1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46
47 /*
48 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49 * adjusting internal fragmentation. It also determines the number of
50 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52 * in the beginning of an allocated page are occupied by z3fold header, so
53 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54 * which shows the max number of free chunks in z3fold page, also there will
55 * be 63, or 62, respectively, freelists per pool.
56 */
57 #define NCHUNKS_ORDER 6
58
59 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
60 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
64 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65
66 #define BUDDY_MASK (0x3)
67 #define BUDDY_SHIFT 2
68 #define SLOTS_ALIGN (0x40)
69
70 /*****************
71 * Structures
72 *****************/
73 struct z3fold_pool;
74 struct z3fold_ops {
75 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76 };
77
78 enum buddy {
79 HEADLESS = 0,
80 FIRST,
81 MIDDLE,
82 LAST,
83 BUDDIES_MAX = LAST
84 };
85
86 struct z3fold_buddy_slots {
87 /*
88 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 * be enough slots to hold all possible variants
90 */
91 unsigned long slot[BUDDY_MASK + 1];
92 unsigned long pool; /* back link + flags */
93 };
94 #define HANDLE_FLAG_MASK (0x03)
95
96 /*
97 * struct z3fold_header - z3fold page metadata occupying first chunks of each
98 * z3fold page, except for HEADLESS pages
99 * @buddy: links the z3fold page into the relevant list in the
100 * pool
101 * @page_lock: per-page lock
102 * @refcount: reference count for the z3fold page
103 * @work: work_struct for page layout optimization
104 * @slots: pointer to the structure holding buddy slots
105 * @pool: pointer to the containing pool
106 * @cpu: CPU which this page "belongs" to
107 * @first_chunks: the size of the first buddy in chunks, 0 if free
108 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
109 * @last_chunks: the size of the last buddy in chunks, 0 if free
110 * @first_num: the starting number (for the first handle)
111 * @mapped_count: the number of objects currently mapped
112 */
113 struct z3fold_header {
114 struct list_head buddy;
115 spinlock_t page_lock;
116 struct kref refcount;
117 struct work_struct work;
118 struct z3fold_buddy_slots *slots;
119 struct z3fold_pool *pool;
120 short cpu;
121 unsigned short first_chunks;
122 unsigned short middle_chunks;
123 unsigned short last_chunks;
124 unsigned short start_middle;
125 unsigned short first_num:2;
126 unsigned short mapped_count:2;
127 };
128
129 /**
130 * struct z3fold_pool - stores metadata for each z3fold pool
131 * @name: pool name
132 * @lock: protects pool unbuddied/lru lists
133 * @stale_lock: protects pool stale page list
134 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
135 * buddies; the list each z3fold page is added to depends on
136 * the size of its free region.
137 * @lru: list tracking the z3fold pages in LRU order by most recently
138 * added buddy.
139 * @stale: list of pages marked for freeing
140 * @pages_nr: number of z3fold pages in the pool.
141 * @c_handle: cache for z3fold_buddy_slots allocation
142 * @ops: pointer to a structure of user defined operations specified at
143 * pool creation time.
144 * @compact_wq: workqueue for page layout background optimization
145 * @release_wq: workqueue for safe page release
146 * @work: work_struct for safe page release
147 * @inode: inode for z3fold pseudo filesystem
148 *
149 * This structure is allocated at pool creation time and maintains metadata
150 * pertaining to a particular z3fold pool.
151 */
152 struct z3fold_pool {
153 const char *name;
154 spinlock_t lock;
155 spinlock_t stale_lock;
156 struct list_head *unbuddied;
157 struct list_head lru;
158 struct list_head stale;
159 atomic64_t pages_nr;
160 struct kmem_cache *c_handle;
161 const struct z3fold_ops *ops;
162 struct zpool *zpool;
163 const struct zpool_ops *zpool_ops;
164 struct workqueue_struct *compact_wq;
165 struct workqueue_struct *release_wq;
166 struct work_struct work;
167 struct inode *inode;
168 };
169
170 /*
171 * Internal z3fold page flags
172 */
173 enum z3fold_page_flags {
174 PAGE_HEADLESS = 0,
175 MIDDLE_CHUNK_MAPPED,
176 NEEDS_COMPACTING,
177 PAGE_STALE,
178 PAGE_CLAIMED, /* by either reclaim or free */
179 };
180
181 /*****************
182 * Helpers
183 *****************/
184
185 /* Converts an allocation size in bytes to size in z3fold chunks */
size_to_chunks(size_t size)186 static int size_to_chunks(size_t size)
187 {
188 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
189 }
190
191 #define for_each_unbuddied_list(_iter, _begin) \
192 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
193
194 static void compact_page_work(struct work_struct *w);
195
alloc_slots(struct z3fold_pool * pool,gfp_t gfp)196 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
197 gfp_t gfp)
198 {
199 struct z3fold_buddy_slots *slots;
200
201 slots = kmem_cache_alloc(pool->c_handle,
202 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
203
204 if (slots) {
205 memset(slots->slot, 0, sizeof(slots->slot));
206 slots->pool = (unsigned long)pool;
207 }
208
209 return slots;
210 }
211
slots_to_pool(struct z3fold_buddy_slots * s)212 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
213 {
214 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
215 }
216
handle_to_slots(unsigned long handle)217 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
218 {
219 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
220 }
221
free_handle(unsigned long handle)222 static inline void free_handle(unsigned long handle)
223 {
224 struct z3fold_buddy_slots *slots;
225 int i;
226 bool is_free;
227
