• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/*
92 	 * Cgroup memory below memory.low is protected as long as we
93 	 * don't threaten to OOM. If any cgroup is reclaimed at
94 	 * reduced force or passed over entirely due to its memory.low
95 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
96 	 * result, then go back for one more cycle that reclaims the protected
97 	 * memory (memcg_low_reclaim) to avert OOM.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 
135 	/* for recording the reclaimed slab by now */
136 	struct reclaim_state reclaim_state;
137 };
138 
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field)			\
141 	do {								\
142 		if ((_page)->lru.prev != _base) {			\
143 			struct page *prev;				\
144 									\
145 			prev = lru_to_page(&(_page->lru));		\
146 			prefetch(&prev->_field);			\
147 		}							\
148 	} while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 100.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 /*
172  * The total number of pages which are beyond the high watermark within all
173  * zones.
174  */
175 unsigned long vm_total_pages;
176 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)177 static void set_task_reclaim_state(struct task_struct *task,
178 				   struct reclaim_state *rs)
179 {
180 	/* Check for an overwrite */
181 	WARN_ON_ONCE(rs && task->reclaim_state);
182 
183 	/* Check for the nulling of an already-nulled member */
184 	WARN_ON_ONCE(!rs && !task->reclaim_state);
185 
186 	task->reclaim_state = rs;
187 }
188 
189 static LIST_HEAD(shrinker_list);
190 static DECLARE_RWSEM(shrinker_rwsem);
191 
192 #ifdef CONFIG_MEMCG
193 /*
194  * We allow subsystems to populate their shrinker-related
195  * LRU lists before register_shrinker_prepared() is called
196  * for the shrinker, since we don't want to impose
197  * restrictions on their internal registration order.
198  * In this case shrink_slab_memcg() may find corresponding
199  * bit is set in the shrinkers map.
200  *
201  * This value is used by the function to detect registering
202  * shrinkers and to skip do_shrink_slab() calls for them.
203  */
204 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
205 
206 static DEFINE_IDR(shrinker_idr);
207 static int shrinker_nr_max;
208 
prealloc_memcg_shrinker(struct shrinker * shrinker)209 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
210 {
211 	int id, ret = -ENOMEM;
212 
213 	down_write(&shrinker_rwsem);
214 	/* This may call shrinker, so it must use down_read_trylock() */
215 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
216 	if (id < 0)
217 		goto unlock;
218 
219 	if (id >= shrinker_nr_max) {
220 		if (memcg_expand_shrinker_maps(id)) {
221 			idr_remove(&shrinker_idr, id);
222 			goto unlock;
223 		}
224 
225 		shrinker_nr_max = id + 1;
226 	}
227 	shrinker->id = id;
228 	ret = 0;
229 unlock:
230 	up_write(&shrinker_rwsem);
231 	return ret;
232 }
233 
unregister_memcg_shrinker(struct shrinker * shrinker)234 static void unregister_memcg_shrinker(struct shrinker *shrinker)
235 {
236 	int id = shrinker->id;
237 
238 	BUG_ON(id < 0);
239 
240 	down_write(&shrinker_rwsem);
241 	idr_remove(&shrinker_idr, id);
242 	up_write(&shrinker_rwsem);
243 }
244 
global_reclaim(struct scan_control * sc)245 static bool global_reclaim(struct scan_control *sc)
246 {
247 	return !sc->target_mem_cgroup;
248 }
249 
250 /**
251  * sane_reclaim - is the usual dirty throttling mechanism operational?
252  * @sc: scan_control in question
253  *
254  * The normal page dirty throttling mechanism in balance_dirty_pages() is
255  * completely broken with the legacy memcg and direct stalling in
256  * shrink_page_list() is used for throttling instead, which lacks all the
257  * niceties such as fairness, adaptive pausing, bandwidth proportional
258  * allocation and configurability.
259  *
260  * This function tests whether the vmscan currently in progress can assume
261  * that the normal dirty throttling mechanism is operational.
262  */
sane_reclaim(struct scan_control * sc)263 static bool sane_reclaim(struct scan_control *sc)
264 {
265 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
266 
267 	if (!memcg)
268 		return true;
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 		return true;
272 #endif
273 	return false;
274 }
275 
set_memcg_congestion(pg_data_t * pgdat,struct mem_cgroup * memcg,bool congested)276 static void set_memcg_congestion(pg_data_t *pgdat,
277 				struct mem_cgroup *memcg,
278 				bool congested)
279 {
280 	struct mem_cgroup_per_node *mn;
281 
282 	if (!memcg)
283 		return;
284 
285 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
286 	WRITE_ONCE(mn->congested, congested);
287 }
288 
memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)289 static bool memcg_congested(pg_data_t *pgdat,
290 			struct mem_cgroup *memcg)
291 {
292 	struct mem_cgroup_per_node *mn;
293 
294 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 	return READ_ONCE(mn->congested);
296 
297 }
298 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)299 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
300 {
301 	return 0;
302 }
303 
unregister_memcg_shrinker(struct shrinker * shrinker)304 static void unregister_memcg_shrinker(struct shrinker *shrinker)
305 {
306 }
307 
global_reclaim(struct scan_control * sc)308 static bool global_reclaim(struct scan_control *sc)
309 {
310 	return true;
311 }
312 
sane_reclaim(struct scan_control * sc)313 static bool sane_reclaim(struct scan_control *sc)
314 {
315 	return true;
316 }
317 
set_memcg_congestion(struct pglist_data * pgdat,struct mem_cgroup * memcg,bool congested)318 static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 				struct mem_cgroup *memcg, bool congested)
320 {
321 }
322 
memcg_congested(struct pglist_data * pgdat,struct mem_cgroup * memcg)323 static inline bool memcg_congested(struct pglist_data *pgdat,
324 			struct mem_cgroup *memcg)
325 {
326 	return false;
327 
328 }
329 #endif
330 
331 /*
332  * This misses isolated pages which are not accounted for to save counters.
333  * As the data only determines if reclaim or compaction continues, it is
334  * not expected that isolated pages will be a dominating factor.
335  */
zone_reclaimable_pages(struct zone * zone)336 unsigned long zone_reclaimable_pages(struct zone *zone)
337 {
338 	unsigned long nr;
339 
340 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 	if (get_nr_swap_pages() > 0)
343 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345 
346 	return nr;
347 }
348 
349 /**
350  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
351  * @lruvec: lru vector
352  * @lru: lru to use
353  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356 {
357 	unsigned long lru_size = 0;
358 	int zid;
359 
360 	if (!mem_cgroup_disabled()) {
361 		for (zid = 0; zid < MAX_NR_ZONES; zid++)
362 			lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 	} else
364 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
365 
366 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
367 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368 		unsigned long size;
369 
370 		if (!managed_zone(zone))
371 			continue;
372 
373 		if (!mem_cgroup_disabled())
374 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
375 		else
376 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
377 				       NR_ZONE_LRU_BASE + lru);
378 		lru_size -= min(size, lru_size);
379 	}
380 
381 	return lru_size;
382 
383 }
384 
385 /*
386  * Add a shrinker callback to be called from the vm.
387  */
prealloc_shrinker(struct shrinker * shrinker)388 int prealloc_shrinker(struct shrinker *shrinker)
389 {
390 	unsigned int size = sizeof(*shrinker->nr_deferred);
391 
392 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
393 		size *= nr_node_ids;
394 
395 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
396 	if (!shrinker->nr_deferred)
397 		return -ENOMEM;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
400 		if (prealloc_memcg_shrinker(shrinker))
401 			goto free_deferred;
402 	}
403 
404 	return 0;
405 
406 free_deferred:
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 	return -ENOMEM;
410 }
411 
free_prealloced_shrinker(struct shrinker * shrinker)412 void free_prealloced_shrinker(struct shrinker *shrinker)
413 {
414 	if (!shrinker->nr_deferred)
415 		return;
416 
417 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
418 		unregister_memcg_shrinker(shrinker);
419 
420 	kfree(shrinker->nr_deferred);
421 	shrinker->nr_deferred = NULL;
422 }
423 
register_shrinker_prepared(struct shrinker * shrinker)424 void register_shrinker_prepared(struct shrinker *shrinker)
425 {
426 	down_write(&shrinker_rwsem);
427 	list_add_tail(&shrinker->list, &shrinker_list);
428 #ifdef CONFIG_MEMCG
429 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
430 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
431 #endif
432 	up_write(&shrinker_rwsem);
433 }
434 
register_shrinker(struct shrinker * shrinker)435 int register_shrinker(struct shrinker *shrinker)
436 {
437 	int err = prealloc_shrinker(shrinker);
438 
439 	if (err)
440 		return err;
441 	register_shrinker_prepared(shrinker);
442 	return 0;
443 }
444 EXPORT_SYMBOL(register_shrinker);
445 
446 /*
447  * Remove one
448  */
unregister_shrinker(struct shrinker * shrinker)449 void unregister_shrinker(struct shrinker *shrinker)
450 {
451 	if (!shrinker->nr_deferred)
452 		return;
453 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
454 		unregister_memcg_shrinker(shrinker);
455 	down_write(&shrinker_rwsem);
456 	list_del(&shrinker->list);
457 	up_write(&shrinker_rwsem);
458 	kfree(shrinker->nr_deferred);
459 	shrinker->nr_deferred = NULL;
460 }
461 EXPORT_SYMBOL(unregister_shrinker);
462 
463 #define SHRINK_BATCH 128
464 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)465 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
466 				    struct shrinker *shrinker, int priority)
467 {
468 	unsigned long freed = 0;
469 	unsigned long long delta;
470 	long total_scan;
471 	long freeable;
472 	long nr;
473 	long new_nr;
474 	int nid = shrinkctl->nid;
475 	long batch_size = shrinker->batch ? shrinker->batch
476 					  : SHRINK_BATCH;
477 	long scanned = 0, next_deferred;
478 
479 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
480 		nid = 0;
481 
482 	freeable = shrinker->count_objects(shrinker, shrinkctl);
483 	if (freeable == 0 || freeable == SHRINK_EMPTY)
484 		return freeable;
485 
486 	/*
487 	 * copy the current shrinker scan count into a local variable
488 	 * and zero it so that other concurrent shrinker invocations
489 	 * don't also do this scanning work.
490 	 */
491 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
492 
493 	total_scan = nr;
494 	if (shrinker->seeks) {
495 		delta = freeable >> priority;
496 		delta *= 4;
497 		do_div(delta, shrinker->seeks);
498 	} else {
499 		/*
500 		 * These objects don't require any IO to create. Trim
501 		 * them aggressively under memory pressure to keep
502 		 * them from causing refetches in the IO caches.
503 		 */
504 		delta = freeable / 2;
505 	}
506 
507 	total_scan += delta;
508 	if (total_scan < 0) {
509 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
510 		       shrinker->scan_objects, total_scan);
511 		total_scan = freeable;
512 		next_deferred = nr;
513 	} else
514 		next_deferred = total_scan;
515 
516 	/*
517 	 * We need to avoid excessive windup on filesystem shrinkers
518 	 * due to large numbers of GFP_NOFS allocations causing the
519 	 * shrinkers to return -1 all the time. This results in a large
520 	 * nr being built up so when a shrink that can do some work
521 	 * comes along it empties the entire cache due to nr >>>
522 	 * freeable. This is bad for sustaining a working set in
523 	 * memory.
524 	 *
525 	 * Hence only allow the shrinker to scan the entire cache when
526 	 * a large delta change is calculated directly.
527 	 */
528 	if (delta < freeable / 4)
529 		total_scan = min(total_scan, freeable / 2);
530 
531 	/*
532 	 * Avoid risking looping forever due to too large nr value:
533 	 * never try to free more than twice the estimate number of
534 	 * freeable entries.
535 	 */
536 	if (total_scan > freeable * 2)
537 		total_scan = freeable * 2;
538 
539 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
540 				   freeable, delta, total_scan, priority);
541 
542 	/*
543 	 * Normally, we should not scan less than batch_size objects in one
544 	 * pass to avoid too frequent shrinker calls, but if the slab has less
545 	 * than batch_size objects in total and we are really tight on memory,
546 	 * we will try to reclaim all available objects, otherwise we can end
547 	 * up failing allocations although there are plenty of reclaimable
548 	 * objects spread over several slabs with usage less than the
549 	 * batch_size.
550 	 *
551 	 * We detect the "tight on memory" situations by looking at the total
552 	 * number of objects we want to scan (total_scan). If it is greater
553 	 * than the total number of objects on slab (freeable), we must be
554 	 * scanning at high prio and therefore should try to reclaim as much as
555 	 * possible.
556 	 */
557 	while (total_scan >= batch_size ||
558 	       total_scan >= freeable) {
559 		unsigned long ret;
560 		unsigned long nr_to_scan = min(batch_size, total_scan);
561 
562 		shrinkctl->nr_to_scan = nr_to_scan;
563 		shrinkctl->nr_scanned = nr_to_scan;
564 		ret = shrinker->scan_objects(shrinker, shrinkctl);
565 		if (ret == SHRINK_STOP)
566 			break;
567 		freed += ret;
568 
569 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
570 		total_scan -= shrinkctl->nr_scanned;
571 		scanned += shrinkctl->nr_scanned;
572 
573 		cond_resched();
574 	}
575 
576 	if (next_deferred >= scanned)
577 		next_deferred -= scanned;
578 	else
579 		next_deferred = 0;
580 	/*
581 	 * move the unused scan count back into the shrinker in a
582 	 * manner that handles concurrent updates. If we exhausted the
583 	 * scan, there is no need to do an update.
584 	 */
585 	if (next_deferred > 0)
586 		new_nr = atomic_long_add_return(next_deferred,
587 						&shrinker->nr_deferred[nid]);
588 	else
589 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
590 
591 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
592 	return freed;
593 }
594 
595 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)596 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
597 			struct mem_cgroup *memcg, int priority)
598 {
599 	struct memcg_shrinker_map *map;
600 	unsigned long ret, freed = 0;
601 	int i;
602 
603 	if (!mem_cgroup_online(memcg))
604 		return 0;
605 
606 	if (!down_read_trylock(&shrinker_rwsem))
607 		return 0;
608 
609 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
610 					true);
611 	if (unlikely(!map))
612 		goto unlock;
613 
614 	for_each_set_bit(i, map->map, shrinker_nr_max) {
615 		struct shrink_control sc = {
616 			.gfp_mask = gfp_mask,
617 			.nid = nid,
618 			.memcg = memcg,
619 		};
620 		struct shrinker *shrinker;
621 
622 		shrinker = idr_find(&shrinker_idr, i);
623 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
624 			if (!shrinker)
625 				clear_bit(i, map->map);
626 			continue;
627 		}
628 
629 		/* Call non-slab shrinkers even though kmem is disabled */
630 		if (!memcg_kmem_enabled() &&
631 		    !(shrinker->flags & SHRINKER_NONSLAB))
632 			continue;
633 
634 		ret = do_shrink_slab(&sc, shrinker, priority);
635 		if (ret == SHRINK_EMPTY) {
636 			clear_bit(i, map->map);
637 			/*
638 			 * After the shrinker reported that it had no objects to
639 			 * free, but before we cleared the corresponding bit in
640 			 * the memcg shrinker map, a new object might have been
641 			 * added. To make sure, we have the bit set in this
642 			 * case, we invoke the shrinker one more time and reset
643 			 * the bit if it reports that it is not empty anymore.
644 			 * The memory barrier here pairs with the barrier in
645 			 * memcg_set_shrinker_bit():
646 			 *
647 			 * list_lru_add()     shrink_slab_memcg()
648 			 *   list_add_tail()    clear_bit()
649 			 *   <MB>               <MB>
650 			 *   set_bit()          do_shrink_slab()
651 			 */
652 			smp_mb__after_atomic();
653 			ret = do_shrink_slab(&sc, shrinker, priority);
654 			if (ret == SHRINK_EMPTY)
655 				ret = 0;
656 			else
657 				memcg_set_shrinker_bit(memcg, nid, i);
658 		}
659 		freed += ret;
660 
661 		if (rwsem_is_contended(&shrinker_rwsem)) {
662 			freed = freed ? : 1;
663 			break;
664 		}
665 	}
666 unlock:
667 	up_read(&shrinker_rwsem);
668 	return freed;
669 }
670 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)671 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
672 			struct mem_cgroup *memcg, int priority)
673 {
674 	return 0;
675 }
676 #endif /* CONFIG_MEMCG */
677 
678 /**
679  * shrink_slab - shrink slab caches
680  * @gfp_mask: allocation context
681  * @nid: node whose slab caches to target
682  * @memcg: memory cgroup whose slab caches to target
683  * @priority: the reclaim priority
684  *
685  * Call the shrink functions to age shrinkable caches.
686  *
687  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
688  * unaware shrinkers will receive a node id of 0 instead.
689  *
690  * @memcg specifies the memory cgroup to target. Unaware shrinkers
691  * are called only if it is the root cgroup.
692  *
693  * @priority is sc->priority, we take the number of objects and >> by priority
694  * in order to get the scan target.
695  *
696  * Returns the number of reclaimed slab objects.
697  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)698 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
699 				 struct mem_cgroup *memcg,
700 				 int priority)
701 {
702 	unsigned long ret, freed = 0;
703 	struct shrinker *shrinker;
704 
705 	/*
706 	 * The root memcg might be allocated even though memcg is disabled
707 	 * via "cgroup_disable=memory" boot parameter.  This could make
708 	 * mem_cgroup_is_root() return false, then just run memcg slab
709 	 * shrink, but skip global shrink.  This may result in premature
710 	 * oom.
