature OOM since __isolate_lru_page() returns -EBUSY
1731 * only when the page is being freed somewhere else.
1732 */
1733 scan += nr_pages;
1734 switch (__isolate_lru_page(page, mode)) {
1735 case 0:
1736 nr_taken += nr_pages;
1737 nr_zone_taken[page_zonenum(page)] += nr_pages;
1738 list_move(&page->lru, dst);
1739 break;
1740
1741 case -EBUSY:
1742 /* else it is being freed elsewhere */
1743 list_move(&page->lru, src);
1744 continue;
1745
1746 default:
1747 BUG();
1748 }
1749 }
1750
1751 /*
1752 * Splice any skipped pages to the start of the LRU list. Note that
1753 * this disrupts the LRU order when reclaiming for lower zones but
1754 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1755 * scanning would soon rescan the same pages to skip and put the
1756 * system at risk of premature OOM.
1757 */
1758 if (!list_empty(&pages_skipped)) {
1759 int zid;
1760
1761 list_splice(&pages_skipped, src);
1762 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1763 if (!nr_skipped[zid])
1764 continue;
1765
1766 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1767 skipped += nr_skipped[zid];
1768 }
1769 }
1770 *nr_scanned = total_scan;
1771 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1772 total_scan, skipped, nr_taken, mode, lru);
1773 update_lru_sizes(lruvec, lru, nr_zone_taken);
1774 return nr_taken;
1775 }
1776
1777 /**
1778 * isolate_lru_page - tries to isolate a page from its LRU list
1779 * @page: page to isolate from its LRU list
1780 *
1781 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1782 * vmstat statistic corresponding to whatever LRU list the page was on.
1783 *
1784 * Returns 0 if the page was removed from an LRU list.
1785 * Returns -EBUSY if the page was not on an LRU list.
1786 *
1787 * The returned page will have PageLRU() cleared. If it was found on
1788 * the active list, it will have PageActive set. If it was found on
1789 * the unevictable list, it will have the PageUnevictable bit set. That flag
1790 * may need to be cleared by the caller before letting the page go.
1791 *
1792 * The vmstat statistic corresponding to the list on which the page was
1793 * found will be decremented.
1794 *
1795 * Restrictions:
1796 *
1797 * (1) Must be called with an elevated refcount on the page. This is a
1798 * fundamentnal difference from isolate_lru_pages (which is called
1799 * without a stable reference).
1800 * (2) the lru_lock must not be held.
1801 * (3) interrupts must be enabled.
1802 */
isolate_lru_page(struct page * page)1803 int isolate_lru_page(struct page *page)
1804 {
1805 int ret = -EBUSY;
1806
1807 VM_BUG_ON_PAGE(!page_count(page), page);
1808 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1809
1810 if (PageLRU(page)) {
1811 pg_data_t *pgdat = page_pgdat(page);
1812 struct lruvec *lruvec;
1813
1814 spin_lock_irq(&pgdat->lru_lock);
1815 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1816 if (PageLRU(page)) {
1817 int lru = page_lru(page);
1818 get_page(page);
1819 ClearPageLRU(page);
1820 del_page_from_lru_list(page, lruvec, lru);
1821 ret = 0;
1822 }
1823 spin_unlock_irq(&pgdat->lru_lock);
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1830 * then get resheduled. When there are massive number of tasks doing page
1831 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1832 * the LRU list will go small and be scanned faster than necessary, leading to
1833 * unnecessary swapping, thrashing and OOM.
1834 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1835 static int too_many_isolated(struct pglist_data *pgdat, int file,
1836 struct scan_control *sc)
1837 {
1838 unsigned long inactive, isolated;
1839
1840 if (current_is_kswapd())
1841 return 0;
1842
1843 if (!sane_reclaim(sc))
1844 return 0;
1845
1846 if (file) {
1847 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1848 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1849 } else {
1850 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1851 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1852 }
1853
1854 /*
1855 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1856 * won't get blocked by normal direct-reclaimers, forming a circular
1857 * deadlock.
1858 */
1859 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1860 inactive >>= 3;
1861
1862 return isolated > inactive;
1863 }
1864
1865 /*
1866 * This moves pages from @list to corresponding LRU list.
1867 *
1868 * We move them the other way if the page is referenced by one or more
1869 * processes, from rmap.
1870 *
1871 * If the pages are mostly unmapped, the processing is fast and it is
1872 * appropriate to hold zone_lru_lock across the whole operation. But if
1873 * the pages are mapped, the processing is slow (page_referenced()) so we
1874 * should drop zone_lru_lock around each page. It's impossible to balance
1875 * this, so instead we remove the pages from the LRU while processing them.
1876 * It is safe to rely on PG_active against the non-LRU pages in here because
1877 * nobody will play with that bit on a non-LRU page.
1878 *
1879 * The downside is that we have to touch page->_refcount against each page.
1880 * But we had to alter page->flags anyway.
1881 *
1882 * Returns the number of pages moved to the given lruvec.
1883 */
1884
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1885 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1886 struct list_head *list)
1887 {
1888 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1889 int nr_pages, nr_moved = 0;
1890 LIST_HEAD(pages_to_free);
1891 struct page *page;
1892 enum lru_list lru;
1893
1894 while (!list_empty(list)) {
1895 page = lru_to_page(list);
1896 VM_BUG_ON_PAGE(PageLRU(page), page);
1897 if (unlikely(!page_evictable(page))) {
1898 list_del(&page->lru);
1899 spin_unlock_irq(&pgdat->lru_lock);
1900 putback_lru_page(page);
1901 spin_lock_irq(&pgdat->lru_lock);
1902 continue;
1903 }
1904 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1905
1906 SetPageLRU(page);
1907 lru = page_lru(page);
1908
1909 nr_pages = hpage_nr_pages(page);
1910 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1911 list_move(&page->lru, &lruvec->lists[lru]);
1912
1913 if (put_page_testzero(page)) {
1914 __ClearPageLRU(page);
1915 __ClearPageActive(page);
1916 del_page_from_lru_list(page, lruvec, lru);
1917
1918 if (unlikely(PageCompound(page))) {
1919 spin_unlock_irq(&pgdat->lru_lock);
1920 (*get_compound_page_dtor(page))(page);
1921 spin_lock_irq(&pgdat->lru_lock);
1922 } else
1923 list_add(&page->lru, &pages_to_free);
1924 } else {
1925 nr_moved += nr_pages;
1926 }
1927 }
1928
1929 /*
1930 * To save our caller's stack, now use input list for pages to free.
1931 */
1932 list_splice(&pages_to_free, list);
1933
1934 return nr_moved;
1935 }
1936
1937 /*
1938 * If a kernel thread (such as nfsd for loop-back mounts) services
1939 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1940 * In that case we should only throttle if the backing device it is
1941 * writing to is congested. In other cases it is safe to throttle.
1942 */
current_may_throttle(void)1943 static int current_may_throttle(void)
1944 {
1945 return !(current->flags & PF_LESS_THROTTLE) ||
1946 current->backing_dev_info == NULL ||
1947 bdi_write_congested(current->backing_dev_info);
1948 }
1949
1950 /*
1951 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1952 * of reclaimed pages
1953 */
1954 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1955 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1956 struct scan_control *sc, enum lru_list lru)
1957 {
1958 LIST_HEAD(page_list);
1959 unsigned long nr_scanned;
1960 unsigned long nr_reclaimed = 0;
1961 unsigned long nr_taken;
1962 struct reclaim_stat stat;
1963 int file = is_file_lru(lru);
1964 enum vm_event_item item;
1965 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1966 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1967 bool stalled = false;
1968
1969 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1970 if (stalled)
1971 return 0;
1972
1973 /* wait a bit for the reclaimer. */
1974 msleep(100);
1975 stalled = true;
1976
1977 /* We are about to die and free our memory. Return now. */
1978 if (fatal_signal_pending(current))
1979 return SWAP_CLUSTER_MAX;
1980 }
1981
1982 lru_add_drain();
1983
1984 spin_lock_irq(&pgdat->lru_lock);
1985
1986 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1987 &nr_scanned, sc, lru);
1988
1989 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1990 reclaim_stat->recent_scanned[file] += nr_taken;
1991
1992 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1993 if (global_reclaim(sc))
1994 __count_vm_events(item, nr_scanned);
1995 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1996 spin_unlock_irq(&pgdat->lru_lock);
1997
1998 if (nr_taken == 0)
1999 return 0;
2000
2001 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
2002 &stat, false);
2003
2004 spin_lock_irq(&pgdat->lru_lock);
2005
2006 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2007 if (global_reclaim(sc))
2008 __count_vm_events(item, nr_reclaimed);
2009 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2010 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2011 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2012
2013 move_pages_to_lru(lruvec, &page_list);
2014
2015 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2016
2017 spin_unlock_irq(&pgdat->lru_lock);
2018
2019 mem_cgroup_uncharge_list(&page_list);
2020 free_unref_page_list(&page_list);
2021
2022 /*
2023 * If dirty pages are scanned that are not queued for IO, it
2024 * implies that flushers are not doing their job. This can
2025 * happen when memory pressure pushes dirty pages to the end of
2026 * the LRU before the dirty limits are breached and the dirty
2027 * data has expired. It can also happen when the proportion of
2028 * dirty pages grows not through writes but through memory
2029 * pressure reclaiming all the clean cache. And in some cases,
2030 * the flushers simply cannot keep up with the allocation
2031 * rate. Nudge the flusher threads in case they are asleep.
