• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
19 
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
clone_key(const struct sw_flow_key * key_)81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
action_fifo_init(struct action_fifo * fifo)95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
action_fifo_is_empty(const struct action_fifo * fifo)101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
action_fifo_get(struct action_fifo * fifo)106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
action_fifo_put(struct action_fifo * fifo)114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
invalidate_flow_key(struct sw_flow_key * key)143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
is_flow_key_valid(const struct sw_flow_key * key)148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_mpls * mpls)163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     const struct ovs_action_push_mpls *mpls)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
169 			    skb->mac_len,
170 			    ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
171 	if (err)
172 		return err;
173 
174 	invalidate_flow_key(key);
175 	return 0;
176 }
177 
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179 		    const __be16 ethertype)
180 {
181 	int err;
182 
183 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185 	if (err)
186 		return err;
187 
188 	invalidate_flow_key(key);
189 	return 0;
190 }
191 
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193 		    const __be32 *mpls_lse, const __be32 *mask)
194 {
195 	struct mpls_shim_hdr *stack;
196 	__be32 lse;
197 	int err;
198 
199 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
200 		return -ENOMEM;
201 
202 	stack = mpls_hdr(skb);
203 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
204 	err = skb_mpls_update_lse(skb, lse);
205 	if (err)
206 		return err;
207 
208 	flow_key->mpls.top_lse = lse;
209 	return 0;
210 }
211 
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)212 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
213 {
214 	int err;
215 
216 	err = skb_vlan_pop(skb);
217 	if (skb_vlan_tag_present(skb)) {
218 		invalidate_flow_key(key);
219 	} else {
220 		key->eth.vlan.tci = 0;
221 		key->eth.vlan.tpid = 0;
222 	}
223 	return err;
224 }
225 
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)226 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
227 		     const struct ovs_action_push_vlan *vlan)
228 {
229 	if (skb_vlan_tag_present(skb)) {
230 		invalidate_flow_key(key);
231 	} else {
232 		key->eth.vlan.tci = vlan->vlan_tci;
233 		key->eth.vlan.tpid = vlan->vlan_tpid;
234 	}
235 	return skb_vlan_push(skb, vlan->vlan_tpid,
236 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
237 }
238 
239 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)240 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
241 {
242 	u16 *dst = (u16 *)dst_;
243 	const u16 *src = (const u16 *)src_;
244 	const u16 *mask = (const u16 *)mask_;
245 
246 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
247 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
248 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
249 }
250 
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)251 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
252 			const struct ovs_key_ethernet *key,
253 			const struct ovs_key_ethernet *mask)
254 {
255 	int err;
256 
257 	err = skb_ensure_writable(skb, ETH_HLEN);
258 	if (unlikely(err))
259 		return err;
260 
261 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
262 
263 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
264 			       mask->eth_src);
265 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
266 			       mask->eth_dst);
267 
268 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
269 
270 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
271 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
272 	return 0;
273 }
274 
275 /* pop_eth does not support VLAN packets as this action is never called
276  * for them.
277  */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)278 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
279 {
280 	skb_pull_rcsum(skb, ETH_HLEN);
281 	skb_reset_mac_header(skb);
282 	skb_reset_mac_len(skb);
283 
284 	/* safe right before invalidate_flow_key */
285 	key->mac_proto = MAC_PROTO_NONE;
286 	invalidate_flow_key(key);
287 	return 0;
288 }
289 
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)290 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
291 		    const struct ovs_action_push_eth *ethh)
292 {
293 	struct ethhdr *hdr;
294 
295 	/* Add the new Ethernet header */
296 	if (skb_cow_head(skb, ETH_HLEN) < 0)
297 		return -ENOMEM;
298 
299 	skb_push(skb, ETH_HLEN);
300 	skb_reset_mac_header(skb);
301 	skb_reset_mac_len(skb);
302 
303 	hdr = eth_hdr(skb);
304 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
305 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
306 	hdr->h_proto = skb->protocol;
307 
308 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
309 
310 	/* safe right before invalidate_flow_key */
311 	key->mac_proto = MAC_PROTO_ETHERNET;
312 	invalidate_flow_key(key);
313 	return 0;
314 }
315 
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)316 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
317 		    const struct nshhdr *nh)
318 {
319 	int err;
320 
321 	err = nsh_push(skb, nh);
322 	if (err)
323 		return err;
324 
325 	/* safe right before invalidate_flow_key */
326 	key->mac_proto = MAC_PROTO_NONE;
327 	invalidate_flow_key(key);
328 	return 0;
329 }
330 
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)331 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
332 {
333 	int err;
334 
335 	err = nsh_pop(skb);
336 	if (err)
337 		return err;
338 
339 	/* safe right before invalidate_flow_key */
340 	if (skb->protocol == htons(ETH_P_TEB))
341 		key->mac_proto = MAC_PROTO_ETHERNET;
342 	else
343 		key->mac_proto = MAC_PROTO_NONE;
344 	invalidate_flow_key(key);
345 	return 0;
346 }
347 
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)348 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
349 				  __be32 addr, __be32 new_addr)
350 {
351 	int transport_len = skb->len - skb_transport_offset(skb);
352 
353 	if (nh->frag_off & htons(IP_OFFSET))
354 		return;
355 
356 	if (nh->protocol == IPPROTO_TCP) {
357 		if (likely(transport_len >= sizeof(struct tcphdr)))
358 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
359 						 addr, new_addr, true);