711 	 */
712 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
713 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
714 
715 	if (!down_read_trylock(&shrinker_rwsem))
716 		goto out;
717 
718 	list_for_each_entry(shrinker, &shrinker_list, list) {
719 		struct shrink_control sc = {
720 			.gfp_mask = gfp_mask,
721 			.nid = nid,
722 			.memcg = memcg,
723 		};
724 
725 		ret = do_shrink_slab(&sc, shrinker, priority);
726 		if (ret == SHRINK_EMPTY)
727 			ret = 0;
728 		freed += ret;
729 		/*
730 		 * Bail out if someone want to register a new shrinker to
731 		 * prevent the regsitration from being stalled for long periods
732 		 * by parallel ongoing shrinking.
733 		 */
734 		if (rwsem_is_contended(&shrinker_rwsem)) {
735 			freed = freed ? : 1;
736 			break;
737 		}
738 	}
739 
740 	up_read(&shrinker_rwsem);
741 out:
742 	cond_resched();
743 	return freed;
744 }
745 
drop_slab_node(int nid)746 void drop_slab_node(int nid)
747 {
748 	unsigned long freed;
749 
750 	do {
751 		struct mem_cgroup *memcg = NULL;
752 
753 		freed = 0;
754 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
755 		do {
756 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
757 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
758 	} while (freed > 10);
759 }
760 
drop_slab(void)761 void drop_slab(void)
762 {
763 	int nid;
764 
765 	for_each_online_node(nid)
766 		drop_slab_node(nid);
767 }
768 
is_page_cache_freeable(struct page * page)769 static inline int is_page_cache_freeable(struct page *page)
770 {
771 	/*
772 	 * A freeable page cache page is referenced only by the caller
773 	 * that isolated the page, the page cache and optional buffer
774 	 * heads at page->private.
775 	 */
776 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
777 		HPAGE_PMD_NR : 1;
778 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
779 }
780 
may_write_to_inode(struct inode * inode,struct scan_control * sc)781 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
782 {
783 	if (current->flags & PF_SWAPWRITE)
784 		return 1;
785 	if (!inode_write_congested(inode))
786 		return 1;
787 	if (inode_to_bdi(inode) == current->backing_dev_info)
788 		return 1;
789 	return 0;
790 }
791 
792 /*
793  * We detected a synchronous write error writing a page out.  Probably
794  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
795  * fsync(), msync() or close().
796  *
797  * The tricky part is that after writepage we cannot touch the mapping: nothing
798  * prevents it from being freed up.  But we have a ref on the page and once
799  * that page is locked, the mapping is pinned.
800  *
801  * We're allowed to run sleeping lock_page() here because we know the caller has
802  * __GFP_FS.
803  */
handle_write_error(struct address_space * mapping,struct page * page,int error)804 static void handle_write_error(struct address_space *mapping,
805 				struct page *page, int error)
806 {
807 	lock_page(page);
808 	if (page_mapping(page) == mapping)
809 		mapping_set_error(mapping, error);
810 	unlock_page(page);
811 }
812 
813 /* possible outcome of pageout() */
814 typedef enum {
815 	/* failed to write page out, page is locked */
816 	PAGE_KEEP,
817 	/* move page to the active list, page is locked */
818 	PAGE_ACTIVATE,
819 	/* page has been sent to the disk successfully, page is unlocked */
820 	PAGE_SUCCESS,
821 	/* page is clean and locked */
822 	PAGE_CLEAN,
823 } pageout_t;
824 
825 /*
826  * pageout is called by shrink_page_list() for each dirty page.
827  * Calls ->writepage().
828  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)829 static pageout_t pageout(struct page *page, struct address_space *mapping,
830 			 struct scan_control *sc)
831 {
832 	/*
833 	 * If the page is dirty, only perform writeback if that write
834 	 * will be non-blocking.  To prevent this allocation from being
835 	 * stalled by pagecache activity.  But note that there may be
836 	 * stalls if we need to run get_block().  We could test
837 	 * PagePrivate for that.
838 	 *
839 	 * If this process is currently in __generic_file_write_iter() against
840 	 * this page's queue, we can perform writeback even if that
841 	 * will block.
842 	 *
843 	 * If the page is swapcache, write it back even if that would
844 	 * block, for some throttling. This happens by accident, because
845 	 * swap_backing_dev_info is bust: it doesn't reflect the
846 	 * congestion state of the swapdevs.  Easy to fix, if needed.
847 	 */
848 	if (!is_page_cache_freeable(page))
849 		return PAGE_KEEP;
850 	if (!mapping) {
851 		/*
852 		 * Some data journaling orphaned pages can have
853 		 * page->mapping == NULL while being dirty with clean buffers.
854 		 */
855 		if (page_has_private(page)) {
856 			if (try_to_free_buffers(page)) {
857 				ClearPageDirty(page);
858 				pr_info("%s: orphaned page\n", __func__);
859 				return PAGE_CLEAN;
860 			}
861 		}
862 		return PAGE_KEEP;
863 	}
864 	if (mapping->a_ops->writepage == NULL)
865 		return PAGE_ACTIVATE;
866 	if (!may_write_to_inode(mapping->host, sc))
867 		return PAGE_KEEP;
868 
869 	if (clear_page_dirty_for_io(page)) {
870 		int res;
871 		struct writeback_control wbc = {
872 			.sync_mode = WB_SYNC_NONE,
873 			.nr_to_write = SWAP_CLUSTER_MAX,
874 			.range_start = 0,
875 			.range_end = LLONG_MAX,
876 			.for_reclaim = 1,
877 		};
878 
879 		SetPageReclaim(page);
880 		res = mapping->a_ops->writepage(page, &wbc);
881 		if (res < 0)
882 			handle_write_error(mapping, page, res);
883 		if (res == AOP_WRITEPAGE_ACTIVATE) {
884 			ClearPageReclaim(page);
885 			return PAGE_ACTIVATE;
886 		}
887 
888 		if (!PageWriteback(page)) {
889 			/* synchronous write or broken a_ops? */
890 			ClearPageReclaim(page);
891 		}
892 		trace_mm_vmscan_writepage(page);
893 		inc_node_page_state(page, NR_VMSCAN_WRITE);
894 		return PAGE_SUCCESS;
895 	}
896 
897 	return PAGE_CLEAN;
898 }
899 
900 /*
901  * Same as remove_mapping, but if the page is removed from the mapping, it
902  * gets returned with a refcount of 0.
903  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)904 static int __remove_mapping(struct address_space *mapping, struct page *page,
905 			    bool reclaimed)
906 {
907 	unsigned long flags;
908 	int refcount;
909 
910 	BUG_ON(!PageLocked(page));
911 	BUG_ON(mapping != page_mapping(page));
912 
913 	xa_lock_irqsave(&mapping->i_pages, flags);
914 	/*
915 	 * The non racy check for a busy page.
916 	 *
917 	 * Must be careful with the order of the tests. When someone has
918 	 * a ref to the page, it may be possible that they dirty it then
919 	 * drop the reference. So if PageDirty is tested before page_count
920 	 * here, then the following race may occur:
921 	 *
922 	 * get_user_pages(&page);
923 	 * [user mapping goes away]
924 	 * write_to(page);
925 	 *				!PageDirty(page)    [good]
926 	 * SetPageDirty(page);
927 	 * put_page(page);
928 	 *				!page_count(page)   [good, discard it]
929 	 *
930 	 * [oops, our write_to data is lost]
931 	 *
932 	 * Reversing the order of the tests ensures such a situation cannot
933 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
934 	 * load is not satisfied before that of page->_refcount.
935 	 *
936 	 * Note that if SetPageDirty is always performed via set_page_dirty,
937 	 * and thus under the i_pages lock, then this ordering is not required.
938 	 */
939 	refcount = 1 + compound_nr(page);
940 	if (!page_ref_freeze(page, refcount))
941 		goto cannot_free;
942 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
943 	if (unlikely(PageDirty(page))) {
944 		page_ref_unfreeze(page, refcount);
945 		goto cannot_free;
946 	}
947 
948 	if (PageSwapCache(page)) {
949 		swp_entry_t swap = { .val = page_private(page) };
950 		mem_cgroup_swapout(page, swap);
951 		__delete_from_swap_cache(page, swap);
952 		xa_unlock_irqrestore(&mapping->i_pages, flags);
953 		put_swap_page(page, swap);
954 	} else {
955 		void (*freepage)(struct page *);
956 		void *shadow = NULL;
957 
958 		freepage = mapping->a_ops->freepage;
959 		/*
960 		 * Remember a shadow entry for reclaimed file cache in
961 		 * order to detect refaults, thus thrashing, later on.
962 		 *
963 		 * But don't store shadows in an address space that is
964 		 * already exiting.  This is not just an optizimation,
965 		 * inode reclaim needs to empty out the radix tree or
966 		 * the nodes are lost.  Don't plant shadows behind its
967 		 * back.
968 		 *
969 		 * We also don't store shadows for DAX mappings because the
970 		 * only page cache pages found in these are zero pages
971 		 * covering holes, and because we don't want to mix DAX
972 		 * exceptional entries and shadow exceptional entries in the
973 		 * same address_space.
974 		 */
975 		if (reclaimed && page_is_file_cache(page) &&
976 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
977 			shadow = workingset_eviction(page);
978 		__delete_from_page_cache(page, shadow);
979 		xa_unlock_irqrestore(&mapping->i_pages, flags);
980 
981 		if (freepage != NULL)
982 			freepage(page);
983 	}
984 
985 	return 1;
986 
987 cannot_free:
988 	xa_unlock_irqrestore(&mapping->i_pages, flags);
989 	return 0;
990 }
991 
992 /*
993  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
994  * someone else has a ref on the page, abort and return 0.  If it was
995  * successfully detached, return 1.  Assumes the caller has a single ref on
996  * this page.
997  */
remove_mapping(struct address_space * mapping,struct page * page)998 int remove_mapping(struct address_space *mapping, struct page *page)
999 {
1000 	if (__remove_mapping(mapping, page, false)) {
1001 		/*
1002 		 * Unfreezing the refcount with 1 rather than 2 effectively
1003 		 * drops the pagecache ref for us without requiring another
1004 		 * atomic operation.
1005 		 */
1006 		page_ref_unfreeze(page, 1);
1007 		return 1;
1008 	}
1009 	return 0;
1010 }
1011 
1012 /**
1013  * putback_lru_page - put previously isolated page onto appropriate LRU list
1014  * @page: page to be put back to appropriate lru list
1015  *
1016  * Add previously isolated @page to appropriate LRU list.
1017  * Page may still be unevictable for other reasons.
1018  *
1019  * lru_lock must not be held, interrupts must be enabled.
1020  */
putback_lru_page(struct page * page)1021 void putback_lru_page(struct page *page)
1022 {
1023 	lru_cache_add(page);
1024 	put_page(page);		/* drop ref from isolate */
1025 }
1026 
1027 enum page_references {
1028 	PAGEREF_RECLAIM,
1029 	PAGEREF_RECLAIM_CLEAN,
1030 	PAGEREF_KEEP,
1031 	PAGEREF_ACTIVATE,
1032 };
1033 
page_check_references(struct page * page,struct scan_control * sc)1034 static enum page_references page_check_references(struct page *page,
1035 						  struct scan_control *sc)
1036 {
1037 	int referenced_ptes, referenced_page;
1038 	unsigned long vm_flags;
1039 
1040 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1041 					  &vm_flags);
1042 	referenced_page = TestClearPageReferenced(page);
1043 
1044 	/*
1045 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1046 	 * move the page to the unevictable list.
1047 	 */
1048 	if (vm_flags & VM_LOCKED)
1049 		return PAGEREF_RECLAIM;
1050 
1051 	/* rmap lock contention: rotate */
1052 	if (referenced_ptes == -1)
1053 		return PAGEREF_KEEP;
1054 
1055 	if (referenced_ptes) {
1056 		if (PageSwapBacked(page))
1057 			return PAGEREF_ACTIVATE;
1058 		/*
1059 		 * All mapped pages start out with page table
1060 		 * references from the instantiating fault, so we need
1061 		 * to look twice if a mapped file page is used more
1062 		 * than once.
1063 		 *
1064 		 * Mark it and spare it for another trip around the
1065 		 * inactive list.  Another page table reference will
1066 		 * lead to its activation.
1067 		 *
1068 		 * Note: the mark is set for activated pages as well
1069 		 * so that recently deactivated but used pages are
1070 		 * quickly recovered.
1071 		 */
1072 		SetPageReferenced(page);
1073 
1074 		if (referenced_page || referenced_ptes > 1)
1075 			return PAGEREF_ACTIVATE;
1076 
1077 		/*
1078 		 * Activate file-backed executable pages after first usage.
1079 		 */
1080 		if (vm_flags & VM_EXEC)
1081 			return PAGEREF_ACTIVATE;
1082 
1083 		return PAGEREF_KEEP;
1084 	}
1085 
1086 	/* Reclaim if clean, defer dirty pages to writeback */
1087 	if (referenced_page && !PageSwapBacked(page))
1088 		return PAGEREF_RECLAIM_CLEAN;
1089 
1090 	return PAGEREF_RECLAIM;
1091 }
1092 
1093 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1094 static void page_check_dirty_writeback(struct page *page,
1095 				       bool *dirty, bool *writeback)
1096 {
1097 	struct address_space *mapping;
1098 
1099 	/*
1100 	 * Anonymous pages are not handled by flushers and must be written
1101 	 * from reclaim context. Do not stall reclaim based on them
1102 	 */
1103 	if (!page_is_file_cache(page) ||
1104 	    (PageAnon(page) && !PageSwapBacked(page))) {
1105 		*dirty = false;
1106 		*writeback = false;
1107 		return;
1108 	}
1109 
1110 	/* By default assume that the page flags are accurate */
1111 	*dirty = PageDirty(page);
1112 	*writeback = PageWriteback(page);
1113 
1114 	/* Verify dirty/writeback state if the filesystem supports it */
1115 	if (!page_has_private(page))
1116 		return;
1117 
1118 	mapping = page_mapping(page);
1119 	if (mapping && mapping->a_ops->is_dirty_writeback)
1120 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1121 }
1122 
1123 /*
1124  * shrink_page_list() returns the number of reclaimed pages
1125  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool ignore_references)1126 static unsigned long shrink_page_list(struct list_head *page_list,
1127 				      struct pglist_data *pgdat,
1128 				      struct scan_control *sc,
1129 				      enum ttu_flags ttu_flags,
1130 				      struct reclaim_stat *stat,
1131 				      bool ignore_references)
1132 {
1133 	LIST_HEAD(ret_pages);
1134 	LIST_HEAD(free_pages);
1135 	unsigned nr_reclaimed = 0;
1136 	unsigned pgactivate = 0;
1137 
1138 	memset(stat, 0, sizeof(*stat));
1139 	cond_resched();
1140 
1141 	while (!list_empty(page_list)) {
1142 		struct address_space *mapping;
1143 		struct page *page;
1144 		int may_enter_fs;
1145 		enum page_references references = PAGEREF_RECLAIM;
1146 		bool dirty, writeback;
1147 		unsigned int nr_pages;
1148 
1149 		cond_resched();
1150 
1151 		page = lru_to_page(page_list);
1152 		list_del(&page->lru);
1153 
1154 		if (!trylock_page(page))
1155 			goto keep;
1156 
1157 		VM_BUG_ON_PAGE(PageActive(page), page);
1158 
1159 		nr_pages = compound_nr(page);
1160 
1161 		/* Account the number of base pages even though THP */
1162 		sc->nr_scanned += nr_pages;
1163 
1164 		if (unlikely(!page_evictable(page)))
1165 			goto activate_locked;
1166 
1167 		if (!sc->may_unmap && page_mapped(page))
1168 			goto keep_locked;
1169 
1170 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1171 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1172 
1173 		/*
1174 		 * The number of dirty pages determines if a node is marked
1175 		 * reclaim_congested which affects wait_iff_congested. kswapd
1176 		 * will stall and start writing pages if the tail of the LRU
1177 		 * is all dirty unqueued pages.
1178 		 */
1179 		page_check_dirty_writeback(page, &dirty, &writeback);
1180 		if (dirty || writeback)
1181 			stat->nr_dirty++;
1182 
1183 		if (dirty && !writeback)
1184 			stat->nr_unqueued_dirty++;
1185 
1186 		/*
1187 		 * Treat this page as congested if the underlying BDI is or if
1188 		 * pages are cycling through the LRU so quickly that the
1189 		 * pages marked for immediate reclaim are making it to the
1190 		 * end of the LRU a second time.
1191 		 */
1192 		mapping = page_mapping(page);
1193 		if (((dirty || writeback) && mapping &&
1194 		     inode_write_congested(mapping->host)) ||
1195 		    (writeback && PageReclaim(page)))
1196 			stat->nr_congested++;
1197 
1198 		/*
1199 		 * If a page at the tail of the LRU is under writeback, there
1200 		 * are three cases to consider.
1201 		 *
1202 		 * 1) If reclaim is encountering an excessive number of pages
1203 		 *    under writeback and this page is both under writeback and
1204 		 *    PageReclaim then it indicates that pages are being queued
1205 		 *    for IO but are being recycled through the LRU before the
1206 		 *    IO can complete. Waiting on the page itself risks an
1207 		 *    indefinite stall if it is impossible to writeback the
1208 		 *    page due to IO error or disconnected storage so instead
1209 		 *    note that the LRU is being scanned too quickly and the
1210 		 *    caller can stall after page list has been processed.