228 if (handle & (1 << PAGE_HEADLESS))
229 return;
230
231 WARN_ON(*(unsigned long *)handle == 0);
232 *(unsigned long *)handle = 0;
233 slots = handle_to_slots(handle);
234 is_free = true;
235 for (i = 0; i <= BUDDY_MASK; i++) {
236 if (slots->slot[i]) {
237 is_free = false;
238 break;
239 }
240 }
241
242 if (is_free) {
243 struct z3fold_pool *pool = slots_to_pool(slots);
244
245 kmem_cache_free(pool->c_handle, slots);
246 }
247 }
248
z3fold_init_fs_context(struct fs_context * fc)249 static int z3fold_init_fs_context(struct fs_context *fc)
250 {
251 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
252 }
253
254 static struct file_system_type z3fold_fs = {
255 .name = "z3fold",
256 .init_fs_context = z3fold_init_fs_context,
257 .kill_sb = kill_anon_super,
258 };
259
260 static struct vfsmount *z3fold_mnt;
z3fold_mount(void)261 static int z3fold_mount(void)
262 {
263 int ret = 0;
264
265 z3fold_mnt = kern_mount(&z3fold_fs);
266 if (IS_ERR(z3fold_mnt))
267 ret = PTR_ERR(z3fold_mnt);
268
269 return ret;
270 }
271
z3fold_unmount(void)272 static void z3fold_unmount(void)
273 {
274 kern_unmount(z3fold_mnt);
275 }
276
277 static const struct address_space_operations z3fold_aops;
z3fold_register_migration(struct z3fold_pool * pool)278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 if (IS_ERR(pool->inode)) {
282 pool->inode = NULL;
283 return 1;
284 }
285
286 pool->inode->i_mapping->private_data = pool;
287 pool->inode->i_mapping->a_ops = &z3fold_aops;
288 return 0;
289 }
290
z3fold_unregister_migration(struct z3fold_pool * pool)291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293 if (pool->inode)
294 iput(pool->inode);
295 }
296
297 /* Initializes the z3fold header of a newly allocated z3fold page */
init_z3fold_page(struct page * page,bool headless,struct z3fold_pool * pool,gfp_t gfp)298 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
299 struct z3fold_pool *pool, gfp_t gfp)
300 {
301 struct z3fold_header *zhdr = page_address(page);
302 struct z3fold_buddy_slots *slots;
303
304 INIT_LIST_HEAD(&page->lru);
305 clear_bit(PAGE_HEADLESS, &page->private);
306 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
307 clear_bit(NEEDS_COMPACTING, &page->private);
308 clear_bit(PAGE_STALE, &page->private);
309 clear_bit(PAGE_CLAIMED, &page->private);
310 if (headless)
311 return zhdr;
312
313 slots = alloc_slots(pool, gfp);
314 if (!slots)
315 return NULL;
316
317 spin_lock_init(&zhdr->page_lock);
318 kref_init(&zhdr->refcount);
319 zhdr->first_chunks = 0;
320 zhdr->middle_chunks = 0;
321 zhdr->last_chunks = 0;
322 zhdr->first_num = 0;
323 zhdr->start_middle = 0;
324 zhdr->cpu = -1;
325 zhdr->slots = slots;
326 zhdr->pool = pool;
327 INIT_LIST_HEAD(&zhdr->buddy);
328 INIT_WORK(&zhdr->work, compact_page_work);
329 return zhdr;
330 }
331
332 /* Resets the struct page fields and frees the page */
free_z3fold_page(struct page * page,bool headless)333 static void free_z3fold_page(struct page *page, bool headless)
334 {
335 if (!headless) {
336 lock_page(page);
337 __ClearPageMovable(page);
338 unlock_page(page);
339 }
340 ClearPagePrivate(page);
341 __free_page(page);
342 }
343
344 /* Lock a z3fold page */
z3fold_page_lock(struct z3fold_header * zhdr)345 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
346 {
347 spin_lock(&zhdr->page_lock);
348 }
349
350 /* Try to lock a z3fold page */
z3fold_page_trylock(struct z3fold_header * zhdr)351 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
352 {
353 return spin_trylock(&zhdr->page_lock);
354 }
355
356 /* Unlock a z3fold page */
z3fold_page_unlock(struct z3fold_header * zhdr)357 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
358 {
359 spin_unlock(&zhdr->page_lock);
360 }
361
362 /* Helper function to build the index */
__idx(struct z3fold_header * zhdr,enum buddy bud)363 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
364 {
365 return (bud + zhdr->first_num) & BUDDY_MASK;
366 }
367
368 /*
369 * Encodes the handle of a particular buddy within a z3fold page
370 * Pool lock should be held as this function accesses first_num
371 */
__encode_handle(struct z3fold_header * zhdr,struct z3fold_buddy_slots * slots,enum buddy bud)372 static unsigned long __encode_handle(struct z3fold_header *zhdr,
373 struct z3fold_buddy_slots *slots,
374 enum buddy bud)
375 {
376 unsigned long h = (unsigned long)zhdr;
377 int idx = 0;
378
379 /*
380 * For a headless page, its handle is its pointer with the extra
381 * PAGE_HEADLESS bit set
382 */
383 if (bud == HEADLESS)
384 return h | (1 << PAGE_HEADLESS);
385
386 /* otherwise, return pointer to encoded handle */
387 idx = __idx(zhdr, bud);
388 h += idx;
389 if (bud == LAST)
390 h |= (zhdr->last_chunks << BUDDY_SHIFT);
391
392 slots->slot[idx] = h;
393 return (unsigned long)&slots->slot[idx];
394 }
395
encode_handle(struct z3fold_header * zhdr,enum buddy bud)396 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
397 {
398 return __encode_handle(zhdr, zhdr->slots, bud);
399 }
400
401 /* Returns the z3fold page where a given handle is stored */
handle_to_z3fold_header(unsigned long h)402 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
403 {
404 unsigned long addr = h;
405
406 if (!(addr & (1 << PAGE_HEADLESS)))
407 addr = *(unsigned long *)h;
408
409 return (struct z3fold_header *)(addr & PAGE_MASK);
410 }
411
412 /* only for LAST bud, returns zero otherwise */
handle_to_chunks(unsigned long handle)413 static unsigned short handle_to_chunks(unsigned long handle)
414 {
415 unsigned long addr = *(unsigned long *)handle;
416
417 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
418 }
419
420 /*
421 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
422 * but that doesn't matter. because the masking will result in the
423 * correct buddy number.