360 	} else if (nh->protocol == IPPROTO_UDP) {
361 		if (likely(transport_len >= sizeof(struct udphdr))) {
362 			struct udphdr *uh = udp_hdr(skb);
363 
364 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
365 				inet_proto_csum_replace4(&uh->check, skb,
366 							 addr, new_addr, true);
367 				if (!uh->check)
368 					uh->check = CSUM_MANGLED_0;
369 			}
370 		}
371 	}
372 }
373 
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)374 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
375 			__be32 *addr, __be32 new_addr)
376 {
377 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
378 	csum_replace4(&nh->check, *addr, new_addr);
379 	skb_clear_hash(skb);
380 	ovs_ct_clear(skb, NULL);
381 	*addr = new_addr;
382 }
383 
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])384 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
385 				 __be32 addr[4], const __be32 new_addr[4])
386 {
387 	int transport_len = skb->len - skb_transport_offset(skb);
388 
389 	if (l4_proto == NEXTHDR_TCP) {
390 		if (likely(transport_len >= sizeof(struct tcphdr)))
391 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
392 						  addr, new_addr, true);
393 	} else if (l4_proto == NEXTHDR_UDP) {
394 		if (likely(transport_len >= sizeof(struct udphdr))) {
395 			struct udphdr *uh = udp_hdr(skb);
396 
397 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
398 				inet_proto_csum_replace16(&uh->check, skb,
399 							  addr, new_addr, true);
400 				if (!uh->check)
401 					uh->check = CSUM_MANGLED_0;
402 			}
403 		}
404 	} else if (l4_proto == NEXTHDR_ICMP) {
405 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
406 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
407 						  skb, addr, new_addr, true);
408 	}
409 }
410 
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])411 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
412 			   const __be32 mask[4], __be32 masked[4])
413 {
414 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
415 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
416 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
417 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
418 }
419 
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)420 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
421 			  __be32 addr[4], const __be32 new_addr[4],
422 			  bool recalculate_csum)
423 {
424 	if (recalculate_csum)
425 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
426 
427 	skb_clear_hash(skb);
428 	ovs_ct_clear(skb, NULL);
429 	memcpy(addr, new_addr, sizeof(__be32[4]));
430 }
431 
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)432 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
433 {
434 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
435 
436 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
437 
438 	if (skb->ip_summed == CHECKSUM_COMPLETE)
439 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
440 			     (__force __wsum)(ipv6_tclass << 12));
441 
442 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
443 }
444 
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)445 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
446 {
447 	u32 ofl;
448 
449 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
450 	fl = OVS_MASKED(ofl, fl, mask);
451 
452 	/* Bits 21-24 are always unmasked, so this retains their values. */
453 	nh->flow_lbl[0] = (u8)(fl >> 16);
454 	nh->flow_lbl[1] = (u8)(fl >> 8);
455 	nh->flow_lbl[2] = (u8)fl;
456 
457 	if (skb->ip_summed == CHECKSUM_COMPLETE)
458 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
459 }
460 
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)461 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
462 {
463 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
464 
465 	if (skb->ip_summed == CHECKSUM_COMPLETE)
466 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
467 			     (__force __wsum)(new_ttl << 8));
468 	nh->hop_limit = new_ttl;
469 }
470 
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)471 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
472 		       u8 mask)
473 {
474 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
475 
476 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
477 	nh->ttl = new_ttl;
478 }
479 
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)480 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
481 		    const struct ovs_key_ipv4 *key,
482 		    const struct ovs_key_ipv4 *mask)
483 {
484 	struct iphdr *nh;
485 	__be32 new_addr;
486 	int err;
487 
488 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
489 				  sizeof(struct iphdr));
490 	if (unlikely(err))
491 		return err;
492 
493 	nh = ip_hdr(skb);
494 
495 	/* Setting an IP addresses is typically only a side effect of
496 	 * matching on them in the current userspace implementation, so it
497 	 * makes sense to check if the value actually changed.
498 	 */
499 	if (mask->ipv4_src) {
500 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
501 
502 		if (unlikely(new_addr != nh->saddr)) {
503 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
504 			flow_key->ipv4.addr.src = new_addr;
505 		}
506 	}
507 	if (mask->ipv4_dst) {
508 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
509 
510 		if (unlikely(new_addr != nh->daddr)) {
511 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
512 			flow_key->ipv4.addr.dst = new_addr;
513 		}
514 	}
515 	if (mask->ipv4_tos) {
516 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
517 		flow_key->ip.tos = nh->tos;
518 	}
519 	if (mask->ipv4_ttl) {
520 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
521 		flow_key->ip.ttl = nh->ttl;
522 	}
523 
524 	return 0;
525 }
526 
is_ipv6_mask_nonzero(const __be32 addr[4])527 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
528 {
529 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
530 }
531 
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)532 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
533 		    const struct ovs_key_ipv6 *key,
534 		    const struct ovs_key_ipv6 *mask)
535 {
536 	struct ipv6hdr *nh;
537 	int err;
538 
539 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
540 				  sizeof(struct ipv6hdr));
541 	if (unlikely(err))
542 		return err;
543 
544 	nh = ipv6_hdr(skb);
545 
546 	/* Setting an IP addresses is typically only a side effect of
547 	 * matching on them in the current userspace implementation, so it
548 	 * makes sense to check if the value actually changed.