1211 		 *
1212 		 * 2) Global or new memcg reclaim encounters a page that is
1213 		 *    not marked for immediate reclaim, or the caller does not
1214 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1215 		 *    not to fs). In this case mark the page for immediate
1216 		 *    reclaim and continue scanning.
1217 		 *
1218 		 *    Require may_enter_fs because we would wait on fs, which
1219 		 *    may not have submitted IO yet. And the loop driver might
1220 		 *    enter reclaim, and deadlock if it waits on a page for
1221 		 *    which it is needed to do the write (loop masks off
1222 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1223 		 *    would probably show more reasons.
1224 		 *
1225 		 * 3) Legacy memcg encounters a page that is already marked
1226 		 *    PageReclaim. memcg does not have any dirty pages
1227 		 *    throttling so we could easily OOM just because too many
1228 		 *    pages are in writeback and there is nothing else to
1229 		 *    reclaim. Wait for the writeback to complete.
1230 		 *
1231 		 * In cases 1) and 2) we activate the pages to get them out of
1232 		 * the way while we continue scanning for clean pages on the
1233 		 * inactive list and refilling from the active list. The
1234 		 * observation here is that waiting for disk writes is more
1235 		 * expensive than potentially causing reloads down the line.
1236 		 * Since they're marked for immediate reclaim, they won't put
1237 		 * memory pressure on the cache working set any longer than it
1238 		 * takes to write them to disk.
1239 		 */
1240 		if (PageWriteback(page)) {
1241 			/* Case 1 above */
1242 			if (current_is_kswapd() &&
1243 			    PageReclaim(page) &&
1244 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1245 				stat->nr_immediate++;
1246 				goto activate_locked;
1247 
1248 			/* Case 2 above */
1249 			} else if (sane_reclaim(sc) ||
1250 			    !PageReclaim(page) || !may_enter_fs) {
1251 				/*
1252 				 * This is slightly racy - end_page_writeback()
1253 				 * might have just cleared PageReclaim, then
1254 				 * setting PageReclaim here end up interpreted
1255 				 * as PageReadahead - but that does not matter
1256 				 * enough to care.  What we do want is for this
1257 				 * page to have PageReclaim set next time memcg
1258 				 * reclaim reaches the tests above, so it will
1259 				 * then wait_on_page_writeback() to avoid OOM;
1260 				 * and it's also appropriate in global reclaim.
1261 				 */
1262 				SetPageReclaim(page);
1263 				stat->nr_writeback++;
1264 				goto activate_locked;
1265 
1266 			/* Case 3 above */
1267 			} else {
1268 				unlock_page(page);
1269 				wait_on_page_writeback(page);
1270 				/* then go back and try same page again */
1271 				list_add_tail(&page->lru, page_list);
1272 				continue;
1273 			}
1274 		}
1275 
1276 		if (!ignore_references)
1277 			references = page_check_references(page, sc);
1278 
1279 		switch (references) {
1280 		case PAGEREF_ACTIVATE:
1281 			goto activate_locked;
1282 		case PAGEREF_KEEP:
1283 			stat->nr_ref_keep += nr_pages;
1284 			goto keep_locked;
1285 		case PAGEREF_RECLAIM:
1286 		case PAGEREF_RECLAIM_CLEAN:
1287 			; /* try to reclaim the page below */
1288 		}
1289 
1290 		/*
1291 		 * Anonymous process memory has backing store?
1292 		 * Try to allocate it some swap space here.
1293 		 * Lazyfree page could be freed directly
1294 		 */
1295 		if (PageAnon(page) && PageSwapBacked(page)) {
1296 			if (!PageSwapCache(page)) {
1297 				if (!(sc->gfp_mask & __GFP_IO))
1298 					goto keep_locked;
1299 				if (PageTransHuge(page)) {
1300 					/* cannot split THP, skip it */
1301 					if (!can_split_huge_page(page, NULL))
1302 						goto activate_locked;
1303 					/*
1304 					 * Split pages without a PMD map right
1305 					 * away. Chances are some or all of the
1306 					 * tail pages can be freed without IO.
1307 					 */
1308 					if (!compound_mapcount(page) &&
1309 					    split_huge_page_to_list(page,
1310 								    page_list))
1311 						goto activate_locked;
1312 				}
1313 				if (!add_to_swap(page)) {
1314 					if (!PageTransHuge(page))
1315 						goto activate_locked_split;
1316 					/* Fallback to swap normal pages */
1317 					if (split_huge_page_to_list(page,
1318 								    page_list))
1319 						goto activate_locked;
1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321 					count_vm_event(THP_SWPOUT_FALLBACK);
1322 #endif
1323 					if (!add_to_swap(page))
1324 						goto activate_locked_split;
1325 				}
1326 
1327 				may_enter_fs = 1;
1328 
1329 				/* Adding to swap updated mapping */
1330 				mapping = page_mapping(page);
1331 			}
1332 		} else if (unlikely(PageTransHuge(page))) {
1333 			/* Split file THP */
1334 			if (split_huge_page_to_list(page, page_list))
1335 				goto keep_locked;
1336 		}
1337 
1338 		/*
1339 		 * THP may get split above, need minus tail pages and update
1340 		 * nr_pages to avoid accounting tail pages twice.
1341 		 *
1342 		 * The tail pages that are added into swap cache successfully
1343 		 * reach here.
1344 		 */
1345 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1346 			sc->nr_scanned -= (nr_pages - 1);
1347 			nr_pages = 1;
1348 		}
1349 
1350 		/*
1351 		 * The page is mapped into the page tables of one or more
1352 		 * processes. Try to unmap it here.
1353 		 */
1354 		if (page_mapped(page)) {
1355 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1356 
1357 			if (unlikely(PageTransHuge(page)))
1358 				flags |= TTU_SPLIT_HUGE_PMD;
1359 			if (!try_to_unmap(page, flags)) {
1360 				stat->nr_unmap_fail += nr_pages;
1361 				goto activate_locked;
1362 			}
1363 		}
1364 
1365 		if (PageDirty(page)) {
1366 			/*
1367 			 * Only kswapd can writeback filesystem pages
1368 			 * to avoid risk of stack overflow. But avoid
1369 			 * injecting inefficient single-page IO into
1370 			 * flusher writeback as much as possible: only
1371 			 * write pages when we've encountered many
1372 			 * dirty pages, and when we've already scanned
1373 			 * the rest of the LRU for clean pages and see
1374 			 * the same dirty pages again (PageReclaim).
1375 			 */
1376 			if (page_is_file_cache(page) &&
1377 			    (!current_is_kswapd() || !PageReclaim(page) ||
1378 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1379 				/*
1380 				 * Immediately reclaim when written back.
1381 				 * Similar in principal to deactivate_page()
1382 				 * except we already have the page isolated
1383 				 * and know it's dirty
1384 				 */
1385 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1386 				SetPageReclaim(page);
1387 
1388 				goto activate_locked;
1389 			}
1390 
1391 			if (references == PAGEREF_RECLAIM_CLEAN)
1392 				goto keep_locked;
1393 			if (!may_enter_fs)
1394 				goto keep_locked;
1395 			if (!sc->may_writepage)
1396 				goto keep_locked;
1397 
1398 			/*
1399 			 * Page is dirty. Flush the TLB if a writable entry
1400 			 * potentially exists to avoid CPU writes after IO
1401 			 * starts and then write it out here.
1402 			 */
1403 			try_to_unmap_flush_dirty();
1404 			switch (pageout(page, mapping, sc)) {
1405 			case PAGE_KEEP:
1406 				goto keep_locked;
1407 			case PAGE_ACTIVATE:
1408 				goto activate_locked;
1409 			case PAGE_SUCCESS:
1410 				if (PageWriteback(page))
1411 					goto keep;
1412 				if (PageDirty(page))
1413 					goto keep;
1414 
1415 				/*
1416 				 * A synchronous write - probably a ramdisk.  Go
1417 				 * ahead and try to reclaim the page.
1418 				 */
1419 				if (!trylock_page(page))
1420 					goto keep;
1421 				if (PageDirty(page) || PageWriteback(page))
1422 					goto keep_locked;
1423 				mapping = page_mapping(page);
1424 			case PAGE_CLEAN:
1425 				; /* try to free the page below */
1426 			}
1427 		}
1428 
1429 		/*
1430 		 * If the page has buffers, try to free the buffer mappings
1431 		 * associated with this page. If we succeed we try to free
1432 		 * the page as well.
1433 		 *
1434 		 * We do this even if the page is PageDirty().
1435 		 * try_to_release_page() does not perform I/O, but it is
1436 		 * possible for a page to have PageDirty set, but it is actually
1437 		 * clean (all its buffers are clean).  This happens if the
1438 		 * buffers were written out directly, with submit_bh(). ext3
1439 		 * will do this, as well as the blockdev mapping.
1440 		 * try_to_release_page() will discover that cleanness and will
1441 		 * drop the buffers and mark the page clean - it can be freed.
1442 		 *
1443 		 * Rarely, pages can have buffers and no ->mapping.  These are
1444 		 * the pages which were not successfully invalidated in
1445 		 * truncate_complete_page().  We try to drop those buffers here
1446 		 * and if that worked, and the page is no longer mapped into
1447 		 * process address space (page_count == 1) it can be freed.
1448 		 * Otherwise, leave the page on the LRU so it is swappable.
1449 		 */
1450 		if (page_has_private(page)) {
1451 			if (!try_to_release_page(page, sc->gfp_mask))
1452 				goto activate_locked;
1453 			if (!mapping && page_count(page) == 1) {
1454 				unlock_page(page);
1455 				if (put_page_testzero(page))
1456 					goto free_it;
1457 				else {
1458 					/*
1459 					 * rare race with speculative reference.
1460 					 * the speculative reference will free
1461 					 * this page shortly, so we may
1462 					 * increment nr_reclaimed here (and
1463 					 * leave it off the LRU).
1464 					 */
1465 					nr_reclaimed++;
1466 					continue;
1467 				}
1468 			}
1469 		}
1470 
1471 		if (PageAnon(page) && !PageSwapBacked(page)) {
1472 			/* follow __remove_mapping for reference */
1473 			if (!page_ref_freeze(page, 1))
1474 				goto keep_locked;
1475 			if (PageDirty(page)) {
1476 				page_ref_unfreeze(page, 1);
1477 				goto keep_locked;
1478 			}
1479 
1480 			count_vm_event(PGLAZYFREED);
1481 			count_memcg_page_event(page, PGLAZYFREED);
1482 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1483 			goto keep_locked;
1484 
1485 		unlock_page(page);
1486 free_it:
1487 		/*
1488 		 * THP may get swapped out in a whole, need account
1489 		 * all base pages.
1490 		 */
1491 		nr_reclaimed += nr_pages;
1492 
1493 		/*
1494 		 * Is there need to periodically free_page_list? It would
1495 		 * appear not as the counts should be low
1496 		 */
1497 		if (unlikely(PageTransHuge(page)))
1498 			(*get_compound_page_dtor(page))(page);
1499 		else
1500 			list_add(&page->lru, &free_pages);
1501 		continue;
1502 
1503 activate_locked_split:
1504 		/*
1505 		 * The tail pages that are failed to add into swap cache
1506 		 * reach here.  Fixup nr_scanned and nr_pages.
1507 		 */
1508 		if (nr_pages > 1) {
1509 			sc->nr_scanned -= (nr_pages - 1);
1510 			nr_pages = 1;
1511 		}
1512 activate_locked:
1513 		/* Not a candidate for swapping, so reclaim swap space. */
1514 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1515 						PageMlocked(page)))
1516 			try_to_free_swap(page);
1517 		VM_BUG_ON_PAGE(PageActive(page), page);
1518 		if (!PageMlocked(page)) {
1519 			int type = page_is_file_cache(page);
1520 			SetPageActive(page);
1521 			stat->nr_activate[type] += nr_pages;
1522 			count_memcg_page_event(page, PGACTIVATE);
1523 		}
1524 keep_locked:
1525 		unlock_page(page);
1526 keep:
1527 		list_add(&page->lru, &ret_pages);
1528 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1529 	}
1530 
1531 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1532 
1533 	mem_cgroup_uncharge_list(&free_pages);
1534 	try_to_unmap_flush();
1535 	free_unref_page_list(&free_pages);
1536 
1537 	list_splice(&ret_pages, page_list);
1538 	count_vm_events(PGACTIVATE, pgactivate);
1539 
1540 	return nr_reclaimed;
1541 }
1542 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1543 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1544 					    struct list_head *page_list)
1545 {
1546 	struct scan_control sc = {
1547 		.gfp_mask = GFP_KERNEL,
1548 		.priority = DEF_PRIORITY,
1549 		.may_unmap = 1,
1550 	};
1551 	struct reclaim_stat dummy_stat;
1552 	unsigned long ret;
1553 	struct page *page, *next;
1554 	LIST_HEAD(clean_pages);
1555 
1556 	list_for_each_entry_safe(page, next, page_list, lru) {
1557 		if (page_is_file_cache(page) && !PageDirty(page) &&
1558 		    !__PageMovable(page) && !PageUnevictable(page)) {
1559 			ClearPageActive(page);
1560 			list_move(&page->lru, &clean_pages);
1561 		}
1562 	}
1563 
1564 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1565 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1566 	list_splice(&clean_pages, page_list);
1567 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Attempt to remove the specified page from its LRU.  Only take this page
1573  * if it is of the appropriate PageActive status.  Pages which are being
1574  * freed elsewhere are also ignored.
1575  *
1576  * page:	page to consider
1577  * mode:	one of the LRU isolation modes defined above
1578  *
1579  * returns 0 on success, -ve errno on failure.
1580  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1581 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1582 {
1583 	int ret = -EINVAL;
1584 
1585 	/* Only take pages on the LRU. */
1586 	if (!PageLRU(page))
1587 		return ret;
1588 
1589 	/* Compaction should not handle unevictable pages but CMA can do so */
1590 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1591 		return ret;
1592 
1593 	ret = -EBUSY;
1594 
1595 	/*
1596 	 * To minimise LRU disruption, the caller can indicate that it only
1597 	 * wants to isolate pages it will be able to operate on without
1598 	 * blocking - clean pages for the most part.
1599 	 *
1600 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1601 	 * that it is possible to migrate without blocking
1602 	 */
1603 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1604 		/* All the caller can do on PageWriteback is block */
1605 		if (PageWriteback(page))
1606 			return ret;
1607 
1608 		if (PageDirty(page)) {
1609 			struct address_space *mapping;
1610 			bool migrate_dirty;
1611 
1612 			/*
1613 			 * Only pages without mappings or that have a
1614 			 * ->migratepage callback are possible to migrate
1615 			 * without blocking. However, we can be racing with
1616 			 * truncation so it's necessary to lock the page
1617 			 * to stabilise the mapping as truncation holds
1618 			 * the page lock until after the page is removed
1619 			 * from the page cache.
1620 			 */
1621 			if (!trylock_page(page))
1622 				return ret;
1623 
1624 			mapping = page_mapping(page);
1625 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1626 			unlock_page(page);
1627 			if (!migrate_dirty)
1628 				return ret;
1629 		}
1630 	}
1631 
1632 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1633 		return ret;
1634 
1635 	if (likely(get_page_unless_zero(page))) {
1636 		/*
1637 		 * Be careful not to clear PageLRU until after we're
1638 		 * sure the page is not being freed elsewhere -- the
1639 		 * page release code relies on it.
1640 		 */
1641 		ClearPageLRU(page);
1642 		ret = 0;
1643 	}
1644 
1645 	return ret;
1646 }
1647 
1648 
1649 /*
1650  * Update LRU sizes after isolating pages. The LRU size updates must
1651  * be complete before mem_cgroup_update_lru_size due to a santity check.
1652  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1653 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1654 			enum lru_list lru, unsigned long *nr_zone_taken)
1655 {
1656 	int zid;
1657 
1658 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 		if (!nr_zone_taken[zid])
1660 			continue;
1661 
1662 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1663 #ifdef CONFIG_MEMCG
1664 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1665 #endif
1666 	}
1667 
1668 }
1669 
1670 /**
1671  * pgdat->lru_lock is heavily contended.  Some of the functions that
1672  * shrink the lists perform better by taking out a batch of pages
1673  * and working on them outside the LRU lock.
1674  *
1675  * For pagecache intensive workloads, this function is the hottest
1676  * spot in the kernel (apart from copy_*_user functions).
1677  *
1678  * Appropriate locks must be held before calling this function.
1679  *
1680  * @nr_to_scan:	The number of eligible pages to look through on the list.
1681  * @lruvec:	The LRU vector to pull pages from.
1682  * @dst:	The temp list to put pages on to.
1683  * @nr_scanned:	The number of pages that were scanned.
1684  * @sc:		The scan_control struct for this reclaim session
1685  * @mode:	One of the LRU isolation modes
1686  * @lru:	LRU list id for isolating
1687  *
1688  * returns how many pages were moved onto *@dst.
