1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sunrpc/cache.c
4 *
5 * Generic code for various authentication-related caches
6 * used by sunrpc clients and servers.
7 *
8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include "netns.h"
36
37 #define RPCDBG_FACILITY RPCDBG_CACHE
38
39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 static bool cache_listeners_exist(struct cache_detail *detail);
42
cache_init(struct cache_head * h,struct cache_detail * detail)43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 time_t now = seconds_since_boot();
46 INIT_HLIST_NODE(&h->cache_list);
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 if (now <= detail->flush_time)
51 /* ensure it isn't already expired */
52 now = detail->flush_time + 1;
53 h->last_refresh = now;
54 }
55
56 static void cache_fresh_unlocked(struct cache_head *head,
57 struct cache_detail *detail);
58
sunrpc_cache_find_rcu(struct cache_detail * detail,struct cache_head * key,int hash)59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 struct cache_head *key,
61 int hash)
62 {
63 struct hlist_head *head = &detail->hash_table[hash];
64 struct cache_head *tmp;
65
66 rcu_read_lock();
67 hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 if (detail->match(tmp, key)) {
69 if (cache_is_expired(detail, tmp))
70 continue;
71 tmp = cache_get_rcu(tmp);
72 rcu_read_unlock();
73 return tmp;
74 }
75 }
76 rcu_read_unlock();
77 return NULL;
78 }
79
sunrpc_cache_add_entry(struct cache_detail * detail,struct cache_head * key,int hash)80 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
81 struct cache_head *key,
82 int hash)
83 {
84 struct cache_head *new, *tmp, *freeme = NULL;
85 struct hlist_head *head = &detail->hash_table[hash];
86
87 new = detail->alloc();
88 if (!new)
89 return NULL;
90 /* must fully initialise 'new', else
91 * we might get lose if we need to
92 * cache_put it soon.
93 */
94 cache_init(new, detail);
95 detail->init(new, key);
96
97 spin_lock(&detail->hash_lock);
98
99 /* check if entry appeared while we slept */
100 hlist_for_each_entry_rcu(tmp, head, cache_list) {
101 if (detail->match(tmp, key)) {
102 if (cache_is_expired(detail, tmp)) {
103 hlist_del_init_rcu(&tmp->cache_list);
104 detail->entries --;
105 freeme = tmp;
106 break;
107 }
108 cache_get(tmp);
109 spin_unlock(&detail->hash_lock);
110 cache_put(new, detail);
111 return tmp;
112 }
113 }
114
115 hlist_add_head_rcu(&new->cache_list, head);
116 detail->entries++;
117 cache_get(new);
118 spin_unlock(&detail->hash_lock);
119
120 if (freeme) {
121 cache_fresh_unlocked(freeme, detail);
122 cache_put(freeme, detail);
123 }
124 return new;
125 }
126
sunrpc_cache_lookup_rcu(struct cache_detail * detail,struct cache_head * key,int hash)127 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
128 struct cache_head *key, int hash)
129 {
130 struct cache_head *ret;
131
132 ret = sunrpc_cache_find_rcu(detail, key, hash);
133 if (ret)
134 return ret;
135 /* Didn't find anything, insert an empty entry */
136 return sunrpc_cache_add_entry(detail, key, hash);
137 }
138 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
139
140 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
141
cache_fresh_locked(struct cache_head * head,time_t expiry,struct cache_detail * detail)142 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
143 struct cache_detail *detail)
144 {
145 time_t now = seconds_since_boot();
146 if (now <= detail->flush_time)
147 /* ensure it isn't immediately treated as expired */
148 now = detail->flush_time + 1;
149 head->expiry_time = expiry;
150 head->last_refresh = now;
151 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
152 set_bit(CACHE_VALID, &head->flags);
153 }
154
cache_fresh_unlocked(struct cache_head * head,struct cache_detail * detail)155 static void cache_fresh_unlocked(struct cache_head *head,
156 struct cache_detail *detail)
157 {
158 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
159 cache_revisit_request(head);
160 cache_dequeue(detail, head);
161 }
162 }
163
sunrpc_cache_update(struct cache_detail * detail,struct cache_head * new,struct cache_head * old,int hash)164 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
165 struct cache_head *new, struct cache_head *old, int hash)
166 {
167 /* The 'old' entry is to be replaced by 'new'.
168 * If 'old' is not VALID, we update it directly,
169 * otherwise we need to replace it
170 */
171 struct cache_head *tmp;
172
173 if (!test_bit(CACHE_VALID, &old->flags)) {
174 spin_lock(&detail->hash_lock);
175 if (!test_bit(CACHE_VALID, &old->flags)) {
176 if (test_bit(CACHE_NEGATIVE, &new->flags))
177 set_bit(CACHE_NEGATIVE, &old->flags);
178 else
179 detail->update(old, new);
180 cache_fresh_locked(old, new->expiry_time, detail);
181 spin_unlock(&detail->hash_lock);
182 cache_fresh_unlocked(old, detail);
183 return old;
184 }
185 spin_unlock(&detail->hash_lock);
186 }
187 /* We need to insert a new entry */
188 tmp = detail->alloc();
189 if (!tmp) {
190 cache_put(old, detail);
191 return NULL;
192 }
193 cache_init(tmp, detail);
194 detail->init(tmp, old);
195
196 spin_lock(&detail->hash_lock);
197 if (test_bit(CACHE_NEGATIVE, &new->flags))
198 set_bit(CACHE_NEGATIVE, &tmp->flags);
199 else
200 detail->update(tmp, new);
201 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
202 detail->entries++;
203 cache_get(tmp);
204 cache_fresh_locked(tmp, new->expiry_time, detail);
205 cache_fresh_locked(old, 0, detail);
206 spin_unlock(&detail->hash_lock);
207 cache_fresh_unlocked(tmp, detail);
208 cache_fresh_unlocked(old, detail);
209 cache_put(old, detail);
210 return tmp;
211 }
212 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
213
cache_make_upcall(struct cache_detail * cd,struct cache_head * h)214 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
215 {
216 if (cd->cache_upcall)
217 return cd->cache_upcall(cd, h);
218 return sunrpc_cache_pipe_upcall(cd, h);
219 }
220
cache_is_valid(struct cache_head * h)221 static inline int cache_is_valid(struct cache_head *h)
222 {
223 if (!test_bit(CACHE_VALID, &h->flags))
224 return -EAGAIN;
225 else {
226 /* entry is valid */
227 if (test_bit(CACHE_NEGATIVE, &h->flags))
228 return -ENOENT;
229 else {
230 /*
231 * In combination with write barrier in
232 * sunrpc_cache_update, ensures that anyone
233 * using the cache entry after this sees the
234 * updated contents:
235 */
236 smp_rmb();
237 return 0;
238 }
239 }
240 }
241
try_to_negate_entry(struct cache_detail * detail,struct cache_head * h)242 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
243 {
244 int rv;
245
246 spin_lock(&detail->hash_lock);
247 rv = cache_is_valid(h);
248 if (rv == -EAGAIN) {
249 set_bit(CACHE_NEGATIVE, &h->flags);
250 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
251 detail);
252 rv = -ENOENT;
253 }
254 spin_unlock(&detail->hash_lock);
255 cache_fresh_unlocked(h, detail);
256 return rv;
257 }
258
259 /*
260 * This is the generic cache management routine for all
261 * the authentication caches.