549 	 */
550 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
551 		__be32 *saddr = (__be32 *)&nh->saddr;
552 		__be32 masked[4];
553 
554 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
555 
556 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
557 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
558 				      true);
559 			memcpy(&flow_key->ipv6.addr.src, masked,
560 			       sizeof(flow_key->ipv6.addr.src));
561 		}
562 	}
563 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
564 		unsigned int offset = 0;
565 		int flags = IP6_FH_F_SKIP_RH;
566 		bool recalc_csum = true;
567 		__be32 *daddr = (__be32 *)&nh->daddr;
568 		__be32 masked[4];
569 
570 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
571 
572 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
573 			if (ipv6_ext_hdr(nh->nexthdr))
574 				recalc_csum = (ipv6_find_hdr(skb, &offset,
575 							     NEXTHDR_ROUTING,
576 							     NULL, &flags)
577 					       != NEXTHDR_ROUTING);
578 
579 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
580 				      recalc_csum);
581 			memcpy(&flow_key->ipv6.addr.dst, masked,
582 			       sizeof(flow_key->ipv6.addr.dst));
583 		}
584 	}
585 	if (mask->ipv6_tclass) {
586 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
587 		flow_key->ip.tos = ipv6_get_dsfield(nh);
588 	}
589 	if (mask->ipv6_label) {
590 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
591 			    ntohl(mask->ipv6_label));
592 		flow_key->ipv6.label =
593 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
594 	}
595 	if (mask->ipv6_hlimit) {
596 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
597 		flow_key->ip.ttl = nh->hop_limit;
598 	}
599 	return 0;
600 }
601 
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)602 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
603 		   const struct nlattr *a)
604 {
605 	struct nshhdr *nh;
606 	size_t length;
607 	int err;
608 	u8 flags;
609 	u8 ttl;
610 	int i;
611 
612 	struct ovs_key_nsh key;
613 	struct ovs_key_nsh mask;
614 
615 	err = nsh_key_from_nlattr(a, &key, &mask);
616 	if (err)
617 		return err;
618 
619 	/* Make sure the NSH base header is there */
620 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
621 		return -ENOMEM;
622 
623 	nh = nsh_hdr(skb);
624 	length = nsh_hdr_len(nh);
625 
626 	/* Make sure the whole NSH header is there */
627 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
628 				       length);
629 	if (unlikely(err))
630 		return err;
631 
632 	nh = nsh_hdr(skb);
633 	skb_postpull_rcsum(skb, nh, length);
634 	flags = nsh_get_flags(nh);
635 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
636 	flow_key->nsh.base.flags = flags;
637 	ttl = nsh_get_ttl(nh);
638 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
639 	flow_key->nsh.base.ttl = ttl;
640 	nsh_set_flags_and_ttl(nh, flags, ttl);
641 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
642 				  mask.base.path_hdr);
643 	flow_key->nsh.base.path_hdr = nh->path_hdr;
644 	switch (nh->mdtype) {
645 	case NSH_M_TYPE1:
646 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
647 			nh->md1.context[i] =
648 			    OVS_MASKED(nh->md1.context[i], key.context[i],
649 				       mask.context[i]);
650 		}
651 		memcpy(flow_key->nsh.context, nh->md1.context,
652 		       sizeof(nh->md1.context));
653 		break;
654 	case NSH_M_TYPE2:
655 		memset(flow_key->nsh.context, 0,
656 		       sizeof(flow_key->nsh.context));
657 		break;
658 	default:
659 		return -EINVAL;
660 	}
661 	skb_postpush_rcsum(skb, nh, length);
662 	return 0;
663 }
664 
665 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)666 static void set_tp_port(struct sk_buff *skb, __be16 *port,
667 			__be16 new_port, __sum16 *check)
668 {
669 	ovs_ct_clear(skb, NULL);
670 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
671 	*port = new_port;
672 }
673 
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)674 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
675 		   const struct ovs_key_udp *key,
676 		   const struct ovs_key_udp *mask)
677 {
678 	struct udphdr *uh;
679 	__be16 src, dst;
680 	int err;
681 
682 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
683 				  sizeof(struct udphdr));
684 	if (unlikely(err))
685 		return err;
686 
687 	uh = udp_hdr(skb);
688 	/* Either of the masks is non-zero, so do not bother checking them. */
689 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
690 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
691 
692 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
693 		if (likely(src != uh->source)) {
694 			set_tp_port(skb, &uh->source, src, &uh->check);
695 			flow_key->tp.src = src;
696 		}
697 		if (likely(dst != uh->dest)) {
698 			set_tp_port(skb, &uh->dest, dst, &uh->check);
699 			flow_key->tp.dst = dst;
700 		}
701 
702 		if (unlikely(!uh->check))
703 			uh->check = CSUM_MANGLED_0;
704 	} else {
705 		uh->source = src;
706 		uh->dest = dst;
707 		flow_key->tp.src = src;
708 		flow_key->tp.dst = dst;