424 */
handle_to_buddy(unsigned long handle)425 static enum buddy handle_to_buddy(unsigned long handle)
426 {
427 struct z3fold_header *zhdr;
428 unsigned long addr;
429
430 WARN_ON(handle & (1 << PAGE_HEADLESS));
431 addr = *(unsigned long *)handle;
432 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
433 return (addr - zhdr->first_num) & BUDDY_MASK;
434 }
435
zhdr_to_pool(struct z3fold_header * zhdr)436 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
437 {
438 return zhdr->pool;
439 }
440
__release_z3fold_page(struct z3fold_header * zhdr,bool locked)441 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
442 {
443 struct page *page = virt_to_page(zhdr);
444 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
445
446 WARN_ON(!list_empty(&zhdr->buddy));
447 set_bit(PAGE_STALE, &page->private);
448 clear_bit(NEEDS_COMPACTING, &page->private);
449 spin_lock(&pool->lock);
450 if (!list_empty(&page->lru))
451 list_del_init(&page->lru);
452 spin_unlock(&pool->lock);
453 if (locked)
454 z3fold_page_unlock(zhdr);
455 spin_lock(&pool->stale_lock);
456 list_add(&zhdr->buddy, &pool->stale);
457 queue_work(pool->release_wq, &pool->work);
458 spin_unlock(&pool->stale_lock);
459 }
460
461 static void __attribute__((__unused__))
release_z3fold_page(struct kref * ref)462 release_z3fold_page(struct kref *ref)
463 {
464 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
465 refcount);
466 __release_z3fold_page(zhdr, false);
467 }
468
release_z3fold_page_locked(struct kref * ref)469 static void release_z3fold_page_locked(struct kref *ref)
470 {
471 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
472 refcount);
473 WARN_ON(z3fold_page_trylock(zhdr));
474 __release_z3fold_page(zhdr, true);
475 }
476
release_z3fold_page_locked_list(struct kref * ref)477 static void release_z3fold_page_locked_list(struct kref *ref)
478 {
479 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
480 refcount);
481 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
482 spin_lock(&pool->lock);
483 list_del_init(&zhdr->buddy);
484 spin_unlock(&pool->lock);
485
486 WARN_ON(z3fold_page_trylock(zhdr));
487 __release_z3fold_page(zhdr, true);
488 }
489
free_pages_work(struct work_struct * w)490 static void free_pages_work(struct work_struct *w)
491 {
492 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
493
494 spin_lock(&pool->stale_lock);
495 while (!list_empty(&pool->stale)) {
496 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
497 struct z3fold_header, buddy);
498 struct page *page = virt_to_page(zhdr);
499
500 list_del(&zhdr->buddy);
501 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
502 continue;
503 spin_unlock(&pool->stale_lock);
504 cancel_work_sync(&zhdr->work);
505 free_z3fold_page(page, false);
506 cond_resched();
507 spin_lock(&pool->stale_lock);
508 }
509 spin_unlock(&pool->stale_lock);
510 }
511
512 /*
513 * Returns the number of free chunks in a z3fold page.
514 * NB: can't be used with HEADLESS pages.
515 */
num_free_chunks(struct z3fold_header * zhdr)516 static int num_free_chunks(struct z3fold_header *zhdr)
517 {
518 int nfree;
519 /*
520 * If there is a middle object, pick up the bigger free space
521 * either before or after it. Otherwise just subtract the number
522 * of chunks occupied by the first and the last objects.
523 */
524 if (zhdr->middle_chunks != 0) {
525 int nfree_before = zhdr->first_chunks ?
526 0 : zhdr->start_middle - ZHDR_CHUNKS;
527 int nfree_after = zhdr->last_chunks ?
528 0 : TOTAL_CHUNKS -
529 (zhdr->start_middle + zhdr->middle_chunks);
530 nfree = max(nfree_before, nfree_after);
531 } else
532 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
533 return nfree;
534 }
535
536 /* Add to the appropriate unbuddied list */
add_to_unbuddied(struct z3fold_pool * pool,struct z3fold_header * zhdr)537 static inline void add_to_unbuddied(struct z3fold_pool *pool,
538 struct z3fold_header *zhdr)
539 {
540 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
541 zhdr->middle_chunks == 0) {
542 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
543
544 int freechunks = num_free_chunks(zhdr);
545 spin_lock(&pool->lock);
546 list_add(&zhdr->buddy, &unbuddied[freechunks]);
547 spin_unlock(&pool->lock);
548 zhdr->cpu = smp_processor_id();
549 put_cpu_ptr(pool->unbuddied);
550 }
551 }
552
mchunk_memmove(struct z3fold_header * zhdr,unsigned short dst_chunk)553 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
554 unsigned short dst_chunk)
555 {
556 void *beg = zhdr;
557 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
558 beg + (zhdr->start_middle << CHUNK_SHIFT),
559 zhdr->middle_chunks << CHUNK_SHIFT);
560 }
561
562 #define BIG_CHUNK_GAP 3
563 /* Has to be called with lock held */
z3fold_compact_page(struct z3fold_header * zhdr)564 static int z3fold_compact_page(struct z3fold_header *zhdr)
565 {
566 struct page *page = virt_to_page(zhdr);
567
568 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
569 return 0; /* can't move middle chunk, it's used */
570
571 if (unlikely(PageIsolated(page)))
572 return 0;
573
574 if (zhdr->middle_chunks == 0)
575 return 0; /* nothing to compact */
576
577 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
578 /* move to the beginning */
579 mchunk_memmove(zhdr, ZHDR_CHUNKS);
580 zhdr->first_chunks = zhdr->middle_chunks;
581 zhdr->middle_chunks = 0;
582 zhdr->start_middle = 0;
583 zhdr->first_num++;
584 return 1;
585 }
586
587 /*
588 * moving data is expensive, so let's only do that if
589 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
590 */
591 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
592 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
593 BIG_CHUNK_GAP) {
594 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
595 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
596 return 1;
597 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
598 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
599 + zhdr->middle_chunks) >=
600 BIG_CHUNK_GAP) {