2032 */
2033 if (stat.nr_unqueued_dirty == nr_taken)
2034 wakeup_flusher_threads(WB_REASON_VMSCAN);
2035
2036 sc->nr.dirty += stat.nr_dirty;
2037 sc->nr.congested += stat.nr_congested;
2038 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2039 sc->nr.writeback += stat.nr_writeback;
2040 sc->nr.immediate += stat.nr_immediate;
2041 sc->nr.taken += nr_taken;
2042 if (file)
2043 sc->nr.file_taken += nr_taken;
2044
2045 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2046 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2047 return nr_reclaimed;
2048 }
2049
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2050 static void shrink_active_list(unsigned long nr_to_scan,
2051 struct lruvec *lruvec,
2052 struct scan_control *sc,
2053 enum lru_list lru)
2054 {
2055 unsigned long nr_taken;
2056 unsigned long nr_scanned;
2057 unsigned long vm_flags;
2058 LIST_HEAD(l_hold); /* The pages which were snipped off */
2059 LIST_HEAD(l_active);
2060 LIST_HEAD(l_inactive);
2061 struct page *page;
2062 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2063 unsigned nr_deactivate, nr_activate;
2064 unsigned nr_rotated = 0;
2065 int file = is_file_lru(lru);
2066 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2067
2068 lru_add_drain();
2069
2070 spin_lock_irq(&pgdat->lru_lock);
2071
2072 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2073 &nr_scanned, sc, lru);
2074
2075 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2076 reclaim_stat->recent_scanned[file] += nr_taken;
2077
2078 __count_vm_events(PGREFILL, nr_scanned);
2079 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2080
2081 spin_unlock_irq(&pgdat->lru_lock);
2082
2083 while (!list_empty(&l_hold)) {
2084 cond_resched();
2085 page = lru_to_page(&l_hold);
2086 list_del(&page->lru);
2087
2088 if (unlikely(!page_evictable(page))) {
2089 putback_lru_page(page);
2090 continue;
2091 }
2092
2093 if (unlikely(buffer_heads_over_limit)) {
2094 if (page_has_private(page) && trylock_page(page)) {
2095 if (page_has_private(page))
2096 try_to_release_page(page, 0);
2097 unlock_page(page);
2098 }
2099 }
2100
2101 /* Referenced or rmap lock contention: rotate */
2102 if (page_referenced(page, 0, sc->target_mem_cgroup,
2103 &vm_flags) != 0) {
2104 /*
2105 * Identify referenced, file-backed active pages and
2106 * give them one more trip around the active list. So
2107 * that executable code get better chances to stay in
2108 * memory under moderate memory pressure. Anon pages
2109 * are not likely to be evicted by use-once streaming
2110 * IO, plus JVM can create lots of anon VM_EXEC pages,
2111 * so we ignore them here.
2112 */
2113 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2114 nr_rotated += hpage_nr_pages(page);
2115 list_add(&page->lru, &l_active);
2116 continue;
2117 }
2118 }
2119
2120 ClearPageActive(page); /* we are de-activating */
2121 SetPageWorkingset(page);
2122 list_add(&page->lru, &l_inactive);
2123 }
2124
2125 /*
2126 * Move pages back to the lru list.
2127 */
2128 spin_lock_irq(&pgdat->lru_lock);
2129 /*
2130 * Count referenced pages from currently used mappings as rotated,
2131 * even though only some of them are actually re-activated. This
2132 * helps balance scan pressure between file and anonymous pages in
2133 * get_scan_count.
2134 */
2135 reclaim_stat->recent_rotated[file] += nr_rotated;
2136
2137 nr_activate = move_pages_to_lru(lruvec, &l_active);
2138 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2139 /* Keep all free pages in l_active list */
2140 list_splice(&l_inactive, &l_active);
2141
2142 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2143 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2144
2145 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2146 spin_unlock_irq(&pgdat->lru_lock);
2147
2148 mem_cgroup_uncharge_list(&l_active);
2149 free_unref_page_list(&l_active);
2150 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2151 nr_deactivate, nr_rotated, sc->priority, file);
2152 }
2153
reclaim_pages(struct list_head * page_list)2154 unsigned long reclaim_pages(struct list_head *page_list)
2155 {
2156 int nid = -1;
2157 unsigned long nr_reclaimed = 0;
2158 LIST_HEAD(node_page_list);
2159 struct reclaim_stat dummy_stat;
2160 struct page *page;
2161 struct scan_control sc = {
2162 .gfp_mask = GFP_KERNEL,
2163 .priority = DEF_PRIORITY,
2164 .may_writepage = 1,
2165 .may_unmap = 1,
2166 .may_swap = 1,
2167 };
2168
2169 while (!list_empty(page_list)) {
2170 page = lru_to_page(page_list);
2171 if (nid == -1) {
2172 nid = page_to_nid(page);
2173 INIT_LIST_HEAD(&node_page_list);
2174 }
2175
2176 if (nid == page_to_nid(page)) {
2177 ClearPageActive(page);
2178 list_move(&page->lru, &node_page_list);
2179 continue;
2180 }
2181
2182 nr_reclaimed += shrink_page_list(&node_page_list,
2183 NODE_DATA(nid),
2184 &sc, 0,
2185 &dummy_stat, false);
2186 while (!list_empty(&node_page_list)) {
2187 page = lru_to_page(&node_page_list);
2188 list_del(&page->lru);
2189 putback_lru_page(page);
2190 }
2191
2192 nid = -1;
2193 }
2194
2195 if (!list_empty(&node_page_list)) {
2196 nr_reclaimed += shrink_page_list(&node_page_list,
2197 NODE_DATA(nid),
2198 &sc, 0,
2199 &dummy_stat, false);
2200 while (!list_empty(&node_page_list)) {
2201 page = lru_to_page(&node_page_list);
2202 list_del(&page->lru);
2203 putback_lru_page(page);
2204 }
2205 }
2206
2207 return nr_reclaimed;
2208 }
2209
2210 /*
2211 * The inactive anon list should be small enough that the VM never has
2212 * to do too much work.
2213 *
2214 * The inactive file list should be small enough to leave most memory
2215 * to the established workingset on the scan-resistant active list,
2216 * but large enough to avoid thrashing the aggregate readahead window.
2217 *
2218 * Both inactive lists should also be large enough that each inactive
2219 * page has a chance to be referenced again before it is reclaimed.
2220 *
2221 * If that fails and refaulting is observed, the inactive list grows.
2222 *
2223 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2224 * on this LRU, maintained by the pageout code. An inactive_ratio
2225 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2226 *
2227 * total target max
2228 * memory ratio inactive
2229 * -------------------------------------
2230 * 10MB 1 5MB
2231 * 100MB 1 50MB
2232 * 1GB 3 250MB
2233 * 10GB 10 0.9GB
2234 * 100GB 31 3GB
2235 * 1TB 101 10GB
2236 * 10TB 320 32GB
2237 */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc,bool trace)2238 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2239 struct scan_control *sc, bool trace)
2240 {
2241 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2242 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2243 enum lru_list inactive_lru = file * LRU_FILE;
2244 unsigned long inactive, active;
2245 unsigned long inactive_ratio;
2246 unsigned long refaults;
2247 unsigned long gb;
2248
2249 /*
2250 * If we don't have swap space, anonymous page deactivation
2251 * is pointless.
2252 */
2253 if (!file && !total_swap_pages)
2254 return false;
2255
2256 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2257 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2258
2259 /*
2260 * When refaults are being observed, it means a new workingset
2261 * is being established. Disable active list protection to get
2262 * rid of the stale workingset quickly.
2263 */
2264 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2265 if (file && lruvec->refaults != refaults) {
2266 inactive_ratio = 0;
2267 } else {
2268 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2269 if (gb)
2270 inactive_ratio = int_sqrt(10 * gb);
2271 else
2272 inactive_ratio = 1;
2273 }
2274
2275 if (trace)
2276 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2277 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2278 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2279 inactive_ratio, file);
2280
2281 return inactive * inactive_ratio < active;
2282 }
2283
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2284 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2285 struct lruvec *lruvec, struct scan_control *sc)
2286 {
2287 if (is_active_lru(lru)) {
2288 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2289 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2290 return 0;
2291 }
2292
2293 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2294 }
2295
2296 enum scan_balance {
2297 SCAN_EQUAL,
2298 SCAN_FRACT,
2299 SCAN_ANON,
2300 SCAN_FILE,
2301 };
2302
2303 /*
2304 * Determine how aggressively the anon and file LRU lists should be
2305 * scanned. The relative value of each set of LRU lists is determined
2306 * by looking at the fraction of the pages scanned we did rotate back
2307 * onto the active list instead of evict.
2308 *
2309 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2310 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2311 */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2312 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2313 struct scan_control *sc, unsigned long *nr,
2314 unsigned long *lru_pages)
2315 {
2316 int swappiness = mem_cgroup_swappiness(memcg);
2317 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2318 u64 fraction[2];
2319 u64 denominator = 0; /* gcc */
2320 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2321 unsigned long anon_prio, file_prio;
2322 enum scan_balance scan_balance;
2323 unsigned long anon, file;
2324 unsigned long ap, fp;
2325 enum lru_list lru;
2326
2327 /* If we have no swap space, do not bother scanning anon pages. */
2328 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2329 scan_balance = SCAN_FILE;
2330 goto out;
2331 }
2332
2333 /*
2334 * Global reclaim will swap to prevent OOM even with no
2335 * swappiness, but memcg users want to use this knob to
2336 * disable swapping for individual groups completely when
2337 * using the memory controller's swap limit feature would be
2338 * too expensive.
2339 */
2340 if (!global_reclaim(sc) && !swappiness) {
2341 scan_balance = SCAN_FILE;
2342 goto out;
2343 }
2344
2345 /*
2346 * Do not apply any pressure balancing cleverness when the
2347 * system is close to OOM, scan both anon and file equally
2348 * (unless the swappiness setting disagrees with swapping).
2349 */
2350 if (!sc->priority && swappiness) {
2351 scan_balance = SCAN_EQUAL;
2352 goto out;
2353 }
2354
2355 /*
2356 * Prevent the reclaimer from falling into the cache trap: as
2357 * cache pages start out inactive, every cache fault will tip
2358 * the scan balance towards the file LRU. And as the file LRU
2359 * shrinks, so does the window for rotation from references.
2360 * This means we have a runaway feedback loop where a tiny
2361 * thrashing file LRU becomes infinitely more attractive than
2362 * anon pages. Try to detect this based on file LRU size.
2363 */
2364 if (global_reclaim(sc)) {
2365 unsigned long pgdatfile;
2366 unsigned long pgdatfree;
2367 int z;
2368 unsigned long total_high_wmark = 0;
2369
2370 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2371 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2372 node_page_state(pgdat, NR_INACTIVE_FILE);
2373
2374 for (z = 0; z < MAX_NR_ZONES; z++) {
2375 struct zone *zone = &pgdat->node_zones[z];
2376 if (!managed_zone(zone))
2377 continue;
2378
2379 total_high_wmark += high_wmark_pages(zone);
2380 }
2381
2382 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2383 /*
2384 * Force SCAN_ANON if there are enough inactive
2385 * anonymous pages on the LRU in eligible zones.
2386 * Otherwise, the small LRU gets thrashed.
2387 */
2388 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2389 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2390 >> sc->priority) {
2391 scan_balance = SCAN_ANON;
2392 goto out;
2393 }
2394 }
2395 }
2396
2397 /*
2398 * If there is enough inactive page cache, i.e. if the size of the
2399 * inactive list is greater than that of the active list *and* the
2400 * inactive list actually has some pages to scan on this priority, we
2401 * do not reclaim anything from the anonymous working set right now.