262 * It checks the currency of a cache item and will (later)
263 * initiate an upcall to fill it if needed.
264 *
265 *
266 * Returns 0 if the cache_head can be used, or cache_puts it and returns
267 * -EAGAIN if upcall is pending and request has been queued
268 * -ETIMEDOUT if upcall failed or request could not be queue or
269 * upcall completed but item is still invalid (implying that
270 * the cache item has been replaced with a newer one).
271 * -ENOENT if cache entry was negative
272 */
cache_check(struct cache_detail * detail,struct cache_head * h,struct cache_req * rqstp)273 int cache_check(struct cache_detail *detail,
274 struct cache_head *h, struct cache_req *rqstp)
275 {
276 int rv;
277 long refresh_age, age;
278
279 /* First decide return status as best we can */
280 rv = cache_is_valid(h);
281
282 /* now see if we want to start an upcall */
283 refresh_age = (h->expiry_time - h->last_refresh);
284 age = seconds_since_boot() - h->last_refresh;
285
286 if (rqstp == NULL) {
287 if (rv == -EAGAIN)
288 rv = -ENOENT;
289 } else if (rv == -EAGAIN ||
290 (h->expiry_time != 0 && age > refresh_age/2)) {
291 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
292 refresh_age, age);
293 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
294 switch (cache_make_upcall(detail, h)) {
295 case -EINVAL:
296 rv = try_to_negate_entry(detail, h);
297 break;
298 case -EAGAIN:
299 cache_fresh_unlocked(h, detail);
300 break;
301 }
302 } else if (!cache_listeners_exist(detail))
303 rv = try_to_negate_entry(detail, h);
304 }
305
306 if (rv == -EAGAIN) {
307 if (!cache_defer_req(rqstp, h)) {
308 /*
309 * Request was not deferred; handle it as best
310 * we can ourselves:
311 */
312 rv = cache_is_valid(h);
313 if (rv == -EAGAIN)
314 rv = -ETIMEDOUT;
315 }
316 }
317 if (rv)
318 cache_put(h, detail);
319 return rv;
320 }
321 EXPORT_SYMBOL_GPL(cache_check);
322
323 /*
324 * caches need to be periodically cleaned.
325 * For this we maintain a list of cache_detail and
326 * a current pointer into that list and into the table
327 * for that entry.
328 *
329 * Each time cache_clean is called it finds the next non-empty entry
330 * in the current table and walks the list in that entry
331 * looking for entries that can be removed.
332 *
333 * An entry gets removed if:
334 * - The expiry is before current time
335 * - The last_refresh time is before the flush_time for that cache
336 *
337 * later we might drop old entries with non-NEVER expiry if that table
338 * is getting 'full' for some definition of 'full'
339 *
340 * The question of "how often to scan a table" is an interesting one
341 * and is answered in part by the use of the "nextcheck" field in the
342 * cache_detail.
343 * When a scan of a table begins, the nextcheck field is set to a time
344 * that is well into the future.
345 * While scanning, if an expiry time is found that is earlier than the
346 * current nextcheck time, nextcheck is set to that expiry time.
347 * If the flush_time is ever set to a time earlier than the nextcheck
348 * time, the nextcheck time is then set to that flush_time.
349 *
350 * A table is then only scanned if the current time is at least
351 * the nextcheck time.
352 *
353 */
354
355 static LIST_HEAD(cache_list);
356 static DEFINE_SPINLOCK(cache_list_lock);
357 static struct cache_detail *current_detail;
358 static int current_index;
359
360 static void do_cache_clean(struct work_struct *work);
361 static struct delayed_work cache_cleaner;
362
sunrpc_init_cache_detail(struct cache_detail * cd)363 void sunrpc_init_cache_detail(struct cache_detail *cd)
364 {
365 spin_lock_init(&cd->hash_lock);
366 INIT_LIST_HEAD(&cd->queue);
367 spin_lock(&cache_list_lock);
368 cd->nextcheck = 0;
369 cd->entries = 0;
370 atomic_set(&cd->writers, 0);
371 cd->last_close = 0;
372 cd->last_warn = -1;
373 list_add(&cd->others, &cache_list);
374 spin_unlock(&cache_list_lock);
375
376 /* start the cleaning process */
377 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
378 }
379 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
380
sunrpc_destroy_cache_detail(struct cache_detail * cd)381 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
382 {
383 cache_purge(cd);
384 spin_lock(&cache_list_lock);
385 spin_lock(&cd->hash_lock);
386 if (current_detail == cd)
387 current_detail = NULL;
388 list_del_init(&cd->others);
389 spin_unlock(&cd->hash_lock);
390 spin_unlock(&cache_list_lock);
391 if (list_empty(&cache_list)) {
392 /* module must be being unloaded so its safe to kill the worker */
393 cancel_delayed_work_sync(&cache_cleaner);
394 }
395 }
396 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
397
398 /* clean cache tries to find something to clean
399 * and cleans it.
400 * It returns 1 if it cleaned something,
401 * 0 if it didn't find anything this time
402 * -1 if it fell off the end of the list.