601 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
602 zhdr->middle_chunks;
603 mchunk_memmove(zhdr, new_start);
604 zhdr->start_middle = new_start;
605 return 1;
606 }
607
608 return 0;
609 }
610
do_compact_page(struct z3fold_header * zhdr,bool locked)611 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
612 {
613 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
614 struct page *page;
615
616 page = virt_to_page(zhdr);
617 if (locked)
618 WARN_ON(z3fold_page_trylock(zhdr));
619 else
620 z3fold_page_lock(zhdr);
621 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
622 z3fold_page_unlock(zhdr);
623 return;
624 }
625 spin_lock(&pool->lock);
626 list_del_init(&zhdr->buddy);
627 spin_unlock(&pool->lock);
628
629 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
630 atomic64_dec(&pool->pages_nr);
631 return;
632 }
633
634 if (unlikely(PageIsolated(page) ||
635 test_bit(PAGE_CLAIMED, &page->private) ||
636 test_bit(PAGE_STALE, &page->private))) {
637 z3fold_page_unlock(zhdr);
638 return;
639 }
640
641 z3fold_compact_page(zhdr);
642 add_to_unbuddied(pool, zhdr);
643 z3fold_page_unlock(zhdr);
644 }
645
compact_page_work(struct work_struct * w)646 static void compact_page_work(struct work_struct *w)
647 {
648 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
649 work);
650
651 do_compact_page(zhdr, false);
652 }
653
654 /* returns _locked_ z3fold page header or NULL */
__z3fold_alloc(struct z3fold_pool * pool,size_t size,bool can_sleep)655 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
656 size_t size, bool can_sleep)
657 {
658 struct z3fold_header *zhdr = NULL;
659 struct page *page;
660 struct list_head *unbuddied;
661 int chunks = size_to_chunks(size), i;
662
663 lookup:
664 /* First, try to find an unbuddied z3fold page. */
665 unbuddied = get_cpu_ptr(pool->unbuddied);
666 for_each_unbuddied_list(i, chunks) {
667 struct list_head *l = &unbuddied[i];
668
669 zhdr = list_first_entry_or_null(READ_ONCE(l),
670 struct z3fold_header, buddy);
671
672 if (!zhdr)
673 continue;
674
675 /* Re-check under lock. */
676 spin_lock(&pool->lock);
677 l = &unbuddied[i];
678 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
679 struct z3fold_header, buddy)) ||
680 !z3fold_page_trylock(zhdr)) {
681 spin_unlock(&pool->lock);
682 zhdr = NULL;
683 put_cpu_ptr(pool->unbuddied);
684 if (can_sleep)
685 cond_resched();
686 goto lookup;
687 }
688 list_del_init(&zhdr->buddy);
689 zhdr->cpu = -1;
690 spin_unlock(&pool->lock);
691
692 page = virt_to_page(zhdr);
693 if (test_bit(NEEDS_COMPACTING, &page->private)) {
694 z3fold_page_unlock(zhdr);
695 zhdr = NULL;
696 put_cpu_ptr(pool->unbuddied);
697 if (can_sleep)
698 cond_resched();
699 goto lookup;
700 }
701
702 /*
703 * this page could not be removed from its unbuddied
704 * list while pool lock was held, and then we've taken
705 * page lock so kref_put could not be called before
706 * we got here, so it's safe to just call kref_get()
707 */
708 kref_get(&zhdr->refcount);
709 break;
710 }
711 put_cpu_ptr(pool->unbuddied);
712
713 if (!zhdr) {
714 int cpu;
715
716 /* look for _exact_ match on other cpus' lists */
717 for_each_online_cpu(cpu) {
718 struct list_head *l;
719
720 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
721 spin_lock(&pool->lock);
722 l = &unbuddied[chunks];
723
724 zhdr = list_first_entry_or_null(READ_ONCE(l),
725 struct z3fold_header, buddy);
726
727 if (!zhdr || !z3fold_page_trylock(zhdr)) {
728 spin_unlock(&pool->lock);
729 zhdr = NULL;
730 continue;
731 }
732 list_del_init(&zhdr->buddy);
733 zhdr->cpu = -1;
734 spin_unlock(&pool->lock);
735
736 page = virt_to_page(zhdr);
737 if (test_bit(NEEDS_COMPACTING, &page->private)) {
738 z3fold_page_unlock(zhdr);
739 zhdr = NULL;
740 if (can_sleep)
741 cond_resched();
742 continue;
743 }
744 kref_get(&zhdr->refcount);
745 break;
746 }
747 }
748
749 return zhdr;
750 }
751
752 /*
753 * API Functions
754 */
755
756 /**
757 * z3fold_create_pool() - create a new z3fold pool
758 * @name: pool name
759 * @gfp: gfp flags when allocating the z3fold pool structure
760 * @ops: user-defined operations for the z3fold pool
761 *
762 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
763 * failed.
764 */
z3fold_create_pool(const char * name,gfp_t gfp,const struct z3fold_ops * ops)765 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
766 const struct z3fold_ops *ops)
767 {
768 struct z3fold_pool *pool = NULL;
769 int i, cpu;
770
771 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
772 if (!pool)
773 goto out;
774 pool->c_handle = kmem_cache_create("z3fold_handle",
775 sizeof(struct z3fold_buddy_slots),
776 SLOTS_ALIGN, 0, NULL);
777 if (!pool->c_handle)
778 goto out_c;
779 spin_lock_init(&pool->lock);
780 spin_lock_init(&pool->stale_lock);
781 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
782 if (!pool->unbuddied)
783 goto out_pool;
784 for_each_possible_cpu(cpu) {
785 struct list_head *unbuddied =
786 per_cpu_ptr(pool->unbuddied, cpu);
787 for_each_unbuddied_list(i, 0)
788 INIT_LIST_HEAD(&unbuddied[i]);
789 }
790 INIT_LIST_HEAD(&pool->lru);
791 INIT_LIST_HEAD(&pool->stale);
792 atomic64_set(&pool->pages_nr, 0);
793 pool->name = name;
794 pool->compact_wq = create_singlethread_workqueue(pool->name);
795 if (!pool->compact_wq)
796 goto out_unbuddied;
797 pool->release_wq = create_singlethread_workqueue(pool->name);
798 if (!pool->release_wq)
799 goto out_wq;
800 if (z3fold_register_migration(pool))
801 goto out_rwq;
802 INIT_WORK(&pool->work, free_pages_work);
803 pool->ops = ops;
804 return pool;
805
806 out_rwq:
807 destroy_workqueue(pool->release_wq);
808 out_wq:
809 destroy_workqueue(pool->compact_wq);
810 out_unbuddied:
811 free_percpu(pool->unbuddied);
812 out_pool:
813 kmem_cache_destroy(pool->c_handle);
814 out_c:
815 kfree(pool);
816 out:
817 return NULL;
818 }
819
820 /**
821 * z3fold_destroy_pool() - destroys an existing z3fold pool
822 * @pool: the z3fold pool to be destroyed
823 *
824 * The pool should be emptied before this function is called.