2402 * Without the second condition we could end up never scanning an
2403 * lruvec even if it has plenty of old anonymous pages unless the
2404 * system is under heavy pressure.
2405 */
2406 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2407 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2408 scan_balance = SCAN_FILE;
2409 goto out;
2410 }
2411
2412 scan_balance = SCAN_FRACT;
2413
2414 /*
2415 * With swappiness at 100, anonymous and file have the same priority.
2416 * This scanning priority is essentially the inverse of IO cost.
2417 */
2418 anon_prio = swappiness;
2419 file_prio = 200 - anon_prio;
2420
2421 /*
2422 * OK, so we have swap space and a fair amount of page cache
2423 * pages. We use the recently rotated / recently scanned
2424 * ratios to determine how valuable each cache is.
2425 *
2426 * Because workloads change over time (and to avoid overflow)
2427 * we keep these statistics as a floating average, which ends
2428 * up weighing recent references more than old ones.
2429 *
2430 * anon in [0], file in [1]
2431 */
2432
2433 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2434 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2435 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2436 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2437
2438 spin_lock_irq(&pgdat->lru_lock);
2439 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2440 reclaim_stat->recent_scanned[0] /= 2;
2441 reclaim_stat->recent_rotated[0] /= 2;
2442 }
2443
2444 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2445 reclaim_stat->recent_scanned[1] /= 2;
2446 reclaim_stat->recent_rotated[1] /= 2;
2447 }
2448
2449 /*
2450 * The amount of pressure on anon vs file pages is inversely
2451 * proportional to the fraction of recently scanned pages on
2452 * each list that were recently referenced and in active use.
2453 */
2454 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2455 ap /= reclaim_stat->recent_rotated[0] + 1;
2456
2457 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2458 fp /= reclaim_stat->recent_rotated[1] + 1;
2459 spin_unlock_irq(&pgdat->lru_lock);
2460
2461 fraction[0] = ap;
2462 fraction[1] = fp;
2463 denominator = ap + fp + 1;
2464 out:
2465 *lru_pages = 0;
2466 for_each_evictable_lru(lru) {
2467 int file = is_file_lru(lru);
2468 unsigned long lruvec_size;
2469 unsigned long low, min;
2470 unsigned long scan;
2471
2472 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2473 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2474 &min, &low);
2475
2476 if (min || low) {
2477 /*
2478 * Scale a cgroup's reclaim pressure by proportioning
2479 * its current usage to its memory.low or memory.min
2480 * setting.
2481 *
2482 * This is important, as otherwise scanning aggression
2483 * becomes extremely binary -- from nothing as we
2484 * approach the memory protection threshold, to totally
2485 * nominal as we exceed it. This results in requiring
2486 * setting extremely liberal protection thresholds. It
2487 * also means we simply get no protection at all if we
2488 * set it too low, which is not ideal.
2489 *
2490 * If there is any protection in place, we reduce scan
2491 * pressure by how much of the total memory used is
2492 * within protection thresholds.
2493 *
2494 * There is one special case: in the first reclaim pass,
2495 * we skip over all groups that are within their low
2496 * protection. If that fails to reclaim enough pages to
2497 * satisfy the reclaim goal, we come back and override
2498 * the best-effort low protection. However, we still
2499 * ideally want to honor how well-behaved groups are in
2500 * that case instead of simply punishing them all
2501 * equally. As such, we reclaim them based on how much
2502 * memory they are using, reducing the scan pressure
2503 * again by how much of the total memory used is under
2504 * hard protection.
2505 */
2506 unsigned long cgroup_size = mem_cgroup_size(memcg);
2507 unsigned long protection;
2508
2509 /* memory.low scaling, make sure we retry before OOM */
2510 if (!sc->memcg_low_reclaim && low > min) {
2511 protection = low;
2512 sc->memcg_low_skipped = 1;
2513 } else {
2514 protection = min;
2515 }
2516
2517 /* Avoid TOCTOU with earlier protection check */
2518 cgroup_size = max(cgroup_size, protection);
2519
2520 scan = lruvec_size - lruvec_size * protection /
2521 (cgroup_size + 1);
2522
2523 /*
2524 * Minimally target SWAP_CLUSTER_MAX pages to keep
2525 * reclaim moving forwards, avoiding decremeting
2526 * sc->priority further than desirable.
2527 */
2528 scan = max(scan, SWAP_CLUSTER_MAX);
2529 } else {
2530 scan = lruvec_size;
2531 }
2532
2533 scan >>= sc->priority;
2534
2535 /*
2536 * If the cgroup's already been deleted, make sure to
2537 * scrape out the remaining cache.
2538 */
2539 if (!scan && !mem_cgroup_online(memcg))
2540 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2541
2542 switch (scan_balance) {
2543 case SCAN_EQUAL:
2544 /* Scan lists relative to size */
2545 break;
2546 case SCAN_FRACT:
2547 /*
2548 * Scan types proportional to swappiness and
2549 * their relative recent reclaim efficiency.
2550 * Make sure we don't miss the last page on
2551 * the offlined memory cgroups because of a
2552 * round-off error.
2553 */
2554 scan = mem_cgroup_online(memcg) ?
2555 div64_u64(scan * fraction[file], denominator) :
2556 DIV64_U64_ROUND_UP(scan * fraction[file],
2557 denominator);
2558 break;
2559 case SCAN_FILE:
2560 case SCAN_ANON:
2561 /* Scan one type exclusively */
2562 if ((scan_balance == SCAN_FILE) != file) {
2563 lruvec_size = 0;
2564 scan = 0;
2565 }
2566 break;
2567 default:
2568 /* Look ma, no brain */
2569 BUG();
2570 }
2571
2572 *lru_pages += lruvec_size;
2573 nr[lru] = scan;
2574 }
2575 }
2576
2577 /*
2578 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2579 */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2580 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2581 struct scan_control *sc, unsigned long *lru_pages)
2582 {
2583 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2584 unsigned long nr[NR_LRU_LISTS];
2585 unsigned long targets[NR_LRU_LISTS];
2586 unsigned long nr_to_scan;
2587 enum lru_list lru;
2588 unsigned long nr_reclaimed = 0;
2589 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2590 struct blk_plug plug;
2591 bool scan_adjusted;
2592
2593 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2594
2595 /* Record the original scan target for proportional adjustments later */
2596 memcpy(targets, nr, sizeof(nr));
2597
2598 /*
2599 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2600 * event that can occur when there is little memory pressure e.g.
2601 * multiple streaming readers/writers. Hence, we do not abort scanning
2602 * when the requested number of pages are reclaimed when scanning at
2603 * DEF_PRIORITY on the assumption that the fact we are direct
2604 * reclaiming implies that kswapd is not keeping up and it is best to
2605 * do a batch of work at once. For memcg reclaim one check is made to
2606 * abort proportional reclaim if either the file or anon lru has already
2607 * dropped to zero at the first pass.
2608 */
2609 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2610 sc->priority == DEF_PRIORITY);
2611
2612 blk_start_plug(&plug);
2613 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2614 nr[LRU_INACTIVE_FILE]) {
2615 unsigned long nr_anon, nr_file, percentage;
2616 unsigned long nr_scanned;
2617
2618 for_each_evictable_lru(lru) {
2619 if (nr[lru]) {
2620 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2621 nr[lru] -= nr_to_scan;
2622
2623 nr_reclaimed += shrink_list(lru, nr_to_scan,
2624 lruvec, sc);
2625 }
2626 }
2627
2628 cond_resched();
2629
2630 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2631 continue;
2632
2633 /*
2634 * For kswapd and memcg, reclaim at least the number of pages
2635 * requested. Ensure that the anon and file LRUs are scanned
2636 * proportionally what was requested by get_scan_count(). We
2637 * stop reclaiming one LRU and reduce the amount scanning
2638 * proportional to the original scan target.
2639 */
2640 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2641 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2642
2643 /*
2644 * It's just vindictive to attack the larger once the smaller
2645 * has gone to zero. And given the way we stop scanning the
2646 * smaller below, this makes sure that we only make one nudge
2647 * towards proportionality once we've got nr_to_reclaim.
2648 */
2649 if (!nr_file || !nr_anon)
2650 break;
2651
2652 if (nr_file > nr_anon) {
2653 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2654 targets[LRU_ACTIVE_ANON] + 1;
2655 lru = LRU_BASE;
2656 percentage = nr_anon * 100 / scan_target;
2657 } else {
2658 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2659 targets[LRU_ACTIVE_FILE] + 1;
2660 lru = LRU_FILE;
2661 percentage = nr_file * 100 / scan_target;
2662 }
2663
2664 /* Stop scanning the smaller of the LRU */
2665 nr[lru] = 0;
2666 nr[lru + LRU_ACTIVE] = 0;
2667
2668 /*
2669 * Recalculate the other LRU scan count based on its original
2670 * scan target and the percentage scanning already complete
2671 */
2672 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2673 nr_scanned = targets[lru] - nr[lru];
2674 nr[lru] = targets[lru] * (100 - percentage) / 100;
2675 nr[lru] -= min(nr[lru], nr_scanned);
2676
2677 lru += LRU_ACTIVE;
2678 nr_scanned = targets[lru] - nr[lru];
2679 nr[lru] = targets[lru] * (100 - percentage) / 100;
2680 nr[lru] -= min(nr[lru], nr_scanned);
2681
2682 scan_adjusted = true;
2683 }
2684 blk_finish_plug(&plug);
2685 sc->nr_reclaimed += nr_reclaimed;
2686
2687 /*
2688 * Even if we did not try to evict anon pages at all, we want to
2689 * rebalance the anon lru active/inactive ratio.
2690 */
2691 if (inactive_list_is_low(lruvec, false, sc, true))
2692 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2693 sc, LRU_ACTIVE_ANON);
2694 }
2695
2696 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2697 static bool in_reclaim_compaction(struct scan_control *sc)
2698 {
2699 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
2700 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2701 sc->priority < DEF_PRIORITY - 2))
2702 return true;
2703
2704 return false;
2705 }
2706
2707 /*
2708 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2709 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2710 * true if more pages should be reclaimed such that when the page allocator
2711 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2712 * It will give up earlier than that if there is difficulty reclaiming pages.