709 		ovs_ct_clear(skb, NULL);
710 	}
711 
712 	skb_clear_hash(skb);
713 
714 	return 0;
715 }
716 
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)717 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
718 		   const struct ovs_key_tcp *key,
719 		   const struct ovs_key_tcp *mask)
720 {
721 	struct tcphdr *th;
722 	__be16 src, dst;
723 	int err;
724 
725 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
726 				  sizeof(struct tcphdr));
727 	if (unlikely(err))
728 		return err;
729 
730 	th = tcp_hdr(skb);
731 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
732 	if (likely(src != th->source)) {
733 		set_tp_port(skb, &th->source, src, &th->check);
734 		flow_key->tp.src = src;
735 	}
736 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
737 	if (likely(dst != th->dest)) {
738 		set_tp_port(skb, &th->dest, dst, &th->check);
739 		flow_key->tp.dst = dst;
740 	}
741 	skb_clear_hash(skb);
742 
743 	return 0;
744 }
745 
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)746 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
747 		    const struct ovs_key_sctp *key,
748 		    const struct ovs_key_sctp *mask)
749 {
750 	unsigned int sctphoff = skb_transport_offset(skb);
751 	struct sctphdr *sh;
752 	__le32 old_correct_csum, new_csum, old_csum;
753 	int err;
754 
755 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
756 	if (unlikely(err))
757 		return err;
758 
759 	sh = sctp_hdr(skb);
760 	old_csum = sh->checksum;
761 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
762 
763 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
764 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
765 
766 	new_csum = sctp_compute_cksum(skb, sctphoff);
767 
768 	/* Carry any checksum errors through. */
769 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
770 
771 	skb_clear_hash(skb);
772 	ovs_ct_clear(skb, NULL);
773 
774 	flow_key->tp.src = sh->source;
775 	flow_key->tp.dst = sh->dest;
776 
777 	return 0;
778 }
779 
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)780 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
781 {
782 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
783 	struct vport *vport = data->vport;
784 
785 	if (skb_cow_head(skb, data->l2_len) < 0) {
786 		kfree_skb(skb);
787 		return -ENOMEM;
788 	}
789 
790 	__skb_dst_copy(skb, data->dst);
791 	*OVS_CB(skb) = data->cb;
792 	skb->inner_protocol = data->inner_protocol;
793 	if (data->vlan_tci & VLAN_CFI_MASK)
794 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
795 	else
796 		__vlan_hwaccel_clear_tag(skb);
797 
798 	/* Reconstruct the MAC header.  */
799 	skb_push(skb, data->l2_len);
800 	memcpy(skb->data, &data->l2_data, data->l2_len);
801 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
802 	skb_reset_mac_header(skb);
803 
804 	if (eth_p_mpls(skb->protocol)) {
805 		skb->inner_network_header = skb->network_header;
806 		skb_set_network_header(skb, data->network_offset);
807 		skb_reset_mac_len(skb);
808 	}
809 
810 	ovs_vport_send(vport, skb, data->mac_proto);
811 	return 0;
812 }
813 
814 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)815 ovs_dst_get_mtu(const struct dst_entry *dst)
816 {
817 	return dst->dev->mtu;
818 }
819 
820 static struct dst_ops ovs_dst_ops = {
821 	.family = AF_UNSPEC,
822 	.mtu = ovs_dst_get_mtu,
823 };
824 
825 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
826  * ovs_vport_output(), which is called once per fragmented packet.
827  */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)828 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
829 			 u16 orig_network_offset, u8 mac_proto)
830 {
831 	unsigned int hlen = skb_network_offset(skb);
832 	struct ovs_frag_data *data;
833 
834 	data = this_cpu_ptr(&ovs_frag_data_storage);
835 	data->dst = skb->_skb_refdst;
836 	data->vport = vport;
837 	data->cb = *OVS_CB(skb);
838 	data->inner_protocol = skb->inner_protocol;
839 	data->network_offset = orig_network_offset;
840 	if (skb_vlan_tag_present(skb))
841 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
842 	else
843 		data->vlan_tci = 0;
844 	data->vlan_proto = skb->vlan_proto;
845 	data->mac_proto = mac_proto;
846 	data->l2_len = hlen;
847 	memcpy(&data->l2_data, skb->data, hlen);
848 
849 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
850 	skb_pull(skb, hlen);
851 }
852 
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)853 static void ovs_fragment(struct net *net, struct vport *vport,
854 			 struct sk_buff *skb, u16 mru,
855 			 struct sw_flow_key *key)
856 {
857 	u16 orig_network_offset = 0;
858 
859 	if (eth_p_mpls(skb->protocol)) {
860 		orig_network_offset = skb_network_offset(skb);
861 		skb->network_header = skb->inner_network_header;
862 	}
863 
864 	if (skb_network_offset(skb) > MAX_L2_LEN) {
865 		OVS_NLERR(1, "L2 header too long to fragment");
866 		goto err;
867 	}
868 
869 	if (key->eth.type == htons(ETH_P_IP)) {
870 		struct rtable ovs_rt = { 0 };
871 		unsigned long orig_dst;
872 
873 		prepare_frag(vport, skb, orig_network_offset,