403 */
cache_clean(void)404 static int cache_clean(void)
405 {
406 int rv = 0;
407 struct list_head *next;
408
409 spin_lock(&cache_list_lock);
410
411 /* find a suitable table if we don't already have one */
412 while (current_detail == NULL ||
413 current_index >= current_detail->hash_size) {
414 if (current_detail)
415 next = current_detail->others.next;
416 else
417 next = cache_list.next;
418 if (next == &cache_list) {
419 current_detail = NULL;
420 spin_unlock(&cache_list_lock);
421 return -1;
422 }
423 current_detail = list_entry(next, struct cache_detail, others);
424 if (current_detail->nextcheck > seconds_since_boot())
425 current_index = current_detail->hash_size;
426 else {
427 current_index = 0;
428 current_detail->nextcheck = seconds_since_boot()+30*60;
429 }
430 }
431
432 /* find a non-empty bucket in the table */
433 while (current_detail &&
434 current_index < current_detail->hash_size &&
435 hlist_empty(¤t_detail->hash_table[current_index]))
436 current_index++;
437
438 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
439
440 if (current_detail && current_index < current_detail->hash_size) {
441 struct cache_head *ch = NULL;
442 struct cache_detail *d;
443 struct hlist_head *head;
444 struct hlist_node *tmp;
445
446 spin_lock(¤t_detail->hash_lock);
447
448 /* Ok, now to clean this strand */
449
450 head = ¤t_detail->hash_table[current_index];
451 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
452 if (current_detail->nextcheck > ch->expiry_time)
453 current_detail->nextcheck = ch->expiry_time+1;
454 if (!cache_is_expired(current_detail, ch))
455 continue;
456
457 hlist_del_init_rcu(&ch->cache_list);
458 current_detail->entries--;
459 rv = 1;
460 break;
461 }
462
463 spin_unlock(¤t_detail->hash_lock);
464 d = current_detail;
465 if (!ch)
466 current_index ++;
467 spin_unlock(&cache_list_lock);
468 if (ch) {
469 set_bit(CACHE_CLEANED, &ch->flags);
470 cache_fresh_unlocked(ch, d);
471 cache_put(ch, d);
472 }
473 } else
474 spin_unlock(&cache_list_lock);
475
476 return rv;
477 }
478
479 /*
480 * We want to regularly clean the cache, so we need to schedule some work ...
481 */
do_cache_clean(struct work_struct * work)482 static void do_cache_clean(struct work_struct *work)
483 {
484 int delay = 5;
485 if (cache_clean() == -1)
486 delay = round_jiffies_relative(30*HZ);
487
488 if (list_empty(&cache_list))
489 delay = 0;
490
491 if (delay)
492 queue_delayed_work(system_power_efficient_wq,
493 &cache_cleaner, delay);
494 }
495
496
497 /*
498 * Clean all caches promptly. This just calls cache_clean
499 * repeatedly until we are sure that every cache has had a chance to
500 * be fully cleaned
501 */
cache_flush(void)502 void cache_flush(void)
503 {
504 while (cache_clean() != -1)
505 cond_resched();
506 while (cache_clean() != -1)
507 cond_resched();
508 }
509 EXPORT_SYMBOL_GPL(cache_flush);
510
cache_purge(struct cache_detail * detail)511 void cache_purge(struct cache_detail *detail)
512 {
513 struct cache_head *ch = NULL;
514 struct hlist_head *head = NULL;
515 struct hlist_node *tmp = NULL;
516 int i = 0;
517
518 spin_lock(&detail->hash_lock);
519 if (!detail->entries) {
520 spin_unlock(&detail->hash_lock);
521 return;
522 }
523
524 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
525 for (i = 0; i < detail->hash_size; i++) {
526 head = &detail->hash_table[i];
527 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
528 hlist_del_init_rcu(&ch->cache_list);
529 detail->entries--;
530
531 set_bit(CACHE_CLEANED, &ch->flags);
532 spin_unlock(&detail->hash_lock);
533 cache_fresh_unlocked(ch, detail);
534 cache_put(ch, detail);
535 spin_lock(&detail->hash_lock);
536 }
537 }
538 spin_unlock(&detail->hash_lock);
539 }
540 EXPORT_SYMBOL_GPL(cache_purge);
541
542
543 /*
544 * Deferral and Revisiting of Requests.
545 *
546 * If a cache lookup finds a pending entry, we
547 * need to defer the request and revisit it later.
548 * All deferred requests are stored in a hash table,
549 * indexed by "struct cache_head *".
550 * As it may be wasteful to store a whole request
551 * structure, we allow the request to provide a
552 * deferred form, which must contain a
553 * 'struct cache_deferred_req'
554 * This cache_deferred_req contains a method to allow
555 * it to be revisited when cache info is available
556 */
557
558 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
559 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
560
561 #define DFR_MAX 300 /* ??? */
562
563 static DEFINE_SPINLOCK(cache_defer_lock);
564 static LIST_HEAD(cache_defer_list);
565 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
566 static int cache_defer_cnt;
567
__unhash_deferred_req(struct cache_deferred_req * dreq)568 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
569 {
570 hlist_del_init(&dreq->hash);
571 if (!list_empty(&dreq->recent)) {
572 list_del_init(&dreq->recent);
573 cache_defer_cnt--;
574 }
575 }
576
__hash_deferred_req(struct cache_deferred_req * dreq,struct cache_head * item)577 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
578 {
579 int hash = DFR_HASH(item);
580
581 INIT_LIST_HEAD(&dreq->recent);
582 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
583 }
584
setup_deferral(struct cache_deferred_req * dreq,struct cache_head * item,int count_me)585 static void setup_deferral(struct cache_deferred_req *dreq,
586 struct cache_head *item,
587 int count_me)
588 {
589
590 dreq->item = item;
591
592 spin_lock(&cache_defer_lock);
593
594 __hash_deferred_req(dreq, item);
595
596 if (count_me) {
597 cache_defer_cnt++;
598 list_add(&dreq->recent, &cache_defer_list);
599 }
600
601 spin_unlock(&cache_defer_lock);
602
603 }
604
605 struct thread_deferred_req {
606 struct cache_deferred_req handle;
607 struct completion completion;
608 };
609
cache_restart_thread(struct cache_deferred_req * dreq,int too_many)610 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
611 {
612 struct thread_deferred_req *dr =
613 container_of(dreq, struct thread_deferred_req, handle);
614 complete(&dr->completion);
615 }
616
cache_wait_req(struct cache_req * req,struct cache_head * item)617 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
618 {
619 struct thread_deferred_req sleeper;
620 struct cache_deferred_req *dreq = &sleeper.handle;
621
622 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
623 dreq->revisit = cache_restart_thread;
624
625 setup_deferral(dreq, item, 0);
626
627 if (!test_bit(CACHE_PENDING, &item->flags) ||
628 wait_for_completion_interruptible_timeout(
629 &sleeper.completion, req->thread_wait) <= 0) {
630 /* The completion wasn't completed, so we need
631 * to clean up
632 */
633 spin_lock(&cache_defer_lock);
634 if (!hlist_unhashed(&sleeper.handle.hash)) {
635 __unhash_deferred_req(&sleeper.handle);
636 spin_unlock(&cache_defer_lock);
637 } else {
638 /* cache_revisit_request already removed
639 * this from the hash table, but hasn't
640 * called ->revisit yet. It will very soon
641 * and we need to wait for it.