2713 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2714 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2715 unsigned long nr_reclaimed,
2716 struct scan_control *sc)
2717 {
2718 unsigned long pages_for_compaction;
2719 unsigned long inactive_lru_pages;
2720 int z;
2721
2722 /* If not in reclaim/compaction mode, stop */
2723 if (!in_reclaim_compaction(sc))
2724 return false;
2725
2726 /*
2727 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2728 * number of pages that were scanned. This will return to the caller
2729 * with the risk reclaim/compaction and the resulting allocation attempt
2730 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2731 * allocations through requiring that the full LRU list has been scanned
2732 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2733 * scan, but that approximation was wrong, and there were corner cases
2734 * where always a non-zero amount of pages were scanned.
2735 */
2736 if (!nr_reclaimed)
2737 return false;
2738
2739 /* If compaction would go ahead or the allocation would succeed, stop */
2740 for (z = 0; z <= sc->reclaim_idx; z++) {
2741 struct zone *zone = &pgdat->node_zones[z];
2742 if (!managed_zone(zone))
2743 continue;
2744
2745 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2746 case COMPACT_SUCCESS:
2747 case COMPACT_CONTINUE:
2748 return false;
2749 default:
2750 /* check next zone */
2751 ;
2752 }
2753 }
2754
2755 /*
2756 * If we have not reclaimed enough pages for compaction and the
2757 * inactive lists are large enough, continue reclaiming
2758 */
2759 pages_for_compaction = compact_gap(sc->order);
2760 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2761 if (get_nr_swap_pages() > 0)
2762 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2763
2764 return inactive_lru_pages > pages_for_compaction;
2765 }
2766
pgdat_memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)2767 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2768 {
2769 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2770 (memcg && memcg_congested(pgdat, memcg));
2771 }
2772
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2773 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2774 {
2775 struct reclaim_state *reclaim_state = current->reclaim_state;
2776 unsigned long nr_reclaimed, nr_scanned;
2777 bool reclaimable = false;
2778
2779 do {
2780 struct mem_cgroup *root = sc->target_mem_cgroup;
2781 unsigned long node_lru_pages = 0;
2782 struct mem_cgroup *memcg;
2783
2784 memset(&sc->nr, 0, sizeof(sc->nr));
2785
2786 nr_reclaimed = sc->nr_reclaimed;
2787 nr_scanned = sc->nr_scanned;
2788
2789 memcg = mem_cgroup_iter(root, NULL, NULL);
2790 do {
2791 unsigned long lru_pages;
2792 unsigned long reclaimed;
2793 unsigned long scanned;
2794
2795 /*
2796 * This loop can become CPU-bound when target memcgs
2797 * aren't eligible for reclaim - either because they
2798 * don't have any reclaimable pages, or because their
2799 * memory is explicitly protected. Avoid soft lockups.
2800 */
2801 cond_resched();
2802
2803 switch (mem_cgroup_protected(root, memcg)) {
2804 case MEMCG_PROT_MIN:
2805 /*
2806 * Hard protection.
2807 * If there is no reclaimable memory, OOM.
2808 */
2809 continue;
2810 case MEMCG_PROT_LOW:
2811 /*
2812 * Soft protection.
2813 * Respect the protection only as long as
2814 * there is an unprotected supply
2815 * of reclaimable memory from other cgroups.
2816 */
2817 if (!sc->memcg_low_reclaim) {
2818 sc->memcg_low_skipped = 1;
2819 continue;
2820 }
2821 memcg_memory_event(memcg, MEMCG_LOW);
2822 break;
2823 case MEMCG_PROT_NONE:
2824 /*
2825 * All protection thresholds breached. We may
2826 * still choose to vary the scan pressure
2827 * applied based on by how much the cgroup in
2828 * question has exceeded its protection
2829 * thresholds (see get_scan_count).
2830 */
2831 break;
2832 }
2833
2834 reclaimed = sc->nr_reclaimed;
2835 scanned = sc->nr_scanned;
2836 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2837 node_lru_pages += lru_pages;
2838
2839 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2840 sc->priority);
2841
2842 /* Record the group's reclaim efficiency */
2843 vmpressure(sc->gfp_mask, memcg, false,
2844 sc->nr_scanned - scanned,
2845 sc->nr_reclaimed - reclaimed);
2846
2847 } while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2848
2849 if (reclaim_state) {
2850 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2851 reclaim_state->reclaimed_slab = 0;
2852 }
2853
2854 /* Record the subtree's reclaim efficiency */
2855 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2856 sc->nr_scanned - nr_scanned,
2857 sc->nr_reclaimed - nr_reclaimed);
2858
2859 if (sc->nr_reclaimed - nr_reclaimed)
2860 reclaimable = true;
2861
2862 if (current_is_kswapd()) {
2863 /*
2864 * If reclaim is isolating dirty pages under writeback,
2865 * it implies that the long-lived page allocation rate
2866 * is exceeding the page laundering rate. Either the
2867 * global limits are not being effective at throttling
2868 * processes due to the page distribution throughout
2869 * zones or there is heavy usage of a slow backing
2870 * device. The only option is to throttle from reclaim
2871 * context which is not ideal as there is no guarantee
2872 * the dirtying process is throttled in the same way
2873 * balance_dirty_pages() manages.
2874 *
2875 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2876 * count the number of pages under pages flagged for
2877 * immediate reclaim and stall if any are encountered
2878 * in the nr_immediate check below.
2879 */
2880 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2881 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2882
2883 /*
2884 * Tag a node as congested if all the dirty pages
2885 * scanned were backed by a congested BDI and
2886 * wait_iff_congested will stall.
2887 */
2888 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2889 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2890
2891 /* Allow kswapd to start writing pages during reclaim.*/
2892 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2893 set_bit(PGDAT_DIRTY, &pgdat->flags);
2894
2895 /*
2896 * If kswapd scans pages marked marked for immediate
2897 * reclaim and under writeback (nr_immediate), it
2898 * implies that pages are cycling through the LRU
2899 * faster than they are written so also forcibly stall.
2900 */
2901 if (sc->nr.immediate)
2902 congestion_wait(BLK_RW_ASYNC, HZ/10);
2903 }
2904
2905 /*
2906 * Legacy memcg will stall in page writeback so avoid forcibly
2907 * stalling in wait_iff_congested().
2908 */
2909 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2910 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2911 set_memcg_congestion(pgdat, root, true);
2912
2913 /*
2914 * Stall direct reclaim for IO completions if underlying BDIs
2915 * and node is congested. Allow kswapd to continue until it
2916 * starts encountering unqueued dirty pages or cycling through
2917 * the LRU too quickly.
2918 */
2919 if (!sc->hibernation_mode && !current_is_kswapd() &&
2920 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2921 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2922
2923 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2924 sc));
2925
2926 /*
2927 * Kswapd gives up on balancing particular nodes after too
2928 * many failures to reclaim anything from them and goes to
2929 * sleep. On reclaim progress, reset the failure counter. A
2930 * successful direct reclaim run will revive a dormant kswapd.
2931 */
2932 if (reclaimable)
2933 pgdat->kswapd_failures = 0;
2934
2935 return reclaimable;
2936 }
2937
2938 /*
2939 * Returns true if compaction should go ahead for a costly-order request, or
2940 * the allocation would already succeed without compaction. Return false if we
2941 * should reclaim first.
2942 */
compaction_ready(struct zone * zone,struct scan_control * sc)2943 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2944 {
2945 unsigned long watermark;
2946 enum compact_result suitable;
2947
2948 if (!gfp_compaction_allowed(sc->gfp_mask))
2949 return false;
2950
2951 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2952 if (suitable == COMPACT_SUCCESS)
2953 /* Allocation should succeed already. Don't reclaim. */
2954 return true;
2955 if (suitable == COMPACT_SKIPPED)
2956 /* Compaction cannot yet proceed. Do reclaim. */
2957 return false;
2958
2959 /*
2960 * Compaction is already possible, but it takes time to run and there
2961 * are potentially other callers using the pages just freed. So proceed
2962 * with reclaim to make a buffer of free pages available to give
2963 * compaction a reasonable chance of completing and allocating the page.
2964 * Note that we won't actually reclaim the whole buffer in one attempt
2965 * as the target watermark in should_continue_reclaim() is lower. But if
2966 * we are already above the high+gap watermark, don't reclaim at all.
2967 */
2968 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2969
2970 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2971 }
2972
2973 /*
2974 * This is the direct reclaim path, for page-allocating processes. We only
2975 * try to reclaim pages from zones which will satisfy the caller's allocation
2976 * request.
2977 *
2978 * If a zone is deemed to be full of pinned pages then just give it a light
2979 * scan then give up on it.
2980 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2981 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2982 {
2983 struct zoneref *z;
2984 struct zone *zone;
2985 unsigned long nr_soft_reclaimed;
2986 unsigned long nr_soft_scanned;
2987 gfp_t orig_mask;
2988 pg_data_t *last_pgdat = NULL;
2989
2990 /*
2991 * If the number of buffer_heads in the machine exceeds the maximum
2992 * allowed level, force direct reclaim to scan the highmem zone as
2993 * highmem pages could be pinning lowmem pages storing buffer_heads
2994 */
2995 orig_mask = sc->gfp_mask;
2996 if (buffer_heads_over_limit) {
2997 sc->gfp_mask |= __GFP_HIGHMEM;
2998 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2999 }
3000
3001 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3002 sc->reclaim_idx, sc->nodemask) {
3003 /*
3004 * Take care memory controller reclaiming has small influence
3005 * to global LRU.
3006 */
3007 if (global_reclaim(sc)) {
3008 if (!cpuset_zone_allowed(zone,
3009 GFP_KERNEL | __GFP_HARDWALL))
3010 continue;
3011
3012 /*
3013 * If we already have plenty of memory free for
3014 * compaction in this zone, don't free any more.
3015 * Even though compaction is invoked for any
3016 * non-zero order, only frequent costly order
3017 * reclamation is disruptive enough to become a
3018 * noticeable problem, like transparent huge
3019 * page allocations.
3020 */
3021 if (IS_ENABLED(CONFIG_COMPACTION) &&
3022 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3023 compaction_ready(zone, sc)) {
3024 sc->compaction_ready = true;
3025 continue;
3026 }
3027
3028 /*
3029 * Shrink each node in the zonelist once. If the
3030 * zonelist is ordered by zone (not the default) then a
3031 * node may be shrunk multiple times but in that case
3032 * the user prefers lower zones being preserved.