1689  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1690 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1691 		struct lruvec *lruvec, struct list_head *dst,
1692 		unsigned long *nr_scanned, struct scan_control *sc,
1693 		enum lru_list lru)
1694 {
1695 	struct list_head *src = &lruvec->lists[lru];
1696 	unsigned long nr_taken = 0;
1697 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1698 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1699 	unsigned long skipped = 0;
1700 	unsigned long scan, total_scan, nr_pages;
1701 	LIST_HEAD(pages_skipped);
1702 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1703 
1704 	total_scan = 0;
1705 	scan = 0;
1706 	while (scan < nr_to_scan && !list_empty(src)) {
1707 		struct page *page;
1708 
1709 		page = lru_to_page(src);
1710 		prefetchw_prev_lru_page(page, src, flags);
1711 
1712 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1713 
1714 		nr_pages = compound_nr(page);
1715 		total_scan += nr_pages;
1716 
1717 		if (page_zonenum(page) > sc->reclaim_idx) {
1718 			list_move(&page->lru, &pages_skipped);
1719 			nr_skipped[page_zonenum(page)] += nr_pages;
1720 			continue;
1721 		}
1722 
1723 		/*
1724 		 * Do not count skipped pages because that makes the function
1725 		 * return with no isolated pages if the LRU mostly contains
1726 		 * ineligible pages.  This causes the VM to not reclaim any
1727 		 * pages, triggering a premature OOM.
1728 		 *
1729 		 * Account all tail pages of THP.  This would not cause
1730 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1731 		 * only when the page is being freed somewhere else.
1732 		 */
1733 		scan += nr_pages;
1734 		switch (__isolate_lru_page(page, mode)) {
1735 		case 0:
1736 			nr_taken += nr_pages;
1737 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1738 			list_move(&page->lru, dst);
1739 			break;
1740 
1741 		case -EBUSY:
1742 			/* else it is being freed elsewhere */
1743 			list_move(&page->lru, src);
1744 			continue;
1745 
1746 		default:
1747 			BUG();
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * Splice any skipped pages to the start of the LRU list. Note that
1753 	 * this disrupts the LRU order when reclaiming for lower zones but
1754 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1755 	 * scanning would soon rescan the same pages to skip and put the
1756 	 * system at risk of premature OOM.
1757 	 */
1758 	if (!list_empty(&pages_skipped)) {
1759 		int zid;
1760 
1761 		list_splice(&pages_skipped, src);
1762 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1763 			if (!nr_skipped[zid])
1764 				continue;
1765 
1766 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1767 			skipped += nr_skipped[zid];
1768 		}
1769 	}
1770 	*nr_scanned = total_scan;
1771 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1772 				    total_scan, skipped, nr_taken, mode, lru);
1773 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1774 	return nr_taken;
1775 }
1776 
1777 /**
1778  * isolate_lru_page - tries to isolate a page from its LRU list
1779  * @page: page to isolate from its LRU list
1780  *
1781  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1782  * vmstat statistic corresponding to whatever LRU list the page was on.
1783  *
1784  * Returns 0 if the page was removed from an LRU list.
1785  * Returns -EBUSY if the page was not on an LRU list.
1786  *
1787  * The returned page will have PageLRU() cleared.  If it was found on
1788  * the active list, it will have PageActive set.  If it was found on
1789  * the unevictable list, it will have the PageUnevictable bit set. That flag
1790  * may need to be cleared by the caller before letting the page go.
1791  *
1792  * The vmstat statistic corresponding to the list on which the page was
1793  * found will be decremented.
1794  *
1795  * Restrictions:
1796  *
1797  * (1) Must be called with an elevated refcount on the page. This is a
1798  *     fundamentnal difference from isolate_lru_pages (which is called
1799  *     without a stable reference).
1800  * (2) the lru_lock must not be held.
1801  * (3) interrupts must be enabled.
1802  */
isolate_lru_page(struct page * page)1803 int isolate_lru_page(struct page *page)
1804 {
1805 	int ret = -EBUSY;
1806 
1807 	VM_BUG_ON_PAGE(!page_count(page), page);
1808 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1809 
1810 	if (PageLRU(page)) {
1811 		pg_data_t *pgdat = page_pgdat(page);
1812 		struct lruvec *lruvec;
1813 
1814 		spin_lock_irq(&pgdat->lru_lock);
1815 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1816 		if (PageLRU(page)) {
1817 			int lru = page_lru(page);
1818 			get_page(page);
1819 			ClearPageLRU(page);
1820 			del_page_from_lru_list(page, lruvec, lru);
1821 			ret = 0;
1822 		}
1823 		spin_unlock_irq(&pgdat->lru_lock);
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1830  * then get resheduled. When there are massive number of tasks doing page
1831  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1832  * the LRU list will go small and be scanned faster than necessary, leading to
1833  * unnecessary swapping, thrashing and OOM.
1834  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1835 static int too_many_isolated(struct pglist_data *pgdat, int file,
1836 		struct scan_control *sc)
1837 {
1838 	unsigned long inactive, isolated;
1839 
1840 	if (current_is_kswapd())
1841 		return 0;
1842 
1843 	if (!sane_reclaim(sc))
1844 		return 0;
1845 
1846 	if (file) {
1847 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1848 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1849 	} else {
1850 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1851 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1852 	}
1853 
1854 	/*
1855 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1856 	 * won't get blocked by normal direct-reclaimers, forming a circular
1857 	 * deadlock.
1858 	 */
1859 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1860 		inactive >>= 3;
1861 
1862 	return isolated > inactive;
1863 }
1864 
1865 /*
1866  * This moves pages from @list to corresponding LRU list.
1867  *
1868  * We move them the other way if the page is referenced by one or more
1869  * processes, from rmap.
1870  *
1871  * If the pages are mostly unmapped, the processing is fast and it is
1872  * appropriate to hold zone_lru_lock across the whole operation.  But if
1873  * the pages are mapped, the processing is slow (page_referenced()) so we
1874  * should drop zone_lru_lock around each page.  It's impossible to balance
1875  * this, so instead we remove the pages from the LRU while processing them.
1876  * It is safe to rely on PG_active against the non-LRU pages in here because
1877  * nobody will play with that bit on a non-LRU page.
1878  *
1879  * The downside is that we have to touch page->_refcount against each page.
1880  * But we had to alter page->flags anyway.
1881  *
1882  * Returns the number of pages moved to the given lruvec.
1883  */
1884 
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1885 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1886 						     struct list_head *list)
1887 {
1888 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1889 	int nr_pages, nr_moved = 0;
1890 	LIST_HEAD(pages_to_free);
1891 	struct page *page;
1892 	enum lru_list lru;
1893 
1894 	while (!list_empty(list)) {
1895 		page = lru_to_page(list);
1896 		VM_BUG_ON_PAGE(PageLRU(page), page);
1897 		if (unlikely(!page_evictable(page))) {
1898 			list_del(&page->lru);
1899 			spin_unlock_irq(&pgdat->lru_lock);
1900 			putback_lru_page(page);
1901 			spin_lock_irq(&pgdat->lru_lock);
1902 			continue;
1903 		}
1904 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1905 
1906 		SetPageLRU(page);
1907 		lru = page_lru(page);
1908 
1909 		nr_pages = hpage_nr_pages(page);
1910 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1911 		list_move(&page->lru, &lruvec->lists[lru]);
1912 
1913 		if (put_page_testzero(page)) {
1914 			__ClearPageLRU(page);
1915 			__ClearPageActive(page);
1916 			del_page_from_lru_list(page, lruvec, lru);
1917 
1918 			if (unlikely(PageCompound(page))) {
1919 				spin_unlock_irq(&pgdat->lru_lock);
1920 				(*get_compound_page_dtor(page))(page);
1921 				spin_lock_irq(&pgdat->lru_lock);
1922 			} else
1923 				list_add(&page->lru, &pages_to_free);
1924 		} else {
1925 			nr_moved += nr_pages;
1926 		}
1927 	}
1928 
1929 	/*
1930 	 * To save our caller's stack, now use input list for pages to free.
1931 	 */
1932 	list_splice(&pages_to_free, list);
1933 
1934 	return nr_moved;
1935 }
1936 
1937 /*
1938  * If a kernel thread (such as nfsd for loop-back mounts) services
1939  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1940  * In that case we should only throttle if the backing device it is
1941  * writing to is congested.  In other cases it is safe to throttle.
1942  */
current_may_throttle(void)1943 static int current_may_throttle(void)
1944 {
1945 	return !(current->flags & PF_LESS_THROTTLE) ||
1946 		current->backing_dev_info == NULL ||
1947 		bdi_write_congested(current->backing_dev_info);
1948 }
1949 
1950 /*
1951  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1952  * of reclaimed pages
1953  */
1954 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1955 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1956 		     struct scan_control *sc, enum lru_list lru)
1957 {
1958 	LIST_HEAD(page_list);
1959 	unsigned long nr_scanned;
1960 	unsigned long nr_reclaimed = 0;
1961 	unsigned long nr_taken;
1962 	struct reclaim_stat stat;
1963 	int file = is_file_lru(lru);
1964 	enum vm_event_item item;
1965 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1966 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1967 	bool stalled = false;
1968 
1969 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1970 		if (stalled)
1971 			return 0;
1972 
1973 		/* wait a bit for the reclaimer. */
1974 		msleep(100);
1975 		stalled = true;
1976 
1977 		/* We are about to die and free our memory. Return now. */
1978 		if (fatal_signal_pending(current))
1979 			return SWAP_CLUSTER_MAX;
1980 	}
1981 
1982 	lru_add_drain();
1983 
1984 	spin_lock_irq(&pgdat->lru_lock);
1985 
1986 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1987 				     &nr_scanned, sc, lru);
1988 
1989 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1990 	reclaim_stat->recent_scanned[file] += nr_taken;
1991 
1992 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1993 	if (global_reclaim(sc))
1994 		__count_vm_events(item, nr_scanned);
1995 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1996 	spin_unlock_irq(&pgdat->lru_lock);
1997 
1998 	if (nr_taken == 0)
1999 		return 0;
2000 
2001 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
2002 				&stat, false);
2003 
2004 	spin_lock_irq(&pgdat->lru_lock);
2005 
2006 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2007 	if (global_reclaim(sc))
2008 		__count_vm_events(item, nr_reclaimed);
2009 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2010 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2011 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2012 
2013 	move_pages_to_lru(lruvec, &page_list);
2014 
2015 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2016 
2017 	spin_unlock_irq(&pgdat->lru_lock);
2018 
2019 	mem_cgroup_uncharge_list(&page_list);
2020 	free_unref_page_list(&page_list);
2021 
2022 	/*
2023 	 * If dirty pages are scanned that are not queued for IO, it
2024 	 * implies that flushers are not doing their job. This can
2025 	 * happen when memory pressure pushes dirty pages to the end of
2026 	 * the LRU before the dirty limits are breached and the dirty
2027 	 * data has expired. It can also happen when the proportion of
2028 	 * dirty pages grows not through writes but through memory
2029 	 * pressure reclaiming all the clean cache. And in some cases,
2030 	 * the flushers simply cannot keep up with the allocation
2031 	 * rate. Nudge the flusher threads in case they are asleep.
2032 	 */
2033 	if (stat.nr_unqueued_dirty == nr_taken)
2034 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2035 
2036 	sc->nr.dirty += stat.nr_dirty;
2037 	sc->nr.congested += stat.nr_congested;
2038 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2039 	sc->nr.writeback += stat.nr_writeback;
2040 	sc->nr.immediate += stat.nr_immediate;
2041 	sc->nr.taken += nr_taken;
2042 	if (file)
2043 		sc->nr.file_taken += nr_taken;
2044 
2045 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2046 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2047 	return nr_reclaimed;
2048 }
2049 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2050 static void shrink_active_list(unsigned long nr_to_scan,
2051 			       struct lruvec *lruvec,
2052 			       struct scan_control *sc,
2053 			       enum lru_list lru)
2054 {
2055 	unsigned long nr_taken;
2056 	unsigned long nr_scanned;
2057 	unsigned long vm_flags;
2058 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2059 	LIST_HEAD(l_active);
2060 	LIST_HEAD(l_inactive);
2061 	struct page *page;
2062 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2063 	unsigned nr_deactivate, nr_activate;
2064 	unsigned nr_rotated = 0;
2065 	int file = is_file_lru(lru);
2066 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2067 
2068 	lru_add_drain();
2069 
2070 	spin_lock_irq(&pgdat->lru_lock);
2071 
2072 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2073 				     &nr_scanned, sc, lru);
2074 
2075 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2076 	reclaim_stat->recent_scanned[file] += nr_taken;
2077 
2078 	__count_vm_events(PGREFILL, nr_scanned);
2079 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2080 
2081 	spin_unlock_irq(&pgdat->lru_lock);
2082 
2083 	while (!list_empty(&l_hold)) {
2084 		cond_resched();
2085 		page = lru_to_page(&l_hold);
2086 		list_del(&page->lru);
2087 
2088 		if (unlikely(!page_evictable(page))) {
2089 			putback_lru_page(page);
2090 			continue;
2091 		}
2092 
2093 		if (unlikely(buffer_heads_over_limit)) {
2094 			if (page_has_private(page) && trylock_page(page)) {
2095 				if (page_has_private(page))
2096 					try_to_release_page(page, 0);
2097 				unlock_page(page);
2098 			}
2099 		}
2100 
2101 		/* Referenced or rmap lock contention: rotate */
2102 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2103 				     &vm_flags) != 0) {
2104 			/*
2105 			 * Identify referenced, file-backed active pages and
2106 			 * give them one more trip around the active list. So
2107 			 * that executable code get better chances to stay in
2108 			 * memory under moderate memory pressure.  Anon pages
2109 			 * are not likely to be evicted by use-once streaming
2110 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2111 			 * so we ignore them here.
2112 			 */
2113 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2114 				nr_rotated += hpage_nr_pages(page);
2115 				list_add(&page->lru, &l_active);
2116 				continue;
2117 			}
2118 		}
2119 
2120 		ClearPageActive(page);	/* we are de-activating */
2121 		SetPageWorkingset(page);
2122 		list_add(&page->lru, &l_inactive);
2123 	}
2124 
2125 	/*
2126 	 * Move pages back to the lru list.
2127 	 */
2128 	spin_lock_irq(&pgdat->lru_lock);
2129 	/*
2130 	 * Count referenced pages from currently used mappings as rotated,
2131 	 * even though only some of them are actually re-activated.  This
2132 	 * helps balance scan pressure between file and anonymous pages in
2133 	 * get_scan_count.
2134 	 */
2135 	reclaim_stat->recent_rotated[file] += nr_rotated;
2136 
2137 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2138 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2139 	/* Keep all free pages in l_active list */
2140 	list_splice(&l_inactive, &l_active);
2141 
2142 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2143 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2144 
2145 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2146 	spin_unlock_irq(&pgdat->lru_lock);
2147 
2148 	mem_cgroup_uncharge_list(&l_active);
2149 	free_unref_page_list(&l_active);
2150 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2151 			nr_deactivate, nr_rotated, sc->priority, file);
2152 }
2153 
reclaim_pages(struct list_head * page_list)2154 unsigned long reclaim_pages(struct list_head *page_list)
2155 {
2156 	int nid = -1;
2157 	unsigned long nr_reclaimed = 0;
2158 	LIST_HEAD(node_page_list);
2159 	struct reclaim_stat dummy_stat;
2160 	struct page *page;
2161 	struct scan_control sc = {
2162 		.gfp_mask = GFP_KERNEL,
2163 		.priority = DEF_PRIORITY,
2164 		.may_writepage = 1,
2165 		.may_unmap = 1,
2166 		.may_swap = 1,
2167 	};
2168 
2169 	while (!list_empty(page_list)) {
2170 		page = lru_to_page(page_list);
2171 		if (nid == -1) {
2172 			nid = page_to_nid(page);
2173 			INIT_LIST_HEAD(&node_page_list);
2174 		}
2175 
2176 		if (nid == page_to_nid(page)) {
2177 			ClearPageActive(page);
2178 			list_move(&page->lru, &node_page_list);
2179 			continue;
2180 		}
2181 
2182 		nr_reclaimed += shrink_page_list(&node_page_list,
2183 						NODE_DATA(nid),
2184 						&sc, 0,
2185 						&dummy_stat, false);
2186 		while (!list_empty(&node_page_list)) {
2187 			page = lru_to_page(&node_page_list);
2188 			list_del(&page->lru);
2189 			putback_lru_page(page);
2190 		}
2191 
2192 		nid = -1;
2193 	}
2194 
2195 	if (!list_empty(&node_page_list)) {
2196 		nr_reclaimed += shrink_page_list(&node_page_list,
2197 						NODE_DATA(nid),
2198 						&sc, 0,
2199 						&dummy_stat, false);
2200 		while (!list_empty(&node_page_list)) {
2201 			page = lru_to_page(&node_page_list);
2202 			list_del(&page->lru);
2203 			putback_lru_page(page);
2204 		}
2205 	}
2206 
2207 	return nr_reclaimed;
2208 }
2209 
2210 /*
2211  * The inactive anon list should be small enough that the VM never has
2212  * to do too much work.
2213  *
2214  * The inactive file list should be small enough to leave most memory
2215  * to the established workingset on the scan-resistant active list,
2216  * but large enough to avoid thrashing the aggregate readahead window.
2217  *
2218  * Both inactive lists should also be large enough that each inactive
2219  * page has a chance to be referenced again before it is reclaimed.
2220  *
2221  * If that fails and refaulting is observed, the inactive list grows.
2222  *
2223  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2224  * on this LRU, maintained by the pageout code. An inactive_ratio
2225  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2226  *
2227  * total     target    max
2228  * memory    ratio     inactive
2229  * -------------------------------------
2230  *   10MB       1         5MB
2231  *  100MB       1        50MB
2232  *    1GB       3       250MB
2233  *   10GB      10       0.9GB
2234  *  100GB      31         3GB
2235  *    1TB     101        10GB
2236  *   10TB     320        32GB
2237  */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc,bool trace)2238 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2239 				 struct scan_control *sc, bool trace)
2240 {
2241 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2242 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2243 	enum lru_list inactive_lru = file * LRU_FILE;
2244 	unsigned long inactive, active;
2245 	unsigned long inactive_ratio;
2246 	unsigned long refaults;
2247 	unsigned long gb;
2248 
2249 	/*
2250 	 * If we don't have swap space, anonymous page deactivation
2251 	 * is pointless.
