• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk, unsigned int log)
132 {
133 	struct sock *sk2;
134 	kuid_t uid = sock_i_uid(sk);
135 
136 	sk_for_each(sk2, &hslot->head) {
137 		if (net_eq(sock_net(sk2), net) &&
138 		    sk2 != sk &&
139 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
140 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
142 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    inet_rcv_saddr_equal(sk, sk2, true)) {
144 			if (sk2->sk_reuseport && sk->sk_reuseport &&
145 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
146 			    uid_eq(uid, sock_i_uid(sk2))) {
147 				if (!bitmap)
148 					return 0;
149 			} else {
150 				if (!bitmap)
151 					return 1;
152 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 					  bitmap);
154 			}
155 		}
156 	}
157 	return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 				struct udp_hslot *hslot2,
166 				struct sock *sk)
167 {
168 	struct sock *sk2;
169 	kuid_t uid = sock_i_uid(sk);
170 	int res = 0;
171 
172 	spin_lock(&hslot2->lock);
173 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
174 		if (net_eq(sock_net(sk2), net) &&
175 		    sk2 != sk &&
176 		    (udp_sk(sk2)->udp_port_hash == num) &&
177 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
178 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 		    inet_rcv_saddr_equal(sk, sk2, true)) {
181 			if (sk2->sk_reuseport && sk->sk_reuseport &&
182 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
183 			    uid_eq(uid, sock_i_uid(sk2))) {
184 				res = 0;
185 			} else {
186 				res = 1;
187 			}
188 			break;
189 		}
190 	}
191 	spin_unlock(&hslot2->lock);
192 	return res;
193 }
194 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
196 {
197 	struct net *net = sock_net(sk);
198 	kuid_t uid = sock_i_uid(sk);
199 	struct sock *sk2;
200 
201 	sk_for_each(sk2, &hslot->head) {
202 		if (net_eq(sock_net(sk2), net) &&
203 		    sk2 != sk &&
204 		    sk2->sk_family == sk->sk_family &&
205 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
206 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
207 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
209 		    inet_rcv_saddr_equal(sk, sk2, false)) {
210 			return reuseport_add_sock(sk, sk2,
211 						  inet_rcv_saddr_any(sk));
212 		}
213 	}
214 
215 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
216 }
217 
218 /**
219  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
220  *
221  *  @sk:          socket struct in question
222  *  @snum:        port number to look up
223  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
224  *                   with NULL address
225  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)226 int udp_lib_get_port(struct sock *sk, unsigned short snum,
227 		     unsigned int hash2_nulladdr)
228 {
229 	struct udp_hslot *hslot, *hslot2;
230 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
231 	int    error = 1;
232 	struct net *net = sock_net(sk);
233 
234 	if (!snum) {
235 		int low, high, remaining;
236 		unsigned int rand;
237 		unsigned short first, last;
238 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
239 
240 		inet_get_local_port_range(net, &low, &high);
241 		remaining = (high - low) + 1;
242 
243 		rand = prandom_u32();
244 		first = reciprocal_scale(rand, remaining) + low;
245 		/*
246 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
247 		 */
248 		rand = (rand | 1) * (udptable->mask + 1);
249 		last = first + udptable->mask + 1;
250 		do {
251 			hslot = udp_hashslot(udptable, net, first);
252 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
253 			spin_lock_bh(&hslot->lock);
254 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
255 					    udptable->log);
256 
257 			snum = first;
258 			/*
259 			 * Iterate on all possible values of snum for this hash.
260 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 			 * give us randomization and full range coverage.
262 			 */
263 			do {
264 				if (low <= snum && snum <= high &&
265 				    !test_bit(snum >> udptable->log, bitmap) &&
266 				    !inet_is_local_reserved_port(net, snum))
267 					goto found;
268 				snum += rand;
269 			} while (snum != first);
270 			spin_unlock_bh(&hslot->lock);
271 			cond_resched();
272 		} while (++first != last);
273 		goto fail;
274 	} else {
275 		hslot = udp_hashslot(udptable, net, snum);
276 		spin_lock_bh(&hslot->lock);
277 		if (hslot->count > 10) {
278 			int exist;
279 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
280 
281 			slot2          &= udptable->mask;
282 			hash2_nulladdr &= udptable->mask;
283 
284 			hslot2 = udp_hashslot2(udptable, slot2);
285 			if (hslot->count < hslot2->count)
286 				goto scan_primary_hash;
287 
288 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
289 			if (!exist && (hash2_nulladdr != slot2)) {
290 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
291 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
292 							     sk);
293 			}
294 			if (exist)
295 				goto fail_unlock;
296 			else
297 				goto found;
298 		}
299 scan_primary_hash:
300 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
301 			goto fail_unlock;
302 	}
303 found:
304 	inet_sk(sk)->inet_num = snum;
305 	udp_sk(sk)->udp_port_hash = snum;
306 	udp_sk(sk)->udp_portaddr_hash ^= snum;
307 	if (sk_unhashed(sk)) {
308 		if (sk->sk_reuseport &&
309 		    udp_reuseport_add_sock(sk, hslot)) {
310 			inet_sk(sk)->inet_num = 0;
311 			udp_sk(sk)->udp_port_hash = 0;
312 			udp_sk(sk)->udp_portaddr_hash ^= snum;
313 			goto fail_unlock;
314 		}
315 
316 		sk_add_node_rcu(sk, &hslot->head);
317 		hslot->count++;
318 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
319 
320 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
321 		spin_lock(&hslot2->lock);
322 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
323 		    sk->sk_family == AF_INET6)
324 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
325 					   &hslot2->head);
326 		else
327 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		hslot2->count++;
330 		spin_unlock(&hslot2->lock);
331 	}
332 	sock_set_flag(sk, SOCK_RCU_FREE);
333 	error = 0;
334 fail_unlock:
335 	spin_unlock_bh(&hslot->lock);
336 fail:
337 	return error;
338 }
339 EXPORT_SYMBOL(udp_lib_get_port);
340 
udp_v4_get_port(struct sock * sk,unsigned short snum)341 int udp_v4_get_port(struct sock *sk, unsigned short snum)
342 {
343 	unsigned int hash2_nulladdr =
344 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
345 	unsigned int hash2_partial =
346 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
347 
348 	/* precompute partial secondary hash */
349 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
350 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
351 }
352 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)353 static int compute_score(struct sock *sk, struct net *net,
354 			 __be32 saddr, __be16 sport,
355 			 __be32 daddr, unsigned short hnum,
356 			 int dif, int sdif)
357 {
358 	int score;
359 	struct inet_sock *inet;
360 	bool dev_match;
361 
362 	if (!net_eq(sock_net(sk), net) ||
363 	    udp_sk(sk)->udp_port_hash != hnum ||
364 	    ipv6_only_sock(sk))
365 		return -1;
366 
367 	if (sk->sk_rcv_saddr != daddr)
368 		return -1;
369 
370 	score = (sk->sk_family == PF_INET) ? 2 : 1;
371 
372 	inet = inet_sk(sk);
373 	if (inet->inet_daddr) {
374 		if (inet->inet_daddr != saddr)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	if (inet->inet_dport) {
380 		if (inet->inet_dport != sport)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
386 					dif, sdif);
387 	if (!dev_match)
388 		return -1;
389 	if (sk->sk_bound_dev_if)
390 		score += 4;
391 
392 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
393 		score++;
394 	return score;
395 }
396 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)397 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
398 		       const __u16 lport, const __be32 faddr,
399 		       const __be16 fport)
400 {
401 	static u32 udp_ehash_secret __read_mostly;
402 
403 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
404 
405 	return __inet_ehashfn(laddr, lport, faddr, fport,
406 			      udp_ehash_secret + net_hash_mix(net));
407 }
408 
409 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)410 static struct sock *udp4_lib_lookup2(struct net *net,
411 				     __be32 saddr, __be16 sport,
412 				     __be32 daddr, unsigned int hnum,
413 				     int dif, int sdif,
414 				     struct udp_hslot *hslot2,
415 				     struct sk_buff *skb)
416 {
417 	struct sock *sk, *result, *reuseport_result;
418 	int score, badness;
419 	u32 hash = 0;
420 
421 	result = NULL;
422 	badness = 0;
423 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
424 		score = compute_score(sk, net, saddr, sport,
425 				      daddr, hnum, dif, sdif);
426 		if (score > badness) {
427 			reuseport_result = NULL;
428 
429 			if (sk->sk_reuseport &&
430 			    sk->sk_state != TCP_ESTABLISHED) {
431 				hash = udp_ehashfn(net, daddr, hnum,
432 						   saddr, sport);
433 				reuseport_result = reuseport_select_sock(sk, hash, skb,
434 									 sizeof(struct udphdr));
435 				if (reuseport_result && !reuseport_has_conns(sk, false))
436 					return reuseport_result;
437 			}
438 
439 			result = reuseport_result ? : sk;
440 			badness = score;
441 		}
442 	}
443 	return result;
444 }
445 
446 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
447  * harder than this. -DaveM
448  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)449 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
450 		__be16 sport, __be32 daddr, __be16 dport, int dif,
451 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
452 {
453 	struct sock *result;
454 	unsigned short hnum = ntohs(dport);
455 	unsigned int hash2, slot2;
456 	struct udp_hslot *hslot2;
457 
458 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
459 	slot2 = hash2 & udptable->mask;
460 	hslot2 = &udptable->hash2[slot2];
461 
462 	result = udp4_lib_lookup2(net, saddr, sport,
463 				  daddr, hnum, dif, sdif,
464 				  hslot2, skb);
465 	if (!result) {
466 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
467 		slot2 = hash2 & udptable->mask;
468 		hslot2 = &udptable->hash2[slot2];
469 
470 		result = udp4_lib_lookup2(net, saddr, sport,
471 					  htonl(INADDR_ANY), hnum, dif, sdif,
472 					  hslot2, skb);
473 	}
474 	if (IS_ERR(result))
475 		return NULL;
476 	return result;
477 }
478 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
479 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)480 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
481 						 __be16 sport, __be16 dport,
482 						 struct udp_table *udptable)
483 {
484 	const struct iphdr *iph = ip_hdr(skb);
485 
486 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
487 				 iph->daddr, dport, inet_iif(skb),
488 				 inet_sdif(skb), udptable, skb);
489 }
490 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)491 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
492 				 __be16 sport, __be16 dport)
493 {
494 	const struct iphdr *iph = ip_hdr(skb);
495 
496 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
497 				 iph->daddr, dport, inet_iif(skb),
498 				 inet_sdif(skb), &udp_table, NULL);
499 }
500 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
501 
502 /* Must be called under rcu_read_lock().
503  * Does increment socket refcount.
504  */
505 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)506 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
507 			     __be32 daddr, __be16 dport, int dif)
508 {
509 	struct sock *sk;
510 
511 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
512 			       dif, 0, &udp_table, NULL);
513 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
514 		sk = NULL;
515 	return sk;
516 }
517 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
518 #endif
519 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)520 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
521 				       __be16 loc_port, __be32 loc_addr,
522 				       __be16 rmt_port, __be32 rmt_addr,
523 				       int dif, int sdif, unsigned short hnum)
524 {
525 	struct inet_sock *inet = inet_sk(sk);
526 
527 	if (!net_eq(sock_net(sk), net) ||
528 	    udp_sk(sk)->udp_port_hash != hnum ||
529 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
530 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
531 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
532 	    ipv6_only_sock(sk) ||
533 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
534 		return false;
535 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
536 		return false;
537 	return true;
538 }
539 
540 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)541 void udp_encap_enable(void)
542 {
543 	static_branch_inc(&udp_encap_needed_key);
544 }
545 EXPORT_SYMBOL(udp_encap_enable);
546 
udp_encap_disable(void)547 void udp_encap_disable(void)
548 {
549 	static_branch_dec(&udp_encap_needed_key);
550 }
551 EXPORT_SYMBOL(udp_encap_disable);
552 
553 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
554  * through error handlers in encapsulations looking for a match.