3033 */
3034 if (zone->zone_pgdat == last_pgdat)
3035 continue;
3036
3037 /*
3038 * This steals pages from memory cgroups over softlimit
3039 * and returns the number of reclaimed pages and
3040 * scanned pages. This works for global memory pressure
3041 * and balancing, not for a memcg's limit.
3042 */
3043 nr_soft_scanned = 0;
3044 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3045 sc->order, sc->gfp_mask,
3046 &nr_soft_scanned);
3047 sc->nr_reclaimed += nr_soft_reclaimed;
3048 sc->nr_scanned += nr_soft_scanned;
3049 /* need some check for avoid more shrink_zone() */
3050 }
3051
3052 /* See comment about same check for global reclaim above */
3053 if (zone->zone_pgdat == last_pgdat)
3054 continue;
3055 last_pgdat = zone->zone_pgdat;
3056 shrink_node(zone->zone_pgdat, sc);
3057 }
3058
3059 /*
3060 * Restore to original mask to avoid the impact on the caller if we
3061 * promoted it to __GFP_HIGHMEM.
3062 */
3063 sc->gfp_mask = orig_mask;
3064 }
3065
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)3066 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3067 {
3068 struct mem_cgroup *memcg;
3069
3070 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3071 do {
3072 unsigned long refaults;
3073 struct lruvec *lruvec;
3074
3075 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3076 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3077 lruvec->refaults = refaults;
3078 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3079 }
3080
3081 /*
3082 * This is the main entry point to direct page reclaim.
3083 *
3084 * If a full scan of the inactive list fails to free enough memory then we
3085 * are "out of memory" and something needs to be killed.
3086 *
3087 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3088 * high - the zone may be full of dirty or under-writeback pages, which this
3089 * caller can't do much about. We kick the writeback threads and take explicit
3090 * naps in the hope that some of these pages can be written. But if the
3091 * allocating task holds filesystem locks which prevent writeout this might not
3092 * work, and the allocation attempt will fail.
3093 *
3094 * returns: 0, if no pages reclaimed
3095 * else, the number of pages reclaimed
3096 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3097 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3098 struct scan_control *sc)
3099 {
3100 int initial_priority = sc->priority;
3101 pg_data_t *last_pgdat;
3102 struct zoneref *z;
3103 struct zone *zone;
3104 retry:
3105 delayacct_freepages_start();
3106
3107 if (global_reclaim(sc))
3108 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3109
3110 do {
3111 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3112 sc->priority);
3113 sc->nr_scanned = 0;
3114 shrink_zones(zonelist, sc);
3115
3116 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3117 break;
3118
3119 if (sc->compaction_ready)
3120 break;
3121
3122 /*
3123 * If we're getting trouble reclaiming, start doing
3124 * writepage even in laptop mode.
3125 */
3126 if (sc->priority < DEF_PRIORITY - 2)
3127 sc->may_writepage = 1;
3128 } while (--sc->priority >= 0);
3129
3130 last_pgdat = NULL;
3131 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3132 sc->nodemask) {
3133 if (zone->zone_pgdat == last_pgdat)
3134 continue;
3135 last_pgdat = zone->zone_pgdat;
3136 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3137 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3138 }
3139
3140 delayacct_freepages_end();
3141
3142 if (sc->nr_reclaimed)
3143 return sc->nr_reclaimed;
3144
3145 /* Aborted reclaim to try compaction? don't OOM, then */
3146 if (sc->compaction_ready)
3147 return 1;
3148
3149 /* Untapped cgroup reserves? Don't OOM, retry. */
3150 if (sc->memcg_low_skipped) {
3151 sc->priority = initial_priority;
3152 sc->memcg_low_reclaim = 1;
3153 sc->memcg_low_skipped = 0;
3154 goto retry;
3155 }
3156
3157 return 0;
3158 }
3159
allow_direct_reclaim(pg_data_t * pgdat)3160 static bool allow_direct_reclaim(pg_data_t *pgdat)
3161 {
3162 struct zone *zone;
3163 unsigned long pfmemalloc_reserve = 0;
3164 unsigned long free_pages = 0;
3165 int i;
3166 bool wmark_ok;
3167
3168 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3169 return true;
3170
3171 for (i = 0; i <= ZONE_NORMAL; i++) {
3172 zone = &pgdat->node_zones[i];
3173 if (!managed_zone(zone))
3174 continue;
3175
3176 if (!zone_reclaimable_pages(zone))
3177 continue;
3178
3179 pfmemalloc_reserve += min_wmark_pages(zone);
3180 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3181 }
3182
3183 /* If there are no reserves (unexpected config) then do not throttle */
3184 if (!pfmemalloc_reserve)
3185 return true;
3186
3187 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3188
3189 /* kswapd must be awake if processes are being throttled */
3190 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3191 if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
3192 WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
3193
3194 wake_up_interruptible(&pgdat->kswapd_wait);
3195 }
3196
3197 return wmark_ok;
3198 }
3199
3200 /*
3201 * Throttle direct reclaimers if backing storage is backed by the network
3202 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3203 * depleted. kswapd will continue to make progress and wake the processes
3204 * when the low watermark is reached.
3205 *
3206 * Returns true if a fatal signal was delivered during throttling. If this
3207 * happens, the page allocator should not consider triggering the OOM killer.
3208 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3209 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3210 nodemask_t *nodemask)
3211 {
3212 struct zoneref *z;
3213 struct zone *zone;
3214 pg_data_t *pgdat = NULL;
3215
3216 /*
3217 * Kernel threads should not be throttled as they may be indirectly
3218 * responsible for cleaning pages necessary for reclaim to make forward
3219 * progress. kjournald for example may enter direct reclaim while
3220 * committing a transaction where throttling it could forcing other
3221 * processes to block on log_wait_commit().
3222 */
3223 if (current->flags & PF_KTHREAD)
3224 goto out;
3225
3226 /*
3227 * If a fatal signal is pending, this process should not throttle.
3228 * It should return quickly so it can exit and free its memory
3229 */
3230 if (fatal_signal_pending(current))
3231 goto out;
3232
3233 /*
3234 * Check if the pfmemalloc reserves are ok by finding the first node
3235 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3236 * GFP_KERNEL will be required for allocating network buffers when
3237 * swapping over the network so ZONE_HIGHMEM is unusable.
3238 *
3239 * Throttling is based on the first usable node and throttled processes
3240 * wait on a queue until kswapd makes progress and wakes them. There
3241 * is an affinity then between processes waking up and where reclaim
3242 * progress has been made assuming the process wakes on the same node.
3243 * More importantly, processes running on remote nodes will not compete
3244 * for remote pfmemalloc reserves and processes on different nodes
3245 * should make reasonable progress.
3246 */
3247 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3248 gfp_zone(gfp_mask), nodemask) {
3249 if (zone_idx(zone) > ZONE_NORMAL)
3250 continue;
3251
3252 /* Throttle based on the first usable node */
3253 pgdat = zone->zone_pgdat;
3254 if (allow_direct_reclaim(pgdat))
3255 goto out;
3256 break;
3257 }
3258
3259 /* If no zone was usable by the allocation flags then do not throttle */
3260 if (!pgdat)
3261 goto out;
3262
3263 /* Account for the throttling */
3264 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3265
3266 /*
3267 * If the caller cannot enter the filesystem, it's possible that it
3268 * is due to the caller holding an FS lock or performing a journal
3269 * transaction in the case of a filesystem like ext[3|4]. In this case,
3270 * it is not safe to block on pfmemalloc_wait as kswapd could be
3271 * blocked waiting on the same lock. Instead, throttle for up to a
3272 * second before continuing.
3273 */
3274 if (!(gfp_mask & __GFP_FS)) {
3275 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3276 allow_direct_reclaim(pgdat), HZ);
3277
3278 goto check_pending;
3279 }
3280
3281 /* Throttle until kswapd wakes the process */
3282 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3283 allow_direct_reclaim(pgdat));
3284
3285 check_pending:
3286 if (fatal_signal_pending(current))
3287 return true;
3288
3289 out:
3290 return false;
3291 }
3292
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3293 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3294 gfp_t gfp_mask, nodemask_t *nodemask)
3295 {
3296 unsigned long nr_reclaimed;
3297 struct scan_control sc = {
3298 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3299 .gfp_mask = current_gfp_context(gfp_mask),
3300 .reclaim_idx = gfp_zone(gfp_mask),
3301 .order = order,
3302 .nodemask = nodemask,
3303 .priority = DEF_PRIORITY,
3304 .may_writepage = !laptop_mode,
3305 .may_unmap = 1,
3306 .may_swap = 1,
3307 };
3308
3309 /*
3310 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3311 * Confirm they are large enough for max values.
3312 */
3313 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3314 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3315 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3316
3317 /*
3318 * Do not enter reclaim if fatal signal was delivered while throttled.
3319 * 1 is returned so that the page allocator does not OOM kill at this
3320 * point.
3321 */
3322 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3323 return 1;
3324
3325 set_task_reclaim_state(current, &sc.reclaim_state);
3326 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3327
3328 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3329
3330 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3331 set_task_reclaim_state(current, NULL);
3332
3333 return nr_reclaimed;
3334 }
3335
3336 #ifdef CONFIG_MEMCG
3337
3338 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3339 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3340 gfp_t gfp_mask, bool noswap,
3341 pg_data_t *pgdat,
3342 unsigned long *nr_scanned)
3343 {
3344 struct scan_control sc = {
3345 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3346 .target_mem_cgroup = memcg,
3347 .may_writepage = !laptop_mode,
3348 .may_unmap = 1,
3349 .reclaim_idx = MAX_NR_ZONES - 1,
3350 .may_swap = !noswap,
3351 };
3352 unsigned long lru_pages;
3353
3354 WARN_ON_ONCE(!current->reclaim_state);
3355
3356 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3357 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3358
3359 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3360 sc.gfp_mask);
3361
3362 /*
3363 * NOTE: Although we can get the priority field, using it
3364 * here is not a good idea, since it limits the pages we can scan.
3365 * if we don't reclaim here, the shrink_node from balance_pgdat
3366 * will pick up pages from other mem cgroup's as well. We hack
3367 * the priority and make it zero.