2252 	 */
2253 	if (!file && !total_swap_pages)
2254 		return false;
2255 
2256 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2257 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2258 
2259 	/*
2260 	 * When refaults are being observed, it means a new workingset
2261 	 * is being established. Disable active list protection to get
2262 	 * rid of the stale workingset quickly.
2263 	 */
2264 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2265 	if (file && lruvec->refaults != refaults) {
2266 		inactive_ratio = 0;
2267 	} else {
2268 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2269 		if (gb)
2270 			inactive_ratio = int_sqrt(10 * gb);
2271 		else
2272 			inactive_ratio = 1;
2273 	}
2274 
2275 	if (trace)
2276 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2277 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2278 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2279 			inactive_ratio, file);
2280 
2281 	return inactive * inactive_ratio < active;
2282 }
2283 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2284 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2285 				 struct lruvec *lruvec, struct scan_control *sc)
2286 {
2287 	if (is_active_lru(lru)) {
2288 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2289 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2290 		return 0;
2291 	}
2292 
2293 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2294 }
2295 
2296 enum scan_balance {
2297 	SCAN_EQUAL,
2298 	SCAN_FRACT,
2299 	SCAN_ANON,
2300 	SCAN_FILE,
2301 };
2302 
2303 /*
2304  * Determine how aggressively the anon and file LRU lists should be
2305  * scanned.  The relative value of each set of LRU lists is determined
2306  * by looking at the fraction of the pages scanned we did rotate back
2307  * onto the active list instead of evict.
2308  *
2309  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2310  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2311  */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2312 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2313 			   struct scan_control *sc, unsigned long *nr,
2314 			   unsigned long *lru_pages)
2315 {
2316 	int swappiness = mem_cgroup_swappiness(memcg);
2317 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2318 	u64 fraction[2];
2319 	u64 denominator = 0;	/* gcc */
2320 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2321 	unsigned long anon_prio, file_prio;
2322 	enum scan_balance scan_balance;
2323 	unsigned long anon, file;
2324 	unsigned long ap, fp;
2325 	enum lru_list lru;
2326 
2327 	/* If we have no swap space, do not bother scanning anon pages. */
2328 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2329 		scan_balance = SCAN_FILE;
2330 		goto out;
2331 	}
2332 
2333 	/*
2334 	 * Global reclaim will swap to prevent OOM even with no
2335 	 * swappiness, but memcg users want to use this knob to
2336 	 * disable swapping for individual groups completely when
2337 	 * using the memory controller's swap limit feature would be
2338 	 * too expensive.
2339 	 */
2340 	if (!global_reclaim(sc) && !swappiness) {
2341 		scan_balance = SCAN_FILE;
2342 		goto out;
2343 	}
2344 
2345 	/*
2346 	 * Do not apply any pressure balancing cleverness when the
2347 	 * system is close to OOM, scan both anon and file equally
2348 	 * (unless the swappiness setting disagrees with swapping).
2349 	 */
2350 	if (!sc->priority && swappiness) {
2351 		scan_balance = SCAN_EQUAL;
2352 		goto out;
2353 	}
2354 
2355 	/*
2356 	 * Prevent the reclaimer from falling into the cache trap: as
2357 	 * cache pages start out inactive, every cache fault will tip
2358 	 * the scan balance towards the file LRU.  And as the file LRU
2359 	 * shrinks, so does the window for rotation from references.
2360 	 * This means we have a runaway feedback loop where a tiny
2361 	 * thrashing file LRU becomes infinitely more attractive than
2362 	 * anon pages.  Try to detect this based on file LRU size.
2363 	 */
2364 	if (global_reclaim(sc)) {
2365 		unsigned long pgdatfile;
2366 		unsigned long pgdatfree;
2367 		int z;
2368 		unsigned long total_high_wmark = 0;
2369 
2370 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2371 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2372 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2373 
2374 		for (z = 0; z < MAX_NR_ZONES; z++) {
2375 			struct zone *zone = &pgdat->node_zones[z];
2376 			if (!managed_zone(zone))
2377 				continue;
2378 
2379 			total_high_wmark += high_wmark_pages(zone);
2380 		}
2381 
2382 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2383 			/*
2384 			 * Force SCAN_ANON if there are enough inactive
2385 			 * anonymous pages on the LRU in eligible zones.
2386 			 * Otherwise, the small LRU gets thrashed.
2387 			 */
2388 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2389 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2390 					>> sc->priority) {
2391 				scan_balance = SCAN_ANON;
2392 				goto out;
2393 			}
2394 		}
2395 	}
2396 
2397 	/*
2398 	 * If there is enough inactive page cache, i.e. if the size of the
2399 	 * inactive list is greater than that of the active list *and* the
2400 	 * inactive list actually has some pages to scan on this priority, we
2401 	 * do not reclaim anything from the anonymous working set right now.
2402 	 * Without the second condition we could end up never scanning an
2403 	 * lruvec even if it has plenty of old anonymous pages unless the
2404 	 * system is under heavy pressure.
2405 	 */
2406 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2407 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2408 		scan_balance = SCAN_FILE;
2409 		goto out;
2410 	}
2411 
2412 	scan_balance = SCAN_FRACT;
2413 
2414 	/*
2415 	 * With swappiness at 100, anonymous and file have the same priority.
2416 	 * This scanning priority is essentially the inverse of IO cost.
2417 	 */
2418 	anon_prio = swappiness;
2419 	file_prio = 200 - anon_prio;
2420 
2421 	/*
2422 	 * OK, so we have swap space and a fair amount of page cache
2423 	 * pages.  We use the recently rotated / recently scanned
2424 	 * ratios to determine how valuable each cache is.
2425 	 *
2426 	 * Because workloads change over time (and to avoid overflow)
2427 	 * we keep these statistics as a floating average, which ends
2428 	 * up weighing recent references more than old ones.
2429 	 *
2430 	 * anon in [0], file in [1]
2431 	 */
2432 
2433 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2434 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2435 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2436 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2437 
2438 	spin_lock_irq(&pgdat->lru_lock);
2439 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2440 		reclaim_stat->recent_scanned[0] /= 2;
2441 		reclaim_stat->recent_rotated[0] /= 2;
2442 	}
2443 
2444 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2445 		reclaim_stat->recent_scanned[1] /= 2;
2446 		reclaim_stat->recent_rotated[1] /= 2;
2447 	}
2448 
2449 	/*
2450 	 * The amount of pressure on anon vs file pages is inversely
2451 	 * proportional to the fraction of recently scanned pages on
2452 	 * each list that were recently referenced and in active use.
2453 	 */
2454 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2455 	ap /= reclaim_stat->recent_rotated[0] + 1;
2456 
2457 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2458 	fp /= reclaim_stat->recent_rotated[1] + 1;
2459 	spin_unlock_irq(&pgdat->lru_lock);
2460 
2461 	fraction[0] = ap;
2462 	fraction[1] = fp;
2463 	denominator = ap + fp + 1;
2464 out:
2465 	*lru_pages = 0;
2466 	for_each_evictable_lru(lru) {
2467 		int file = is_file_lru(lru);
2468 		unsigned long lruvec_size;
2469 		unsigned long low, min;
2470 		unsigned long scan;
2471 
2472 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2473 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2474 				      &min, &low);
2475 
2476 		if (min || low) {
2477 			/*
2478 			 * Scale a cgroup's reclaim pressure by proportioning
2479 			 * its current usage to its memory.low or memory.min
2480 			 * setting.
2481 			 *
2482 			 * This is important, as otherwise scanning aggression
2483 			 * becomes extremely binary -- from nothing as we
2484 			 * approach the memory protection threshold, to totally
2485 			 * nominal as we exceed it.  This results in requiring
2486 			 * setting extremely liberal protection thresholds. It
2487 			 * also means we simply get no protection at all if we
2488 			 * set it too low, which is not ideal.
2489 			 *
2490 			 * If there is any protection in place, we reduce scan
2491 			 * pressure by how much of the total memory used is
2492 			 * within protection thresholds.
2493 			 *
2494 			 * There is one special case: in the first reclaim pass,
2495 			 * we skip over all groups that are within their low
2496 			 * protection. If that fails to reclaim enough pages to
2497 			 * satisfy the reclaim goal, we come back and override
2498 			 * the best-effort low protection. However, we still
2499 			 * ideally want to honor how well-behaved groups are in
2500 			 * that case instead of simply punishing them all
2501 			 * equally. As such, we reclaim them based on how much
2502 			 * memory they are using, reducing the scan pressure
2503 			 * again by how much of the total memory used is under
2504 			 * hard protection.
2505 			 */
2506 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2507 			unsigned long protection;
2508 
2509 			/* memory.low scaling, make sure we retry before OOM */
2510 			if (!sc->memcg_low_reclaim && low > min) {
2511 				protection = low;
2512 				sc->memcg_low_skipped = 1;
2513 			} else {
2514 				protection = min;
2515 			}
2516 
2517 			/* Avoid TOCTOU with earlier protection check */
2518 			cgroup_size = max(cgroup_size, protection);
2519 
2520 			scan = lruvec_size - lruvec_size * protection /
2521 				(cgroup_size + 1);
2522 
2523 			/*
2524 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2525 			 * reclaim moving forwards, avoiding decremeting
2526 			 * sc->priority further than desirable.
2527 			 */
2528 			scan = max(scan, SWAP_CLUSTER_MAX);
2529 		} else {
2530 			scan = lruvec_size;
2531 		}
2532 
2533 		scan >>= sc->priority;
2534 
2535 		/*
2536 		 * If the cgroup's already been deleted, make sure to
2537 		 * scrape out the remaining cache.
2538 		 */
2539 		if (!scan && !mem_cgroup_online(memcg))
2540 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2541 
2542 		switch (scan_balance) {
2543 		case SCAN_EQUAL:
2544 			/* Scan lists relative to size */
2545 			break;
2546 		case SCAN_FRACT:
2547 			/*
2548 			 * Scan types proportional to swappiness and
2549 			 * their relative recent reclaim efficiency.
2550 			 * Make sure we don't miss the last page on
2551 			 * the offlined memory cgroups because of a
2552 			 * round-off error.
2553 			 */
2554 			scan = mem_cgroup_online(memcg) ?
2555 			       div64_u64(scan * fraction[file], denominator) :
2556 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2557 						  denominator);
2558 			break;
2559 		case SCAN_FILE:
2560 		case SCAN_ANON:
2561 			/* Scan one type exclusively */
2562 			if ((scan_balance == SCAN_FILE) != file) {
2563 				lruvec_size = 0;
2564 				scan = 0;
2565 			}
2566 			break;
2567 		default:
2568 			/* Look ma, no brain */
2569 			BUG();
2570 		}
2571 
2572 		*lru_pages += lruvec_size;
2573 		nr[lru] = scan;
2574 	}
2575 }
2576 
2577 /*
2578  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2579  */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2580 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2581 			      struct scan_control *sc, unsigned long *lru_pages)
2582 {
2583 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2584 	unsigned long nr[NR_LRU_LISTS];
2585 	unsigned long targets[NR_LRU_LISTS];
2586 	unsigned long nr_to_scan;
2587 	enum lru_list lru;
2588 	unsigned long nr_reclaimed = 0;
2589 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2590 	struct blk_plug plug;
2591 	bool scan_adjusted;
2592 
2593 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2594 
2595 	/* Record the original scan target for proportional adjustments later */
2596 	memcpy(targets, nr, sizeof(nr));
2597 
2598 	/*
2599 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2600 	 * event that can occur when there is little memory pressure e.g.
2601 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2602 	 * when the requested number of pages are reclaimed when scanning at
2603 	 * DEF_PRIORITY on the assumption that the fact we are direct
2604 	 * reclaiming implies that kswapd is not keeping up and it is best to
2605 	 * do a batch of work at once. For memcg reclaim one check is made to
2606 	 * abort proportional reclaim if either the file or anon lru has already
2607 	 * dropped to zero at the first pass.
2608 	 */
2609 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2610 			 sc->priority == DEF_PRIORITY);
2611 
2612 	blk_start_plug(&plug);
2613 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2614 					nr[LRU_INACTIVE_FILE]) {
2615 		unsigned long nr_anon, nr_file, percentage;
2616 		unsigned long nr_scanned;
2617 
2618 		for_each_evictable_lru(lru) {
2619 			if (nr[lru]) {
2620 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2621 				nr[lru] -= nr_to_scan;
2622 
2623 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2624 							    lruvec, sc);
2625 			}
2626 		}
2627 
2628 		cond_resched();
2629 
2630 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2631 			continue;
2632 
2633 		/*
2634 		 * For kswapd and memcg, reclaim at least the number of pages
2635 		 * requested. Ensure that the anon and file LRUs are scanned
2636 		 * proportionally what was requested by get_scan_count(). We
2637 		 * stop reclaiming one LRU and reduce the amount scanning
2638 		 * proportional to the original scan target.
2639 		 */
2640 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2641 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2642 
2643 		/*
2644 		 * It's just vindictive to attack the larger once the smaller
2645 		 * has gone to zero.  And given the way we stop scanning the
2646 		 * smaller below, this makes sure that we only make one nudge
2647 		 * towards proportionality once we've got nr_to_reclaim.
2648 		 */
2649 		if (!nr_file || !nr_anon)
2650 			break;
2651 
2652 		if (nr_file > nr_anon) {
2653 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2654 						targets[LRU_ACTIVE_ANON] + 1;
2655 			lru = LRU_BASE;
2656 			percentage = nr_anon * 100 / scan_target;
2657 		} else {
2658 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2659 						targets[LRU_ACTIVE_FILE] + 1;
2660 			lru = LRU_FILE;
2661 			percentage = nr_file * 100 / scan_target;
2662 		}
2663 
2664 		/* Stop scanning the smaller of the LRU */
2665 		nr[lru] = 0;
2666 		nr[lru + LRU_ACTIVE] = 0;
2667 
2668 		/*
2669 		 * Recalculate the other LRU scan count based on its original
2670 		 * scan target and the percentage scanning already complete
2671 		 */
2672 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2673 		nr_scanned = targets[lru] - nr[lru];
2674 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2675 		nr[lru] -= min(nr[lru], nr_scanned);
2676 
2677 		lru += LRU_ACTIVE;
2678 		nr_scanned = targets[lru] - nr[lru];
2679 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2680 		nr[lru] -= min(nr[lru], nr_scanned);
2681 
2682 		scan_adjusted = true;
2683 	}
2684 	blk_finish_plug(&plug);
2685 	sc->nr_reclaimed += nr_reclaimed;
2686 
2687 	/*
2688 	 * Even if we did not try to evict anon pages at all, we want to
2689 	 * rebalance the anon lru active/inactive ratio.
2690 	 */
2691 	if (inactive_list_is_low(lruvec, false, sc, true))
2692 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2693 				   sc, LRU_ACTIVE_ANON);
2694 }
2695 
2696 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2697 static bool in_reclaim_compaction(struct scan_control *sc)
2698 {
2699 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
2700 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2701 			 sc->priority < DEF_PRIORITY - 2))
2702 		return true;
2703 
2704 	return false;
2705 }
2706 
2707 /*
2708  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2709  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2710  * true if more pages should be reclaimed such that when the page allocator
2711  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2712  * It will give up earlier than that if there is difficulty reclaiming pages.
2713  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2714 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2715 					unsigned long nr_reclaimed,
2716 					struct scan_control *sc)
2717 {
2718 	unsigned long pages_for_compaction;
2719 	unsigned long inactive_lru_pages;
2720 	int z;
2721 
2722 	/* If not in reclaim/compaction mode, stop */
2723 	if (!in_reclaim_compaction(sc))
2724 		return false;
2725 
2726 	/*
2727 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2728 	 * number of pages that were scanned. This will return to the caller
2729 	 * with the risk reclaim/compaction and the resulting allocation attempt
2730 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2731 	 * allocations through requiring that the full LRU list has been scanned
2732 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2733 	 * scan, but that approximation was wrong, and there were corner cases
2734 	 * where always a non-zero amount of pages were scanned.
2735 	 */
2736 	if (!nr_reclaimed)
2737 		return false;
2738 
2739 	/* If compaction would go ahead or the allocation would succeed, stop */
2740 	for (z = 0; z <= sc->reclaim_idx; z++) {
2741 		struct zone *zone = &pgdat->node_zones[z];
2742 		if (!managed_zone(zone))
2743 			continue;
2744 
2745 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2746 		case COMPACT_SUCCESS:
2747 		case COMPACT_CONTINUE:
2748 			return false;
2749 		default:
2750 			/* check next zone */
2751 			;
2752 		}
2753 	}
2754 
2755 	/*
2756 	 * If we have not reclaimed enough pages for compaction and the
2757 	 * inactive lists are large enough, continue reclaiming
2758 	 */
2759 	pages_for_compaction = compact_gap(sc->order);
2760 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2761 	if (get_nr_swap_pages() > 0)
2762 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2763 
2764 	return inactive_lru_pages > pages_for_compaction;
2765 }
2766 
pgdat_memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)2767 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2768 {
2769 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2770 		(memcg && memcg_congested(pgdat, memcg));
2771 }
2772 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2773 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2774 {
2775 	struct reclaim_state *reclaim_state = current->reclaim_state;
2776 	unsigned long nr_reclaimed, nr_scanned;
2777 	bool reclaimable = false;
2778 
2779 	do {
2780 		struct mem_cgroup *root = sc->target_mem_cgroup;
2781 		unsigned long node_lru_pages = 0;
2782 		struct mem_cgroup *memcg;
2783 
2784 		memset(&sc->nr, 0, sizeof(sc->nr));
2785 
2786 		nr_reclaimed = sc->nr_reclaimed;
2787 		nr_scanned = sc->nr_scanned;
2788 
2789 		memcg = mem_cgroup_iter(root, NULL, NULL);
2790 		do {
2791 			unsigned long lru_pages;
2792 			unsigned long reclaimed;
2793 			unsigned long scanned;
2794 
2795 			/*
2796 			 * This loop can become CPU-bound when target memcgs
2797 			 * aren't eligible for reclaim - either because they
2798 			 * don't have any reclaimable pages, or because their
2799 			 * memory is explicitly protected. Avoid soft lockups.