874 			     ovs_key_mac_proto(key));
875 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
876 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
877 		ovs_rt.dst.dev = vport->dev;
878 
879 		orig_dst = skb->_skb_refdst;
880 		skb_dst_set_noref(skb, &ovs_rt.dst);
881 		IPCB(skb)->frag_max_size = mru;
882 
883 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
884 		refdst_drop(orig_dst);
885 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
886 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
887 		unsigned long orig_dst;
888 		struct rt6_info ovs_rt;
889 
890 		if (!v6ops)
891 			goto err;
892 
893 		prepare_frag(vport, skb, orig_network_offset,
894 			     ovs_key_mac_proto(key));
895 		memset(&ovs_rt, 0, sizeof(ovs_rt));
896 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
897 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
898 		ovs_rt.dst.dev = vport->dev;
899 
900 		orig_dst = skb->_skb_refdst;
901 		skb_dst_set_noref(skb, &ovs_rt.dst);
902 		IP6CB(skb)->frag_max_size = mru;
903 
904 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
905 		refdst_drop(orig_dst);
906 	} else {
907 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
908 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
909 			  vport->dev->mtu);
910 		goto err;
911 	}
912 
913 	return;
914 err:
915 	kfree_skb(skb);
916 }
917 
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)918 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
919 		      struct sw_flow_key *key)
920 {
921 	struct vport *vport = ovs_vport_rcu(dp, out_port);
922 
923 	if (likely(vport)) {
924 		u16 mru = OVS_CB(skb)->mru;
925 		u32 cutlen = OVS_CB(skb)->cutlen;
926 
927 		if (unlikely(cutlen > 0)) {
928 			if (skb->len - cutlen > ovs_mac_header_len(key))
929 				pskb_trim(skb, skb->len - cutlen);
930 			else
931 				pskb_trim(skb, ovs_mac_header_len(key));
932 		}
933 
934 		if (likely(!mru ||
935 		           (skb->len <= mru + vport->dev->hard_header_len))) {
936 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
937 		} else if (mru <= vport->dev->mtu) {
938 			struct net *net = read_pnet(&dp->net);
939 
940 			ovs_fragment(net, vport, skb, mru, key);
941 		} else {
942 			kfree_skb(skb);
943 		}
944 	} else {
945 		kfree_skb(skb);
946 	}
947 }
948 
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)949 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
950 			    struct sw_flow_key *key, const struct nlattr *attr,
951 			    const struct nlattr *actions, int actions_len,
952 			    uint32_t cutlen)
953 {
954 	struct dp_upcall_info upcall;
955 	const struct nlattr *a;
956 	int rem;
957 
958 	memset(&upcall, 0, sizeof(upcall));
959 	upcall.cmd = OVS_PACKET_CMD_ACTION;
960 	upcall.mru = OVS_CB(skb)->mru;
961 
962 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
963 		 a = nla_next(a, &rem)) {
964 		switch (nla_type(a)) {
965 		case OVS_USERSPACE_ATTR_USERDATA:
966 			upcall.userdata = a;
967 			break;
968 
969 		case OVS_USERSPACE_ATTR_PID:
970 			upcall.portid = nla_get_u32(a);
971 			break;
972 
973 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
974 			/* Get out tunnel info. */
975 			struct vport *vport;
976 
977 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
978 			if (vport) {
979 				int err;
980 
981 				err = dev_fill_metadata_dst(vport->dev, skb);
982 				if (!err)
983 					upcall.egress_tun_info = skb_tunnel_info(skb);
984 			}
985 
986 			break;
987 		}
988 
989 		case OVS_USERSPACE_ATTR_ACTIONS: {
990 			/* Include actions. */
991 			upcall.actions = actions;
992 			upcall.actions_len = actions_len;
993 			break;
994 		}
995 
996 		} /* End of switch. */
997 	}
998 
999 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1000 }
1001 
1002 /* When 'last' is true, sample() should always consume the 'skb'.
1003  * Otherwise, sample() should keep 'skb' intact regardless what
1004  * actions are executed within sample().
1005  */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1006 static int sample(struct datapath *dp, struct sk_buff *skb,
1007 		  struct sw_flow_key *key, const struct nlattr *attr,
1008 		  bool last)
1009 {
1010 	struct nlattr *actions;
1011 	struct nlattr *sample_arg;
1012 	int rem = nla_len(attr);
1013 	const struct sample_arg *arg;
1014 	bool clone_flow_key;
1015 
1016 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1017 	sample_arg = nla_data(attr);
1018 	arg = nla_data(sample_arg);
1019 	actions = nla_next(sample_arg, &rem);
1020 
1021 	if ((arg->probability != U32_MAX) &&
1022 	    (!arg->probability || prandom_u32() > arg->probability)) {
1023 		if (last)
1024 			consume_skb(skb);
1025 		return 0;
1026 	}
1027 
1028 	clone_flow_key = !arg->exec;
1029 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1030 			     clone_flow_key);
1031 }
1032 
1033 /* When 'last' is true, clone() should always consume the 'skb'.
1034  * Otherwise, clone() should keep 'skb' intact regardless what
1035  * actions are executed within clone().