3368 */
3369 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3370
3371 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3372
3373 *nr_scanned = sc.nr_scanned;
3374
3375 return sc.nr_reclaimed;
3376 }
3377
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3378 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3379 unsigned long nr_pages,
3380 gfp_t gfp_mask,
3381 bool may_swap)
3382 {
3383 struct zonelist *zonelist;
3384 unsigned long nr_reclaimed;
3385 unsigned long pflags;
3386 int nid;
3387 unsigned int noreclaim_flag;
3388 struct scan_control sc = {
3389 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3390 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3391 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3392 .reclaim_idx = MAX_NR_ZONES - 1,
3393 .target_mem_cgroup = memcg,
3394 .priority = DEF_PRIORITY,
3395 .may_writepage = !laptop_mode,
3396 .may_unmap = 1,
3397 .may_swap = may_swap,
3398 };
3399
3400 set_task_reclaim_state(current, &sc.reclaim_state);
3401 /*
3402 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3403 * take care of from where we get pages. So the node where we start the
3404 * scan does not need to be the current node.
3405 */
3406 nid = mem_cgroup_select_victim_node(memcg);
3407
3408 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3409
3410 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3411
3412 psi_memstall_enter(&pflags);
3413 noreclaim_flag = memalloc_noreclaim_save();
3414
3415 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3416
3417 memalloc_noreclaim_restore(noreclaim_flag);
3418 psi_memstall_leave(&pflags);
3419
3420 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3421 set_task_reclaim_state(current, NULL);
3422
3423 return nr_reclaimed;
3424 }
3425 #endif
3426
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3427 static void age_active_anon(struct pglist_data *pgdat,
3428 struct scan_control *sc)
3429 {
3430 struct mem_cgroup *memcg;
3431
3432 if (!total_swap_pages)
3433 return;
3434
3435 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3436 do {
3437 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3438
3439 if (inactive_list_is_low(lruvec, false, sc, true))
3440 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3441 sc, LRU_ACTIVE_ANON);
3442
3443 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3444 } while (memcg);
3445 }
3446
pgdat_watermark_boosted(pg_data_t * pgdat,int classzone_idx)3447 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3448 {
3449 int i;
3450 struct zone *zone;
3451
3452 /*
3453 * Check for watermark boosts top-down as the higher zones
3454 * are more likely to be boosted. Both watermarks and boosts
3455 * should not be checked at the time time as reclaim would
3456 * start prematurely when there is no boosting and a lower
3457 * zone is balanced.
3458 */
3459 for (i = classzone_idx; i >= 0; i--) {
3460 zone = pgdat->node_zones + i;
3461 if (!managed_zone(zone))
3462 continue;
3463
3464 if (zone->watermark_boost)
3465 return true;
3466 }
3467
3468 return false;
3469 }
3470
3471 /*
3472 * Returns true if there is an eligible zone balanced for the request order
3473 * and classzone_idx
3474 */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3475 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3476 {
3477 int i;
3478 unsigned long mark = -1;
3479 struct zone *zone;
3480
3481 /*
3482 * Check watermarks bottom-up as lower zones are more likely to
3483 * meet watermarks.
3484 */
3485 for (i = 0; i <= classzone_idx; i++) {
3486 zone = pgdat->node_zones + i;
3487
3488 if (!managed_zone(zone))
3489 continue;
3490
3491 mark = high_wmark_pages(zone);
3492 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3493 return true;
3494 }
3495
3496 /*
3497 * If a node has no populated zone within classzone_idx, it does not
3498 * need balancing by definition. This can happen if a zone-restricted
3499 * allocation tries to wake a remote kswapd.
3500 */
3501 if (mark == -1)
3502 return true;
3503
3504 return false;
3505 }
3506
3507 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3508 static void clear_pgdat_congested(pg_data_t *pgdat)
3509 {
3510 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3511 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3512 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3513 }
3514
3515 /*
3516 * Prepare kswapd for sleeping. This verifies that there are no processes
3517 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3518 *
3519 * Returns true if kswapd is ready to sleep
3520 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3521 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3522 {
3523 /*
3524 * The throttled processes are normally woken up in balance_pgdat() as
3525 * soon as allow_direct_reclaim() is true. But there is a potential
3526 * race between when kswapd checks the watermarks and a process gets
3527 * throttled. There is also a potential race if processes get
3528 * throttled, kswapd wakes, a large process exits thereby balancing the
3529 * zones, which causes kswapd to exit balance_pgdat() before reaching
3530 * the wake up checks. If kswapd is going to sleep, no process should
3531 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3532 * the wake up is premature, processes will wake kswapd and get
3533 * throttled again. The difference from wake ups in balance_pgdat() is
3534 * that here we are under prepare_to_wait().
3535 */
3536 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3537 wake_up_all(&pgdat->pfmemalloc_wait);
3538
3539 /* Hopeless node, leave it to direct reclaim */
3540 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3541 return true;
3542
3543 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3544 clear_pgdat_congested(pgdat);
3545 return true;
3546 }
3547
3548 return false;
3549 }
3550
3551 /*
3552 * kswapd shrinks a node of pages that are at or below the highest usable
3553 * zone that is currently unbalanced.
3554 *
3555 * Returns true if kswapd scanned at least the requested number of pages to
3556 * reclaim or if the lack of progress was due to pages under writeback.
3557 * This is used to determine if the scanning priority needs to be raised.
3558 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3559 static bool kswapd_shrink_node(pg_data_t *pgdat,
3560 struct scan_control *sc)
3561 {
3562 struct zone *zone;
3563 int z;
3564
3565 /* Reclaim a number of pages proportional to the number of zones */
3566 sc->nr_to_reclaim = 0;
3567 for (z = 0; z <= sc->reclaim_idx; z++) {
3568 zone = pgdat->node_zones + z;
3569 if (!managed_zone(zone))
3570 continue;
3571
3572 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3573 }
3574
3575 /*
3576 * Historically care was taken to put equal pressure on all zones but
3577 * now pressure is applied based on node LRU order.
3578 */
3579 shrink_node(pgdat, sc);
3580
3581 /*
3582 * Fragmentation may mean that the system cannot be rebalanced for
3583 * high-order allocations. If twice the allocation size has been
3584 * reclaimed then recheck watermarks only at order-0 to prevent
3585 * excessive reclaim. Assume that a process requested a high-order
3586 * can direct reclaim/compact.
3587 */
3588 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3589 sc->order = 0;
3590
3591 return sc->nr_scanned >= sc->nr_to_reclaim;
3592 }
3593
3594 /*
3595 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3596 * that are eligible for use by the caller until at least one zone is
3597 * balanced.
3598 *
3599 * Returns the order kswapd finished reclaiming at.
3600 *
3601 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3602 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3603 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3604 * or lower is eligible for reclaim until at least one usable zone is
3605 * balanced.
3606 */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3607 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3608 {
3609 int i;
3610 unsigned long nr_soft_reclaimed;
3611 unsigned long nr_soft_scanned;
3612 unsigned long pflags;
3613 unsigned long nr_boost_reclaim;
3614 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3615 bool boosted;
3616 struct zone *zone;
3617 struct scan_control sc = {
3618 .gfp_mask = GFP_KERNEL,
3619 .order = order,
3620 .may_unmap = 1,
3621 };
3622
3623 set_task_reclaim_state(current, &sc.reclaim_state);
3624 psi_memstall_enter(&pflags);
3625 __fs_reclaim_acquire();
3626
3627 count_vm_event(PAGEOUTRUN);
3628
3629 /*
3630 * Account for the reclaim boost. Note that the zone boost is left in
3631 * place so that parallel allocations that are near the watermark will
3632 * stall or direct reclaim until kswapd is finished.
3633 */
3634 nr_boost_reclaim = 0;
3635 for (i = 0; i <= classzone_idx; i++) {
3636 zone = pgdat->node_zones + i;
3637 if (!managed_zone(zone))
3638 continue;
3639
3640 nr_boost_reclaim += zone->watermark_boost;
3641 zone_boosts[i] = zone->watermark_boost;
3642 }
3643 boosted = nr_boost_reclaim;
3644
3645 restart:
3646 sc.priority = DEF_PRIORITY;
3647 do {
3648 unsigned long nr_reclaimed = sc.nr_reclaimed;
3649 bool raise_priority = true;
3650 bool balanced;
3651 bool ret;
3652
3653 sc.reclaim_idx = classzone_idx;
3654
3655 /*
3656 * If the number of buffer_heads exceeds the maximum allowed
3657 * then consider reclaiming from all zones. This has a dual
3658 * purpose -- on 64-bit systems it is expected that
3659 * buffer_heads are stripped during active rotation. On 32-bit
3660 * systems, highmem pages can pin lowmem memory and shrinking
3661 * buffers can relieve lowmem pressure. Reclaim may still not
3662 * go ahead if all eligible zones for the original allocation
3663 * request are balanced to avoid excessive reclaim from kswapd.
3664 */
3665 if (buffer_heads_over_limit) {
3666 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3667 zone = pgdat->node_zones + i;
3668 if (!managed_zone(zone))
3669 continue;
3670
3671 sc.reclaim_idx = i;
3672 break;
3673 }
3674 }
3675
3676 /*
3677 * If the pgdat is imbalanced then ignore boosting and preserve
3678 * the watermarks for a later time and restart. Note that the
3679 * zone watermarks will be still reset at the end of balancing
3680 * on the grounds that the normal reclaim should be enough to
3681 * re-evaluate if boosting is required when kswapd next wakes.
3682 */
3683 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3684 if (!balanced && nr_boost_reclaim) {
3685 nr_boost_reclaim = 0;
3686 goto restart;
3687 }
3688
3689 /*
3690 * If boosting is not active then only reclaim if there are no
3691 * eligible zones. Note that sc.reclaim_idx is not used as
3692 * buffer_heads_over_limit may have adjusted it.
3693 */
3694 if (!nr_boost_reclaim && balanced)
3695 goto out;
3696
3697 /* Limit the priority of boosting to avoid reclaim writeback */
3698 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3699 raise_priority = false;
3700
3701 /*
3702 * Do not writeback or swap pages for boosted reclaim. The
3703 * intent is to relieve pressure not issue sub-optimal IO
3704 * from reclaim context. If no pages are reclaimed, the
3705 * reclaim will be aborted.
3706 */
3707 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3708 sc.may_swap = !nr_boost_reclaim;
3709
3710 /*
3711 * Do some background aging of the anon list, to give
3712 * pages a chance to be referenced before reclaiming. All
3713 * pages are rotated regardless of classzone as this is
3714 * about consistent aging.
3715 */
3716 age_active_anon(pgdat, &sc);
3717
3718 /*
3719 * If we're getting trouble reclaiming, start doing writepage
3720 * even in laptop mode.