2800 			 */
2801 			cond_resched();
2802 
2803 			switch (mem_cgroup_protected(root, memcg)) {
2804 			case MEMCG_PROT_MIN:
2805 				/*
2806 				 * Hard protection.
2807 				 * If there is no reclaimable memory, OOM.
2808 				 */
2809 				continue;
2810 			case MEMCG_PROT_LOW:
2811 				/*
2812 				 * Soft protection.
2813 				 * Respect the protection only as long as
2814 				 * there is an unprotected supply
2815 				 * of reclaimable memory from other cgroups.
2816 				 */
2817 				if (!sc->memcg_low_reclaim) {
2818 					sc->memcg_low_skipped = 1;
2819 					continue;
2820 				}
2821 				memcg_memory_event(memcg, MEMCG_LOW);
2822 				break;
2823 			case MEMCG_PROT_NONE:
2824 				/*
2825 				 * All protection thresholds breached. We may
2826 				 * still choose to vary the scan pressure
2827 				 * applied based on by how much the cgroup in
2828 				 * question has exceeded its protection
2829 				 * thresholds (see get_scan_count).
2830 				 */
2831 				break;
2832 			}
2833 
2834 			reclaimed = sc->nr_reclaimed;
2835 			scanned = sc->nr_scanned;
2836 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2837 			node_lru_pages += lru_pages;
2838 
2839 			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2840 					sc->priority);
2841 
2842 			/* Record the group's reclaim efficiency */
2843 			vmpressure(sc->gfp_mask, memcg, false,
2844 				   sc->nr_scanned - scanned,
2845 				   sc->nr_reclaimed - reclaimed);
2846 
2847 		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2848 
2849 		if (reclaim_state) {
2850 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2851 			reclaim_state->reclaimed_slab = 0;
2852 		}
2853 
2854 		/* Record the subtree's reclaim efficiency */
2855 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2856 			   sc->nr_scanned - nr_scanned,
2857 			   sc->nr_reclaimed - nr_reclaimed);
2858 
2859 		if (sc->nr_reclaimed - nr_reclaimed)
2860 			reclaimable = true;
2861 
2862 		if (current_is_kswapd()) {
2863 			/*
2864 			 * If reclaim is isolating dirty pages under writeback,
2865 			 * it implies that the long-lived page allocation rate
2866 			 * is exceeding the page laundering rate. Either the
2867 			 * global limits are not being effective at throttling
2868 			 * processes due to the page distribution throughout
2869 			 * zones or there is heavy usage of a slow backing
2870 			 * device. The only option is to throttle from reclaim
2871 			 * context which is not ideal as there is no guarantee
2872 			 * the dirtying process is throttled in the same way
2873 			 * balance_dirty_pages() manages.
2874 			 *
2875 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2876 			 * count the number of pages under pages flagged for
2877 			 * immediate reclaim and stall if any are encountered
2878 			 * in the nr_immediate check below.
2879 			 */
2880 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2881 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2882 
2883 			/*
2884 			 * Tag a node as congested if all the dirty pages
2885 			 * scanned were backed by a congested BDI and
2886 			 * wait_iff_congested will stall.
2887 			 */
2888 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2889 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2890 
2891 			/* Allow kswapd to start writing pages during reclaim.*/
2892 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2893 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2894 
2895 			/*
2896 			 * If kswapd scans pages marked marked for immediate
2897 			 * reclaim and under writeback (nr_immediate), it
2898 			 * implies that pages are cycling through the LRU
2899 			 * faster than they are written so also forcibly stall.
2900 			 */
2901 			if (sc->nr.immediate)
2902 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2903 		}
2904 
2905 		/*
2906 		 * Legacy memcg will stall in page writeback so avoid forcibly
2907 		 * stalling in wait_iff_congested().
2908 		 */
2909 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2910 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2911 			set_memcg_congestion(pgdat, root, true);
2912 
2913 		/*
2914 		 * Stall direct reclaim for IO completions if underlying BDIs
2915 		 * and node is congested. Allow kswapd to continue until it
2916 		 * starts encountering unqueued dirty pages or cycling through
2917 		 * the LRU too quickly.
2918 		 */
2919 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2920 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2921 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2922 
2923 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2924 					 sc));
2925 
2926 	/*
2927 	 * Kswapd gives up on balancing particular nodes after too
2928 	 * many failures to reclaim anything from them and goes to
2929 	 * sleep. On reclaim progress, reset the failure counter. A
2930 	 * successful direct reclaim run will revive a dormant kswapd.
2931 	 */
2932 	if (reclaimable)
2933 		pgdat->kswapd_failures = 0;
2934 
2935 	return reclaimable;
2936 }
2937 
2938 /*
2939  * Returns true if compaction should go ahead for a costly-order request, or
2940  * the allocation would already succeed without compaction. Return false if we
2941  * should reclaim first.
2942  */
compaction_ready(struct zone * zone,struct scan_control * sc)2943 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2944 {
2945 	unsigned long watermark;
2946 	enum compact_result suitable;
2947 
2948 	if (!gfp_compaction_allowed(sc->gfp_mask))
2949 		return false;
2950 
2951 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2952 	if (suitable == COMPACT_SUCCESS)
2953 		/* Allocation should succeed already. Don't reclaim. */
2954 		return true;
2955 	if (suitable == COMPACT_SKIPPED)
2956 		/* Compaction cannot yet proceed. Do reclaim. */
2957 		return false;
2958 
2959 	/*
2960 	 * Compaction is already possible, but it takes time to run and there
2961 	 * are potentially other callers using the pages just freed. So proceed
2962 	 * with reclaim to make a buffer of free pages available to give
2963 	 * compaction a reasonable chance of completing and allocating the page.
2964 	 * Note that we won't actually reclaim the whole buffer in one attempt
2965 	 * as the target watermark in should_continue_reclaim() is lower. But if
2966 	 * we are already above the high+gap watermark, don't reclaim at all.
2967 	 */
2968 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2969 
2970 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2971 }
2972 
2973 /*
2974  * This is the direct reclaim path, for page-allocating processes.  We only
2975  * try to reclaim pages from zones which will satisfy the caller's allocation
2976  * request.
2977  *
2978  * If a zone is deemed to be full of pinned pages then just give it a light
2979  * scan then give up on it.
2980  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2981 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2982 {
2983 	struct zoneref *z;
2984 	struct zone *zone;
2985 	unsigned long nr_soft_reclaimed;
2986 	unsigned long nr_soft_scanned;
2987 	gfp_t orig_mask;
2988 	pg_data_t *last_pgdat = NULL;
2989 
2990 	/*
2991 	 * If the number of buffer_heads in the machine exceeds the maximum
2992 	 * allowed level, force direct reclaim to scan the highmem zone as
2993 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2994 	 */
2995 	orig_mask = sc->gfp_mask;
2996 	if (buffer_heads_over_limit) {
2997 		sc->gfp_mask |= __GFP_HIGHMEM;
2998 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2999 	}
3000 
3001 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3002 					sc->reclaim_idx, sc->nodemask) {
3003 		/*
3004 		 * Take care memory controller reclaiming has small influence
3005 		 * to global LRU.
3006 		 */
3007 		if (global_reclaim(sc)) {
3008 			if (!cpuset_zone_allowed(zone,
3009 						 GFP_KERNEL | __GFP_HARDWALL))
3010 				continue;
3011 
3012 			/*
3013 			 * If we already have plenty of memory free for
3014 			 * compaction in this zone, don't free any more.
3015 			 * Even though compaction is invoked for any
3016 			 * non-zero order, only frequent costly order
3017 			 * reclamation is disruptive enough to become a
3018 			 * noticeable problem, like transparent huge
3019 			 * page allocations.
3020 			 */
3021 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3022 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3023 			    compaction_ready(zone, sc)) {
3024 				sc->compaction_ready = true;
3025 				continue;
3026 			}
3027 
3028 			/*
3029 			 * Shrink each node in the zonelist once. If the
3030 			 * zonelist is ordered by zone (not the default) then a
3031 			 * node may be shrunk multiple times but in that case
3032 			 * the user prefers lower zones being preserved.
3033 			 */
3034 			if (zone->zone_pgdat == last_pgdat)
3035 				continue;
3036 
3037 			/*
3038 			 * This steals pages from memory cgroups over softlimit
3039 			 * and returns the number of reclaimed pages and
3040 			 * scanned pages. This works for global memory pressure
3041 			 * and balancing, not for a memcg's limit.
3042 			 */
3043 			nr_soft_scanned = 0;
3044 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3045 						sc->order, sc->gfp_mask,
3046 						&nr_soft_scanned);
3047 			sc->nr_reclaimed += nr_soft_reclaimed;
3048 			sc->nr_scanned += nr_soft_scanned;
3049 			/* need some check for avoid more shrink_zone() */
3050 		}
3051 
3052 		/* See comment about same check for global reclaim above */
3053 		if (zone->zone_pgdat == last_pgdat)
3054 			continue;
3055 		last_pgdat = zone->zone_pgdat;
3056 		shrink_node(zone->zone_pgdat, sc);
3057 	}
3058 
3059 	/*
3060 	 * Restore to original mask to avoid the impact on the caller if we
3061 	 * promoted it to __GFP_HIGHMEM.
3062 	 */
3063 	sc->gfp_mask = orig_mask;
3064 }
3065 
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)3066 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3067 {
3068 	struct mem_cgroup *memcg;
3069 
3070 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3071 	do {
3072 		unsigned long refaults;
3073 		struct lruvec *lruvec;
3074 
3075 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3076 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3077 		lruvec->refaults = refaults;
3078 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3079 }
3080 
3081 /*
3082  * This is the main entry point to direct page reclaim.
3083  *
3084  * If a full scan of the inactive list fails to free enough memory then we
3085  * are "out of memory" and something needs to be killed.
3086  *
3087  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3088  * high - the zone may be full of dirty or under-writeback pages, which this
3089  * caller can't do much about.  We kick the writeback threads and take explicit
3090  * naps in the hope that some of these pages can be written.  But if the
3091  * allocating task holds filesystem locks which prevent writeout this might not
3092  * work, and the allocation attempt will fail.
3093  *
3094  * returns:	0, if no pages reclaimed
3095  * 		else, the number of pages reclaimed
3096  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3097 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3098 					  struct scan_control *sc)
3099 {
3100 	int initial_priority = sc->priority;
3101 	pg_data_t *last_pgdat;
3102 	struct zoneref *z;
3103 	struct zone *zone;
3104 retry:
3105 	delayacct_freepages_start();
3106 
3107 	if (global_reclaim(sc))
3108 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3109 
3110 	do {
3111 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3112 				sc->priority);
3113 		sc->nr_scanned = 0;
3114 		shrink_zones(zonelist, sc);
3115 
3116 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3117 			break;
3118 
3119 		if (sc->compaction_ready)
3120 			break;
3121 
3122 		/*
3123 		 * If we're getting trouble reclaiming, start doing
3124 		 * writepage even in laptop mode.
3125 		 */
3126 		if (sc->priority < DEF_PRIORITY - 2)
3127 			sc->may_writepage = 1;
3128 	} while (--sc->priority >= 0);
3129 
3130 	last_pgdat = NULL;
3131 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3132 					sc->nodemask) {
3133 		if (zone->zone_pgdat == last_pgdat)
3134 			continue;
3135 		last_pgdat = zone->zone_pgdat;
3136 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3137 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3138 	}
3139 
3140 	delayacct_freepages_end();
3141 
3142 	if (sc->nr_reclaimed)
3143 		return sc->nr_reclaimed;
3144 
3145 	/* Aborted reclaim to try compaction? don't OOM, then */
3146 	if (sc->compaction_ready)
3147 		return 1;
3148 
3149 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3150 	if (sc->memcg_low_skipped) {
3151 		sc->priority = initial_priority;
3152 		sc->memcg_low_reclaim = 1;
3153 		sc->memcg_low_skipped = 0;
3154 		goto retry;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
allow_direct_reclaim(pg_data_t * pgdat)3160 static bool allow_direct_reclaim(pg_data_t *pgdat)
3161 {
3162 	struct zone *zone;
3163 	unsigned long pfmemalloc_reserve = 0;
3164 	unsigned long free_pages = 0;
3165 	int i;
3166 	bool wmark_ok;
3167 
3168 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3169 		return true;
3170 
3171 	for (i = 0; i <= ZONE_NORMAL; i++) {
3172 		zone = &pgdat->node_zones[i];
3173 		if (!managed_zone(zone))
3174 			continue;
3175 
3176 		if (!zone_reclaimable_pages(zone))
3177 			continue;
3178 
3179 		pfmemalloc_reserve += min_wmark_pages(zone);
3180 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3181 	}
3182 
3183 	/* If there are no reserves (unexpected config) then do not throttle */
3184 	if (!pfmemalloc_reserve)
3185 		return true;
3186 
3187 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3188 
3189 	/* kswapd must be awake if processes are being throttled */
3190 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3191 		if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
3192 			WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
3193 
3194 		wake_up_interruptible(&pgdat->kswapd_wait);
3195 	}
3196 
3197 	return wmark_ok;
3198 }
3199 
3200 /*
3201  * Throttle direct reclaimers if backing storage is backed by the network
3202  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3203  * depleted. kswapd will continue to make progress and wake the processes
3204  * when the low watermark is reached.
3205  *
3206  * Returns true if a fatal signal was delivered during throttling. If this
3207  * happens, the page allocator should not consider triggering the OOM killer.
3208  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3209 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3210 					nodemask_t *nodemask)
3211 {
3212 	struct zoneref *z;
3213 	struct zone *zone;
3214 	pg_data_t *pgdat = NULL;
3215 
3216 	/*
3217 	 * Kernel threads should not be throttled as they may be indirectly
3218 	 * responsible for cleaning pages necessary for reclaim to make forward
3219 	 * progress. kjournald for example may enter direct reclaim while
3220 	 * committing a transaction where throttling it could forcing other
3221 	 * processes to block on log_wait_commit().
3222 	 */
3223 	if (current->flags & PF_KTHREAD)
3224 		goto out;
3225 
3226 	/*
3227 	 * If a fatal signal is pending, this process should not throttle.
3228 	 * It should return quickly so it can exit and free its memory
3229 	 */
3230 	if (fatal_signal_pending(current))
3231 		goto out;
3232 
3233 	/*
3234 	 * Check if the pfmemalloc reserves are ok by finding the first node
3235 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3236 	 * GFP_KERNEL will be required for allocating network buffers when
3237 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3238 	 *
3239 	 * Throttling is based on the first usable node and throttled processes
3240 	 * wait on a queue until kswapd makes progress and wakes them. There
3241 	 * is an affinity then between processes waking up and where reclaim
3242 	 * progress has been made assuming the process wakes on the same node.
3243 	 * More importantly, processes running on remote nodes will not compete
3244 	 * for remote pfmemalloc reserves and processes on different nodes
3245 	 * should make reasonable progress.
3246 	 */
3247 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3248 					gfp_zone(gfp_mask), nodemask) {
3249 		if (zone_idx(zone) > ZONE_NORMAL)
3250 			continue;
3251 
3252 		/* Throttle based on the first usable node */
3253 		pgdat = zone->zone_pgdat;
3254 		if (allow_direct_reclaim(pgdat))
3255 			goto out;
3256 		break;
3257 	}
3258 
3259 	/* If no zone was usable by the allocation flags then do not throttle */
3260 	if (!pgdat)
3261 		goto out;
3262 
3263 	/* Account for the throttling */
3264 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3265 
3266 	/*
3267 	 * If the caller cannot enter the filesystem, it's possible that it
3268 	 * is due to the caller holding an FS lock or performing a journal
3269 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3270 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3271 	 * blocked waiting on the same lock. Instead, throttle for up to a
3272 	 * second before continuing.
3273 	 */
3274 	if (!(gfp_mask & __GFP_FS)) {
3275 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3276 			allow_direct_reclaim(pgdat), HZ);
3277 
3278 		goto check_pending;
3279 	}
3280 
3281 	/* Throttle until kswapd wakes the process */
3282 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3283 		allow_direct_reclaim(pgdat));
3284 
3285 check_pending:
3286 	if (fatal_signal_pending(current))
3287 		return true;
3288 
3289 out:
3290 	return false;
3291 }
3292 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3293 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3294 				gfp_t gfp_mask, nodemask_t *nodemask)
3295 {
3296 	unsigned long nr_reclaimed;
3297 	struct scan_control sc = {
3298 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3299 		.gfp_mask = current_gfp_context(gfp_mask),
3300 		.reclaim_idx = gfp_zone(gfp_mask),
3301 		.order = order,
3302 		.nodemask = nodemask,
3303 		.priority = DEF_PRIORITY,
3304 		.may_writepage = !laptop_mode,
3305 		.may_unmap = 1,
3306 		.may_swap = 1,
3307 	};
3308 
3309 	/*
3310 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3311 	 * Confirm they are large enough for max values.