825 */
z3fold_destroy_pool(struct z3fold_pool * pool)826 static void z3fold_destroy_pool(struct z3fold_pool *pool)
827 {
828 kmem_cache_destroy(pool->c_handle);
829
830 /*
831 * We need to destroy pool->compact_wq before pool->release_wq,
832 * as any pending work on pool->compact_wq will call
833 * queue_work(pool->release_wq, &pool->work).
834 *
835 * There are still outstanding pages until both workqueues are drained,
836 * so we cannot unregister migration until then.
837 */
838
839 destroy_workqueue(pool->compact_wq);
840 destroy_workqueue(pool->release_wq);
841 z3fold_unregister_migration(pool);
842 free_percpu(pool->unbuddied);
843 kfree(pool);
844 }
845
846 /**
847 * z3fold_alloc() - allocates a region of a given size
848 * @pool: z3fold pool from which to allocate
849 * @size: size in bytes of the desired allocation
850 * @gfp: gfp flags used if the pool needs to grow
851 * @handle: handle of the new allocation
852 *
853 * This function will attempt to find a free region in the pool large enough to
854 * satisfy the allocation request. A search of the unbuddied lists is
855 * performed first. If no suitable free region is found, then a new page is
856 * allocated and added to the pool to satisfy the request.
857 *
858 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
859 * as z3fold pool pages.
860 *
861 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
862 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
863 * a new page.
864 */
z3fold_alloc(struct z3fold_pool * pool,size_t size,gfp_t gfp,unsigned long * handle)865 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
866 unsigned long *handle)
867 {
868 int chunks = size_to_chunks(size);
869 struct z3fold_header *zhdr = NULL;
870 struct page *page = NULL;
871 enum buddy bud;
872 bool can_sleep = gfpflags_allow_blocking(gfp);
873
874 if (!size)
875 return -EINVAL;
876
877 if (size > PAGE_SIZE)
878 return -ENOSPC;
879
880 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
881 bud = HEADLESS;
882 else {
883 retry:
884 zhdr = __z3fold_alloc(pool, size, can_sleep);
885 if (zhdr) {
886 if (zhdr->first_chunks == 0) {
887 if (zhdr->middle_chunks != 0 &&
888 chunks >= zhdr->start_middle)
889 bud = LAST;
890 else
891 bud = FIRST;
892 } else if (zhdr->last_chunks == 0)
893 bud = LAST;
894 else if (zhdr->middle_chunks == 0)
895 bud = MIDDLE;
896 else {
897 if (kref_put(&zhdr->refcount,
898 release_z3fold_page_locked))
899 atomic64_dec(&pool->pages_nr);
900 else
901 z3fold_page_unlock(zhdr);
902 pr_err("No free chunks in unbuddied\n");
903 WARN_ON(1);
904 goto retry;
905 }
906 page = virt_to_page(zhdr);
907 goto found;
908 }
909 bud = FIRST;
910 }
911
912 page = NULL;
913 if (can_sleep) {
914 spin_lock(&pool->stale_lock);
915 zhdr = list_first_entry_or_null(&pool->stale,
916 struct z3fold_header, buddy);
917 /*
918 * Before allocating a page, let's see if we can take one from
919 * the stale pages list. cancel_work_sync() can sleep so we
920 * limit this case to the contexts where we can sleep
921 */
922 if (zhdr) {
923 list_del(&zhdr->buddy);
924 spin_unlock(&pool->stale_lock);
925 cancel_work_sync(&zhdr->work);
926 page = virt_to_page(zhdr);
927 } else {
928 spin_unlock(&pool->stale_lock);
929 }
930 }
931 if (!page)
932 page = alloc_page(gfp);
933
934 if (!page)
935 return -ENOMEM;
936
937 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
938 if (!zhdr) {
939 __free_page(page);
940 return -ENOMEM;
941 }
942 atomic64_inc(&pool->pages_nr);
943
944 if (bud == HEADLESS) {
945 set_bit(PAGE_HEADLESS, &page->private);
946 goto headless;
947 }
948 if (can_sleep) {
949 lock_page(page);
950 __SetPageMovable(page, pool->inode->i_mapping);
951 unlock_page(page);
952 } else {
953 if (trylock_page(page)) {
954 __SetPageMovable(page, pool->inode->i_mapping);
955 unlock_page(page);
956 }
957 }
958 z3fold_page_lock(zhdr);
959
960 found:
961 if (bud == FIRST)
962 zhdr->first_chunks = chunks;
963 else if (bud == LAST)
964 zhdr->last_chunks = chunks;
965 else {
966 zhdr->middle_chunks = chunks;
967 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
968 }
969 add_to_unbuddied(pool, zhdr);
970
971 headless:
972 spin_lock(&pool->lock);
973 /* Add/move z3fold page to beginning of LRU */
974 if (!list_empty(&page->lru))
975 list_del(&page->lru);
976
977 list_add(&page->lru, &pool->lru);
978
979 *handle = encode_handle(zhdr, bud);
980 spin_unlock(&pool->lock);
981 if (bud != HEADLESS)
982 z3fold_page_unlock(zhdr);
983
984 return 0;
985 }
986
987 /**
988 * z3fold_free() - frees the allocation associated with the given handle
989 * @pool: pool in which the allocation resided
990 * @handle: handle associated with the allocation returned by z3fold_alloc()
991 *
992 * In the case that the z3fold page in which the allocation resides is under
993 * reclaim, as indicated by the PG_reclaim flag being set, this function
994 * only sets the first|last_chunks to 0. The page is actually freed
995 * once both buddies are evicted (see z3fold_reclaim_page() below).
996 */
z3fold_free(struct z3fold_pool * pool,unsigned long handle)997 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
998 {
999 struct z3fold_header *zhdr;
1000 struct page *page;
1001 enum buddy bud;
1002 bool page_claimed;
1003
1004 zhdr = handle_to_z3fold_header(handle);
1005 page = virt_to_page(zhdr);
1006 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1007
1008 if (test_bit(PAGE_HEADLESS, &page->private)) {
1009 /* if a headless page is under reclaim, just leave.
1010 * NB: we use test_and_set_bit for a reason: if the bit
1011 * has not been set before, we release this page
1012 * immediately so we don't care about its value any more.