3721 */
3722 if (sc.priority < DEF_PRIORITY - 2)
3723 sc.may_writepage = 1;
3724
3725 /* Call soft limit reclaim before calling shrink_node. */
3726 sc.nr_scanned = 0;
3727 nr_soft_scanned = 0;
3728 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3729 sc.gfp_mask, &nr_soft_scanned);
3730 sc.nr_reclaimed += nr_soft_reclaimed;
3731
3732 /*
3733 * There should be no need to raise the scanning priority if
3734 * enough pages are already being scanned that that high
3735 * watermark would be met at 100% efficiency.
3736 */
3737 if (kswapd_shrink_node(pgdat, &sc))
3738 raise_priority = false;
3739
3740 /*
3741 * If the low watermark is met there is no need for processes
3742 * to be throttled on pfmemalloc_wait as they should not be
3743 * able to safely make forward progress. Wake them
3744 */
3745 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3746 allow_direct_reclaim(pgdat))
3747 wake_up_all(&pgdat->pfmemalloc_wait);
3748
3749 /* Check if kswapd should be suspending */
3750 __fs_reclaim_release();
3751 ret = try_to_freeze();
3752 __fs_reclaim_acquire();
3753 if (ret || kthread_should_stop())
3754 break;
3755
3756 /*
3757 * Raise priority if scanning rate is too low or there was no
3758 * progress in reclaiming pages
3759 */
3760 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3761 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3762
3763 /*
3764 * If reclaim made no progress for a boost, stop reclaim as
3765 * IO cannot be queued and it could be an infinite loop in
3766 * extreme circumstances.
3767 */
3768 if (nr_boost_reclaim && !nr_reclaimed)
3769 break;
3770
3771 if (raise_priority || !nr_reclaimed)
3772 sc.priority--;
3773 } while (sc.priority >= 1);
3774
3775 if (!sc.nr_reclaimed)
3776 pgdat->kswapd_failures++;
3777
3778 out:
3779 /* If reclaim was boosted, account for the reclaim done in this pass */
3780 if (boosted) {
3781 unsigned long flags;
3782
3783 for (i = 0; i <= classzone_idx; i++) {
3784 if (!zone_boosts[i])
3785 continue;
3786
3787 /* Increments are under the zone lock */
3788 zone = pgdat->node_zones + i;
3789 spin_lock_irqsave(&zone->lock, flags);
3790 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3791 spin_unlock_irqrestore(&zone->lock, flags);
3792 }
3793
3794 /*
3795 * As there is now likely space, wakeup kcompact to defragment
3796 * pageblocks.
3797 */
3798 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3799 }
3800
3801 snapshot_refaults(NULL, pgdat);
3802 __fs_reclaim_release();
3803 psi_memstall_leave(&pflags);
3804 set_task_reclaim_state(current, NULL);
3805
3806 /*
3807 * Return the order kswapd stopped reclaiming at as
3808 * prepare_kswapd_sleep() takes it into account. If another caller
3809 * entered the allocator slow path while kswapd was awake, order will
3810 * remain at the higher level.
3811 */
3812 return sc.order;
3813 }
3814
3815 /*
3816 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3817 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3818 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3819 * after previous reclaim attempt (node is still unbalanced). In that case
3820 * return the zone index of the previous kswapd reclaim cycle.
3821 */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type prev_classzone_idx)3822 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3823 enum zone_type prev_classzone_idx)
3824 {
3825 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3826
3827 return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3828 }
3829
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3830 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3831 unsigned int classzone_idx)
3832 {
3833 long remaining = 0;
3834 DEFINE_WAIT(wait);
3835
3836 if (freezing(current) || kthread_should_stop())
3837 return;
3838
3839 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3840
3841 /*
3842 * Try to sleep for a short interval. Note that kcompactd will only be
3843 * woken if it is possible to sleep for a short interval. This is
3844 * deliberate on the assumption that if reclaim cannot keep an
3845 * eligible zone balanced that it's also unlikely that compaction will
3846 * succeed.
3847 */
3848 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3849 /*
3850 * Compaction records what page blocks it recently failed to
3851 * isolate pages from and skips them in the future scanning.
3852 * When kswapd is going to sleep, it is reasonable to assume
3853 * that pages and compaction may succeed so reset the cache.
3854 */
3855 reset_isolation_suitable(pgdat);
3856
3857 /*
3858 * We have freed the memory, now we should compact it to make
3859 * allocation of the requested order possible.
3860 */
3861 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3862
3863 remaining = schedule_timeout(HZ/10);
3864
3865 /*
3866 * If woken prematurely then reset kswapd_classzone_idx and
3867 * order. The values will either be from a wakeup request or
3868 * the previous request that slept prematurely.
3869 */
3870 if (remaining) {
3871 WRITE_ONCE(pgdat->kswapd_classzone_idx,
3872 kswapd_classzone_idx(pgdat, classzone_idx));
3873
3874 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3875 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3876 }
3877
3878 finish_wait(&pgdat->kswapd_wait, &wait);
3879 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3880 }
3881
3882 /*
3883 * After a short sleep, check if it was a premature sleep. If not, then
3884 * go fully to sleep until explicitly woken up.
3885 */
3886 if (!remaining &&
3887 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3888 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3889
3890 /*
3891 * vmstat counters are not perfectly accurate and the estimated
3892 * value for counters such as NR_FREE_PAGES can deviate from the
3893 * true value by nr_online_cpus * threshold. To avoid the zone
3894 * watermarks being breached while under pressure, we reduce the
3895 * per-cpu vmstat threshold while kswapd is awake and restore
3896 * them before going back to sleep.
3897 */
3898 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3899
3900 if (!kthread_should_stop())
3901 schedule();
3902
3903 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3904 } else {
3905 if (remaining)
3906 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3907 else
3908 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3909 }
3910 finish_wait(&pgdat->kswapd_wait, &wait);
3911 }
3912
3913 /*
3914 * The background pageout daemon, started as a kernel thread
3915 * from the init process.
3916 *
3917 * This basically trickles out pages so that we have _some_
3918 * free memory available even if there is no other activity
3919 * that frees anything up. This is needed for things like routing
3920 * etc, where we otherwise might have all activity going on in
3921 * asynchronous contexts that cannot page things out.
3922 *
3923 * If there are applications that are active memory-allocators
3924 * (most normal use), this basically shouldn't matter.
3925 */
kswapd(void * p)3926 static int kswapd(void *p)
3927 {
3928 unsigned int alloc_order, reclaim_order;
3929 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3930 pg_data_t *pgdat = (pg_data_t*)p;
3931 struct task_struct *tsk = current;
3932 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3933
3934 if (!cpumask_empty(cpumask))
3935 set_cpus_allowed_ptr(tsk, cpumask);
3936
3937 /*
3938 * Tell the memory management that we're a "memory allocator",
3939 * and that if we need more memory we should get access to it
3940 * regardless (see "__alloc_pages()"). "kswapd" should
3941 * never get caught in the normal page freeing logic.
3942 *
3943 * (Kswapd normally doesn't need memory anyway, but sometimes
3944 * you need a small amount of memory in order to be able to
3945 * page out something else, and this flag essentially protects
3946 * us from recursively trying to free more memory as we're
3947 * trying to free the first piece of memory in the first place).
3948 */
3949 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3950 set_freezable();
3951
3952 WRITE_ONCE(pgdat->kswapd_order, 0);
3953 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3954 for ( ; ; ) {
3955 bool ret;
3956
3957 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3958 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3959
3960 kswapd_try_sleep:
3961 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3962 classzone_idx);
3963
3964 /* Read the new order and classzone_idx */
3965 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3966 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3967 WRITE_ONCE(pgdat->kswapd_order, 0);
3968 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3969
3970 ret = try_to_freeze();
3971 if (kthread_should_stop())
3972 break;
3973
3974 /*
3975 * We can speed up thawing tasks if we don't call balance_pgdat
3976 * after returning from the refrigerator
3977 */
3978 if (ret)
3979 continue;
3980
3981 /*
3982 * Reclaim begins at the requested order but if a high-order
3983 * reclaim fails then kswapd falls back to reclaiming for
3984 * order-0. If that happens, kswapd will consider sleeping
3985 * for the order it finished reclaiming at (reclaim_order)
3986 * but kcompactd is woken to compact for the original
3987 * request (alloc_order).
3988 */
3989 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3990 alloc_order);
3991 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3992 if (reclaim_order < alloc_order)
3993 goto kswapd_try_sleep;
3994 }
3995
3996 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3997
3998 return 0;
3999 }
4000
4001 /*
4002 * A zone is low on free memory or too fragmented for high-order memory. If
4003 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4004 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4005 * has failed or is not needed, still wake up kcompactd if only compaction is
4006 * needed.
4007 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type classzone_idx)4008 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4009 enum zone_type classzone_idx)
4010 {
4011 pg_data_t *pgdat;
4012 enum zone_type curr_idx;
4013
4014 if (!managed_zone(zone))
4015 return;
4016
4017 if (!cpuset_zone_allowed(zone, gfp_flags))
4018 return;
4019
4020 pgdat = zone->zone_pgdat;
4021 curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
4022
4023 if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
4024 WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
4025
4026 if (READ_ONCE(pgdat->kswapd_order) < order)
4027 WRITE_ONCE(pgdat->kswapd_order, order);
4028
4029 if (!waitqueue_active(&pgdat->kswapd_wait))
4030 return;
4031
4032 /* Hopeless node, leave it to direct reclaim if possible */
4033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4034 (pgdat_balanced(pgdat, order, classzone_idx) &&
4035 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
4036 /*
4037 * There may be plenty of free memory available, but it's too
4038 * fragmented for high-order allocations. Wake up kcompactd
4039 * and rely on compaction_suitable() to determine if it's
4040 * needed. If it fails, it will defer subsequent attempts to
4041 * ratelimit its work.
4042 */
4043 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4044 wakeup_kcompactd(pgdat, order, classzone_idx);
4045 return;
4046 }
4047
4048 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4049 gfp_flags);
4050 wake_up_interruptible(&pgdat->kswapd_wait);
4051 }
4052
4053 #ifdef CONFIG_HIBERNATION
4054 /*
4055 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4056 * freed pages.