555  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)556 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
557 {
558 	int i;
559 
560 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
561 		int (*handler)(struct sk_buff *skb, u32 info);
562 		const struct ip_tunnel_encap_ops *encap;
563 
564 		encap = rcu_dereference(iptun_encaps[i]);
565 		if (!encap)
566 			continue;
567 		handler = encap->err_handler;
568 		if (handler && !handler(skb, info))
569 			return 0;
570 	}
571 
572 	return -ENOENT;
573 }
574 
575 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
576  * reversing source and destination port: this will match tunnels that force the
577  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
578  * lwtunnels might actually break this assumption by being configured with
579  * different destination ports on endpoints, in this case we won't be able to
580  * trace ICMP messages back to them.
581  *
582  * If this doesn't match any socket, probe tunnels with arbitrary destination
583  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
584  * we've sent packets to won't necessarily match the local destination port.
585  *
586  * Then ask the tunnel implementation to match the error against a valid
587  * association.
588  *
589  * Return an error if we can't find a match, the socket if we need further
590  * processing, zero otherwise.
591  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)592 static struct sock *__udp4_lib_err_encap(struct net *net,
593 					 const struct iphdr *iph,
594 					 struct udphdr *uh,
595 					 struct udp_table *udptable,
596 					 struct sk_buff *skb, u32 info)
597 {
598 	int network_offset, transport_offset;
599 	struct sock *sk;
600 
601 	network_offset = skb_network_offset(skb);
602 	transport_offset = skb_transport_offset(skb);
603 
604 	/* Network header needs to point to the outer IPv4 header inside ICMP */
605 	skb_reset_network_header(skb);
606 
607 	/* Transport header needs to point to the UDP header */
608 	skb_set_transport_header(skb, iph->ihl << 2);
609 
610 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
611 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
612 			       udptable, NULL);
613 	if (sk) {
614 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
615 		struct udp_sock *up = udp_sk(sk);
616 
617 		lookup = READ_ONCE(up->encap_err_lookup);
618 		if (!lookup || lookup(sk, skb))
619 			sk = NULL;
620 	}
621 
622 	if (!sk)
623 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
624 
625 	skb_set_transport_header(skb, transport_offset);
626 	skb_set_network_header(skb, network_offset);
627 
628 	return sk;
629 }
630 
631 /*
632  * This routine is called by the ICMP module when it gets some
633  * sort of error condition.  If err < 0 then the socket should
634  * be closed and the error returned to the user.  If err > 0
635  * it's just the icmp type << 8 | icmp code.
636  * Header points to the ip header of the error packet. We move
637  * on past this. Then (as it used to claim before adjustment)
638  * header points to the first 8 bytes of the udp header.  We need
639  * to find the appropriate port.
640  */
641 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)642 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
643 {
644 	struct inet_sock *inet;
645 	const struct iphdr *iph = (const struct iphdr *)skb->data;
646 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
647 	const int type = icmp_hdr(skb)->type;
648 	const int code = icmp_hdr(skb)->code;
649 	bool tunnel = false;
650 	struct sock *sk;
651 	int harderr;
652 	int err;
653 	struct net *net = dev_net(skb->dev);
654 
655 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
656 			       iph->saddr, uh->source, skb->dev->ifindex,
657 			       inet_sdif(skb), udptable, NULL);
658 	if (!sk) {
659 		/* No socket for error: try tunnels before discarding */
660 		sk = ERR_PTR(-ENOENT);
661 		if (static_branch_unlikely(&udp_encap_needed_key)) {
662 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
663 						  info);
664 			if (!sk)
665 				return 0;
666 		}
667 
668 		if (IS_ERR(sk)) {
669 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
670 			return PTR_ERR(sk);
671 		}
672 
673 		tunnel = true;
674 	}
675 
676 	err = 0;
677 	harderr = 0;
678 	inet = inet_sk(sk);
679 
680 	switch (type) {
681 	default:
682 	case ICMP_TIME_EXCEEDED:
683 		err = EHOSTUNREACH;
684 		break;
685 	case ICMP_SOURCE_QUENCH:
686 		goto out;
687 	case ICMP_PARAMETERPROB:
688 		err = EPROTO;
689 		harderr = 1;
690 		break;
691 	case ICMP_DEST_UNREACH:
692 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
693 			ipv4_sk_update_pmtu(skb, sk, info);
694 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
695 				err = EMSGSIZE;
696 				harderr = 1;
697 				break;
698 			}
699 			goto out;
700 		}
701 		err = EHOSTUNREACH;
702 		if (code <= NR_ICMP_UNREACH) {
703 			harderr = icmp_err_convert[code].fatal;
704 			err = icmp_err_convert[code].errno;
705 		}
706 		break;
707 	case ICMP_REDIRECT:
708 		ipv4_sk_redirect(skb, sk);
709 		goto out;
710 	}
711 
712 	/*
713 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
714 	 *	4.1.3.3.
715 	 */
716 	if (tunnel) {
717 		/* ...not for tunnels though: we don't have a sending socket */
718 		goto out;
719 	}
720 	if (!inet->recverr) {
721 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
722 			goto out;
723 	} else
724 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
725 
726 	sk->sk_err = err;
727 	sk->sk_error_report(sk);
728 out:
729 	return 0;
730 }
731 
udp_err(struct sk_buff * skb,u32 info)732 int udp_err(struct sk_buff *skb, u32 info)
733 {
734 	return __udp4_lib_err(skb, info, &udp_table);
735 }
736 
737 /*
738  * Throw away all pending data and cancel the corking. Socket is locked.
739  */
udp_flush_pending_frames(struct sock * sk)740 void udp_flush_pending_frames(struct sock *sk)
741 {
742 	struct udp_sock *up = udp_sk(sk);
743 
744 	if (up->pending) {
745 		up->len = 0;
746 		up->pending = 0;
747 		ip_flush_pending_frames(sk);
748 	}
749 }
750 EXPORT_SYMBOL(udp_flush_pending_frames);
751 
752 /**
753  * 	udp4_hwcsum  -  handle outgoing HW checksumming
754  * 	@skb: 	sk_buff containing the filled-in UDP header
755  * 	        (checksum field must be zeroed out)
756  *	@src:	source IP address
757  *	@dst:	destination IP address
758  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)759 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
760 {
761 	struct udphdr *uh = udp_hdr(skb);
762 	int offset = skb_transport_offset(skb);
763 	int len = skb->len - offset;
764 	int hlen = len;
765 	__wsum csum = 0;
766 
767 	if (!skb_has_frag_list(skb)) {
768 		/*
769 		 * Only one fragment on the socket.
770 		 */
771 		skb->csum_start = skb_transport_header(skb) - skb->head;
772 		skb->csum_offset = offsetof(struct udphdr, check);
773 		uh->check = ~csum_tcpudp_magic(src, dst, len,
774 					       IPPROTO_UDP, 0);
775 	} else {
776 		struct sk_buff *frags;
777 
778 		/*
779 		 * HW-checksum won't work as there are two or more
780 		 * fragments on the socket so that all csums of sk_buffs
781 		 * should be together
782 		 */
783 		skb_walk_frags(skb, frags) {
784 			csum = csum_add(csum, frags->csum);
785 			hlen -= frags->len;
786 		}
787 
788 		csum = skb_checksum(skb, offset, hlen, csum);
789 		skb->ip_summed = CHECKSUM_NONE;
790 
791 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
792 		if (uh->check == 0)
793 			uh->check = CSUM_MANGLED_0;
794 	}
795 }
796 EXPORT_SYMBOL_GPL(udp4_hwcsum);
797 
798 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
799  * for the simple case like when setting the checksum for a UDP tunnel.
800  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)801 void udp_set_csum(bool nocheck, struct sk_buff *skb,
802 		  __be32 saddr, __be32 daddr, int len)
803 {
804 	struct udphdr *uh = udp_hdr(skb);
805 
806 	if (nocheck) {
807 		uh->check = 0;
808 	} else if (skb_is_gso(skb)) {
809 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
811 		uh->check = 0;
812 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
813 		if (uh->check == 0)
814 			uh->check = CSUM_MANGLED_0;
815 	} else {
816 		skb->ip_summed = CHECKSUM_PARTIAL;
817 		skb->csum_start = skb_transport_header(skb) - skb->head;
818 		skb->csum_offset = offsetof(struct udphdr, check);
819 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
820 	}
821 }
822 EXPORT_SYMBOL(udp_set_csum);
823 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)824 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
825 			struct inet_cork *cork)
826 {
827 	struct sock *sk = skb->sk;
828 	struct inet_sock *inet = inet_sk(sk);
829 	struct udphdr *uh;
830 	int err = 0;
831 	int is_udplite = IS_UDPLITE(sk);
832 	int offset = skb_transport_offset(skb);
833 	int len = skb->len - offset;
834 	int datalen = len - sizeof(*uh);
835 	__wsum csum = 0;
836 
837 	/*
838 	 * Create a UDP header
839 	 */
840 	uh = udp_hdr(skb);
841 	uh->source = inet->inet_sport;
842 	uh->dest = fl4->fl4_dport;
843 	uh->len = htons(len);
844 	uh->check = 0;
845 
846 	if (cork->gso_size) {
847 		const int hlen = skb_network_header_len(skb) +
848 				 sizeof(struct udphdr);
849 
850 		if (hlen + cork->gso_size > cork->fragsize) {
851 			kfree_skb(skb);
852 			return -EINVAL;
853 		}
854 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
855 			kfree_skb(skb);
856 			return -EINVAL;
857 		}
858 		if (sk->sk_no_check_tx) {
859 			kfree_skb(skb);
860 			return -EINVAL;
861 		}
862 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
863 		    dst_xfrm(skb_dst(skb))) {
864 			kfree_skb(skb);
865 			return -EIO;
866 		}
867 
868 		if (datalen > cork->gso_size) {
869 			skb_shinfo(skb)->gso_size = cork->gso_size;
870 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
871 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
872 								 cork->gso_size);
873 		}
874 		goto csum_partial;
875 	}
876 
877 	if (is_udplite)  				 /*     UDP-Lite      */
878 		csum = udplite_csum(skb);
879 
880 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
881 
882 		skb->ip_summed = CHECKSUM_NONE;
883 		goto send;
884 
885 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
886 csum_partial:
887 
888 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
889 		goto send;
890 
891 	} else
892 		csum = udp_csum(skb);
893 
894 	/* add protocol-dependent pseudo-header */
895 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
896 				      sk->sk_protocol, csum);
897 	if (uh->check == 0)
898 		uh->check = CSUM_MANGLED_0;
899 
900 send:
901 	err = ip_send_skb(sock_net(sk), skb);
902 	if (err) {
903 		if (err == -ENOBUFS && !inet->recverr) {
904 			UDP_INC_STATS(sock_net(sk),
905 				      UDP_MIB_SNDBUFERRORS, is_udplite);
906 			err = 0;
907 		}
908 	} else
909 		UDP_INC_STATS(sock_net(sk),
910 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
911 	return err;
912 }
913 
914 /*
915  * Push out all pending data as one UDP datagram. Socket is locked.