642 */
643 spin_unlock(&cache_defer_lock);
644 wait_for_completion(&sleeper.completion);
645 }
646 }
647 }
648
cache_limit_defers(void)649 static void cache_limit_defers(void)
650 {
651 /* Make sure we haven't exceed the limit of allowed deferred
652 * requests.
653 */
654 struct cache_deferred_req *discard = NULL;
655
656 if (cache_defer_cnt <= DFR_MAX)
657 return;
658
659 spin_lock(&cache_defer_lock);
660
661 /* Consider removing either the first or the last */
662 if (cache_defer_cnt > DFR_MAX) {
663 if (prandom_u32() & 1)
664 discard = list_entry(cache_defer_list.next,
665 struct cache_deferred_req, recent);
666 else
667 discard = list_entry(cache_defer_list.prev,
668 struct cache_deferred_req, recent);
669 __unhash_deferred_req(discard);
670 }
671 spin_unlock(&cache_defer_lock);
672 if (discard)
673 discard->revisit(discard, 1);
674 }
675
676 /* Return true if and only if a deferred request is queued. */
cache_defer_req(struct cache_req * req,struct cache_head * item)677 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
678 {
679 struct cache_deferred_req *dreq;
680
681 if (req->thread_wait) {
682 cache_wait_req(req, item);
683 if (!test_bit(CACHE_PENDING, &item->flags))
684 return false;
685 }
686 dreq = req->defer(req);
687 if (dreq == NULL)
688 return false;
689 setup_deferral(dreq, item, 1);
690 if (!test_bit(CACHE_PENDING, &item->flags))
691 /* Bit could have been cleared before we managed to
692 * set up the deferral, so need to revisit just in case
693 */
694 cache_revisit_request(item);
695
696 cache_limit_defers();
697 return true;
698 }
699
cache_revisit_request(struct cache_head * item)700 static void cache_revisit_request(struct cache_head *item)
701 {
702 struct cache_deferred_req *dreq;
703 struct list_head pending;
704 struct hlist_node *tmp;
705 int hash = DFR_HASH(item);
706
707 INIT_LIST_HEAD(&pending);
708 spin_lock(&cache_defer_lock);
709
710 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
711 if (dreq->item == item) {
712 __unhash_deferred_req(dreq);
713 list_add(&dreq->recent, &pending);
714 }
715
716 spin_unlock(&cache_defer_lock);
717
718 while (!list_empty(&pending)) {
719 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
720 list_del_init(&dreq->recent);
721 dreq->revisit(dreq, 0);
722 }
723 }
724
cache_clean_deferred(void * owner)725 void cache_clean_deferred(void *owner)
726 {
727 struct cache_deferred_req *dreq, *tmp;
728 struct list_head pending;
729
730
731 INIT_LIST_HEAD(&pending);
732 spin_lock(&cache_defer_lock);
733
734 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
735 if (dreq->owner == owner) {
736 __unhash_deferred_req(dreq);
737 list_add(&dreq->recent, &pending);
738 }
739 }
740 spin_unlock(&cache_defer_lock);
741
742 while (!list_empty(&pending)) {
743 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
744 list_del_init(&dreq->recent);
745 dreq->revisit(dreq, 1);
746 }
747 }
748
749 /*
750 * communicate with user-space
751 *
752 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
753 * On read, you get a full request, or block.
754 * On write, an update request is processed.
755 * Poll works if anything to read, and always allows write.
756 *
757 * Implemented by linked list of requests. Each open file has
758 * a ->private that also exists in this list. New requests are added
759 * to the end and may wakeup and preceding readers.
760 * New readers are added to the head. If, on read, an item is found with
761 * CACHE_UPCALLING clear, we free it from the list.
762 *
763 */
764
765 static DEFINE_SPINLOCK(queue_lock);
766 static DEFINE_MUTEX(queue_io_mutex);
767
768 struct cache_queue {
769 struct list_head list;
770 int reader; /* if 0, then request */
771 };
772 struct cache_request {
773 struct cache_queue q;
774 struct cache_head *item;
775 char * buf;
776 int len;
777 int readers;
778 };
779 struct cache_reader {
780 struct cache_queue q;
781 int offset; /* if non-0, we have a refcnt on next request */
782 };
783
cache_request(struct cache_detail * detail,struct cache_request * crq)784 static int cache_request(struct cache_detail *detail,
785 struct cache_request *crq)
786 {
787 char *bp = crq->buf;
788 int len = PAGE_SIZE;
789
790 detail->cache_request(detail, crq->item, &bp, &len);
791 if (len < 0)
792 return -EAGAIN;
793 return PAGE_SIZE - len;
794 }
795
cache_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)796 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
797 loff_t *ppos, struct cache_detail *cd)
798 {
799 struct cache_reader *rp = filp->private_data;
800 struct cache_request *rq;
801 struct inode *inode = file_inode(filp);
802 int err;
803
804 if (count == 0)
805 return 0;
806
807 inode_lock(inode); /* protect against multiple concurrent
808 * readers on this file */
809 again:
810 spin_lock(&queue_lock);
811 /* need to find next request */
812 while (rp->q.list.next != &cd->queue &&
813 list_entry(rp->q.list.next, struct cache_queue, list)
814 ->reader) {
815 struct list_head *next = rp->q.list.next;
816 list_move(&rp->q.list, next);
817 }
818 if (rp->q.list.next == &cd->queue) {
819 spin_unlock(&queue_lock);
820 inode_unlock(inode);
821 WARN_ON_ONCE(rp->offset);
822 return 0;
823 }
824 rq = container_of(rp->q.list.next, struct cache_request, q.list);
825 WARN_ON_ONCE(rq->q.reader);
826 if (rp->offset == 0)
827 rq->readers++;
828 spin_unlock(&queue_lock);
829
830 if (rq->len == 0) {
831 err = cache_request(cd, rq);
832 if (err < 0)
833 goto out;
834 rq->len = err;
835 }
836
837 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
838 err = -EAGAIN;
839 spin_lock(&queue_lock);