1036  */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1037 static int clone(struct datapath *dp, struct sk_buff *skb,
1038 		 struct sw_flow_key *key, const struct nlattr *attr,
1039 		 bool last)
1040 {
1041 	struct nlattr *actions;
1042 	struct nlattr *clone_arg;
1043 	int rem = nla_len(attr);
1044 	bool dont_clone_flow_key;
1045 
1046 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1047 	clone_arg = nla_data(attr);
1048 	dont_clone_flow_key = nla_get_u32(clone_arg);
1049 	actions = nla_next(clone_arg, &rem);
1050 
1051 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1052 			     !dont_clone_flow_key);
1053 }
1054 
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1055 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1056 			 const struct nlattr *attr)
1057 {
1058 	struct ovs_action_hash *hash_act = nla_data(attr);
1059 	u32 hash = 0;
1060 
1061 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1062 	hash = skb_get_hash(skb);
1063 	hash = jhash_1word(hash, hash_act->hash_basis);
1064 	if (!hash)
1065 		hash = 0x1;
1066 
1067 	key->ovs_flow_hash = hash;
1068 }
1069 
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1070 static int execute_set_action(struct sk_buff *skb,
1071 			      struct sw_flow_key *flow_key,
1072 			      const struct nlattr *a)
1073 {
1074 	/* Only tunnel set execution is supported without a mask. */
1075 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1076 		struct ovs_tunnel_info *tun = nla_data(a);
1077 
1078 		skb_dst_drop(skb);
1079 		dst_hold((struct dst_entry *)tun->tun_dst);
1080 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1081 		return 0;
1082 	}
1083 
1084 	return -EINVAL;
1085 }
1086 
1087 /* Mask is at the midpoint of the data. */
1088 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1089 
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1090 static int execute_masked_set_action(struct sk_buff *skb,
1091 				     struct sw_flow_key *flow_key,
1092 				     const struct nlattr *a)
1093 {
1094 	int err = 0;
1095 
1096 	switch (nla_type(a)) {
1097 	case OVS_KEY_ATTR_PRIORITY:
1098 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1099 			       *get_mask(a, u32 *));
1100 		flow_key->phy.priority = skb->priority;
1101 		break;
1102 
1103 	case OVS_KEY_ATTR_SKB_MARK:
1104 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1105 		flow_key->phy.skb_mark = skb->mark;
1106 		break;
1107 
1108 	case OVS_KEY_ATTR_TUNNEL_INFO:
1109 		/* Masked data not supported for tunnel. */
1110 		err = -EINVAL;
1111 		break;
1112 
1113 	case OVS_KEY_ATTR_ETHERNET:
1114 		err = set_eth_addr(skb, flow_key, nla_data(a),
1115 				   get_mask(a, struct ovs_key_ethernet *));
1116 		break;
1117 
1118 	case OVS_KEY_ATTR_NSH:
1119 		err = set_nsh(skb, flow_key, a);
1120 		break;
1121 
1122 	case OVS_KEY_ATTR_IPV4:
1123 		err = set_ipv4(skb, flow_key, nla_data(a),
1124 			       get_mask(a, struct ovs_key_ipv4 *));
1125 		break;
1126 
1127 	case OVS_KEY_ATTR_IPV6:
1128 		err = set_ipv6(skb, flow_key, nla_data(a),
1129 			       get_mask(a, struct ovs_key_ipv6 *));
1130 		break;
1131 
1132 	case OVS_KEY_ATTR_TCP:
1133 		err = set_tcp(skb, flow_key, nla_data(a),
1134 			      get_mask(a, struct ovs_key_tcp *));
1135 		break;
1136 
1137 	case OVS_KEY_ATTR_UDP:
1138 		err = set_udp(skb, flow_key, nla_data(a),
1139 			      get_mask(a, struct ovs_key_udp *));
1140 		break;
1141 
1142 	case OVS_KEY_ATTR_SCTP:
1143 		err = set_sctp(skb, flow_key, nla_data(a),
1144 			       get_mask(a, struct ovs_key_sctp *));
1145 		break;
1146 
1147 	case OVS_KEY_ATTR_MPLS:
1148 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1149 								    __be32 *));
1150 		break;
1151 
1152 	case OVS_KEY_ATTR_CT_STATE:
1153 	case OVS_KEY_ATTR_CT_ZONE:
1154 	case OVS_KEY_ATTR_CT_MARK:
1155 	case OVS_KEY_ATTR_CT_LABELS:
1156 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1157 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1158 		err = -EINVAL;
1159 		break;
1160 	}
1161 
1162 	return err;
1163 }
1164 
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1165 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1166 			  struct sw_flow_key *key,
1167 			  const struct nlattr *a, bool last)
1168 {
1169 	u32 recirc_id;
1170 
1171 	if (!is_flow_key_valid(key)) {
1172 		int err;
1173 
1174 		err = ovs_flow_key_update(skb, key);
1175 		if (err)
1176 			return err;
1177 	}
1178 	BUG_ON(!is_flow_key_valid(key));
1179 
1180 	recirc_id = nla_get_u32(a);
1181 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1182 }
1183 
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1184 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1185 				 struct sw_flow_key *key,
1186 				 const struct nlattr *attr, bool last)
1187 {
1188 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1189 	const struct nlattr *actions, *cpl_arg;
1190 	int len, max_len, rem = nla_len(attr);
1191 	const struct check_pkt_len_arg *arg;
1192 	bool clone_flow_key;
1193 
1194 	/* The first netlink attribute in 'attr' is always
1195 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1196 	 */
1197 	cpl_arg = nla_data(attr);
1198 	arg = nla_data(cpl_arg);
1199 
1200 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1201 	max_len = arg->pkt_len;
1202 
1203 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1204 	    len <= max_len) {
1205 		/* Second netlink attribute in 'attr' is always
1206 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1207 		 */
1208 		actions = nla_next(cpl_arg, &rem);
1209 		clone_flow_key = !arg->exec_for_lesser_equal;
1210 	} else {
1211 		/* Third netlink attribute in 'attr' is always
1212 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1213 		 */
1214 		actions = nla_next(cpl_arg, &rem);
1215 		actions = nla_next(actions, &rem);
1216 		clone_flow_key = !arg->exec_for_greater;
1217 	}
1218 
1219 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1220 			     nla_len(actions), last, clone_flow_key);
1221 }
1222 
1223 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1224 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1225 			      struct sw_flow_key *key,
1226 			      const struct nlattr *attr, int len)
1227 {
1228 	const struct nlattr *a;
1229 	int rem;
1230 
1231 	for (a = attr, rem = len; rem > 0;
1232 	     a = nla_next(a, &rem)) {
1233 		int err = 0;
1234 
1235 		switch (nla_type(a)) {
1236 		case OVS_ACTION_ATTR_OUTPUT: {
1237 			int port = nla_get_u32(a);
1238 			struct sk_buff *clone;
1239 
1240 			/* Every output action needs a separate clone
1241 			 * of 'skb', In case the output action is the
1242 			 * last action, cloning can be avoided.