916  */
udp_push_pending_frames(struct sock * sk)917 int udp_push_pending_frames(struct sock *sk)
918 {
919 	struct udp_sock  *up = udp_sk(sk);
920 	struct inet_sock *inet = inet_sk(sk);
921 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
922 	struct sk_buff *skb;
923 	int err = 0;
924 
925 	skb = ip_finish_skb(sk, fl4);
926 	if (!skb)
927 		goto out;
928 
929 	err = udp_send_skb(skb, fl4, &inet->cork.base);
930 
931 out:
932 	up->len = 0;
933 	up->pending = 0;
934 	return err;
935 }
936 EXPORT_SYMBOL(udp_push_pending_frames);
937 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)938 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
939 {
940 	switch (cmsg->cmsg_type) {
941 	case UDP_SEGMENT:
942 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
943 			return -EINVAL;
944 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
945 		return 0;
946 	default:
947 		return -EINVAL;
948 	}
949 }
950 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)951 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
952 {
953 	struct cmsghdr *cmsg;
954 	bool need_ip = false;
955 	int err;
956 
957 	for_each_cmsghdr(cmsg, msg) {
958 		if (!CMSG_OK(msg, cmsg))
959 			return -EINVAL;
960 
961 		if (cmsg->cmsg_level != SOL_UDP) {
962 			need_ip = true;
963 			continue;
964 		}
965 
966 		err = __udp_cmsg_send(cmsg, gso_size);
967 		if (err)
968 			return err;
969 	}
970 
971 	return need_ip;
972 }
973 EXPORT_SYMBOL_GPL(udp_cmsg_send);
974 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)975 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
976 {
977 	struct inet_sock *inet = inet_sk(sk);
978 	struct udp_sock *up = udp_sk(sk);
979 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
980 	struct flowi4 fl4_stack;
981 	struct flowi4 *fl4;
982 	int ulen = len;
983 	struct ipcm_cookie ipc;
984 	struct rtable *rt = NULL;
985 	int free = 0;
986 	int connected = 0;
987 	__be32 daddr, faddr, saddr;
988 	__be16 dport;
989 	u8  tos;
990 	int err, is_udplite = IS_UDPLITE(sk);
991 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
992 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
993 	struct sk_buff *skb;
994 	struct ip_options_data opt_copy;
995 
996 	if (len > 0xFFFF)
997 		return -EMSGSIZE;
998 
999 	/*
1000 	 *	Check the flags.
1001 	 */
1002 
1003 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1004 		return -EOPNOTSUPP;
1005 
1006 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1007 
1008 	fl4 = &inet->cork.fl.u.ip4;
1009 	if (up->pending) {
1010 		/*
1011 		 * There are pending frames.
1012 		 * The socket lock must be held while it's corked.
1013 		 */
1014 		lock_sock(sk);
1015 		if (likely(up->pending)) {
1016 			if (unlikely(up->pending != AF_INET)) {
1017 				release_sock(sk);
1018 				return -EINVAL;
1019 			}
1020 			goto do_append_data;
1021 		}
1022 		release_sock(sk);
1023 	}
1024 	ulen += sizeof(struct udphdr);
1025 
1026 	/*
1027 	 *	Get and verify the address.
1028 	 */
1029 	if (usin) {
1030 		if (msg->msg_namelen < sizeof(*usin))
1031 			return -EINVAL;
1032 		if (usin->sin_family != AF_INET) {
1033 			if (usin->sin_family != AF_UNSPEC)
1034 				return -EAFNOSUPPORT;
1035 		}
1036 
1037 		daddr = usin->sin_addr.s_addr;
1038 		dport = usin->sin_port;
1039 		if (dport == 0)
1040 			return -EINVAL;
1041 	} else {
1042 		if (sk->sk_state != TCP_ESTABLISHED)
1043 			return -EDESTADDRREQ;
1044 		daddr = inet->inet_daddr;
1045 		dport = inet->inet_dport;
1046 		/* Open fast path for connected socket.
1047 		   Route will not be used, if at least one option is set.
1048 		 */
1049 		connected = 1;
1050 	}
1051 
1052 	ipcm_init_sk(&ipc, inet);
1053 	ipc.gso_size = READ_ONCE(up->gso_size);
1054 
1055 	if (msg->msg_controllen) {
1056 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1057 		if (err > 0)
1058 			err = ip_cmsg_send(sk, msg, &ipc,
1059 					   sk->sk_family == AF_INET6);
1060 		if (unlikely(err < 0)) {
1061 			kfree(ipc.opt);
1062 			return err;
1063 		}
1064 		if (ipc.opt)
1065 			free = 1;
1066 		connected = 0;
1067 	}
1068 	if (!ipc.opt) {
1069 		struct ip_options_rcu *inet_opt;
1070 
1071 		rcu_read_lock();
1072 		inet_opt = rcu_dereference(inet->inet_opt);
1073 		if (inet_opt) {
1074 			memcpy(&opt_copy, inet_opt,
1075 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1076 			ipc.opt = &opt_copy.opt;
1077 		}
1078 		rcu_read_unlock();
1079 	}
1080 
1081 	if (cgroup_bpf_enabled && !connected) {
1082 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1083 					    (struct sockaddr *)usin, &ipc.addr);
1084 		if (err)
1085 			goto out_free;
1086 		if (usin) {
1087 			if (usin->sin_port == 0) {
1088 				/* BPF program set invalid port. Reject it. */
1089 				err = -EINVAL;
1090 				goto out_free;
1091 			}
1092 			daddr = usin->sin_addr.s_addr;
1093 			dport = usin->sin_port;
1094 		}
1095 	}
1096 
1097 	saddr = ipc.addr;
1098 	ipc.addr = faddr = daddr;
1099 
1100 	if (ipc.opt && ipc.opt->opt.srr) {
1101 		if (!daddr) {
1102 			err = -EINVAL;
1103 			goto out_free;
1104 		}
1105 		faddr = ipc.opt->opt.faddr;
1106 		connected = 0;
1107 	}
1108 	tos = get_rttos(&ipc, inet);
1109 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1110 	    (msg->msg_flags & MSG_DONTROUTE) ||
1111 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1112 		tos |= RTO_ONLINK;
1113 		connected = 0;
1114 	}
1115 
1116 	if (ipv4_is_multicast(daddr)) {
1117 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1118 			ipc.oif = inet->mc_index;
1119 		if (!saddr)
1120 			saddr = inet->mc_addr;
1121 		connected = 0;
1122 	} else if (!ipc.oif) {
1123 		ipc.oif = inet->uc_index;
1124 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1125 		/* oif is set, packet is to local broadcast and
1126 		 * and uc_index is set. oif is most likely set
1127 		 * by sk_bound_dev_if. If uc_index != oif check if the
1128 		 * oif is an L3 master and uc_index is an L3 slave.
1129 		 * If so, we want to allow the send using the uc_index.
1130 		 */
1131 		if (ipc.oif != inet->uc_index &&
1132 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1133 							      inet->uc_index)) {
1134 			ipc.oif = inet->uc_index;
1135 		}
1136 	}
1137 
1138 	if (connected)
1139 		rt = (struct rtable *)sk_dst_check(sk, 0);
1140 
1141 	if (!rt) {
1142 		struct net *net = sock_net(sk);
1143 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1144 
1145 		fl4 = &fl4_stack;
1146 
1147 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1148 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1149 				   flow_flags,
1150 				   faddr, saddr, dport, inet->inet_sport,
1151 				   sk->sk_uid);
1152 
1153 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1154 		rt = ip_route_output_flow(net, fl4, sk);
1155 		if (IS_ERR(rt)) {
1156 			err = PTR_ERR(rt);
1157 			rt = NULL;
1158 			if (err == -ENETUNREACH)
1159 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1160 			goto out;
1161 		}
1162 
1163 		err = -EACCES;
1164 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1165 		    !sock_flag(sk, SOCK_BROADCAST))
1166 			goto out;
1167 		if (connected)
1168 			sk_dst_set(sk, dst_clone(&rt->dst));
1169 	}
1170 
1171 	if (msg->msg_flags&MSG_CONFIRM)
1172 		goto do_confirm;
1173 back_from_confirm:
1174 
1175 	saddr = fl4->saddr;
1176 	if (!ipc.addr)
1177 		daddr = ipc.addr = fl4->daddr;
1178 
1179 	/* Lockless fast path for the non-corking case. */
1180 	if (!corkreq) {
1181 		struct inet_cork cork;
1182 
1183 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1184 				  sizeof(struct udphdr), &ipc, &rt,
1185 				  &cork, msg->msg_flags);
1186 		err = PTR_ERR(skb);
1187 		if (!IS_ERR_OR_NULL(skb))
1188 			err = udp_send_skb(skb, fl4, &cork);
1189 		goto out;
1190 	}
1191 
1192 	lock_sock(sk);
1193 	if (unlikely(up->pending)) {
1194 		/* The socket is already corked while preparing it. */
1195 		/* ... which is an evident application bug. --ANK */
1196 		release_sock(sk);
1197 
1198 		net_dbg_ratelimited("socket already corked\n");
1199 		err = -EINVAL;
1200 		goto out;
1201 	}
1202 	/*
1203 	 *	Now cork the socket to pend data.
1204 	 */
1205 	fl4 = &inet->cork.fl.u.ip4;
1206 	fl4->daddr = daddr;
1207 	fl4->saddr = saddr;
1208 	fl4->fl4_dport = dport;
1209 	fl4->fl4_sport = inet->inet_sport;
1210 	up->pending = AF_INET;
1211 
1212 do_append_data:
1213 	up->len += ulen;
1214 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1215 			     sizeof(struct udphdr), &ipc, &rt,
1216 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1217 	if (err)
1218 		udp_flush_pending_frames(sk);
1219 	else if (!corkreq)
1220 		err = udp_push_pending_frames(sk);
1221 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1222 		up->pending = 0;
1223 	release_sock(sk);
1224 
1225 out:
1226 	ip_rt_put(rt);
1227 out_free:
1228 	if (free)
1229 		kfree(ipc.opt);
1230 	if (!err)
1231 		return len;
1232 	/*
1233 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1234 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1235 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1236 	 * things).  We could add another new stat but at least for now that
1237 	 * seems like overkill.
1238 	 */
1239 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1240 		UDP_INC_STATS(sock_net(sk),
1241 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1242 	}
1243 	return err;
1244 
1245 do_confirm:
1246 	if (msg->msg_flags & MSG_PROBE)
1247 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1248 	if (!(msg->msg_flags&MSG_PROBE) || len)
1249 		goto back_from_confirm;
1250 	err = 0;
1251 	goto out;
1252 }
1253 EXPORT_SYMBOL(udp_sendmsg);
1254 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1255 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1256 		 size_t size, int flags)
1257 {
1258 	struct inet_sock *inet = inet_sk(sk);
1259 	struct udp_sock *up = udp_sk(sk);
1260 	int ret;
1261 
1262 	if (flags & MSG_SENDPAGE_NOTLAST)
1263 		flags |= MSG_MORE;
1264 
1265 	if (!up->pending) {
1266 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1267 
1268 		/* Call udp_sendmsg to specify destination address which
1269 		 * sendpage interface can't pass.
1270 		 * This will succeed only when the socket is connected.