840 list_move(&rp->q.list, &rq->q.list);
841 spin_unlock(&queue_lock);
842 } else {
843 if (rp->offset + count > rq->len)
844 count = rq->len - rp->offset;
845 err = -EFAULT;
846 if (copy_to_user(buf, rq->buf + rp->offset, count))
847 goto out;
848 rp->offset += count;
849 if (rp->offset >= rq->len) {
850 rp->offset = 0;
851 spin_lock(&queue_lock);
852 list_move(&rp->q.list, &rq->q.list);
853 spin_unlock(&queue_lock);
854 }
855 err = 0;
856 }
857 out:
858 if (rp->offset == 0) {
859 /* need to release rq */
860 spin_lock(&queue_lock);
861 rq->readers--;
862 if (rq->readers == 0 &&
863 !test_bit(CACHE_PENDING, &rq->item->flags)) {
864 list_del(&rq->q.list);
865 spin_unlock(&queue_lock);
866 cache_put(rq->item, cd);
867 kfree(rq->buf);
868 kfree(rq);
869 } else
870 spin_unlock(&queue_lock);
871 }
872 if (err == -EAGAIN)
873 goto again;
874 inode_unlock(inode);
875 return err ? err : count;
876 }
877
cache_do_downcall(char * kaddr,const char __user * buf,size_t count,struct cache_detail * cd)878 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
879 size_t count, struct cache_detail *cd)
880 {
881 ssize_t ret;
882
883 if (count == 0)
884 return -EINVAL;
885 if (copy_from_user(kaddr, buf, count))
886 return -EFAULT;
887 kaddr[count] = '\0';
888 ret = cd->cache_parse(cd, kaddr, count);
889 if (!ret)
890 ret = count;
891 return ret;
892 }
893
cache_slow_downcall(const char __user * buf,size_t count,struct cache_detail * cd)894 static ssize_t cache_slow_downcall(const char __user *buf,
895 size_t count, struct cache_detail *cd)
896 {
897 static char write_buf[8192]; /* protected by queue_io_mutex */
898 ssize_t ret = -EINVAL;
899
900 if (count >= sizeof(write_buf))
901 goto out;
902 mutex_lock(&queue_io_mutex);
903 ret = cache_do_downcall(write_buf, buf, count, cd);
904 mutex_unlock(&queue_io_mutex);
905 out:
906 return ret;
907 }
908
cache_downcall(struct address_space * mapping,const char __user * buf,size_t count,struct cache_detail * cd)909 static ssize_t cache_downcall(struct address_space *mapping,
910 const char __user *buf,
911 size_t count, struct cache_detail *cd)
912 {
913 struct page *page;
914 char *kaddr;
915 ssize_t ret = -ENOMEM;
916
917 if (count >= PAGE_SIZE)
918 goto out_slow;
919
920 page = find_or_create_page(mapping, 0, GFP_KERNEL);
921 if (!page)
922 goto out_slow;
923
924 kaddr = kmap(page);
925 ret = cache_do_downcall(kaddr, buf, count, cd);
926 kunmap(page);
927 unlock_page(page);
928 put_page(page);
929 return ret;
930 out_slow:
931 return cache_slow_downcall(buf, count, cd);
932 }
933
cache_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)934 static ssize_t cache_write(struct file *filp, const char __user *buf,
935 size_t count, loff_t *ppos,
936 struct cache_detail *cd)
937 {
938 struct address_space *mapping = filp->f_mapping;
939 struct inode *inode = file_inode(filp);
940 ssize_t ret = -EINVAL;
941
942 if (!cd->cache_parse)
943 goto out;
944
945 inode_lock(inode);
946 ret = cache_downcall(mapping, buf, count, cd);
947 inode_unlock(inode);
948 out:
949 return ret;
950 }
951
952 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
953
cache_poll(struct file * filp,poll_table * wait,struct cache_detail * cd)954 static __poll_t cache_poll(struct file *filp, poll_table *wait,
955 struct cache_detail *cd)
956 {
957 __poll_t mask;
958 struct cache_reader *rp = filp->private_data;
959 struct cache_queue *cq;
960
961 poll_wait(filp, &queue_wait, wait);
962
963 /* alway allow write */
964 mask = EPOLLOUT | EPOLLWRNORM;
965
966 if (!rp)
967 return mask;
968
969 spin_lock(&queue_lock);
970
971 for (cq= &rp->q; &cq->list != &cd->queue;
972 cq = list_entry(cq->list.next, struct cache_queue, list))
973 if (!cq->reader) {
974 mask |= EPOLLIN | EPOLLRDNORM;
975 break;
976 }
977 spin_unlock(&queue_lock);
978 return mask;
979 }
980
cache_ioctl(struct inode * ino,struct file * filp,unsigned int cmd,unsigned long arg,struct cache_detail * cd)981 static int cache_ioctl(struct inode *ino, struct file *filp,
982 unsigned int cmd, unsigned long arg,
983 struct cache_detail *cd)
984 {
985 int len = 0;
986 struct cache_reader *rp = filp->private_data;
987 struct cache_queue *cq;
988
989 if (cmd != FIONREAD || !rp)
990 return -EINVAL;
991
992 spin_lock(&queue_lock);
993
994 /* only find the length remaining in current request,
995 * or the length of the next request
996 */
997 for (cq= &rp->q; &cq->list != &cd->queue;
998 cq = list_entry(cq->list.next, struct cache_queue, list))
999 if (!cq->reader) {
1000 struct cache_request *cr =
1001 container_of(cq, struct cache_request, q);
1002 len = cr->len - rp->offset;
1003 break;
1004 }
1005 spin_unlock(&queue_lock);
1006
1007 return put_user(len, (int __user *)arg);
1008 }
1009
cache_open(struct inode * inode,struct file * filp,struct cache_detail * cd)1010 static int cache_open(struct inode *inode, struct file *filp,
1011 struct cache_detail *cd)
1012 {
1013 struct cache_reader *rp = NULL;
1014
1015 if (!cd || !try_module_get(cd->owner))
1016 return -EACCES;
1017 nonseekable_open(inode, filp);
1018 if (filp->f_mode & FMODE_READ) {
1019 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1020 if (!rp) {
1021 module_put(cd->owner);
1022 return -ENOMEM;
1023 }
1024 rp->offset = 0;
1025 rp->q.reader = 1;
1026
1027 spin_lock(&queue_lock);
1028 list_add(&rp->q.list, &cd->queue);
1029 spin_unlock(&queue_lock);
1030 }
1031 if (filp->f_mode & FMODE_WRITE)
1032 atomic_inc(&cd->writers);
1033 filp->private_data = rp;
1034 return 0;
1035 }
1036
cache_release(struct inode * inode,struct file * filp,struct cache_detail * cd)1037 static int cache_release(struct inode *inode, struct file *filp,