1243 			 */
1244 			if (nla_is_last(a, rem)) {
1245 				do_output(dp, skb, port, key);
1246 				/* 'skb' has been used for output.
1247 				 */
1248 				return 0;
1249 			}
1250 
1251 			clone = skb_clone(skb, GFP_ATOMIC);
1252 			if (clone)
1253 				do_output(dp, clone, port, key);
1254 			OVS_CB(skb)->cutlen = 0;
1255 			break;
1256 		}
1257 
1258 		case OVS_ACTION_ATTR_TRUNC: {
1259 			struct ovs_action_trunc *trunc = nla_data(a);
1260 
1261 			if (skb->len > trunc->max_len)
1262 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1263 			break;
1264 		}
1265 
1266 		case OVS_ACTION_ATTR_USERSPACE:
1267 			output_userspace(dp, skb, key, a, attr,
1268 						     len, OVS_CB(skb)->cutlen);
1269 			OVS_CB(skb)->cutlen = 0;
1270 			break;
1271 
1272 		case OVS_ACTION_ATTR_HASH:
1273 			execute_hash(skb, key, a);
1274 			break;
1275 
1276 		case OVS_ACTION_ATTR_PUSH_MPLS:
1277 			err = push_mpls(skb, key, nla_data(a));
1278 			break;
1279 
1280 		case OVS_ACTION_ATTR_POP_MPLS:
1281 			err = pop_mpls(skb, key, nla_get_be16(a));
1282 			break;
1283 
1284 		case OVS_ACTION_ATTR_PUSH_VLAN:
1285 			err = push_vlan(skb, key, nla_data(a));
1286 			break;
1287 
1288 		case OVS_ACTION_ATTR_POP_VLAN:
1289 			err = pop_vlan(skb, key);
1290 			break;
1291 
1292 		case OVS_ACTION_ATTR_RECIRC: {
1293 			bool last = nla_is_last(a, rem);
1294 
1295 			err = execute_recirc(dp, skb, key, a, last);
1296 			if (last) {
1297 				/* If this is the last action, the skb has
1298 				 * been consumed or freed.
1299 				 * Return immediately.
1300 				 */
1301 				return err;
1302 			}
1303 			break;
1304 		}
1305 
1306 		case OVS_ACTION_ATTR_SET:
1307 			err = execute_set_action(skb, key, nla_data(a));
1308 			break;
1309 
1310 		case OVS_ACTION_ATTR_SET_MASKED:
1311 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1312 			err = execute_masked_set_action(skb, key, nla_data(a));
1313 			break;
1314 
1315 		case OVS_ACTION_ATTR_SAMPLE: {
1316 			bool last = nla_is_last(a, rem);
1317 
1318 			err = sample(dp, skb, key, a, last);
1319 			if (last)
1320 				return err;
1321 
1322 			break;
1323 		}
1324 
1325 		case OVS_ACTION_ATTR_CT:
1326 			if (!is_flow_key_valid(key)) {
1327 				err = ovs_flow_key_update(skb, key);
1328 				if (err)
1329 					return err;
1330 			}
1331 
1332 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1333 					     nla_data(a));
1334 
1335 			/* Hide stolen IP fragments from user space. */
1336 			if (err)
1337 				return err == -EINPROGRESS ? 0 : err;
1338 			break;
1339 
1340 		case OVS_ACTION_ATTR_CT_CLEAR:
1341 			err = ovs_ct_clear(skb, key);
1342 			break;
1343 
1344 		case OVS_ACTION_ATTR_PUSH_ETH:
1345 			err = push_eth(skb, key, nla_data(a));
1346 			break;
1347 
1348 		case OVS_ACTION_ATTR_POP_ETH:
1349 			err = pop_eth(skb, key);
1350 			break;
1351 
1352 		case OVS_ACTION_ATTR_PUSH_NSH: {
1353 			u8 buffer[NSH_HDR_MAX_LEN];
1354 			struct nshhdr *nh = (struct nshhdr *)buffer;
1355 
1356 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1357 						  NSH_HDR_MAX_LEN);
1358 			if (unlikely(err))
1359 				break;
1360 			err = push_nsh(skb, key, nh);
1361 			break;
1362 		}
1363 
1364 		case OVS_ACTION_ATTR_POP_NSH:
1365 			err = pop_nsh(skb, key);
1366 			break;
1367 
1368 		case OVS_ACTION_ATTR_METER:
1369 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1370 				consume_skb(skb);
1371 				return 0;
1372 			}
1373 			break;
1374 
1375 		case OVS_ACTION_ATTR_CLONE: {
1376 			bool last = nla_is_last(a, rem);
1377 
1378 			err = clone(dp, skb, key, a, last);
1379 			if (last)
1380 				return err;
1381 
1382 			break;
1383 		}
1384 
1385 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1386 			bool last = nla_is_last(a, rem);
1387 
1388 			err = execute_check_pkt_len(dp, skb, key, a, last);
1389 			if (last)
1390 				return err;
1391 
1392 			break;
1393 		}
1394 		}
1395 
1396 		if (unlikely(err)) {
1397 			kfree_skb(skb);
1398 			return err;
1399 		}
1400 	}
1401 
1402 	consume_skb(skb);
1403 	return 0;
1404 }
1405 
1406 /* Execute the actions on the clone of the packet. The effect of the
1407  * execution does not affect the original 'skb' nor the original 'key'.