1271 		 */
1272 		ret = udp_sendmsg(sk, &msg, 0);
1273 		if (ret < 0)
1274 			return ret;
1275 	}
1276 
1277 	lock_sock(sk);
1278 
1279 	if (unlikely(!up->pending)) {
1280 		release_sock(sk);
1281 
1282 		net_dbg_ratelimited("cork failed\n");
1283 		return -EINVAL;
1284 	}
1285 
1286 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1287 			     page, offset, size, flags);
1288 	if (ret == -EOPNOTSUPP) {
1289 		release_sock(sk);
1290 		return sock_no_sendpage(sk->sk_socket, page, offset,
1291 					size, flags);
1292 	}
1293 	if (ret < 0) {
1294 		udp_flush_pending_frames(sk);
1295 		goto out;
1296 	}
1297 
1298 	up->len += size;
1299 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1300 		ret = udp_push_pending_frames(sk);
1301 	if (!ret)
1302 		ret = size;
1303 out:
1304 	release_sock(sk);
1305 	return ret;
1306 }
1307 
1308 #define UDP_SKB_IS_STATELESS 0x80000000
1309 
1310 /* all head states (dst, sk, nf conntrack) except skb extensions are
1311  * cleared by udp_rcv().
1312  *
1313  * We need to preserve secpath, if present, to eventually process
1314  * IP_CMSG_PASSSEC at recvmsg() time.
1315  *
1316  * Other extensions can be cleared.
1317  */
udp_try_make_stateless(struct sk_buff * skb)1318 static bool udp_try_make_stateless(struct sk_buff *skb)
1319 {
1320 	if (!skb_has_extensions(skb))
1321 		return true;
1322 
1323 	if (!secpath_exists(skb)) {
1324 		skb_ext_reset(skb);
1325 		return true;
1326 	}
1327 
1328 	return false;
1329 }
1330 
udp_set_dev_scratch(struct sk_buff * skb)1331 static void udp_set_dev_scratch(struct sk_buff *skb)
1332 {
1333 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1334 
1335 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1336 	scratch->_tsize_state = skb->truesize;
1337 #if BITS_PER_LONG == 64
1338 	scratch->len = skb->len;
1339 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1340 	scratch->is_linear = !skb_is_nonlinear(skb);
1341 #endif
1342 	if (udp_try_make_stateless(skb))
1343 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1344 }
1345 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1346 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1347 {
1348 	/* We come here after udp_lib_checksum_complete() returned 0.
1349 	 * This means that __skb_checksum_complete() might have
1350 	 * set skb->csum_valid to 1.
1351 	 * On 64bit platforms, we can set csum_unnecessary
1352 	 * to true, but only if the skb is not shared.
1353 	 */
1354 #if BITS_PER_LONG == 64
1355 	if (!skb_shared(skb))
1356 		udp_skb_scratch(skb)->csum_unnecessary = true;
1357 #endif
1358 }
1359 
udp_skb_truesize(struct sk_buff * skb)1360 static int udp_skb_truesize(struct sk_buff *skb)
1361 {
1362 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1363 }
1364 
udp_skb_has_head_state(struct sk_buff * skb)1365 static bool udp_skb_has_head_state(struct sk_buff *skb)
1366 {
1367 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1368 }
1369 
1370 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1371 static void udp_rmem_release(struct sock *sk, int size, int partial,
1372 			     bool rx_queue_lock_held)
1373 {
1374 	struct udp_sock *up = udp_sk(sk);
1375 	struct sk_buff_head *sk_queue;
1376 	int amt;
1377 
1378 	if (likely(partial)) {
1379 		up->forward_deficit += size;
1380 		size = up->forward_deficit;
1381 		if (size < (sk->sk_rcvbuf >> 2) &&
1382 		    !skb_queue_empty(&up->reader_queue))
1383 			return;
1384 	} else {
1385 		size += up->forward_deficit;
1386 	}
1387 	up->forward_deficit = 0;
1388 
1389 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1390 	 * if the called don't held it already
1391 	 */
1392 	sk_queue = &sk->sk_receive_queue;
1393 	if (!rx_queue_lock_held)
1394 		spin_lock(&sk_queue->lock);
1395 
1396 
1397 	sk->sk_forward_alloc += size;
1398 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1399 	sk->sk_forward_alloc -= amt;
1400 
1401 	if (amt)
1402 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1403 
1404 	atomic_sub(size, &sk->sk_rmem_alloc);
1405 
1406 	/* this can save us from acquiring the rx queue lock on next receive */
1407 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1408 
1409 	if (!rx_queue_lock_held)
1410 		spin_unlock(&sk_queue->lock);
1411 }
1412 
1413 /* Note: called with reader_queue.lock held.
1414  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1415  * This avoids a cache line miss while receive_queue lock is held.
1416  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1417  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1418 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1419 {
1420 	prefetch(&skb->data);
1421 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1422 }
1423 EXPORT_SYMBOL(udp_skb_destructor);
1424 
1425 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1426 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1427 {
1428 	prefetch(&skb->data);
1429 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1430 }
1431 
1432 /* Idea of busylocks is to let producers grab an extra spinlock
1433  * to relieve pressure on the receive_queue spinlock shared by consumer.
1434  * Under flood, this means that only one producer can be in line
1435  * trying to acquire the receive_queue spinlock.
1436  * These busylock can be allocated on a per cpu manner, instead of a
1437  * per socket one (that would consume a cache line per socket)
1438  */
1439 static int udp_busylocks_log __read_mostly;
1440 static spinlock_t *udp_busylocks __read_mostly;
1441 
busylock_acquire(void * ptr)1442 static spinlock_t *busylock_acquire(void *ptr)
1443 {
1444 	spinlock_t *busy;
1445 
1446 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1447 	spin_lock(busy);
1448 	return busy;
1449 }
1450 
busylock_release(spinlock_t * busy)1451 static void busylock_release(spinlock_t *busy)
1452 {
1453 	if (busy)
1454 		spin_unlock(busy);
1455 }
1456 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1457 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	struct sk_buff_head *list = &sk->sk_receive_queue;
1460 	int rmem, delta, amt, err = -ENOMEM;
1461 	spinlock_t *busy = NULL;
1462 	int size;
1463 
1464 	/* try to avoid the costly atomic add/sub pair when the receive
1465 	 * queue is full; always allow at least a packet
1466 	 */
1467 	rmem = atomic_read(&sk->sk_rmem_alloc);
1468 	if (rmem > sk->sk_rcvbuf)
1469 		goto drop;
1470 
1471 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1472 	 * having linear skbs :
1473 	 * - Reduce memory overhead and thus increase receive queue capacity
1474 	 * - Less cache line misses at copyout() time
1475 	 * - Less work at consume_skb() (less alien page frag freeing)
1476 	 */
1477 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1478 		skb_condense(skb);
1479 
1480 		busy = busylock_acquire(sk);
1481 	}
1482 	size = skb->truesize;
1483 	udp_set_dev_scratch(skb);
1484 
1485 	/* we drop only if the receive buf is full and the receive
1486 	 * queue contains some other skb
1487 	 */
1488 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1489 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1490 		goto uncharge_drop;
1491 
1492 	spin_lock(&list->lock);
1493 	if (size >= sk->sk_forward_alloc) {
1494 		amt = sk_mem_pages(size);
1495 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1496 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1497 			err = -ENOBUFS;
1498 			spin_unlock(&list->lock);
1499 			goto uncharge_drop;
1500 		}
1501 
1502 		sk->sk_forward_alloc += delta;
1503 	}
1504 
1505 	sk->sk_forward_alloc -= size;
1506 
1507 	/* no need to setup a destructor, we will explicitly release the
1508 	 * forward allocated memory on dequeue
1509 	 */
1510 	sock_skb_set_dropcount(sk, skb);
1511 
1512 	__skb_queue_tail(list, skb);
1513 	spin_unlock(&list->lock);
1514 
1515 	if (!sock_flag(sk, SOCK_DEAD))
1516 		sk->sk_data_ready(sk);
1517 
1518 	busylock_release(busy);
1519 	return 0;
1520 
1521 uncharge_drop:
1522 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1523 
1524 drop:
1525 	atomic_inc(&sk->sk_drops);
1526 	busylock_release(busy);
1527 	return err;
1528 }
1529 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1530 
udp_destruct_common(struct sock * sk)1531 void udp_destruct_common(struct sock *sk)
1532 {
1533 	/* reclaim completely the forward allocated memory */
1534 	struct udp_sock *up = udp_sk(sk);
1535 	unsigned int total = 0;
1536 	struct sk_buff *skb;
1537 
1538 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1539 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1540 		total += skb->truesize;
1541 		kfree_skb(skb);
1542 	}
1543 	udp_rmem_release(sk, total, 0, true);
1544 }
1545 EXPORT_SYMBOL_GPL(udp_destruct_common);
1546 
udp_destruct_sock(struct sock * sk)1547 static void udp_destruct_sock(struct sock *sk)
1548 {
1549 	udp_destruct_common(sk);
1550 	inet_sock_destruct(sk);
1551 }
1552 
udp_init_sock(struct sock * sk)1553 int udp_init_sock(struct sock *sk)
1554 {
1555 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1556 	sk->sk_destruct = udp_destruct_sock;
1557 	return 0;
1558 }
1559 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1560 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1561 {
1562 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1563 		bool slow = lock_sock_fast(sk);
1564 
1565 		sk_peek_offset_bwd(sk, len);
1566 		unlock_sock_fast(sk, slow);
1567 	}
1568 
1569 	if (!skb_unref(skb))
1570 		return;
1571 
1572 	/* In the more common cases we cleared the head states previously,
1573 	 * see __udp_queue_rcv_skb().
1574 	 */
1575 	if (unlikely(udp_skb_has_head_state(skb)))
1576 		skb_release_head_state(skb);
1577 	__consume_stateless_skb(skb);
1578 }
1579 EXPORT_SYMBOL_GPL(skb_consume_udp);
1580 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1581 static struct sk_buff *__first_packet_length(struct sock *sk,
1582 					     struct sk_buff_head *rcvq,
1583 					     int *total)
1584 {
1585 	struct sk_buff *skb;
1586 
1587 	while ((skb = skb_peek(rcvq)) != NULL) {
1588 		if (udp_lib_checksum_complete(skb)) {
1589 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1590 					IS_UDPLITE(sk));
1591 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1592 					IS_UDPLITE(sk));
1593 			atomic_inc(&sk->sk_drops);
1594 			__skb_unlink(skb, rcvq);
1595 			*total += skb->truesize;
1596 			kfree_skb(skb);
1597 		} else {
1598 			udp_skb_csum_unnecessary_set(skb);
1599 			break;
1600 		}
1601 	}
1602 	return skb;
1603 }
1604 
1605 /**
1606  *	first_packet_length	- return length of first packet in receive queue
1607  *	@sk: socket
1608  *
1609  *	Drops all bad checksum frames, until a valid one is found.
1610  *	Returns the length of found skb, or -1 if none is found.