1038 struct cache_detail *cd)
1039 {
1040 struct cache_reader *rp = filp->private_data;
1041
1042 if (rp) {
1043 spin_lock(&queue_lock);
1044 if (rp->offset) {
1045 struct cache_queue *cq;
1046 for (cq= &rp->q; &cq->list != &cd->queue;
1047 cq = list_entry(cq->list.next, struct cache_queue, list))
1048 if (!cq->reader) {
1049 container_of(cq, struct cache_request, q)
1050 ->readers--;
1051 break;
1052 }
1053 rp->offset = 0;
1054 }
1055 list_del(&rp->q.list);
1056 spin_unlock(&queue_lock);
1057
1058 filp->private_data = NULL;
1059 kfree(rp);
1060
1061 }
1062 if (filp->f_mode & FMODE_WRITE) {
1063 atomic_dec(&cd->writers);
1064 cd->last_close = seconds_since_boot();
1065 }
1066 module_put(cd->owner);
1067 return 0;
1068 }
1069
1070
1071
cache_dequeue(struct cache_detail * detail,struct cache_head * ch)1072 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1073 {
1074 struct cache_queue *cq, *tmp;
1075 struct cache_request *cr;
1076 struct list_head dequeued;
1077
1078 INIT_LIST_HEAD(&dequeued);
1079 spin_lock(&queue_lock);
1080 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1081 if (!cq->reader) {
1082 cr = container_of(cq, struct cache_request, q);
1083 if (cr->item != ch)
1084 continue;
1085 if (test_bit(CACHE_PENDING, &ch->flags))
1086 /* Lost a race and it is pending again */
1087 break;
1088 if (cr->readers != 0)
1089 continue;
1090 list_move(&cr->q.list, &dequeued);
1091 }
1092 spin_unlock(&queue_lock);
1093 while (!list_empty(&dequeued)) {
1094 cr = list_entry(dequeued.next, struct cache_request, q.list);
1095 list_del(&cr->q.list);
1096 cache_put(cr->item, detail);
1097 kfree(cr->buf);
1098 kfree(cr);
1099 }
1100 }
1101
1102 /*
1103 * Support routines for text-based upcalls.
1104 * Fields are separated by spaces.
1105 * Fields are either mangled to quote space tab newline slosh with slosh
1106 * or a hexified with a leading \x
1107 * Record is terminated with newline.
1108 *
1109 */
1110
qword_add(char ** bpp,int * lp,char * str)1111 void qword_add(char **bpp, int *lp, char *str)
1112 {
1113 char *bp = *bpp;
1114 int len = *lp;
1115 int ret;
1116
1117 if (len < 0) return;
1118
1119 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1120 if (ret >= len) {
1121 bp += len;
1122 len = -1;
1123 } else {
1124 bp += ret;
1125 len -= ret;
1126 *bp++ = ' ';
1127 len--;
1128 }
1129 *bpp = bp;
1130 *lp = len;
1131 }
1132 EXPORT_SYMBOL_GPL(qword_add);
1133
qword_addhex(char ** bpp,int * lp,char * buf,int blen)1134 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1135 {
1136 char *bp = *bpp;
1137 int len = *lp;
1138
1139 if (len < 0) return;
1140
1141 if (len > 2) {
1142 *bp++ = '\\';
1143 *bp++ = 'x';
1144 len -= 2;
1145 while (blen && len >= 2) {
1146 bp = hex_byte_pack(bp, *buf++);
1147 len -= 2;
1148 blen--;
1149 }
1150 }
1151 if (blen || len<1) len = -1;
1152 else {
1153 *bp++ = ' ';
1154 len--;
1155 }
1156 *bpp = bp;
1157 *lp = len;
1158 }
1159 EXPORT_SYMBOL_GPL(qword_addhex);
1160
warn_no_listener(struct cache_detail * detail)1161 static void warn_no_listener(struct cache_detail *detail)
1162 {
1163 if (detail->last_warn != detail->last_close) {
1164 detail->last_warn = detail->last_close;
1165 if (detail->warn_no_listener)
1166 detail->warn_no_listener(detail, detail->last_close != 0);
1167 }
1168 }
1169
cache_listeners_exist(struct cache_detail * detail)1170 static bool cache_listeners_exist(struct cache_detail *detail)
1171 {
1172 if (atomic_read(&detail->writers))
1173 return true;
1174 if (detail->last_close == 0)
1175 /* This cache was never opened */
1176 return false;
1177 if (detail->last_close < seconds_since_boot() - 30)
1178 /*
1179 * We allow for the possibility that someone might
1180 * restart a userspace daemon without restarting the
1181 * server; but after 30 seconds, we give up.
1182 */
1183 return false;
1184 return true;
1185 }
1186
1187 /*
1188 * register an upcall request to user-space and queue it up for read() by the
1189 * upcall daemon.
1190 *
1191 * Each request is at most one page long.
1192 */
sunrpc_cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1193 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1194 {
1195
1196 char *buf;
1197 struct cache_request *crq;
1198 int ret = 0;
1199
1200 if (!detail->cache_request)
1201 return -EINVAL;
1202
1203 if (!cache_listeners_exist(detail)) {
1204 warn_no_listener(detail);
1205 return -EINVAL;
1206 }
1207 if (test_bit(CACHE_CLEANED, &h->flags))
1208 /* Too late to make an upcall */
1209 return -EAGAIN;
1210
1211 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1212 if (!buf)
1213 return -EAGAIN;
1214
1215 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1216 if (!crq) {
1217 kfree(buf);
1218 return -EAGAIN;
1219 }
1220
1221 crq->q.reader = 0;
1222 crq->buf = buf;
1223 crq->len = 0;
1224 crq->readers = 0;
1225 spin_lock(&queue_lock);
1226 if (test_bit(CACHE_PENDING, &h->flags)) {
1227 crq->item = cache_get(h);
1228 list_add_tail(&crq->q.list, &detail->queue);
1229 } else
1230 /* Lost a race, no longer PENDING, so don't enqueue */
1231 ret = -EAGAIN;
1232 spin_unlock(&queue_lock);
1233 wake_up(&queue_wait);
1234 if (ret == -EAGAIN) {
1235 kfree(buf);
1236 kfree(crq);
1237 }
1238 return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1241
1242 /*
1243 * parse a message from user-space and pass it
1244 * to an appropriate cache
1245 * Messages are, like requests, separated into fields by
1246 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1247 *
1248 * Message is
1249 * reply cachename expiry key ... content....