1013 */
1014 if (!page_claimed) {
1015 spin_lock(&pool->lock);
1016 list_del(&page->lru);
1017 spin_unlock(&pool->lock);
1018 free_z3fold_page(page, true);
1019 atomic64_dec(&pool->pages_nr);
1020 }
1021 return;
1022 }
1023
1024 /* Non-headless case */
1025 z3fold_page_lock(zhdr);
1026 bud = handle_to_buddy(handle);
1027
1028 switch (bud) {
1029 case FIRST:
1030 zhdr->first_chunks = 0;
1031 break;
1032 case MIDDLE:
1033 zhdr->middle_chunks = 0;
1034 break;
1035 case LAST:
1036 zhdr->last_chunks = 0;
1037 break;
1038 default:
1039 pr_err("%s: unknown bud %d\n", __func__, bud);
1040 WARN_ON(1);
1041 z3fold_page_unlock(zhdr);
1042 return;
1043 }
1044
1045 free_handle(handle);
1046 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1047 atomic64_dec(&pool->pages_nr);
1048 return;
1049 }
1050 if (page_claimed) {
1051 /* the page has not been claimed by us */
1052 z3fold_page_unlock(zhdr);
1053 return;
1054 }
1055 if (unlikely(PageIsolated(page)) ||
1056 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1057 z3fold_page_unlock(zhdr);
1058 clear_bit(PAGE_CLAIMED, &page->private);
1059 return;
1060 }
1061 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1062 spin_lock(&pool->lock);
1063 list_del_init(&zhdr->buddy);
1064 spin_unlock(&pool->lock);
1065 zhdr->cpu = -1;
1066 kref_get(&zhdr->refcount);
1067 do_compact_page(zhdr, true);
1068 clear_bit(PAGE_CLAIMED, &page->private);
1069 return;
1070 }
1071 kref_get(&zhdr->refcount);
1072 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1073 clear_bit(PAGE_CLAIMED, &page->private);
1074 z3fold_page_unlock(zhdr);
1075 }
1076
1077 /**
1078 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1079 * @pool: pool from which a page will attempt to be evicted
1080 * @retries: number of pages on the LRU list for which eviction will
1081 * be attempted before failing
1082 *
1083 * z3fold reclaim is different from normal system reclaim in that it is done
1084 * from the bottom, up. This is because only the bottom layer, z3fold, has
1085 * information on how the allocations are organized within each z3fold page.
1086 * This has the potential to create interesting locking situations between
1087 * z3fold and the user, however.
1088 *
1089 * To avoid these, this is how z3fold_reclaim_page() should be called:
1090 *
1091 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1092 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1093 * call the user-defined eviction handler with the pool and handle as
1094 * arguments.
1095 *
1096 * If the handle can not be evicted, the eviction handler should return
1097 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1098 * appropriate list and try the next z3fold page on the LRU up to
1099 * a user defined number of retries.
1100 *
1101 * If the handle is successfully evicted, the eviction handler should
1102 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1103 * contains logic to delay freeing the page if the page is under reclaim,
1104 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1105 *
1106 * If all buddies in the z3fold page are successfully evicted, then the
1107 * z3fold page can be freed.
1108 *
1109 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1110 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1111 * the retry limit was hit.
1112 */
z3fold_reclaim_page(struct z3fold_pool * pool,unsigned int retries)1113 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1114 {
1115 int i, ret = 0;
1116 struct z3fold_header *zhdr = NULL;
1117 struct page *page = NULL;
1118 struct list_head *pos;
1119 struct z3fold_buddy_slots slots;
1120 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1121
1122 spin_lock(&pool->lock);
1123 if (!pool->ops || !pool->ops->evict || retries == 0) {
1124 spin_unlock(&pool->lock);
1125 return -EINVAL;
1126 }
1127 for (i = 0; i < retries; i++) {
1128 if (list_empty(&pool->lru)) {
1129 spin_unlock(&pool->lock);
1130 return -EINVAL;
1131 }
1132 list_for_each_prev(pos, &pool->lru) {
1133 page = list_entry(pos, struct page, lru);
1134
1135 /* this bit could have been set by free, in which case
1136 * we pass over to the next page in the pool.
1137 */
1138 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1139 page = NULL;
1140 continue;
1141 }
1142
1143 if (unlikely(PageIsolated(page))) {
1144 clear_bit(PAGE_CLAIMED, &page->private);
1145 page = NULL;
1146 continue;
1147 }
1148 zhdr = page_address(page);
1149 if (test_bit(PAGE_HEADLESS, &page->private))
1150 break;
1151
1152 if (!z3fold_page_trylock(zhdr)) {
1153 clear_bit(PAGE_CLAIMED, &page->private);
1154 zhdr = NULL;
1155 continue; /* can't evict at this point */
1156 }
1157 kref_get(&zhdr->refcount);
1158 list_del_init(&zhdr->buddy);
1159 zhdr->cpu = -1;
1160 break;
1161 }
1162
1163 if (!zhdr)
1164 break;
1165
1166 list_del_init(&page->lru);
1167 spin_unlock(&pool->lock);
1168
1169 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1170 /*
1171 * We need encode the handles before unlocking, and
1172 * use our local slots structure because z3fold_free
1173 * can zero out zhdr->slots and we can't do much
1174 * about that
1175 */
1176 first_handle = 0;
1177 last_handle = 0;
1178 middle_handle = 0;
1179 if (zhdr->first_chunks)
1180 first_handle = __encode_handle(zhdr, &slots,
1181 FIRST);
1182 if (zhdr->middle_chunks)
1183 middle_handle = __encode_handle(zhdr, &slots,
1184 MIDDLE);
1185 if (zhdr->last_chunks)
1186 last_handle = __encode_handle(zhdr, &slots,
1187 LAST);
1188 /*
1189 * it's safe to unlock here because we hold a
1190 * reference to this page
1191 */
1192 z3fold_page_unlock(zhdr);
1193 } else {
1194 first_handle = __encode_handle(zhdr, &slots, HEADLESS);
1195 last_handle = middle_handle = 0;
1196 }
1197
1198 /* Issue the eviction callback(s) */
1199 if (middle_handle) {
1200 ret = pool->ops->evict(pool, middle_handle);
1201 if (ret)
1202 goto next;
1203 }
1204 if (first_handle) {
1205 ret = pool->ops->evict(pool, first_handle);
1206 if (ret)
1207 goto next;
1208 }
1209 if (last_handle) {
1210 ret = pool->ops->evict(pool, last_handle);
1211 if (ret)
1212 goto next;
1213 }
1214 next:
1215 if (test_bit(PAGE_HEADLESS, &page->private)) {
1216 if (ret == 0) {
1217 free_z3fold_page(page, true);
1218 atomic64_dec(&pool->pages_nr);
1219 return 0;
1220 }
1221 spin_lock(&pool->lock);
1222 list_add(&page->lru, &pool->lru);
1223 spin_unlock(&pool->lock);
1224 clear_bit(PAGE_CLAIMED, &page->private);
1225 } else {
1226 z3fold_page_lock(zhdr);
1227 if (kref_put(&zhdr->refcount,
1228 release_z3fold_page_locked)) {
1229 atomic64_dec(&pool->pages_nr);
1230 return 0;
1231 }
1232 /*
1233 * if we are here, the page is still not completely
1234 * free. Take the global pool lock then to be able
1235 * to add it back to the lru list
1236 */
1237 spin_lock(&pool->lock);
1238 list_add(&page->lru, &pool->lru);
1239 spin_unlock(&pool->lock);
1240 z3fold_page_unlock(zhdr);
1241 clear_bit(PAGE_CLAIMED, &page->private);
1242 }
1243
1244 /* We started off locked to we need to lock the pool back */
1245 spin_lock(&pool->lock);
1246 }
1247 spin_unlock(&pool->lock);
1248 return -EAGAIN;
1249 }
1250
1251 /**
1252 * z3fold_map() - maps the allocation associated with the given handle
1253 * @pool: pool in which the allocation resides
1254 * @handle: handle associated with the allocation to be mapped
1255 *
1256 * Extracts the buddy number from handle and constructs the pointer to the
1257 * correct starting chunk within the page.