1611  */
first_packet_length(struct sock * sk)1612 static int first_packet_length(struct sock *sk)
1613 {
1614 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1615 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1616 	struct sk_buff *skb;
1617 	int total = 0;
1618 	int res;
1619 
1620 	spin_lock_bh(&rcvq->lock);
1621 	skb = __first_packet_length(sk, rcvq, &total);
1622 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1623 		spin_lock(&sk_queue->lock);
1624 		skb_queue_splice_tail_init(sk_queue, rcvq);
1625 		spin_unlock(&sk_queue->lock);
1626 
1627 		skb = __first_packet_length(sk, rcvq, &total);
1628 	}
1629 	res = skb ? skb->len : -1;
1630 	if (total)
1631 		udp_rmem_release(sk, total, 1, false);
1632 	spin_unlock_bh(&rcvq->lock);
1633 	return res;
1634 }
1635 
1636 /*
1637  *	IOCTL requests applicable to the UDP protocol
1638  */
1639 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1640 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1641 {
1642 	switch (cmd) {
1643 	case SIOCOUTQ:
1644 	{
1645 		int amount = sk_wmem_alloc_get(sk);
1646 
1647 		return put_user(amount, (int __user *)arg);
1648 	}
1649 
1650 	case SIOCINQ:
1651 	{
1652 		int amount = max_t(int, 0, first_packet_length(sk));
1653 
1654 		return put_user(amount, (int __user *)arg);
1655 	}
1656 
1657 	default:
1658 		return -ENOIOCTLCMD;
1659 	}
1660 
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL(udp_ioctl);
1664 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1665 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1666 			       int noblock, int *off, int *err)
1667 {
1668 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1669 	struct sk_buff_head *queue;
1670 	struct sk_buff *last;
1671 	long timeo;
1672 	int error;
1673 
1674 	queue = &udp_sk(sk)->reader_queue;
1675 	flags |= noblock ? MSG_DONTWAIT : 0;
1676 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1677 	do {
1678 		struct sk_buff *skb;
1679 
1680 		error = sock_error(sk);
1681 		if (error)
1682 			break;
1683 
1684 		error = -EAGAIN;
1685 		do {
1686 			spin_lock_bh(&queue->lock);
1687 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1688 							udp_skb_destructor,
1689 							off, err, &last);
1690 			if (skb) {
1691 				spin_unlock_bh(&queue->lock);
1692 				return skb;
1693 			}
1694 
1695 			if (skb_queue_empty_lockless(sk_queue)) {
1696 				spin_unlock_bh(&queue->lock);
1697 				goto busy_check;
1698 			}
1699 
1700 			/* refill the reader queue and walk it again
1701 			 * keep both queues locked to avoid re-acquiring
1702 			 * the sk_receive_queue lock if fwd memory scheduling
1703 			 * is needed.
1704 			 */
1705 			spin_lock(&sk_queue->lock);
1706 			skb_queue_splice_tail_init(sk_queue, queue);
1707 
1708 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1709 							udp_skb_dtor_locked,
1710 							off, err, &last);
1711 			spin_unlock(&sk_queue->lock);
1712 			spin_unlock_bh(&queue->lock);
1713 			if (skb)
1714 				return skb;
1715 
1716 busy_check:
1717 			if (!sk_can_busy_loop(sk))
1718 				break;
1719 
1720 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1721 		} while (!skb_queue_empty_lockless(sk_queue));
1722 
1723 		/* sk_queue is empty, reader_queue may contain peeked packets */
1724 	} while (timeo &&
1725 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1726 					      (struct sk_buff *)sk_queue));
1727 
1728 	*err = error;
1729 	return NULL;
1730 }
1731 EXPORT_SYMBOL(__skb_recv_udp);
1732 
1733 /*
1734  * 	This should be easy, if there is something there we
1735  * 	return it, otherwise we block.
1736  */
1737 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1738 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1739 		int flags, int *addr_len)
1740 {
1741 	struct inet_sock *inet = inet_sk(sk);
1742 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1743 	struct sk_buff *skb;
1744 	unsigned int ulen, copied;
1745 	int off, err, peeking = flags & MSG_PEEK;
1746 	int is_udplite = IS_UDPLITE(sk);
1747 	bool checksum_valid = false;
1748 
1749 	if (flags & MSG_ERRQUEUE)
1750 		return ip_recv_error(sk, msg, len, addr_len);
1751 
1752 try_again:
1753 	off = sk_peek_offset(sk, flags);
1754 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1755 	if (!skb)
1756 		return err;
1757 
1758 	ulen = udp_skb_len(skb);
1759 	copied = len;
1760 	if (copied > ulen - off)
1761 		copied = ulen - off;
1762 	else if (copied < ulen)
1763 		msg->msg_flags |= MSG_TRUNC;
1764 
1765 	/*
1766 	 * If checksum is needed at all, try to do it while copying the
1767 	 * data.  If the data is truncated, or if we only want a partial
1768 	 * coverage checksum (UDP-Lite), do it before the copy.
1769 	 */
1770 
1771 	if (copied < ulen || peeking ||
1772 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1773 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1774 				!__udp_lib_checksum_complete(skb);
1775 		if (!checksum_valid)
1776 			goto csum_copy_err;
1777 	}
1778 
1779 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1780 		if (udp_skb_is_linear(skb))
1781 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1782 		else
1783 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1784 	} else {
1785 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1786 
1787 		if (err == -EINVAL)
1788 			goto csum_copy_err;
1789 	}
1790 
1791 	if (unlikely(err)) {
1792 		if (!peeking) {
1793 			atomic_inc(&sk->sk_drops);
1794 			UDP_INC_STATS(sock_net(sk),
1795 				      UDP_MIB_INERRORS, is_udplite);
1796 		}
1797 		kfree_skb(skb);
1798 		return err;
1799 	}
1800 
1801 	if (!peeking)
1802 		UDP_INC_STATS(sock_net(sk),
1803 			      UDP_MIB_INDATAGRAMS, is_udplite);
1804 
1805 	sock_recv_ts_and_drops(msg, sk, skb);
1806 
1807 	/* Copy the address. */
1808 	if (sin) {
1809 		sin->sin_family = AF_INET;
1810 		sin->sin_port = udp_hdr(skb)->source;
1811 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1812 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1813 		*addr_len = sizeof(*sin);
1814 
1815 		if (cgroup_bpf_enabled)
1816 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1817 							(struct sockaddr *)sin);
1818 	}
1819 
1820 	if (udp_sk(sk)->gro_enabled)
1821 		udp_cmsg_recv(msg, sk, skb);
1822 
1823 	if (inet->cmsg_flags)
1824 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1825 
1826 	err = copied;
1827 	if (flags & MSG_TRUNC)
1828 		err = ulen;
1829 
1830 	skb_consume_udp(sk, skb, peeking ? -err : err);
1831 	return err;
1832 
1833 csum_copy_err:
1834 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1835 				 udp_skb_destructor)) {
1836 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1837 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1838 	}
1839 	kfree_skb(skb);
1840 
1841 	/* starting over for a new packet, but check if we need to yield */
1842 	cond_resched();
1843 	msg->msg_flags &= ~MSG_TRUNC;
1844 	goto try_again;
1845 }
1846 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1847 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1848 {
1849 	/* This check is replicated from __ip4_datagram_connect() and
1850 	 * intended to prevent BPF program called below from accessing bytes
1851 	 * that are out of the bound specified by user in addr_len.
1852 	 */
1853 	if (addr_len < sizeof(struct sockaddr_in))
1854 		return -EINVAL;
1855 
1856 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1857 }
1858 EXPORT_SYMBOL(udp_pre_connect);
1859 
__udp_disconnect(struct sock * sk,int flags)1860 int __udp_disconnect(struct sock *sk, int flags)
1861 {
1862 	struct inet_sock *inet = inet_sk(sk);
1863 	/*
1864 	 *	1003.1g - break association.
1865 	 */
1866 
1867 	sk->sk_state = TCP_CLOSE;
1868 	inet->inet_daddr = 0;
1869 	inet->inet_dport = 0;
1870 	sock_rps_reset_rxhash(sk);
1871 	sk->sk_bound_dev_if = 0;
1872 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1873 		inet_reset_saddr(sk);
1874 		if (sk->sk_prot->rehash &&
1875 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1876 			sk->sk_prot->rehash(sk);
1877 	}
1878 
1879 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1880 		sk->sk_prot->unhash(sk);
1881 		inet->inet_sport = 0;
1882 	}
1883 	sk_dst_reset(sk);
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL(__udp_disconnect);
1887 
udp_disconnect(struct sock * sk,int flags)1888 int udp_disconnect(struct sock *sk, int flags)
1889 {
1890 	lock_sock(sk);
1891 	__udp_disconnect(sk, flags);
1892 	release_sock(sk);
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(udp_disconnect);
1896 
udp_lib_unhash(struct sock * sk)1897 void udp_lib_unhash(struct sock *sk)
1898 {
1899 	if (sk_hashed(sk)) {
1900 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1901 		struct udp_hslot *hslot, *hslot2;
1902 
1903 		hslot  = udp_hashslot(udptable, sock_net(sk),
1904 				      udp_sk(sk)->udp_port_hash);
1905 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1906 
1907 		spin_lock_bh(&hslot->lock);
1908 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1909 			reuseport_detach_sock(sk);
1910 		if (sk_del_node_init_rcu(sk)) {
1911 			hslot->count--;
1912 			inet_sk(sk)->inet_num = 0;
1913 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1914 
1915 			spin_lock(&hslot2->lock);
1916 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1917 			hslot2->count--;
1918 			spin_unlock(&hslot2->lock);
1919 		}
1920 		spin_unlock_bh(&hslot->lock);
1921 	}
1922 }
1923 EXPORT_SYMBOL(udp_lib_unhash);
1924 
1925 /*
1926  * inet_rcv_saddr was changed, we must rehash secondary hash
1927  */
udp_lib_rehash(struct sock * sk,u16 newhash)1928 void udp_lib_rehash(struct sock *sk, u16 newhash)
1929 {
1930 	if (sk_hashed(sk)) {
1931 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1932 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1933 
1934 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1935 		nhslot2 = udp_hashslot2(udptable, newhash);
1936 		udp_sk(sk)->udp_portaddr_hash = newhash;
1937 
1938 		if (hslot2 != nhslot2 ||
1939 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1940 			hslot = udp_hashslot(udptable, sock_net(sk),
1941 					     udp_sk(sk)->udp_port_hash);
1942 			/* we must lock primary chain too */
1943 			spin_lock_bh(&hslot->lock);
1944 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1945 				reuseport_detach_sock(sk);
1946 
1947 			if (hslot2 != nhslot2) {
1948 				spin_lock(&hslot2->lock);
1949 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1950 				hslot2->count--;
1951 				spin_unlock(&hslot2->lock);
1952 
1953 				spin_lock(&nhslot2->lock);
1954 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1955 							 &nhslot2->head);
1956 				nhslot2->count++;
1957 				spin_unlock(&nhslot2->lock);
1958 			}
1959 
1960 			spin_unlock_bh(&hslot->lock);
1961 		}
1962 	}
1963 }
1964 EXPORT_SYMBOL(udp_lib_rehash);
1965 
udp_v4_rehash(struct sock * sk)1966 void udp_v4_rehash(struct sock *sk)
1967 {
1968 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1969 					  inet_sk(sk)->inet_rcv_saddr,
1970 					  inet_sk(sk)->inet_num);
1971 	udp_lib_rehash(sk, new_hash);
1972 }
1973 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1974 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1975 {
1976 	int rc;
1977 
1978 	if (inet_sk(sk)->inet_daddr) {
1979 		sock_rps_save_rxhash(sk, skb);
1980 		sk_mark_napi_id(sk, skb);
1981 		sk_incoming_cpu_update(sk);
1982 	} else {
1983 		sk_mark_napi_id_once(sk, skb);
1984 	}
1985 
1986 	rc = __udp_enqueue_schedule_skb(sk, skb);
1987 	if (rc < 0) {
1988 		int is_udplite = IS_UDPLITE(sk);
1989 
1990 		/* Note that an ENOMEM error is charged twice */
1991 		if (rc == -ENOMEM)
1992 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1993 					is_udplite);
1994 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1995 		kfree_skb(skb);
1996 		trace_udp_fail_queue_rcv_skb(rc, sk);
1997 		return -1;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 /* returns:
2004  *  -1: error
2005  *   0: success
2006  *  >0: "udp encap" protocol resubmission
2007  *
2008  * Note that in the success and error cases, the skb is assumed to
2009  * have either been requeued or freed.