3312 	 */
3313 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3314 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3315 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3316 
3317 	/*
3318 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3319 	 * 1 is returned so that the page allocator does not OOM kill at this
3320 	 * point.
3321 	 */
3322 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3323 		return 1;
3324 
3325 	set_task_reclaim_state(current, &sc.reclaim_state);
3326 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3327 
3328 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3329 
3330 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3331 	set_task_reclaim_state(current, NULL);
3332 
3333 	return nr_reclaimed;
3334 }
3335 
3336 #ifdef CONFIG_MEMCG
3337 
3338 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3339 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3340 						gfp_t gfp_mask, bool noswap,
3341 						pg_data_t *pgdat,
3342 						unsigned long *nr_scanned)
3343 {
3344 	struct scan_control sc = {
3345 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3346 		.target_mem_cgroup = memcg,
3347 		.may_writepage = !laptop_mode,
3348 		.may_unmap = 1,
3349 		.reclaim_idx = MAX_NR_ZONES - 1,
3350 		.may_swap = !noswap,
3351 	};
3352 	unsigned long lru_pages;
3353 
3354 	WARN_ON_ONCE(!current->reclaim_state);
3355 
3356 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3357 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3358 
3359 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3360 						      sc.gfp_mask);
3361 
3362 	/*
3363 	 * NOTE: Although we can get the priority field, using it
3364 	 * here is not a good idea, since it limits the pages we can scan.
3365 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3366 	 * will pick up pages from other mem cgroup's as well. We hack
3367 	 * the priority and make it zero.
3368 	 */
3369 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3370 
3371 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3372 
3373 	*nr_scanned = sc.nr_scanned;
3374 
3375 	return sc.nr_reclaimed;
3376 }
3377 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3378 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3379 					   unsigned long nr_pages,
3380 					   gfp_t gfp_mask,
3381 					   bool may_swap)
3382 {
3383 	struct zonelist *zonelist;
3384 	unsigned long nr_reclaimed;
3385 	unsigned long pflags;
3386 	int nid;
3387 	unsigned int noreclaim_flag;
3388 	struct scan_control sc = {
3389 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3390 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3391 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3392 		.reclaim_idx = MAX_NR_ZONES - 1,
3393 		.target_mem_cgroup = memcg,
3394 		.priority = DEF_PRIORITY,
3395 		.may_writepage = !laptop_mode,
3396 		.may_unmap = 1,
3397 		.may_swap = may_swap,
3398 	};
3399 
3400 	set_task_reclaim_state(current, &sc.reclaim_state);
3401 	/*
3402 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3403 	 * take care of from where we get pages. So the node where we start the
3404 	 * scan does not need to be the current node.
3405 	 */
3406 	nid = mem_cgroup_select_victim_node(memcg);
3407 
3408 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3409 
3410 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3411 
3412 	psi_memstall_enter(&pflags);
3413 	noreclaim_flag = memalloc_noreclaim_save();
3414 
3415 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3416 
3417 	memalloc_noreclaim_restore(noreclaim_flag);
3418 	psi_memstall_leave(&pflags);
3419 
3420 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3421 	set_task_reclaim_state(current, NULL);
3422 
3423 	return nr_reclaimed;
3424 }
3425 #endif
3426 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3427 static void age_active_anon(struct pglist_data *pgdat,
3428 				struct scan_control *sc)
3429 {
3430 	struct mem_cgroup *memcg;
3431 
3432 	if (!total_swap_pages)
3433 		return;
3434 
3435 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3436 	do {
3437 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3438 
3439 		if (inactive_list_is_low(lruvec, false, sc, true))
3440 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3441 					   sc, LRU_ACTIVE_ANON);
3442 
3443 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3444 	} while (memcg);
3445 }
3446 
pgdat_watermark_boosted(pg_data_t * pgdat,int classzone_idx)3447 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3448 {
3449 	int i;
3450 	struct zone *zone;
3451 
3452 	/*
3453 	 * Check for watermark boosts top-down as the higher zones
3454 	 * are more likely to be boosted. Both watermarks and boosts
3455 	 * should not be checked at the time time as reclaim would
3456 	 * start prematurely when there is no boosting and a lower
3457 	 * zone is balanced.
3458 	 */
3459 	for (i = classzone_idx; i >= 0; i--) {
3460 		zone = pgdat->node_zones + i;
3461 		if (!managed_zone(zone))
3462 			continue;
3463 
3464 		if (zone->watermark_boost)
3465 			return true;
3466 	}
3467 
3468 	return false;
3469 }
3470 
3471 /*
3472  * Returns true if there is an eligible zone balanced for the request order
3473  * and classzone_idx
3474  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3475 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3476 {
3477 	int i;
3478 	unsigned long mark = -1;
3479 	struct zone *zone;
3480 
3481 	/*
3482 	 * Check watermarks bottom-up as lower zones are more likely to
3483 	 * meet watermarks.
3484 	 */
3485 	for (i = 0; i <= classzone_idx; i++) {
3486 		zone = pgdat->node_zones + i;
3487 
3488 		if (!managed_zone(zone))
3489 			continue;
3490 
3491 		mark = high_wmark_pages(zone);
3492 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3493 			return true;
3494 	}
3495 
3496 	/*
3497 	 * If a node has no populated zone within classzone_idx, it does not
3498 	 * need balancing by definition. This can happen if a zone-restricted
3499 	 * allocation tries to wake a remote kswapd.
3500 	 */
3501 	if (mark == -1)
3502 		return true;
3503 
3504 	return false;
3505 }
3506 
3507 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3508 static void clear_pgdat_congested(pg_data_t *pgdat)
3509 {
3510 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3511 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3512 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3513 }
3514 
3515 /*
3516  * Prepare kswapd for sleeping. This verifies that there are no processes
3517  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3518  *
3519  * Returns true if kswapd is ready to sleep
3520  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3521 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3522 {
3523 	/*
3524 	 * The throttled processes are normally woken up in balance_pgdat() as
3525 	 * soon as allow_direct_reclaim() is true. But there is a potential
3526 	 * race between when kswapd checks the watermarks and a process gets
3527 	 * throttled. There is also a potential race if processes get
3528 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3529 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3530 	 * the wake up checks. If kswapd is going to sleep, no process should
3531 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3532 	 * the wake up is premature, processes will wake kswapd and get
3533 	 * throttled again. The difference from wake ups in balance_pgdat() is
3534 	 * that here we are under prepare_to_wait().
3535 	 */
3536 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3537 		wake_up_all(&pgdat->pfmemalloc_wait);
3538 
3539 	/* Hopeless node, leave it to direct reclaim */
3540 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3541 		return true;
3542 
3543 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3544 		clear_pgdat_congested(pgdat);
3545 		return true;
3546 	}
3547 
3548 	return false;
3549 }
3550 
3551 /*
3552  * kswapd shrinks a node of pages that are at or below the highest usable
3553  * zone that is currently unbalanced.
3554  *
3555  * Returns true if kswapd scanned at least the requested number of pages to
3556  * reclaim or if the lack of progress was due to pages under writeback.
3557  * This is used to determine if the scanning priority needs to be raised.
3558  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3559 static bool kswapd_shrink_node(pg_data_t *pgdat,
3560 			       struct scan_control *sc)
3561 {
3562 	struct zone *zone;
3563 	int z;
3564 
3565 	/* Reclaim a number of pages proportional to the number of zones */
3566 	sc->nr_to_reclaim = 0;
3567 	for (z = 0; z <= sc->reclaim_idx; z++) {
3568 		zone = pgdat->node_zones + z;
3569 		if (!managed_zone(zone))
3570 			continue;
3571 
3572 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3573 	}
3574 
3575 	/*
3576 	 * Historically care was taken to put equal pressure on all zones but
3577 	 * now pressure is applied based on node LRU order.
3578 	 */
3579 	shrink_node(pgdat, sc);
3580 
3581 	/*
3582 	 * Fragmentation may mean that the system cannot be rebalanced for
3583 	 * high-order allocations. If twice the allocation size has been
3584 	 * reclaimed then recheck watermarks only at order-0 to prevent
3585 	 * excessive reclaim. Assume that a process requested a high-order
3586 	 * can direct reclaim/compact.
3587 	 */
3588 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3589 		sc->order = 0;
3590 
3591 	return sc->nr_scanned >= sc->nr_to_reclaim;
3592 }
3593 
3594 /*
3595  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3596  * that are eligible for use by the caller until at least one zone is
3597  * balanced.
3598  *
3599  * Returns the order kswapd finished reclaiming at.
3600  *
3601  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3602  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3603  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3604  * or lower is eligible for reclaim until at least one usable zone is
3605  * balanced.
3606  */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3607 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3608 {
3609 	int i;
3610 	unsigned long nr_soft_reclaimed;
3611 	unsigned long nr_soft_scanned;
3612 	unsigned long pflags;
3613 	unsigned long nr_boost_reclaim;
3614 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3615 	bool boosted;
3616 	struct zone *zone;
3617 	struct scan_control sc = {
3618 		.gfp_mask = GFP_KERNEL,
3619 		.order = order,
3620 		.may_unmap = 1,
3621 	};
3622 
3623 	set_task_reclaim_state(current, &sc.reclaim_state);
3624 	psi_memstall_enter(&pflags);
3625 	__fs_reclaim_acquire();
3626 
3627 	count_vm_event(PAGEOUTRUN);
3628 
3629 	/*
3630 	 * Account for the reclaim boost. Note that the zone boost is left in
3631 	 * place so that parallel allocations that are near the watermark will
3632 	 * stall or direct reclaim until kswapd is finished.
3633 	 */
3634 	nr_boost_reclaim = 0;
3635 	for (i = 0; i <= classzone_idx; i++) {
3636 		zone = pgdat->node_zones + i;
3637 		if (!managed_zone(zone))
3638 			continue;
3639 
3640 		nr_boost_reclaim += zone->watermark_boost;
3641 		zone_boosts[i] = zone->watermark_boost;
3642 	}
3643 	boosted = nr_boost_reclaim;
3644 
3645 restart:
3646 	sc.priority = DEF_PRIORITY;
3647 	do {
3648 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3649 		bool raise_priority = true;
3650 		bool balanced;
3651 		bool ret;
3652 
3653 		sc.reclaim_idx = classzone_idx;
3654 
3655 		/*
3656 		 * If the number of buffer_heads exceeds the maximum allowed
3657 		 * then consider reclaiming from all zones. This has a dual
3658 		 * purpose -- on 64-bit systems it is expected that
3659 		 * buffer_heads are stripped during active rotation. On 32-bit
3660 		 * systems, highmem pages can pin lowmem memory and shrinking
3661 		 * buffers can relieve lowmem pressure. Reclaim may still not
3662 		 * go ahead if all eligible zones for the original allocation
3663 		 * request are balanced to avoid excessive reclaim from kswapd.
3664 		 */
3665 		if (buffer_heads_over_limit) {
3666 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3667 				zone = pgdat->node_zones + i;
3668 				if (!managed_zone(zone))
3669 					continue;
3670 
3671 				sc.reclaim_idx = i;
3672 				break;
3673 			}
3674 		}
3675 
3676 		/*
3677 		 * If the pgdat is imbalanced then ignore boosting and preserve
3678 		 * the watermarks for a later time and restart. Note that the
3679 		 * zone watermarks will be still reset at the end of balancing
3680 		 * on the grounds that the normal reclaim should be enough to
3681 		 * re-evaluate if boosting is required when kswapd next wakes.
3682 		 */
3683 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3684 		if (!balanced && nr_boost_reclaim) {
3685 			nr_boost_reclaim = 0;
3686 			goto restart;
3687 		}
3688 
3689 		/*
3690 		 * If boosting is not active then only reclaim if there are no
3691 		 * eligible zones. Note that sc.reclaim_idx is not used as
3692 		 * buffer_heads_over_limit may have adjusted it.
3693 		 */
3694 		if (!nr_boost_reclaim && balanced)
3695 			goto out;
3696 
3697 		/* Limit the priority of boosting to avoid reclaim writeback */
3698 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3699 			raise_priority = false;
3700 
3701 		/*
3702 		 * Do not writeback or swap pages for boosted reclaim. The
3703 		 * intent is to relieve pressure not issue sub-optimal IO
3704 		 * from reclaim context. If no pages are reclaimed, the
3705 		 * reclaim will be aborted.
3706 		 */
3707 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3708 		sc.may_swap = !nr_boost_reclaim;
3709 
3710 		/*
3711 		 * Do some background aging of the anon list, to give
3712 		 * pages a chance to be referenced before reclaiming. All
3713 		 * pages are rotated regardless of classzone as this is
3714 		 * about consistent aging.
3715 		 */
3716 		age_active_anon(pgdat, &sc);
3717 
3718 		/*
3719 		 * If we're getting trouble reclaiming, start doing writepage
3720 		 * even in laptop mode.
3721 		 */
3722 		if (sc.priority < DEF_PRIORITY - 2)
3723 			sc.may_writepage = 1;
3724 
3725 		/* Call soft limit reclaim before calling shrink_node. */
3726 		sc.nr_scanned = 0;
3727 		nr_soft_scanned = 0;
3728 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3729 						sc.gfp_mask, &nr_soft_scanned);
3730 		sc.nr_reclaimed += nr_soft_reclaimed;
3731 
3732 		/*
3733 		 * There should be no need to raise the scanning priority if
3734 		 * enough pages are already being scanned that that high
3735 		 * watermark would be met at 100% efficiency.
3736 		 */
3737 		if (kswapd_shrink_node(pgdat, &sc))
3738 			raise_priority = false;
3739 
3740 		/*
3741 		 * If the low watermark is met there is no need for processes
3742 		 * to be throttled on pfmemalloc_wait as they should not be
3743 		 * able to safely make forward progress. Wake them
3744 		 */
3745 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3746 				allow_direct_reclaim(pgdat))
3747 			wake_up_all(&pgdat->pfmemalloc_wait);
3748 
3749 		/* Check if kswapd should be suspending */
3750 		__fs_reclaim_release();
3751 		ret = try_to_freeze();
3752 		__fs_reclaim_acquire();
3753 		if (ret || kthread_should_stop())
3754 			break;
3755 
3756 		/*
3757 		 * Raise priority if scanning rate is too low or there was no
3758 		 * progress in reclaiming pages
3759 		 */
3760 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3761 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3762 
3763 		/*
3764 		 * If reclaim made no progress for a boost, stop reclaim as
3765 		 * IO cannot be queued and it could be an infinite loop in
3766 		 * extreme circumstances.
3767 		 */
3768 		if (nr_boost_reclaim && !nr_reclaimed)
3769 			break;
3770 
3771 		if (raise_priority || !nr_reclaimed)
3772 			sc.priority--;
3773 	} while (sc.priority >= 1);
3774 
3775 	if (!sc.nr_reclaimed)
3776 		pgdat->kswapd_failures++;
3777 
3778 out:
3779 	/* If reclaim was boosted, account for the reclaim done in this pass */
3780 	if (boosted) {
3781 		unsigned long flags;
3782 
3783 		for (i = 0; i <= classzone_idx; i++) {
3784 			if (!zone_boosts[i])
3785 				continue;
3786 
3787 			/* Increments are under the zone lock */
3788 			zone = pgdat->node_zones + i;
3789 			spin_lock_irqsave(&zone->lock, flags);
3790 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3791 			spin_unlock_irqrestore(&zone->lock, flags);
3792 		}
3793 
3794 		/*
3795 		 * As there is now likely space, wakeup kcompact to defragment
3796 		 * pageblocks.
3797 		 */
3798 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3799 	}
3800 
3801 	snapshot_refaults(NULL, pgdat);
3802 	__fs_reclaim_release();
3803 	psi_memstall_leave(&pflags);
3804 	set_task_reclaim_state(current, NULL);
3805 
3806 	/*
3807 	 * Return the order kswapd stopped reclaiming at as
3808 	 * prepare_kswapd_sleep() takes it into account. If another caller
3809 	 * entered the allocator slow path while kswapd was awake, order will
3810 	 * remain at the higher level.
3811 	 */
3812 	return sc.order;
3813 }
3814 
3815 /*
3816  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3817  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3818  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3819  * after previous reclaim attempt (node is still unbalanced). In that case
3820  * return the zone index of the previous kswapd reclaim cycle.
3821  */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type prev_classzone_idx)3822 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3823 					   enum zone_type prev_classzone_idx)
3824 {
3825 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3826 
3827 	return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3828 }
3829 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3830 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3831 				unsigned int classzone_idx)
3832 {
3833 	long remaining = 0;
3834 	DEFINE_WAIT(wait);
3835 
3836 	if (freezing(current) || kthread_should_stop())
3837 		return;
3838 
3839 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3840 
3841 	/*
3842 	 * Try to sleep for a short interval. Note that kcompactd will only be
3843 	 * woken if it is possible to sleep for a short interval. This is
3844 	 * deliberate on the assumption that if reclaim cannot keep an
3845 	 * eligible zone balanced that it's also unlikely that compaction will
3846 	 * succeed.
3847 	 */
3848 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3849 		/*
3850 		 * Compaction records what page blocks it recently failed to
3851 		 * isolate pages from and skips them in the future scanning.
3852 		 * When kswapd is going to sleep, it is reasonable to assume
3853 		 * that pages and compaction may succeed so reset the cache.