1258 *
1259 * Returns: a pointer to the mapped allocation
1260 */
z3fold_map(struct z3fold_pool * pool,unsigned long handle)1261 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1262 {
1263 struct z3fold_header *zhdr;
1264 struct page *page;
1265 void *addr;
1266 enum buddy buddy;
1267
1268 zhdr = handle_to_z3fold_header(handle);
1269 addr = zhdr;
1270 page = virt_to_page(zhdr);
1271
1272 if (test_bit(PAGE_HEADLESS, &page->private))
1273 goto out;
1274
1275 z3fold_page_lock(zhdr);
1276 buddy = handle_to_buddy(handle);
1277 switch (buddy) {
1278 case FIRST:
1279 addr += ZHDR_SIZE_ALIGNED;
1280 break;
1281 case MIDDLE:
1282 addr += zhdr->start_middle << CHUNK_SHIFT;
1283 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1284 break;
1285 case LAST:
1286 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1287 break;
1288 default:
1289 pr_err("unknown buddy id %d\n", buddy);
1290 WARN_ON(1);
1291 addr = NULL;
1292 break;
1293 }
1294
1295 if (addr)
1296 zhdr->mapped_count++;
1297 z3fold_page_unlock(zhdr);
1298 out:
1299 return addr;
1300 }
1301
1302 /**
1303 * z3fold_unmap() - unmaps the allocation associated with the given handle
1304 * @pool: pool in which the allocation resides
1305 * @handle: handle associated with the allocation to be unmapped
1306 */
z3fold_unmap(struct z3fold_pool * pool,unsigned long handle)1307 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1308 {
1309 struct z3fold_header *zhdr;
1310 struct page *page;
1311 enum buddy buddy;
1312
1313 zhdr = handle_to_z3fold_header(handle);
1314 page = virt_to_page(zhdr);
1315
1316 if (test_bit(PAGE_HEADLESS, &page->private))
1317 return;
1318
1319 z3fold_page_lock(zhdr);
1320 buddy = handle_to_buddy(handle);
1321 if (buddy == MIDDLE)
1322 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1323 zhdr->mapped_count--;
1324 z3fold_page_unlock(zhdr);
1325 }
1326
1327 /**
1328 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1329 * @pool: pool whose size is being queried
1330 *
1331 * Returns: size in pages of the given pool.
1332 */
z3fold_get_pool_size(struct z3fold_pool * pool)1333 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1334 {
1335 return atomic64_read(&pool->pages_nr);
1336 }
1337
z3fold_page_isolate(struct page * page,isolate_mode_t mode)1338 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1339 {
1340 struct z3fold_header *zhdr;
1341 struct z3fold_pool *pool;
1342
1343 VM_BUG_ON_PAGE(!PageMovable(page), page);
1344 VM_BUG_ON_PAGE(PageIsolated(page), page);
1345
1346 if (test_bit(PAGE_HEADLESS, &page->private) ||
1347 test_bit(PAGE_CLAIMED, &page->private))
1348 return false;
1349
1350 zhdr = page_address(page);
1351 z3fold_page_lock(zhdr);
1352 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1353 test_bit(PAGE_STALE, &page->private))
1354 goto out;
1355
1356 pool = zhdr_to_pool(zhdr);
1357
1358 if (zhdr->mapped_count == 0) {
1359 kref_get(&zhdr->refcount);
1360 if (!list_empty(&zhdr->buddy))
1361 list_del_init(&zhdr->buddy);
1362 spin_lock(&pool->lock);
1363 if (!list_empty(&page->lru))
1364 list_del(&page->lru);
1365 spin_unlock(&pool->lock);
1366 z3fold_page_unlock(zhdr);
1367 return true;
1368 }
1369 out:
1370 z3fold_page_unlock(zhdr);
1371 return false;
1372 }
1373
z3fold_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1374 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1375 struct page *page, enum migrate_mode mode)
1376 {
1377 struct z3fold_header *zhdr, *new_zhdr;
1378 struct z3fold_pool *pool;
1379 struct address_space *new_mapping;
1380
1381 VM_BUG_ON_PAGE(!PageMovable(page), page);
1382 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1383 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1384
1385 zhdr = page_address(page);
1386 pool = zhdr_to_pool(zhdr);
1387
1388 if (!z3fold_page_trylock(zhdr)) {
1389 return -EAGAIN;
1390 }
1391 if (zhdr->mapped_count != 0) {
1392 z3fold_page_unlock(zhdr);
1393 return -EBUSY;
1394 }
1395 if (work_pending(&zhdr->work)) {
1396 z3fold_page_unlock(zhdr);
1397 return -EAGAIN;
1398 }
1399 new_zhdr = page_address(newpage);
1400 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1401 newpage->private = page->private;
1402 page->private = 0;
1403 z3fold_page_unlock(zhdr);
1404 spin_lock_init(&new_zhdr->page_lock);
1405 INIT_WORK(&new_zhdr->work, compact_page_work);
1406 /*
1407 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1408 * so we only have to reinitialize it.