2010  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2011 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2012 {
2013 	struct udp_sock *up = udp_sk(sk);
2014 	int is_udplite = IS_UDPLITE(sk);
2015 
2016 	/*
2017 	 *	Charge it to the socket, dropping if the queue is full.
2018 	 */
2019 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2020 		goto drop;
2021 	nf_reset_ct(skb);
2022 
2023 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2024 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2025 
2026 		/*
2027 		 * This is an encapsulation socket so pass the skb to
2028 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2029 		 * fall through and pass this up the UDP socket.
2030 		 * up->encap_rcv() returns the following value:
2031 		 * =0 if skb was successfully passed to the encap
2032 		 *    handler or was discarded by it.
2033 		 * >0 if skb should be passed on to UDP.
2034 		 * <0 if skb should be resubmitted as proto -N
2035 		 */
2036 
2037 		/* if we're overly short, let UDP handle it */
2038 		encap_rcv = READ_ONCE(up->encap_rcv);
2039 		if (encap_rcv) {
2040 			int ret;
2041 
2042 			/* Verify checksum before giving to encap */
2043 			if (udp_lib_checksum_complete(skb))
2044 				goto csum_error;
2045 
2046 			ret = encap_rcv(sk, skb);
2047 			if (ret <= 0) {
2048 				__UDP_INC_STATS(sock_net(sk),
2049 						UDP_MIB_INDATAGRAMS,
2050 						is_udplite);
2051 				return -ret;
2052 			}
2053 		}
2054 
2055 		/* FALLTHROUGH -- it's a UDP Packet */
2056 	}
2057 
2058 	/*
2059 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2060 	 */
2061 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2062 
2063 		/*
2064 		 * MIB statistics other than incrementing the error count are
2065 		 * disabled for the following two types of errors: these depend
2066 		 * on the application settings, not on the functioning of the
2067 		 * protocol stack as such.
2068 		 *
2069 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2070 		 * way ... to ... at least let the receiving application block
2071 		 * delivery of packets with coverage values less than a value
2072 		 * provided by the application."
2073 		 */
2074 		if (up->pcrlen == 0) {          /* full coverage was set  */
2075 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2076 					    UDP_SKB_CB(skb)->cscov, skb->len);
2077 			goto drop;
2078 		}
2079 		/* The next case involves violating the min. coverage requested
2080 		 * by the receiver. This is subtle: if receiver wants x and x is
2081 		 * greater than the buffersize/MTU then receiver will complain
2082 		 * that it wants x while sender emits packets of smaller size y.
2083 		 * Therefore the above ...()->partial_cov statement is essential.
2084 		 */
2085 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2086 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2087 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2088 			goto drop;
2089 		}
2090 	}
2091 
2092 	prefetch(&sk->sk_rmem_alloc);
2093 	if (rcu_access_pointer(sk->sk_filter) &&
2094 	    udp_lib_checksum_complete(skb))
2095 			goto csum_error;
2096 
2097 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2098 		goto drop;
2099 
2100 	udp_csum_pull_header(skb);
2101 
2102 	ipv4_pktinfo_prepare(sk, skb);
2103 	return __udp_queue_rcv_skb(sk, skb);
2104 
2105 csum_error:
2106 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2107 drop:
2108 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2109 	atomic_inc(&sk->sk_drops);
2110 	kfree_skb(skb);
2111 	return -1;
2112 }
2113 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2114 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2115 {
2116 	struct sk_buff *next, *segs;
2117 	int ret;
2118 
2119 	if (likely(!udp_unexpected_gso(sk, skb)))
2120 		return udp_queue_rcv_one_skb(sk, skb);
2121 
2122 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2123 	__skb_push(skb, -skb_mac_offset(skb));
2124 	segs = udp_rcv_segment(sk, skb, true);
2125 	for (skb = segs; skb; skb = next) {
2126 		next = skb->next;
2127 		__skb_pull(skb, skb_transport_offset(skb));
2128 		ret = udp_queue_rcv_one_skb(sk, skb);
2129 		if (ret > 0)
2130 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2131 	}
2132 	return 0;
2133 }
2134 
2135 /* For TCP sockets, sk_rx_dst is protected by socket lock
2136  * For UDP, we use xchg() to guard against concurrent changes.
2137  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2138 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2139 {
2140 	struct dst_entry *old;
2141 
2142 	if (dst_hold_safe(dst)) {
2143 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2144 		dst_release(old);
2145 		return old != dst;
2146 	}
2147 	return false;
2148 }
2149 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2150 
2151 /*
2152  *	Multicasts and broadcasts go to each listener.
2153  *
2154  *	Note: called only from the BH handler context.
2155  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2156 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2157 				    struct udphdr  *uh,
2158 				    __be32 saddr, __be32 daddr,
2159 				    struct udp_table *udptable,
2160 				    int proto)
2161 {
2162 	struct sock *sk, *first = NULL;
2163 	unsigned short hnum = ntohs(uh->dest);
2164 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2165 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2166 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2167 	int dif = skb->dev->ifindex;
2168 	int sdif = inet_sdif(skb);
2169 	struct hlist_node *node;
2170 	struct sk_buff *nskb;
2171 
2172 	if (use_hash2) {
2173 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2174 			    udptable->mask;
2175 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2176 start_lookup:
2177 		hslot = &udptable->hash2[hash2];
2178 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2179 	}
2180 
2181 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2182 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2183 					 uh->source, saddr, dif, sdif, hnum))
2184 			continue;
2185 
2186 		if (!first) {
2187 			first = sk;
2188 			continue;
2189 		}
2190 		nskb = skb_clone(skb, GFP_ATOMIC);
2191 
2192 		if (unlikely(!nskb)) {
2193 			atomic_inc(&sk->sk_drops);
2194 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2195 					IS_UDPLITE(sk));
2196 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2197 					IS_UDPLITE(sk));
2198 			continue;
2199 		}
2200 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2201 			consume_skb(nskb);
2202 	}
2203 
2204 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2205 	if (use_hash2 && hash2 != hash2_any) {
2206 		hash2 = hash2_any;
2207 		goto start_lookup;
2208 	}
2209 
2210 	if (first) {
2211 		if (udp_queue_rcv_skb(first, skb) > 0)
2212 			consume_skb(skb);
2213 	} else {
2214 		kfree_skb(skb);
2215 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2216 				proto == IPPROTO_UDPLITE);
2217 	}
2218 	return 0;
2219 }
2220 
2221 /* Initialize UDP checksum. If exited with zero value (success),
2222  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2223  * Otherwise, csum completion requires checksumming packet body,
2224  * including udp header and folding it to skb->csum.
2225  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2226 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2227 				 int proto)
2228 {
2229 	int err;
2230 
2231 	UDP_SKB_CB(skb)->partial_cov = 0;
2232 	UDP_SKB_CB(skb)->cscov = skb->len;
2233 
2234 	if (proto == IPPROTO_UDPLITE) {
2235 		err = udplite_checksum_init(skb, uh);
2236 		if (err)
2237 			return err;
2238 
2239 		if (UDP_SKB_CB(skb)->partial_cov) {
2240 			skb->csum = inet_compute_pseudo(skb, proto);
2241 			return 0;
2242 		}
2243 	}
2244 
2245 	/* Note, we are only interested in != 0 or == 0, thus the
2246 	 * force to int.
2247 	 */
2248 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2249 							inet_compute_pseudo);
2250 	if (err)
2251 		return err;
2252 
2253 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2254 		/* If SW calculated the value, we know it's bad */
2255 		if (skb->csum_complete_sw)
2256 			return 1;
2257 
2258 		/* HW says the value is bad. Let's validate that.
2259 		 * skb->csum is no longer the full packet checksum,
2260 		 * so don't treat it as such.
2261 		 */
2262 		skb_checksum_complete_unset(skb);
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2269  * return code conversion for ip layer consumption
2270  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2271 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2272 			       struct udphdr *uh)
2273 {
2274 	int ret;
2275 
2276 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2277 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2278 
2279 	ret = udp_queue_rcv_skb(sk, skb);
2280 
2281 	/* a return value > 0 means to resubmit the input, but
2282 	 * it wants the return to be -protocol, or 0
2283 	 */
2284 	if (ret > 0)
2285 		return -ret;
2286 	return 0;
2287 }
2288 
2289 /*
2290  *	All we need to do is get the socket, and then do a checksum.
2291  */
2292 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2293 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2294 		   int proto)
2295 {
2296 	struct sock *sk;
2297 	struct udphdr *uh;
2298 	unsigned short ulen;
2299 	struct rtable *rt = skb_rtable(skb);
2300 	__be32 saddr, daddr;
2301 	struct net *net = dev_net(skb->dev);
2302 
2303 	/*
2304 	 *  Validate the packet.
2305 	 */
2306 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2307 		goto drop;		/* No space for header. */
2308 
2309 	uh   = udp_hdr(skb);
2310 	ulen = ntohs(uh->len);
2311 	saddr = ip_hdr(skb)->saddr;
2312 	daddr = ip_hdr(skb)->daddr;
2313 
2314 	if (ulen > skb->len)
2315 		goto short_packet;
2316 
2317 	if (proto == IPPROTO_UDP) {
2318 		/* UDP validates ulen. */
2319 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2320 			goto short_packet;
2321 		uh = udp_hdr(skb);
2322 	}
2323 
2324 	if (udp4_csum_init(skb, uh, proto))
2325 		goto csum_error;
2326 
2327 	sk = skb_steal_sock(skb);
2328 	if (sk) {
2329 		struct dst_entry *dst = skb_dst(skb);
2330 		int ret;
2331 
2332 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2333 			udp_sk_rx_dst_set(sk, dst);
2334 
2335 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2336 		sock_put(sk);
2337 		return ret;
2338 	}
2339 
2340 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2341 		return __udp4_lib_mcast_deliver(net, skb, uh,
2342 						saddr, daddr, udptable, proto);
2343 
2344 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2345 	if (sk)
2346 		return udp_unicast_rcv_skb(sk, skb, uh);
2347 
2348 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2349 		goto drop;
2350 	nf_reset_ct(skb);
2351 
2352 	/* No socket. Drop packet silently, if checksum is wrong */
2353 	if (udp_lib_checksum_complete(skb))
2354 		goto csum_error;
2355 
2356 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2357 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2358 
2359 	/*
2360 	 * Hmm.  We got an UDP packet to a port to which we
2361 	 * don't wanna listen.  Ignore it.
2362 	 */
2363 	kfree_skb(skb);
2364 	return 0;
2365 
2366 short_packet:
2367 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2368 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2369 			    &saddr, ntohs(uh->source),
2370 			    ulen, skb->len,
2371 			    &daddr, ntohs(uh->dest));
2372 	goto drop;
2373 
2374 csum_error:
2375 	/*
2376 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2377 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2378 	 */
2379 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2380 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2381 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2382 			    ulen);
2383 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2384 drop:
2385 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2386 	kfree_skb(skb);
2387 	return 0;
2388 }
2389 
2390 /* We can only early demux multicast if there is a single matching socket.