3854 		 */
3855 		reset_isolation_suitable(pgdat);
3856 
3857 		/*
3858 		 * We have freed the memory, now we should compact it to make
3859 		 * allocation of the requested order possible.
3860 		 */
3861 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3862 
3863 		remaining = schedule_timeout(HZ/10);
3864 
3865 		/*
3866 		 * If woken prematurely then reset kswapd_classzone_idx and
3867 		 * order. The values will either be from a wakeup request or
3868 		 * the previous request that slept prematurely.
3869 		 */
3870 		if (remaining) {
3871 			WRITE_ONCE(pgdat->kswapd_classzone_idx,
3872 				   kswapd_classzone_idx(pgdat, classzone_idx));
3873 
3874 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3875 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3876 		}
3877 
3878 		finish_wait(&pgdat->kswapd_wait, &wait);
3879 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3880 	}
3881 
3882 	/*
3883 	 * After a short sleep, check if it was a premature sleep. If not, then
3884 	 * go fully to sleep until explicitly woken up.
3885 	 */
3886 	if (!remaining &&
3887 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3888 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3889 
3890 		/*
3891 		 * vmstat counters are not perfectly accurate and the estimated
3892 		 * value for counters such as NR_FREE_PAGES can deviate from the
3893 		 * true value by nr_online_cpus * threshold. To avoid the zone
3894 		 * watermarks being breached while under pressure, we reduce the
3895 		 * per-cpu vmstat threshold while kswapd is awake and restore
3896 		 * them before going back to sleep.
3897 		 */
3898 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3899 
3900 		if (!kthread_should_stop())
3901 			schedule();
3902 
3903 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3904 	} else {
3905 		if (remaining)
3906 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3907 		else
3908 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3909 	}
3910 	finish_wait(&pgdat->kswapd_wait, &wait);
3911 }
3912 
3913 /*
3914  * The background pageout daemon, started as a kernel thread
3915  * from the init process.
3916  *
3917  * This basically trickles out pages so that we have _some_
3918  * free memory available even if there is no other activity
3919  * that frees anything up. This is needed for things like routing
3920  * etc, where we otherwise might have all activity going on in
3921  * asynchronous contexts that cannot page things out.
3922  *
3923  * If there are applications that are active memory-allocators
3924  * (most normal use), this basically shouldn't matter.
3925  */
kswapd(void * p)3926 static int kswapd(void *p)
3927 {
3928 	unsigned int alloc_order, reclaim_order;
3929 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3930 	pg_data_t *pgdat = (pg_data_t*)p;
3931 	struct task_struct *tsk = current;
3932 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3933 
3934 	if (!cpumask_empty(cpumask))
3935 		set_cpus_allowed_ptr(tsk, cpumask);
3936 
3937 	/*
3938 	 * Tell the memory management that we're a "memory allocator",
3939 	 * and that if we need more memory we should get access to it
3940 	 * regardless (see "__alloc_pages()"). "kswapd" should
3941 	 * never get caught in the normal page freeing logic.
3942 	 *
3943 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3944 	 * you need a small amount of memory in order to be able to
3945 	 * page out something else, and this flag essentially protects
3946 	 * us from recursively trying to free more memory as we're
3947 	 * trying to free the first piece of memory in the first place).
3948 	 */
3949 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3950 	set_freezable();
3951 
3952 	WRITE_ONCE(pgdat->kswapd_order, 0);
3953 	WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3954 	for ( ; ; ) {
3955 		bool ret;
3956 
3957 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3958 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3959 
3960 kswapd_try_sleep:
3961 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3962 					classzone_idx);
3963 
3964 		/* Read the new order and classzone_idx */
3965 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3966 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3967 		WRITE_ONCE(pgdat->kswapd_order, 0);
3968 		WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3969 
3970 		ret = try_to_freeze();
3971 		if (kthread_should_stop())
3972 			break;
3973 
3974 		/*
3975 		 * We can speed up thawing tasks if we don't call balance_pgdat
3976 		 * after returning from the refrigerator
3977 		 */
3978 		if (ret)
3979 			continue;
3980 
3981 		/*
3982 		 * Reclaim begins at the requested order but if a high-order
3983 		 * reclaim fails then kswapd falls back to reclaiming for
3984 		 * order-0. If that happens, kswapd will consider sleeping
3985 		 * for the order it finished reclaiming at (reclaim_order)
3986 		 * but kcompactd is woken to compact for the original
3987 		 * request (alloc_order).
3988 		 */
3989 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3990 						alloc_order);
3991 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3992 		if (reclaim_order < alloc_order)
3993 			goto kswapd_try_sleep;
3994 	}
3995 
3996 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3997 
3998 	return 0;
3999 }
4000 
4001 /*
4002  * A zone is low on free memory or too fragmented for high-order memory.  If
4003  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4004  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4005  * has failed or is not needed, still wake up kcompactd if only compaction is
4006  * needed.
4007  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type classzone_idx)4008 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4009 		   enum zone_type classzone_idx)
4010 {
4011 	pg_data_t *pgdat;
4012 	enum zone_type curr_idx;
4013 
4014 	if (!managed_zone(zone))
4015 		return;
4016 
4017 	if (!cpuset_zone_allowed(zone, gfp_flags))
4018 		return;
4019 
4020 	pgdat = zone->zone_pgdat;
4021 	curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
4022 
4023 	if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
4024 		WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
4025 
4026 	if (READ_ONCE(pgdat->kswapd_order) < order)
4027 		WRITE_ONCE(pgdat->kswapd_order, order);
4028 
4029 	if (!waitqueue_active(&pgdat->kswapd_wait))
4030 		return;
4031 
4032 	/* Hopeless node, leave it to direct reclaim if possible */
4033 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4034 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
4035 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
4036 		/*
4037 		 * There may be plenty of free memory available, but it's too
4038 		 * fragmented for high-order allocations.  Wake up kcompactd
4039 		 * and rely on compaction_suitable() to determine if it's
4040 		 * needed.  If it fails, it will defer subsequent attempts to
4041 		 * ratelimit its work.
4042 		 */
4043 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4044 			wakeup_kcompactd(pgdat, order, classzone_idx);
4045 		return;
4046 	}
4047 
4048 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4049 				      gfp_flags);
4050 	wake_up_interruptible(&pgdat->kswapd_wait);
4051 }
4052 
4053 #ifdef CONFIG_HIBERNATION
4054 /*
4055  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4056  * freed pages.
4057  *
4058  * Rather than trying to age LRUs the aim is to preserve the overall
4059  * LRU order by reclaiming preferentially
4060  * inactive > active > active referenced > active mapped
4061  */
shrink_all_memory(unsigned long nr_to_reclaim)4062 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4063 {
4064 	struct scan_control sc = {
4065 		.nr_to_reclaim = nr_to_reclaim,
4066 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4067 		.reclaim_idx = MAX_NR_ZONES - 1,
4068 		.priority = DEF_PRIORITY,
4069 		.may_writepage = 1,
4070 		.may_unmap = 1,
4071 		.may_swap = 1,
4072 		.hibernation_mode = 1,
4073 	};
4074 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4075 	unsigned long nr_reclaimed;
4076 	unsigned int noreclaim_flag;
4077 
4078 	fs_reclaim_acquire(sc.gfp_mask);
4079 	noreclaim_flag = memalloc_noreclaim_save();
4080 	set_task_reclaim_state(current, &sc.reclaim_state);
4081 
4082 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4083 
4084 	set_task_reclaim_state(current, NULL);
4085 	memalloc_noreclaim_restore(noreclaim_flag);
4086 	fs_reclaim_release(sc.gfp_mask);
4087 
4088 	return nr_reclaimed;
4089 }
4090 #endif /* CONFIG_HIBERNATION */
4091 
4092 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4093    not required for correctness.  So if the last cpu in a node goes
4094    away, we get changed to run anywhere: as the first one comes back,
4095    restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)4096 static int kswapd_cpu_online(unsigned int cpu)
4097 {
4098 	int nid;
4099 
4100 	for_each_node_state(nid, N_MEMORY) {
4101 		pg_data_t *pgdat = NODE_DATA(nid);
4102 		const struct cpumask *mask;
4103 
4104 		mask = cpumask_of_node(pgdat->node_id);
4105 
4106 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4107 			/* One of our CPUs online: restore mask */
4108 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4109 	}
4110 	return 0;
4111 }
4112 
4113 /*
4114  * This kswapd start function will be called by init and node-hot-add.
4115  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4116  */
kswapd_run(int nid)4117 int kswapd_run(int nid)
4118 {
4119 	pg_data_t *pgdat = NODE_DATA(nid);
4120 	int ret = 0;
4121 
4122 	if (pgdat->kswapd)
4123 		return 0;
4124 
4125 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4126 	if (IS_ERR(pgdat->kswapd)) {
4127 		/* failure at boot is fatal */
4128 		BUG_ON(system_state < SYSTEM_RUNNING);
4129 		pr_err("Failed to start kswapd on node %d\n", nid);
4130 		ret = PTR_ERR(pgdat->kswapd);
4131 		pgdat->kswapd = NULL;
4132 	}
4133 	return ret;
4134 }
4135 
4136 /*
4137  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4138  * hold mem_hotplug_begin/end().
4139  */
kswapd_stop(int nid)4140 void kswapd_stop(int nid)
4141 {
4142 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4143 
4144 	if (kswapd) {
4145 		kthread_stop(kswapd);
4146 		NODE_DATA(nid)->kswapd = NULL;
4147 	}
4148 }
4149 
kswapd_init(void)4150 static int __init kswapd_init(void)
4151 {
4152 	int nid, ret;
4153 
4154 	swap_setup();
4155 	for_each_node_state(nid, N_MEMORY)
4156  		kswapd_run(nid);
4157 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4158 					"mm/vmscan:online", kswapd_cpu_online,
4159 					NULL);
4160 	WARN_ON(ret < 0);
4161 	return 0;
4162 }
4163 
4164 module_init(kswapd_init)
4165 
4166 #ifdef CONFIG_NUMA
4167 /*
4168  * Node reclaim mode
4169  *
4170  * If non-zero call node_reclaim when the number of free pages falls below
4171  * the watermarks.
4172  */
4173 int node_reclaim_mode __read_mostly;
4174 
4175 #define RECLAIM_OFF 0
4176 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4177 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4178 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4179 
4180 /*
4181  * Priority for NODE_RECLAIM. This determines the fraction of pages
4182  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4183  * a zone.
4184  */
4185 #define NODE_RECLAIM_PRIORITY 4
4186 
4187 /*
4188  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4189  * occur.
4190  */
4191 int sysctl_min_unmapped_ratio = 1;
4192 
4193 /*
4194  * If the number of slab pages in a zone grows beyond this percentage then
4195  * slab reclaim needs to occur.
4196  */
4197 int sysctl_min_slab_ratio = 5;
4198 
node_unmapped_file_pages(struct pglist_data * pgdat)4199 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4200 {
4201 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4202 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4203 		node_page_state(pgdat, NR_ACTIVE_FILE);
4204 
4205 	/*
4206 	 * It's possible for there to be more file mapped pages than
4207 	 * accounted for by the pages on the file LRU lists because
4208 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4209 	 */
4210 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4211 }
4212 
4213 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4214 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4215 {
4216 	unsigned long nr_pagecache_reclaimable;
4217 	unsigned long delta = 0;
4218 
4219 	/*
4220 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4221 	 * potentially reclaimable. Otherwise, we have to worry about
4222 	 * pages like swapcache and node_unmapped_file_pages() provides
4223 	 * a better estimate
4224 	 */
4225 	if (node_reclaim_mode & RECLAIM_UNMAP)
4226 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4227 	else
4228 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4229 
4230 	/* If we can't clean pages, remove dirty pages from consideration */
4231 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4232 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4233 
4234 	/* Watch for any possible underflows due to delta */
4235 	if (unlikely(delta > nr_pagecache_reclaimable))
4236 		delta = nr_pagecache_reclaimable;
4237 
4238 	return nr_pagecache_reclaimable - delta;
4239 }
4240 
4241 /*
4242  * Try to free up some pages from this node through reclaim.
4243  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4244 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4245 {
4246 	/* Minimum pages needed in order to stay on node */
4247 	const unsigned long nr_pages = 1 << order;
4248 	struct task_struct *p = current;
4249 	unsigned int noreclaim_flag;
4250 	struct scan_control sc = {
4251 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4252 		.gfp_mask = current_gfp_context(gfp_mask),
4253 		.order = order,
4254 		.priority = NODE_RECLAIM_PRIORITY,
4255 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4256 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4257 		.may_swap = 1,
4258 		.reclaim_idx = gfp_zone(gfp_mask),
4259 	};
4260 
4261 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4262 					   sc.gfp_mask);
4263 
4264 	cond_resched();
4265 	fs_reclaim_acquire(sc.gfp_mask);
4266 	/*
4267 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4268 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4269 	 * and RECLAIM_UNMAP.
4270 	 */
4271 	noreclaim_flag = memalloc_noreclaim_save();
4272 	p->flags |= PF_SWAPWRITE;
4273 	set_task_reclaim_state(p, &sc.reclaim_state);
4274 
4275 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4276 		/*
4277 		 * Free memory by calling shrink node with increasing
4278 		 * priorities until we have enough memory freed.
4279 		 */
4280 		do {
4281 			shrink_node(pgdat, &sc);
4282 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4283 	}
4284 
4285 	set_task_reclaim_state(p, NULL);
4286 	current->flags &= ~PF_SWAPWRITE;
4287 	memalloc_noreclaim_restore(noreclaim_flag);
4288 	fs_reclaim_release(sc.gfp_mask);
4289 
4290 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4291 
4292 	return sc.nr_reclaimed >= nr_pages;
4293 }
4294 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4295 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4296 {
4297 	int ret;
4298 
4299 	/*
4300 	 * Node reclaim reclaims unmapped file backed pages and
4301 	 * slab pages if we are over the defined limits.
4302 	 *
4303 	 * A small portion of unmapped file backed pages is needed for
4304 	 * file I/O otherwise pages read by file I/O will be immediately
4305 	 * thrown out if the node is overallocated. So we do not reclaim
4306 	 * if less than a specified percentage of the node is used by
4307 	 * unmapped file backed pages.
4308 	 */
4309 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4310 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4311 		return NODE_RECLAIM_FULL;
4312 
4313 	/*
4314 	 * Do not scan if the allocation should not be delayed.
4315 	 */
4316 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4317 		return NODE_RECLAIM_NOSCAN;
4318 
4319 	/*
4320 	 * Only run node reclaim on the local node or on nodes that do not
4321 	 * have associated processors. This will favor the local processor
4322 	 * over remote processors and spread off node memory allocations
4323 	 * as wide as possible.
4324 	 */
4325 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4326 		return NODE_RECLAIM_NOSCAN;
4327 
4328 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4329 		return NODE_RECLAIM_NOSCAN;
4330 
4331 	ret = __node_reclaim(pgdat, gfp_mask, order);
4332 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4333 
4334 	if (!ret)
4335 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4336 
4337 	return ret;
4338 }
4339 #endif
4340 
4341 /*
4342  * page_evictable - test whether a page is evictable
4343  * @page: the page to test
4344  *
4345  * Test whether page is evictable--i.e., should be placed on active/inactive
4346  * lists vs unevictable list.
4347  *
4348  * Reasons page might not be evictable:
4349  * (1) page's mapping marked unevictable
4350  * (2) page is part of an mlocked VMA
4351  *
4352  */
page_evictable(struct page * page)4353 int page_evictable(struct page *page)
4354 {
4355 	int ret;
4356 
4357 	/* Prevent address_space of inode and swap cache from being freed */
4358 	rcu_read_lock();
4359 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4360 	rcu_read_unlock();
4361 	return ret;
4362 }
4363 
4364 /**
4365  * check_move_unevictable_pages - check pages for evictability and move to
4366  * appropriate zone lru list
4367  * @pvec: pagevec with lru pages to check
4368  *
4369  * Checks pages for evictability, if an evictable page is in the unevictable
4370  * lru list, moves it to the appropriate evictable lru list. This function
4371  * should be only used for lru pages.
4372  */
check_move_unevictable_pages(struct pagevec * pvec)4373 void check_move_unevictable_pages(struct pagevec *pvec)
4374 {
4375 	struct lruvec *lruvec;
4376 	struct pglist_data *pgdat = NULL;
4377 	int pgscanned = 0;
4378 	int pgrescued = 0;
4379 	int i;
4380 
4381 	for (i = 0; i < pvec->nr; i++) {
4382 		struct page *page = pvec->pages[i];
4383 		struct pglist_data *pagepgdat = page_pgdat(page);
4384 
4385 		pgscanned++;
4386 		if (pagepgdat != pgdat) {
4387 			if (pgdat)
4388 				spin_unlock_irq(&pgdat->lru_lock);
4389 			pgdat = pagepgdat;
4390 			spin_lock_irq(&pgdat->lru_lock);
4391 		}
4392 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4393 
4394 		if (!PageLRU(page) || !PageUnevictable(page))
4395 			continue;
4396 
4397 		if (page_evictable(page)) {
4398 			enum lru_list lru = page_lru_base_type(page);
4399 
4400 			VM_BUG_ON_PAGE(PageActive(page), page);
4401 			ClearPageUnevictable(page);
4402 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4403 			add_page_to_lru_list(page, lruvec, lru);
4404 			pgrescued++;
4405 		}
4406 	}
4407 
4408 	if (pgdat) {
4409 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4410 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4411 		spin_unlock_irq(&pgdat->lru_lock);
4412 	}
4413 }
4414 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4415