1250 *
1251 * key and content are both parsed by cache
1252 */
1253
qword_get(char ** bpp,char * dest,int bufsize)1254 int qword_get(char **bpp, char *dest, int bufsize)
1255 {
1256 /* return bytes copied, or -1 on error */
1257 char *bp = *bpp;
1258 int len = 0;
1259
1260 while (*bp == ' ') bp++;
1261
1262 if (bp[0] == '\\' && bp[1] == 'x') {
1263 /* HEX STRING */
1264 bp += 2;
1265 while (len < bufsize - 1) {
1266 int h, l;
1267
1268 h = hex_to_bin(bp[0]);
1269 if (h < 0)
1270 break;
1271
1272 l = hex_to_bin(bp[1]);
1273 if (l < 0)
1274 break;
1275
1276 *dest++ = (h << 4) | l;
1277 bp += 2;
1278 len++;
1279 }
1280 } else {
1281 /* text with \nnn octal quoting */
1282 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1283 if (*bp == '\\' &&
1284 isodigit(bp[1]) && (bp[1] <= '3') &&
1285 isodigit(bp[2]) &&
1286 isodigit(bp[3])) {
1287 int byte = (*++bp -'0');
1288 bp++;
1289 byte = (byte << 3) | (*bp++ - '0');
1290 byte = (byte << 3) | (*bp++ - '0');
1291 *dest++ = byte;
1292 len++;
1293 } else {
1294 *dest++ = *bp++;
1295 len++;
1296 }
1297 }
1298 }
1299
1300 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1301 return -1;
1302 while (*bp == ' ') bp++;
1303 *bpp = bp;
1304 *dest = '\0';
1305 return len;
1306 }
1307 EXPORT_SYMBOL_GPL(qword_get);
1308
1309
1310 /*
1311 * support /proc/net/rpc/$CACHENAME/content
1312 * as a seqfile.
1313 * We call ->cache_show passing NULL for the item to
1314 * get a header, then pass each real item in the cache
1315 */
1316
__cache_seq_start(struct seq_file * m,loff_t * pos)1317 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1318 {
1319 loff_t n = *pos;
1320 unsigned int hash, entry;
1321 struct cache_head *ch;
1322 struct cache_detail *cd = m->private;
1323
1324 if (!n--)
1325 return SEQ_START_TOKEN;
1326 hash = n >> 32;
1327 entry = n & ((1LL<<32) - 1);
1328
1329 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1330 if (!entry--)
1331 return ch;
1332 n &= ~((1LL<<32) - 1);
1333 do {
1334 hash++;
1335 n += 1LL<<32;
1336 } while(hash < cd->hash_size &&
1337 hlist_empty(&cd->hash_table[hash]));
1338 if (hash >= cd->hash_size)
1339 return NULL;
1340 *pos = n+1;
1341 return hlist_entry_safe(rcu_dereference_raw(
1342 hlist_first_rcu(&cd->hash_table[hash])),
1343 struct cache_head, cache_list);
1344 }
1345
cache_seq_next(struct seq_file * m,void * p,loff_t * pos)1346 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1347 {
1348 struct cache_head *ch = p;
1349 int hash = (*pos >> 32);
1350 struct cache_detail *cd = m->private;
1351
1352 if (p == SEQ_START_TOKEN)
1353 hash = 0;
1354 else if (ch->cache_list.next == NULL) {
1355 hash++;
1356 *pos += 1LL<<32;
1357 } else {
1358 ++*pos;
1359 return hlist_entry_safe(rcu_dereference_raw(
1360 hlist_next_rcu(&ch->cache_list)),
1361 struct cache_head, cache_list);
1362 }
1363 *pos &= ~((1LL<<32) - 1);
1364 while (hash < cd->hash_size &&
1365 hlist_empty(&cd->hash_table[hash])) {
1366 hash++;
1367 *pos += 1LL<<32;
1368 }
1369 if (hash >= cd->hash_size)
1370 return NULL;
1371 ++*pos;
1372 return hlist_entry_safe(rcu_dereference_raw(
1373 hlist_first_rcu(&cd->hash_table[hash])),
1374 struct cache_head, cache_list);
1375 }
1376
cache_seq_start_rcu(struct seq_file * m,loff_t * pos)1377 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1378 __acquires(RCU)
1379 {
1380 rcu_read_lock();
1381 return __cache_seq_start(m, pos);
1382 }
1383 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1384
cache_seq_next_rcu(struct seq_file * file,void * p,loff_t * pos)1385 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1386 {
1387 return cache_seq_next(file, p, pos);
1388 }
1389 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1390
cache_seq_stop_rcu(struct seq_file * m,void * p)1391 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1392 __releases(RCU)
1393 {
1394 rcu_read_unlock();
1395 }
1396 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1397
c_show(struct seq_file * m,void * p)1398 static int c_show(struct seq_file *m, void *p)
1399 {
1400 struct cache_head *cp = p;
1401 struct cache_detail *cd = m->private;
1402
1403 if (p == SEQ_START_TOKEN)
1404 return cd->cache_show(m, cd, NULL);
1405
1406 ifdebug(CACHE)
1407 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1408 convert_to_wallclock(cp->expiry_time),
1409 kref_read(&cp->ref), cp->flags);
1410 cache_get(cp);
1411 if (cache_check(cd, cp, NULL))
1412 /* cache_check does a cache_put on failure */
1413 seq_printf(m, "# ");
1414 else {
1415 if (cache_is_expired(cd, cp))
1416 seq_printf(m, "# ");
1417 cache_put(cp, cd);
1418 }
1419
1420 return cd->cache_show(m, cd, cp);
1421 }
1422
1423 static const struct seq_operations cache_content_op = {
1424 .start = cache_seq_start_rcu,
1425 .next = cache_seq_next_rcu,
1426 .stop = cache_seq_stop_rcu,
1427 .show = c_show,
1428 };
1429
content_open(struct inode * inode,struct file * file,struct cache_detail * cd)1430 static int content_open(struct inode *inode, struct file *file,
1431 struct cache_detail *cd)
1432 {
1433 struct seq_file *seq;
1434 int err;
1435
1436 if (!cd || !try_module_get(cd->owner))
1437 return -EACCES;
1438
1439 err = seq_open(file, &cache_content_op);
1440 if (err) {
1441 module_put(cd->owner);
1442 return err;
1443 }
1444
1445 seq = file->private_data;
1446 seq->private = cd;
1447 return 0;
1448 }
1449
content_release(struct inode * inode,struct file * file,struct cache_detail * cd)1450 static int content_release(struct inode *inode, struct file *file,
1451 struct cache_detail *cd)
1452 {
1453 int ret = seq_release(inode, file);
1454 module_put(cd->owner);
1455 return ret;
1456 }
1457