2391  * If more than one socket found returns NULL
2392  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2393 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2394 						  __be16 loc_port, __be32 loc_addr,
2395 						  __be16 rmt_port, __be32 rmt_addr,
2396 						  int dif, int sdif)
2397 {
2398 	struct sock *sk, *result;
2399 	unsigned short hnum = ntohs(loc_port);
2400 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2401 	struct udp_hslot *hslot = &udp_table.hash[slot];
2402 
2403 	/* Do not bother scanning a too big list */
2404 	if (hslot->count > 10)
2405 		return NULL;
2406 
2407 	result = NULL;
2408 	sk_for_each_rcu(sk, &hslot->head) {
2409 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2410 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2411 			if (result)
2412 				return NULL;
2413 			result = sk;
2414 		}
2415 	}
2416 
2417 	return result;
2418 }
2419 
2420 /* For unicast we should only early demux connected sockets or we can
2421  * break forwarding setups.  The chains here can be long so only check
2422  * if the first socket is an exact match and if not move on.
2423  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2424 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2425 					    __be16 loc_port, __be32 loc_addr,
2426 					    __be16 rmt_port, __be32 rmt_addr,
2427 					    int dif, int sdif)
2428 {
2429 	unsigned short hnum = ntohs(loc_port);
2430 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2431 	unsigned int slot2 = hash2 & udp_table.mask;
2432 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2433 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2434 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2435 	struct sock *sk;
2436 
2437 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2438 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2439 			       loc_addr, ports, dif, sdif))
2440 			return sk;
2441 		/* Only check first socket in chain */
2442 		break;
2443 	}
2444 	return NULL;
2445 }
2446 
udp_v4_early_demux(struct sk_buff * skb)2447 int udp_v4_early_demux(struct sk_buff *skb)
2448 {
2449 	struct net *net = dev_net(skb->dev);
2450 	struct in_device *in_dev = NULL;
2451 	const struct iphdr *iph;
2452 	const struct udphdr *uh;
2453 	struct sock *sk = NULL;
2454 	struct dst_entry *dst;
2455 	int dif = skb->dev->ifindex;
2456 	int sdif = inet_sdif(skb);
2457 	int ours;
2458 
2459 	/* validate the packet */
2460 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2461 		return 0;
2462 
2463 	iph = ip_hdr(skb);
2464 	uh = udp_hdr(skb);
2465 
2466 	if (skb->pkt_type == PACKET_MULTICAST) {
2467 		in_dev = __in_dev_get_rcu(skb->dev);
2468 
2469 		if (!in_dev)
2470 			return 0;
2471 
2472 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2473 				       iph->protocol);
2474 		if (!ours)
2475 			return 0;
2476 
2477 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2478 						   uh->source, iph->saddr,
2479 						   dif, sdif);
2480 	} else if (skb->pkt_type == PACKET_HOST) {
2481 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2482 					     uh->source, iph->saddr, dif, sdif);
2483 	}
2484 
2485 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2486 		return 0;
2487 
2488 	skb->sk = sk;
2489 	skb->destructor = sock_efree;
2490 	dst = rcu_dereference(sk->sk_rx_dst);
2491 
2492 	if (dst)
2493 		dst = dst_check(dst, 0);
2494 	if (dst) {
2495 		u32 itag = 0;
2496 
2497 		/* set noref for now.
2498 		 * any place which wants to hold dst has to call
2499 		 * dst_hold_safe()
2500 		 */
2501 		skb_dst_set_noref(skb, dst);
2502 
2503 		/* for unconnected multicast sockets we need to validate
2504 		 * the source on each packet
2505 		 */
2506 		if (!inet_sk(sk)->inet_daddr && in_dev)
2507 			return ip_mc_validate_source(skb, iph->daddr,
2508 						     iph->saddr,
2509 						     iph->tos & IPTOS_RT_MASK,
2510 						     skb->dev, in_dev, &itag);
2511 	}
2512 	return 0;
2513 }
2514 
udp_rcv(struct sk_buff * skb)2515 int udp_rcv(struct sk_buff *skb)
2516 {
2517 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2518 }
2519 
udp_destroy_sock(struct sock * sk)2520 void udp_destroy_sock(struct sock *sk)
2521 {
2522 	struct udp_sock *up = udp_sk(sk);
2523 	bool slow = lock_sock_fast(sk);
2524 
2525 	/* protects from races with udp_abort() */
2526 	sock_set_flag(sk, SOCK_DEAD);
2527 	udp_flush_pending_frames(sk);
2528 	unlock_sock_fast(sk, slow);
2529 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2530 		if (up->encap_type) {
2531 			void (*encap_destroy)(struct sock *sk);
2532 			encap_destroy = READ_ONCE(up->encap_destroy);
2533 			if (encap_destroy)
2534 				encap_destroy(sk);
2535 		}
2536 		if (up->encap_enabled)
2537 			static_branch_dec(&udp_encap_needed_key);
2538 	}
2539 }
2540 
2541 /*
2542  *	Socket option code for UDP
2543  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2544 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2545 		       char __user *optval, unsigned int optlen,
2546 		       int (*push_pending_frames)(struct sock *))
2547 {
2548 	struct udp_sock *up = udp_sk(sk);
2549 	int val, valbool;
2550 	int err = 0;
2551 	int is_udplite = IS_UDPLITE(sk);
2552 
2553 	if (optlen < sizeof(int))
2554 		return -EINVAL;
2555 
2556 	if (get_user(val, (int __user *)optval))
2557 		return -EFAULT;
2558 
2559 	valbool = val ? 1 : 0;
2560 
2561 	switch (optname) {
2562 	case UDP_CORK:
2563 		if (val != 0) {
2564 			WRITE_ONCE(up->corkflag, 1);
2565 		} else {
2566 			WRITE_ONCE(up->corkflag, 0);
2567 			lock_sock(sk);
2568 			push_pending_frames(sk);
2569 			release_sock(sk);
2570 		}
2571 		break;
2572 
2573 	case UDP_ENCAP:
2574 		switch (val) {
2575 		case 0:
2576 		case UDP_ENCAP_ESPINUDP:
2577 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2578 			up->encap_rcv = xfrm4_udp_encap_rcv;
2579 			/* FALLTHROUGH */
2580 		case UDP_ENCAP_L2TPINUDP:
2581 			up->encap_type = val;
2582 			lock_sock(sk);
2583 			udp_tunnel_encap_enable(sk->sk_socket);
2584 			release_sock(sk);
2585 			break;
2586 		default:
2587 			err = -ENOPROTOOPT;
2588 			break;
2589 		}
2590 		break;
2591 
2592 	case UDP_NO_CHECK6_TX:
2593 		up->no_check6_tx = valbool;
2594 		break;
2595 
2596 	case UDP_NO_CHECK6_RX:
2597 		up->no_check6_rx = valbool;
2598 		break;
2599 
2600 	case UDP_SEGMENT:
2601 		if (val < 0 || val > USHRT_MAX)
2602 			return -EINVAL;
2603 		WRITE_ONCE(up->gso_size, val);
2604 		break;
2605 
2606 	case UDP_GRO:
2607 		lock_sock(sk);
2608 
2609 		/* when enabling GRO, accept the related GSO packet type */
2610 		if (valbool)
2611 			udp_tunnel_encap_enable(sk->sk_socket);
2612 		up->gro_enabled = valbool;
2613 		up->accept_udp_l4 = valbool;
2614 		release_sock(sk);
2615 		break;
2616 
2617 	/*
2618 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2619 	 */
2620 	/* The sender sets actual checksum coverage length via this option.
2621 	 * The case coverage > packet length is handled by send module. */
2622 	case UDPLITE_SEND_CSCOV:
2623 		if (!is_udplite)         /* Disable the option on UDP sockets */
2624 			return -ENOPROTOOPT;
2625 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2626 			val = 8;
2627 		else if (val > USHRT_MAX)
2628 			val = USHRT_MAX;
2629 		up->pcslen = val;
2630 		up->pcflag |= UDPLITE_SEND_CC;
2631 		break;
2632 
2633 	/* The receiver specifies a minimum checksum coverage value. To make
2634 	 * sense, this should be set to at least 8 (as done below). If zero is
2635 	 * used, this again means full checksum coverage.                     */
2636 	case UDPLITE_RECV_CSCOV:
2637 		if (!is_udplite)         /* Disable the option on UDP sockets */
2638 			return -ENOPROTOOPT;
2639 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2640 			val = 8;
2641 		else if (val > USHRT_MAX)
2642 			val = USHRT_MAX;
2643 		up->pcrlen = val;
2644 		up->pcflag |= UDPLITE_RECV_CC;
2645 		break;
2646 
2647 	default:
2648 		err = -ENOPROTOOPT;
2649 		break;
2650 	}
2651 
2652 	return err;
2653 }
2654 EXPORT_SYMBOL(udp_lib_setsockopt);
2655 
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2656 int udp_setsockopt(struct sock *sk, int level, int optname,
2657 		   char __user *optval, unsigned int optlen)
2658 {
2659 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2660 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2661 					  udp_push_pending_frames);
2662 	return ip_setsockopt(sk, level, optname, optval, optlen);
2663 }
2664 
2665 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2666 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2667 			  char __user *optval, unsigned int optlen)
2668 {
2669 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2670 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2671 					  udp_push_pending_frames);
2672 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2673 }
2674 #endif
2675 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2676 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2677 		       char __user *optval, int __user *optlen)
2678 {
2679 	struct udp_sock *up = udp_sk(sk);
2680 	int val, len;
2681 
2682 	if (get_user(len, optlen))
2683 		return -EFAULT;
2684 
2685 	if (len < 0)
2686 		return -EINVAL;
2687 
2688 	len = min_t(unsigned int, len, sizeof(int));
2689 
2690 	switch (optname) {
2691 	case UDP_CORK:
2692 		val = READ_ONCE(up->corkflag);
2693 		break;
2694 
2695 	case UDP_ENCAP:
2696 		val = up->encap_type;
2697 		break;
2698 
2699 	case UDP_NO_CHECK6_TX:
2700 		val = up->no_check6_tx;
2701 		break;
2702 
2703 	case UDP_NO_CHECK6_RX:
2704 		val = up->no_check6_rx;
2705 		break;
2706 
2707 	case UDP_SEGMENT:
2708 		val = READ_ONCE(up->gso_size);
2709 		break;
2710 
2711 	case UDP_GRO:
2712 		val = up->gro_enabled;
2713 		break;
2714 
2715 	/* The following two cannot be changed on UDP sockets, the return is
2716 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2717 	case UDPLITE_SEND_CSCOV:
2718 		val = up->pcslen;
2719 		break;
2720 
2721 	case UDPLITE_RECV_CSCOV:
2722 		val = up->pcrlen;
2723 		break;
2724 
2725 	default:
2726 		return -ENOPROTOOPT;
2727 	}
2728 
2729 	if (put_user(len, optlen))
2730 		return -EFAULT;
2731 	if (copy_to_user(optval, &val, len))
2732 		return -EFAULT;
2733 	return 0;
2734 }
2735 EXPORT_SYMBOL(udp_lib_getsockopt);
2736 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2737 int udp_getsockopt(struct sock *sk, int level, int optname,
2738 		   char __user *optval, int __user *optlen)
2739 {
2740 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2741 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2742 	return ip_getsockopt(sk, level, optname, optval, optlen);
2743 }
2744 
2745 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2746 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2747 				 char __user *optval, int __user *optlen)
2748 {
2749 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2750 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2751 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2752 }
2753 #endif
2754 /**
2755  * 	udp_poll - wait for a UDP event.
2756  *	@file - file struct
2757  *	@sock - socket
2758  *	@wait - poll table
2759  *
2760  *	This is same as datagram poll, except for the special case of
2761  *	blocking sockets. If application is using a blocking fd
2762  *	and a packet with checksum error is in the queue;
2763  *	then it could get return from select indicating data available
2764  *	but then block when reading it. Add special case code
2765  *	to work around these arguably broken applications.