4057 *
4058 * Rather than trying to age LRUs the aim is to preserve the overall
4059 * LRU order by reclaiming preferentially
4060 * inactive > active > active referenced > active mapped
4061 */
shrink_all_memory(unsigned long nr_to_reclaim)4062 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4063 {
4064 struct scan_control sc = {
4065 .nr_to_reclaim = nr_to_reclaim,
4066 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4067 .reclaim_idx = MAX_NR_ZONES - 1,
4068 .priority = DEF_PRIORITY,
4069 .may_writepage = 1,
4070 .may_unmap = 1,
4071 .may_swap = 1,
4072 .hibernation_mode = 1,
4073 };
4074 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4075 unsigned long nr_reclaimed;
4076 unsigned int noreclaim_flag;
4077
4078 fs_reclaim_acquire(sc.gfp_mask);
4079 noreclaim_flag = memalloc_noreclaim_save();
4080 set_task_reclaim_state(current, &sc.reclaim_state);
4081
4082 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4083
4084 set_task_reclaim_state(current, NULL);
4085 memalloc_noreclaim_restore(noreclaim_flag);
4086 fs_reclaim_release(sc.gfp_mask);
4087
4088 return nr_reclaimed;
4089 }
4090 #endif /* CONFIG_HIBERNATION */
4091
4092 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4093 not required for correctness. So if the last cpu in a node goes
4094 away, we get changed to run anywhere: as the first one comes back,
4095 restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)4096 static int kswapd_cpu_online(unsigned int cpu)
4097 {
4098 int nid;
4099
4100 for_each_node_state(nid, N_MEMORY) {
4101 pg_data_t *pgdat = NODE_DATA(nid);
4102 const struct cpumask *mask;
4103
4104 mask = cpumask_of_node(pgdat->node_id);
4105
4106 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4107 /* One of our CPUs online: restore mask */
4108 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4109 }
4110 return 0;
4111 }
4112
4113 /*
4114 * This kswapd start function will be called by init and node-hot-add.
4115 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4116 */
kswapd_run(int nid)4117 int kswapd_run(int nid)
4118 {
4119 pg_data_t *pgdat = NODE_DATA(nid);
4120 int ret = 0;
4121
4122 if (pgdat->kswapd)
4123 return 0;
4124
4125 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4126 if (IS_ERR(pgdat->kswapd)) {
4127 /* failure at boot is fatal */
4128 BUG_ON(system_state < SYSTEM_RUNNING);
4129 pr_err("Failed to start kswapd on node %d\n", nid);
4130 ret = PTR_ERR(pgdat->kswapd);
4131 pgdat->kswapd = NULL;
4132 }
4133 return ret;
4134 }
4135
4136 /*
4137 * Called by memory hotplug when all memory in a node is offlined. Caller must
4138 * hold mem_hotplug_begin/end().
4139 */
kswapd_stop(int nid)4140 void kswapd_stop(int nid)
4141 {
4142 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4143
4144 if (kswapd) {
4145 kthread_stop(kswapd);
4146 NODE_DATA(nid)->kswapd = NULL;
4147 }
4148 }
4149
kswapd_init(void)4150 static int __init kswapd_init(void)
4151 {
4152 int nid, ret;
4153
4154 swap_setup();
4155 for_each_node_state(nid, N_MEMORY)
4156 kswapd_run(nid);
4157 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4158 "mm/vmscan:online", kswapd_cpu_online,
4159 NULL);
4160 WARN_ON(ret < 0);
4161 return 0;
4162 }
4163
4164 module_init(kswapd_init)
4165
4166 #ifdef CONFIG_NUMA
4167 /*
4168 * Node reclaim mode
4169 *
4170 * If non-zero call node_reclaim when the number of free pages falls below
4171 * the watermarks.
4172 */
4173 int node_reclaim_mode __read_mostly;
4174
4175 #define RECLAIM_OFF 0
4176 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4177 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4178 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4179
4180 /*
4181 * Priority for NODE_RECLAIM. This determines the fraction of pages
4182 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4183 * a zone.
4184 */
4185 #define NODE_RECLAIM_PRIORITY 4
4186
4187 /*
4188 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4189 * occur.
4190 */
4191 int sysctl_min_unmapped_ratio = 1;
4192
4193 /*
4194 * If the number of slab pages in a zone grows beyond this percentage then
4195 * slab reclaim needs to occur.
4196 */
4197 int sysctl_min_slab_ratio = 5;
4198
node_unmapped_file_pages(struct pglist_data * pgdat)4199 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4200 {
4201 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4202 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4203 node_page_state(pgdat, NR_ACTIVE_FILE);
4204
4205 /*
4206 * It's possible for there to be more file mapped pages than
4207 * accounted for by the pages on the file LRU lists because
4208 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4209 */
4210 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4211 }
4212
4213 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4214 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4215 {
4216 unsigned long nr_pagecache_reclaimable;
4217 unsigned long delta = 0;
4218
4219 /*
4220 * If RECLAIM_UNMAP is set, then all file pages are considered
4221 * potentially reclaimable. Otherwise, we have to worry about
4222 * pages like swapcache and node_unmapped_file_pages() provides
4223 * a better estimate
4224 */
4225 if (node_reclaim_mode & RECLAIM_UNMAP)
4226 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4227 else
4228 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4229
4230 /* If we can't clean pages, remove dirty pages from consideration */
4231 if (!(node_reclaim_mode & RECLAIM_WRITE))
4232 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4233
4234 /* Watch for any possible underflows due to delta */
4235 if (unlikely(delta > nr_pagecache_reclaimable))
4236 delta = nr_pagecache_reclaimable;
4237
4238 return nr_pagecache_reclaimable - delta;
4239 }
4240
4241 /*
4242 * Try to free up some pages from this node through reclaim.
4243 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4244 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4245 {
4246 /* Minimum pages needed in order to stay on node */
4247 const unsigned long nr_pages = 1 << order;
4248 struct task_struct *p = current;
4249 unsigned int noreclaim_flag;
4250 struct scan_control sc = {
4251 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4252 .gfp_mask = current_gfp_context(gfp_mask),
4253 .order = order,
4254 .priority = NODE_RECLAIM_PRIORITY,
4255 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4256 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4257 .may_swap = 1,
4258 .reclaim_idx = gfp_zone(gfp_mask),
4259 };
4260
4261 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4262 sc.gfp_mask);
4263
4264 cond_resched();
4265 fs_reclaim_acquire(sc.gfp_mask);
4266 /*
4267 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4268 * and we also need to be able to write out pages for RECLAIM_WRITE
4269 * and RECLAIM_UNMAP.
4270 */
4271 noreclaim_flag = memalloc_noreclaim_save();
4272 p->flags |= PF_SWAPWRITE;
4273 set_task_reclaim_state(p, &sc.reclaim_state);
4274
4275 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4276 /*
4277 * Free memory by calling shrink node with increasing
4278 * priorities until we have enough memory freed.
4279 */
4280 do {
4281 shrink_node(pgdat, &sc);
4282 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4283 }
4284
4285 set_task_reclaim_state(p, NULL);
4286 current->flags &= ~PF_SWAPWRITE;
4287 memalloc_noreclaim_restore(noreclaim_flag);
4288 fs_reclaim_release(sc.gfp_mask);
4289
4290 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4291
4292 return sc.nr_reclaimed >= nr_pages;
4293 }
4294
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4295 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4296 {
4297 int ret;
4298
4299 /*
4300 * Node reclaim reclaims unmapped file backed pages and
4301 * slab pages if we are over the defined limits.
4302 *
4303 * A small portion of unmapped file backed pages is needed for
4304 * file I/O otherwise pages read by file I/O will be immediately
4305 * thrown out if the node is overallocated. So we do not reclaim
4306 * if less than a specified percentage of the node is used by
4307 * unmapped file backed pages.
4308 */
4309 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4310 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4311 return NODE_RECLAIM_FULL;
4312
4313 /*
4314 * Do not scan if the allocation should not be delayed.
4315 */
4316 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4317 return NODE_RECLAIM_NOSCAN;
4318
4319 /*
4320 * Only run node reclaim on the local node or on nodes that do not
4321 * have associated processors. This will favor the local processor
4322 * over remote processors and spread off node memory allocations
4323 * as wide as possible.
4324 */
4325 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4326 return NODE_RECLAIM_NOSCAN;
4327
4328 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4329 return NODE_RECLAIM_NOSCAN;
4330
4331 ret = __node_reclaim(pgdat, gfp_mask, order);
4332 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4333
4334 if (!ret)
4335 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4336
4337 return ret;
4338 }
4339 #endif
4340
4341 /*
4342 * page_evictable - test whether a page is evictable
4343 * @page: the page to test
4344 *
4345 * Test whether page is evictable--i.e., should be placed on active/inactive
4346 * lists vs unevictable list.
4347 *
4348 * Reasons page might not be evictable:
4349 * (1) page's mapping marked unevictable
4350 * (2) page is part of an mlocked VMA
4351 *
4352 */
page_evictable(struct page * page)4353 int page_evictable(struct page *page)
4354 {
4355 int ret;
4356
4357 /* Prevent address_space of inode and swap cache from being freed */
4358 rcu_read_lock();
4359 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4360 rcu_read_unlock();
4361 return ret;
4362 }
4363
4364 /**
4365 * check_move_unevictable_pages - check pages for evictability and move to
4366 * appropriate zone lru list
4367 * @pvec: pagevec with lru pages to check
4368 *
4369 * Checks pages for evictability, if an evictable page is in the unevictable
4370 * lru list, moves it to the appropriate evictable lru list. This function
4371 * should be only used for lru pages.
4372 */
check_move_unevictable_pages(struct pagevec * pvec)4373 void check_move_unevictable_pages(struct pagevec *pvec)
4374 {
4375 struct lruvec *lruvec;
4376 struct pglist_data *pgdat = NULL;
4377 int pgscanned = 0;
4378 int pgrescued = 0;
4379 int i;
4380
4381 for (i = 0; i < pvec->nr; i++) {
4382 struct page *page = pvec->pages[i];
4383 struct pglist_data *pagepgdat = page_pgdat(page);
4384
4385 pgscanned++;
4386 if (pagepgdat != pgdat) {
4387 if (pgdat)
4388 spin_unlock_irq(&pgdat->lru_lock);
4389 pgdat = pagepgdat;
4390 spin_lock_irq(&pgdat->lru_lock);
4391 }
4392 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4393
4394 if (!PageLRU(page) || !PageUnevictable(page))
4395 continue;
4396
4397 if (page_evictable(page)) {
4398 enum lru_list lru = page_lru_base_type(page);
4399
4400 VM_BUG_ON_PAGE(PageActive(page), page);
4401 ClearPageUnevictable(page);
4402 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4403 add_page_to_lru_list(page, lruvec, lru);
4404 pgrescued++;
4405 }
4406 }
4407
4408 if (pgdat) {
4409 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4410 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4411 spin_unlock_irq(&pgdat->lru_lock);
4412 }
4413 }
4414 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4415