1409 */
1410 INIT_LIST_HEAD(&new_zhdr->buddy);
1411 new_mapping = page_mapping(page);
1412 __ClearPageMovable(page);
1413 ClearPagePrivate(page);
1414
1415 get_page(newpage);
1416 z3fold_page_lock(new_zhdr);
1417 if (new_zhdr->first_chunks)
1418 encode_handle(new_zhdr, FIRST);
1419 if (new_zhdr->last_chunks)
1420 encode_handle(new_zhdr, LAST);
1421 if (new_zhdr->middle_chunks)
1422 encode_handle(new_zhdr, MIDDLE);
1423 set_bit(NEEDS_COMPACTING, &newpage->private);
1424 new_zhdr->cpu = smp_processor_id();
1425 spin_lock(&pool->lock);
1426 list_add(&newpage->lru, &pool->lru);
1427 spin_unlock(&pool->lock);
1428 __SetPageMovable(newpage, new_mapping);
1429 z3fold_page_unlock(new_zhdr);
1430
1431 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1432
1433 page_mapcount_reset(page);
1434 put_page(page);
1435 return 0;
1436 }
1437
z3fold_page_putback(struct page * page)1438 static void z3fold_page_putback(struct page *page)
1439 {
1440 struct z3fold_header *zhdr;
1441 struct z3fold_pool *pool;
1442
1443 zhdr = page_address(page);
1444 pool = zhdr_to_pool(zhdr);
1445
1446 z3fold_page_lock(zhdr);
1447 if (!list_empty(&zhdr->buddy))
1448 list_del_init(&zhdr->buddy);
1449 INIT_LIST_HEAD(&page->lru);
1450 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1451 atomic64_dec(&pool->pages_nr);
1452 return;
1453 }
1454 spin_lock(&pool->lock);
1455 list_add(&page->lru, &pool->lru);
1456 spin_unlock(&pool->lock);
1457 z3fold_page_unlock(zhdr);
1458 }
1459
1460 static const struct address_space_operations z3fold_aops = {
1461 .isolate_page = z3fold_page_isolate,
1462 .migratepage = z3fold_page_migrate,
1463 .putback_page = z3fold_page_putback,
1464 };
1465
1466 /*****************
1467 * zpool
1468 ****************/
1469
z3fold_zpool_evict(struct z3fold_pool * pool,unsigned long handle)1470 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1471 {
1472 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1473 return pool->zpool_ops->evict(pool->zpool, handle);
1474 else
1475 return -ENOENT;
1476 }
1477
1478 static const struct z3fold_ops z3fold_zpool_ops = {
1479 .evict = z3fold_zpool_evict
1480 };
1481
z3fold_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)1482 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1483 const struct zpool_ops *zpool_ops,
1484 struct zpool *zpool)
1485 {
1486 struct z3fold_pool *pool;
1487
1488 pool = z3fold_create_pool(name, gfp,
1489 zpool_ops ? &z3fold_zpool_ops : NULL);
1490 if (pool) {
1491 pool->zpool = zpool;
1492 pool->zpool_ops = zpool_ops;
1493 }
1494 return pool;
1495 }
1496
z3fold_zpool_destroy(void * pool)1497 static void z3fold_zpool_destroy(void *pool)
1498 {
1499 z3fold_destroy_pool(pool);
1500 }
1501
z3fold_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)1502 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1503 unsigned long *handle)
1504 {
1505 return z3fold_alloc(pool, size, gfp, handle);
1506 }
z3fold_zpool_free(void * pool,unsigned long handle)1507 static void z3fold_zpool_free(void *pool, unsigned long handle)
1508 {
1509 z3fold_free(pool, handle);
1510 }
1511
z3fold_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)1512 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1513 unsigned int *reclaimed)
1514 {
1515 unsigned int total = 0;
1516 int ret = -EINVAL;
1517
1518 while (total < pages) {
1519 ret = z3fold_reclaim_page(pool, 8);
1520 if (ret < 0)
1521 break;
1522 total++;
1523 }
1524
1525 if (reclaimed)
1526 *reclaimed = total;
1527
1528 return ret;
1529 }
1530
z3fold_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)1531 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1532 enum zpool_mapmode mm)
1533 {
1534 return z3fold_map(pool, handle);
1535 }
z3fold_zpool_unmap(void * pool,unsigned long handle)1536 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1537 {
1538 z3fold_unmap(pool, handle);
1539 }
1540
z3fold_zpool_total_size(void * pool)1541 static u64 z3fold_zpool_total_size(void *pool)
1542 {
1543 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1544 }
1545
1546 static struct zpool_driver z3fold_zpool_driver = {
1547 .type = "z3fold",
1548 .owner = THIS_MODULE,
1549 .create = z3fold_zpool_create,
1550 .destroy = z3fold_zpool_destroy,
1551 .malloc = z3fold_zpool_malloc,
1552 .free = z3fold_zpool_free,
1553 .shrink = z3fold_zpool_shrink,
1554 .map = z3fold_zpool_map,
1555 .unmap = z3fold_zpool_unmap,
1556 .total_size = z3fold_zpool_total_size,
1557 };
1558
1559 MODULE_ALIAS("zpool-z3fold");
1560
init_z3fold(void)1561 static int __init init_z3fold(void)
1562 {
1563 int ret;
1564
1565 /* Make sure the z3fold header is not larger than the page size */
1566 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1567 ret = z3fold_mount();
1568 if (ret)
1569 return ret;
1570
1571 zpool_register_driver(&z3fold_zpool_driver);
1572
1573 return 0;
1574 }
1575
exit_z3fold(void)1576 static void __exit exit_z3fold(void)
1577 {
1578 z3fold_unmount();
1579 zpool_unregister_driver(&z3fold_zpool_driver);
1580 }
1581
1582 module_init(init_z3fold);
1583 module_exit(exit_z3fold);
1584
1585 MODULE_LICENSE("GPL");
1586 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1587 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1588