2766  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2767 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2768 {
2769 	__poll_t mask = datagram_poll(file, sock, wait);
2770 	struct sock *sk = sock->sk;
2771 
2772 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2773 		mask |= EPOLLIN | EPOLLRDNORM;
2774 
2775 	/* Check for false positives due to checksum errors */
2776 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2777 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2778 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2779 
2780 	return mask;
2781 
2782 }
2783 EXPORT_SYMBOL(udp_poll);
2784 
udp_abort(struct sock * sk,int err)2785 int udp_abort(struct sock *sk, int err)
2786 {
2787 	lock_sock(sk);
2788 
2789 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2790 	 * with close()
2791 	 */
2792 	if (sock_flag(sk, SOCK_DEAD))
2793 		goto out;
2794 
2795 	sk->sk_err = err;
2796 	sk->sk_error_report(sk);
2797 	__udp_disconnect(sk, 0);
2798 
2799 out:
2800 	release_sock(sk);
2801 
2802 	return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(udp_abort);
2805 
2806 struct proto udp_prot = {
2807 	.name			= "UDP",
2808 	.owner			= THIS_MODULE,
2809 	.close			= udp_lib_close,
2810 	.pre_connect		= udp_pre_connect,
2811 	.connect		= ip4_datagram_connect,
2812 	.disconnect		= udp_disconnect,
2813 	.ioctl			= udp_ioctl,
2814 	.init			= udp_init_sock,
2815 	.destroy		= udp_destroy_sock,
2816 	.setsockopt		= udp_setsockopt,
2817 	.getsockopt		= udp_getsockopt,
2818 	.sendmsg		= udp_sendmsg,
2819 	.recvmsg		= udp_recvmsg,
2820 	.sendpage		= udp_sendpage,
2821 	.release_cb		= ip4_datagram_release_cb,
2822 	.hash			= udp_lib_hash,
2823 	.unhash			= udp_lib_unhash,
2824 	.rehash			= udp_v4_rehash,
2825 	.get_port		= udp_v4_get_port,
2826 	.memory_allocated	= &udp_memory_allocated,
2827 	.sysctl_mem		= sysctl_udp_mem,
2828 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2829 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2830 	.obj_size		= sizeof(struct udp_sock),
2831 	.h.udp_table		= &udp_table,
2832 #ifdef CONFIG_COMPAT
2833 	.compat_setsockopt	= compat_udp_setsockopt,
2834 	.compat_getsockopt	= compat_udp_getsockopt,
2835 #endif
2836 	.diag_destroy		= udp_abort,
2837 };
2838 EXPORT_SYMBOL(udp_prot);
2839 
2840 /* ------------------------------------------------------------------------ */
2841 #ifdef CONFIG_PROC_FS
2842 
udp_get_first(struct seq_file * seq,int start)2843 static struct sock *udp_get_first(struct seq_file *seq, int start)
2844 {
2845 	struct sock *sk;
2846 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2847 	struct udp_iter_state *state = seq->private;
2848 	struct net *net = seq_file_net(seq);
2849 
2850 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2851 	     ++state->bucket) {
2852 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2853 
2854 		if (hlist_empty(&hslot->head))
2855 			continue;
2856 
2857 		spin_lock_bh(&hslot->lock);
2858 		sk_for_each(sk, &hslot->head) {
2859 			if (!net_eq(sock_net(sk), net))
2860 				continue;
2861 			if (sk->sk_family == afinfo->family)
2862 				goto found;
2863 		}
2864 		spin_unlock_bh(&hslot->lock);
2865 	}
2866 	sk = NULL;
2867 found:
2868 	return sk;
2869 }
2870 
udp_get_next(struct seq_file * seq,struct sock * sk)2871 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2872 {
2873 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2874 	struct udp_iter_state *state = seq->private;
2875 	struct net *net = seq_file_net(seq);
2876 
2877 	do {
2878 		sk = sk_next(sk);
2879 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2880 
2881 	if (!sk) {
2882 		if (state->bucket <= afinfo->udp_table->mask)
2883 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2884 		return udp_get_first(seq, state->bucket + 1);
2885 	}
2886 	return sk;
2887 }
2888 
udp_get_idx(struct seq_file * seq,loff_t pos)2889 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2890 {
2891 	struct sock *sk = udp_get_first(seq, 0);
2892 
2893 	if (sk)
2894 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2895 			--pos;
2896 	return pos ? NULL : sk;
2897 }
2898 
udp_seq_start(struct seq_file * seq,loff_t * pos)2899 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2900 {
2901 	struct udp_iter_state *state = seq->private;
2902 	state->bucket = MAX_UDP_PORTS;
2903 
2904 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2905 }
2906 EXPORT_SYMBOL(udp_seq_start);
2907 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2908 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2909 {
2910 	struct sock *sk;
2911 
2912 	if (v == SEQ_START_TOKEN)
2913 		sk = udp_get_idx(seq, 0);
2914 	else
2915 		sk = udp_get_next(seq, v);
2916 
2917 	++*pos;
2918 	return sk;
2919 }
2920 EXPORT_SYMBOL(udp_seq_next);
2921 
udp_seq_stop(struct seq_file * seq,void * v)2922 void udp_seq_stop(struct seq_file *seq, void *v)
2923 {
2924 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2925 	struct udp_iter_state *state = seq->private;
2926 
2927 	if (state->bucket <= afinfo->udp_table->mask)
2928 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2929 }
2930 EXPORT_SYMBOL(udp_seq_stop);
2931 
2932 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2933 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2934 		int bucket)
2935 {
2936 	struct inet_sock *inet = inet_sk(sp);
2937 	__be32 dest = inet->inet_daddr;
2938 	__be32 src  = inet->inet_rcv_saddr;
2939 	__u16 destp	  = ntohs(inet->inet_dport);
2940 	__u16 srcp	  = ntohs(inet->inet_sport);
2941 
2942 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2943 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2944 		bucket, src, srcp, dest, destp, sp->sk_state,
2945 		sk_wmem_alloc_get(sp),
2946 		udp_rqueue_get(sp),
2947 		0, 0L, 0,
2948 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2949 		0, sock_i_ino(sp),
2950 		refcount_read(&sp->sk_refcnt), sp,
2951 		atomic_read(&sp->sk_drops));
2952 }
2953 
udp4_seq_show(struct seq_file * seq,void * v)2954 int udp4_seq_show(struct seq_file *seq, void *v)
2955 {
2956 	seq_setwidth(seq, 127);
2957 	if (v == SEQ_START_TOKEN)
2958 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
2959 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2960 			   "inode ref pointer drops");
2961 	else {
2962 		struct udp_iter_state *state = seq->private;
2963 
2964 		udp4_format_sock(v, seq, state->bucket);
2965 	}
2966 	seq_pad(seq, '\n');
2967 	return 0;
2968 }
2969 
2970 const struct seq_operations udp_seq_ops = {
2971 	.start		= udp_seq_start,
2972 	.next		= udp_seq_next,
2973 	.stop		= udp_seq_stop,
2974 	.show		= udp4_seq_show,
2975 };
2976 EXPORT_SYMBOL(udp_seq_ops);
2977 
2978 static struct udp_seq_afinfo udp4_seq_afinfo = {
2979 	.family		= AF_INET,
2980 	.udp_table	= &udp_table,
2981 };
2982 
udp4_proc_init_net(struct net * net)2983 static int __net_init udp4_proc_init_net(struct net *net)
2984 {
2985 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2986 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2987 		return -ENOMEM;
2988 	return 0;
2989 }
2990 
udp4_proc_exit_net(struct net * net)2991 static void __net_exit udp4_proc_exit_net(struct net *net)
2992 {
2993 	remove_proc_entry("udp", net->proc_net);
2994 }
2995 
2996 static struct pernet_operations udp4_net_ops = {
2997 	.init = udp4_proc_init_net,
2998 	.exit = udp4_proc_exit_net,
2999 };
3000 
udp4_proc_init(void)3001 int __init udp4_proc_init(void)
3002 {
3003 	return register_pernet_subsys(&udp4_net_ops);
3004 }
3005 
udp4_proc_exit(void)3006 void udp4_proc_exit(void)
3007 {
3008 	unregister_pernet_subsys(&udp4_net_ops);
3009 }
3010 #endif /* CONFIG_PROC_FS */
3011 
3012 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3013 static int __init set_uhash_entries(char *str)
3014 {
3015 	ssize_t ret;
3016 
3017 	if (!str)
3018 		return 0;
3019 
3020 	ret = kstrtoul(str, 0, &uhash_entries);
3021 	if (ret)
3022 		return 0;
3023 
3024 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3025 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3026 	return 1;
3027 }
3028 __setup("uhash_entries=", set_uhash_entries);
3029 
udp_table_init(struct udp_table * table,const char * name)3030 void __init udp_table_init(struct udp_table *table, const char *name)
3031 {
3032 	unsigned int i;
3033 
3034 	table->hash = alloc_large_system_hash(name,
3035 					      2 * sizeof(struct udp_hslot),
3036 					      uhash_entries,
3037 					      21, /* one slot per 2 MB */
3038 					      0,
3039 					      &table->log,
3040 					      &table->mask,
3041 					      UDP_HTABLE_SIZE_MIN,
3042 					      64 * 1024);
3043 
3044 	table->hash2 = table->hash + (table->mask + 1);
3045 	for (i = 0; i <= table->mask; i++) {
3046 		INIT_HLIST_HEAD(&table->hash[i].head);
3047 		table->hash[i].count = 0;
3048 		spin_lock_init(&table->hash[i].lock);
3049 	}
3050 	for (i = 0; i <= table->mask; i++) {
3051 		INIT_HLIST_HEAD(&table->hash2[i].head);
3052 		table->hash2[i].count = 0;
3053 		spin_lock_init(&table->hash2[i].lock);
3054 	}
3055 }
3056 
udp_flow_hashrnd(void)3057 u32 udp_flow_hashrnd(void)
3058 {
3059 	static u32 hashrnd __read_mostly;
3060 
3061 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3062 
3063 	return hashrnd;
3064 }
3065 EXPORT_SYMBOL(udp_flow_hashrnd);
3066 
__udp_sysctl_init(struct net * net)3067 static void __udp_sysctl_init(struct net *net)
3068 {
3069 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3070 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3071 
3072 #ifdef CONFIG_NET_L3_MASTER_DEV
3073 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3074 #endif
3075 }
3076 
udp_sysctl_init(struct net * net)3077 static int __net_init udp_sysctl_init(struct net *net)
3078 {
3079 	__udp_sysctl_init(net);
3080 	return 0;
3081 }
3082 
3083 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3084 	.init	= udp_sysctl_init,
3085 };
3086 
udp_init(void)3087 void __init udp_init(void)
3088 {
3089 	unsigned long limit;
3090 	unsigned int i;
3091 
3092 	udp_table_init(&udp_table, "UDP");
3093 	limit = nr_free_buffer_pages() / 8;
3094 	limit = max(limit, 128UL);
3095 	sysctl_udp_mem[0] = limit / 4 * 3;
3096 	sysctl_udp_mem[1] = limit;
3097 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3098 
3099 	__udp_sysctl_init(&init_net);
3100 
3101 	/* 16 spinlocks per cpu */
3102 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3103 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3104 				GFP_KERNEL);
3105 	if (!udp_busylocks)
3106 		panic("UDP: failed to alloc udp_busylocks\n");
3107 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3108 		spin_lock_init(udp_busylocks + i);
3109 
3110 	if (register_pernet_subsys(&udp_sysctl_ops))
3111 		panic("UDP: failed to init sysctl parameters.\n");
3112 }
3113