1408  *
1409  * The execution may be deferred in case the actions can not be executed
1410  * immediately.
1411  */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1412 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1413 			 struct sw_flow_key *key, u32 recirc_id,
1414 			 const struct nlattr *actions, int len,
1415 			 bool last, bool clone_flow_key)
1416 {
1417 	struct deferred_action *da;
1418 	struct sw_flow_key *clone;
1419 
1420 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1421 	if (!skb) {
1422 		/* Out of memory, skip this action.
1423 		 */
1424 		return 0;
1425 	}
1426 
1427 	/* When clone_flow_key is false, the 'key' will not be change
1428 	 * by the actions, then the 'key' can be used directly.
1429 	 * Otherwise, try to clone key from the next recursion level of
1430 	 * 'flow_keys'. If clone is successful, execute the actions
1431 	 * without deferring.
1432 	 */
1433 	clone = clone_flow_key ? clone_key(key) : key;
1434 	if (clone) {
1435 		int err = 0;
1436 
1437 		if (actions) { /* Sample action */
1438 			if (clone_flow_key)
1439 				__this_cpu_inc(exec_actions_level);
1440 
1441 			err = do_execute_actions(dp, skb, clone,
1442 						 actions, len);
1443 
1444 			if (clone_flow_key)
1445 				__this_cpu_dec(exec_actions_level);
1446 		} else { /* Recirc action */
1447 			clone->recirc_id = recirc_id;
1448 			ovs_dp_process_packet(skb, clone);
1449 		}
1450 		return err;
1451 	}
1452 
1453 	/* Out of 'flow_keys' space. Defer actions */
1454 	da = add_deferred_actions(skb, key, actions, len);
1455 	if (da) {
1456 		if (!actions) { /* Recirc action */
1457 			key = &da->pkt_key;
1458 			key->recirc_id = recirc_id;
1459 		}
1460 	} else {
1461 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1462 		 * log an error.
1463 		 */
1464 		kfree_skb(skb);
1465 
1466 		if (net_ratelimit()) {
1467 			if (actions) { /* Sample action */
1468 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1469 					ovs_dp_name(dp));
1470 			} else {  /* Recirc action */
1471 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1472 					ovs_dp_name(dp));
1473 			}
1474 		}
1475 	}
1476 	return 0;
1477 }
1478 
process_deferred_actions(struct datapath * dp)1479 static void process_deferred_actions(struct datapath *dp)
1480 {
1481 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1482 
1483 	/* Do not touch the FIFO in case there is no deferred actions. */
1484 	if (action_fifo_is_empty(fifo))
1485 		return;
1486 
1487 	/* Finishing executing all deferred actions. */
1488 	do {
1489 		struct deferred_action *da = action_fifo_get(fifo);
1490 		struct sk_buff *skb = da->skb;
1491 		struct sw_flow_key *key = &da->pkt_key;
1492 		const struct nlattr *actions = da->actions;
1493 		int actions_len = da->actions_len;
1494 
1495 		if (actions)
1496 			do_execute_actions(dp, skb, key, actions, actions_len);
1497 		else
1498 			ovs_dp_process_packet(skb, key);
1499 	} while (!action_fifo_is_empty(fifo));
1500 
1501 	/* Reset FIFO for the next packet.  */
1502 	action_fifo_init(fifo);
1503 }
1504 
1505 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1506 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1507 			const struct sw_flow_actions *acts,
1508 			struct sw_flow_key *key)
1509 {
1510 	int err, level;
1511 
1512 	level = __this_cpu_inc_return(exec_actions_level);
1513 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1514 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1515 				     ovs_dp_name(dp));
1516 		kfree_skb(skb);
1517 		err = -ENETDOWN;
1518 		goto out;
1519 	}
1520 
1521 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1522 	err = do_execute_actions(dp, skb, key,
1523 				 acts->actions, acts->actions_len);
1524 
1525 	if (level == 1)
1526 		process_deferred_actions(dp);
1527 
1528 out:
1529 	__this_cpu_dec(exec_actions_level);
1530 	return err;
1531 }
1532 
action_fifos_init(void)1533 int action_fifos_init(void)
1534 {
1535 	action_fifos = alloc_percpu(struct action_fifo);
1536 	if (!action_fifos)
1537 		return -ENOMEM;
1538 
1539 	flow_keys = alloc_percpu(struct action_flow_keys);
1540 	if (!flow_keys) {
1541 		free_percpu(action_fifos);
1542 		return -ENOMEM;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
action_fifos_exit(void)1548 void action_fifos_exit(void)
1549 {
1550 	free_percpu(action_fifos);
1551 	free_percpu(flow_keys);
1552 }
1553