open_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1458 static int open_flush(struct inode *inode, struct file *file,
1459 struct cache_detail *cd)
1460 {
1461 if (!cd || !try_module_get(cd->owner))
1462 return -EACCES;
1463 return nonseekable_open(inode, file);
1464 }
1465
release_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1466 static int release_flush(struct inode *inode, struct file *file,
1467 struct cache_detail *cd)
1468 {
1469 module_put(cd->owner);
1470 return 0;
1471 }
1472
read_flush(struct file * file,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1473 static ssize_t read_flush(struct file *file, char __user *buf,
1474 size_t count, loff_t *ppos,
1475 struct cache_detail *cd)
1476 {
1477 char tbuf[22];
1478 size_t len;
1479
1480 len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1481 convert_to_wallclock(cd->flush_time));
1482 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1483 }
1484
write_flush(struct file * file,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1485 static ssize_t write_flush(struct file *file, const char __user *buf,
1486 size_t count, loff_t *ppos,
1487 struct cache_detail *cd)
1488 {
1489 char tbuf[20];
1490 char *ep;
1491 time_t now;
1492
1493 if (*ppos || count > sizeof(tbuf)-1)
1494 return -EINVAL;
1495 if (copy_from_user(tbuf, buf, count))
1496 return -EFAULT;
1497 tbuf[count] = 0;
1498 simple_strtoul(tbuf, &ep, 0);
1499 if (*ep && *ep != '\n')
1500 return -EINVAL;
1501 /* Note that while we check that 'buf' holds a valid number,
1502 * we always ignore the value and just flush everything.
1503 * Making use of the number leads to races.
1504 */
1505
1506 now = seconds_since_boot();
1507 /* Always flush everything, so behave like cache_purge()
1508 * Do this by advancing flush_time to the current time,
1509 * or by one second if it has already reached the current time.
1510 * Newly added cache entries will always have ->last_refresh greater
1511 * that ->flush_time, so they don't get flushed prematurely.
1512 */
1513
1514 if (cd->flush_time >= now)
1515 now = cd->flush_time + 1;
1516
1517 cd->flush_time = now;
1518 cd->nextcheck = now;
1519 cache_flush();
1520
1521 if (cd->flush)
1522 cd->flush();
1523
1524 *ppos += count;
1525 return count;
1526 }
1527
cache_read_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1529 size_t count, loff_t *ppos)
1530 {
1531 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1532
1533 return cache_read(filp, buf, count, ppos, cd);
1534 }
1535
cache_write_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1537 size_t count, loff_t *ppos)
1538 {
1539 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1540
1541 return cache_write(filp, buf, count, ppos, cd);
1542 }
1543
cache_poll_procfs(struct file * filp,poll_table * wait)1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1545 {
1546 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1547
1548 return cache_poll(filp, wait, cd);
1549 }
1550
cache_ioctl_procfs(struct file * filp,unsigned int cmd,unsigned long arg)1551 static long cache_ioctl_procfs(struct file *filp,
1552 unsigned int cmd, unsigned long arg)
1553 {
1554 struct inode *inode = file_inode(filp);
1555 struct cache_detail *cd = PDE_DATA(inode);
1556
1557 return cache_ioctl(inode, filp, cmd, arg, cd);
1558 }
1559
cache_open_procfs(struct inode * inode,struct file * filp)1560 static int cache_open_procfs(struct inode *inode, struct file *filp)
1561 {
1562 struct cache_detail *cd = PDE_DATA(inode);
1563
1564 return cache_open(inode, filp, cd);
1565 }
1566
cache_release_procfs(struct inode * inode,struct file * filp)1567 static int cache_release_procfs(struct inode *inode, struct file *filp)
1568 {
1569 struct cache_detail *cd = PDE_DATA(inode);
1570
1571 return cache_release(inode, filp, cd);
1572 }
1573
1574 static const struct file_operations cache_file_operations_procfs = {
1575 .owner = THIS_MODULE,
1576 .llseek = no_llseek,
1577 .read = cache_read_procfs,
1578 .write = cache_write_procfs,
1579 .poll = cache_poll_procfs,
1580 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1581 .open = cache_open_procfs,
1582 .release = cache_release_procfs,
1583 };
1584
content_open_procfs(struct inode * inode,struct file * filp)1585 static int content_open_procfs(struct inode *inode, struct file *filp)
1586 {
1587 struct cache_detail *cd = PDE_DATA(inode);
1588
1589 return content_open(inode, filp, cd);
1590 }
1591
content_release_procfs(struct inode * inode,struct file * filp)1592 static int content_release_procfs(struct inode *inode, struct file *filp)
1593 {
1594 struct cache_detail *cd = PDE_DATA(inode);
1595
1596 return content_release(inode, filp, cd);
1597 }
1598
1599 static const struct file_operations content_file_operations_procfs = {
1600 .open = content_open_procfs,
1601 .read = seq_read,
1602 .llseek = seq_lseek,
1603 .release = content_release_procfs,
1604 };
1605
open_flush_procfs(struct inode * inode,struct file * filp)1606 static int open_flush_procfs(struct inode *inode, struct file *filp)
1607 {
1608 struct cache_detail *cd = PDE_DATA(inode);
1609
1610 return open_flush(inode, filp, cd);
1611 }
1612
release_flush_procfs(struct inode * inode,struct file * filp)1613 static int release_flush_procfs(struct inode *inode, struct file *filp)
1614 {
1615 struct cache_detail *cd = PDE_DATA(inode);
1616
1617 return release_flush(inode, filp, cd);
1618 }
1619
read_flush_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1621 size_t count, loff_t *ppos)
1622 {
1623 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1624
1625 return read_flush(filp, buf, count, ppos, cd);
1626 }
1627
write_flush_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1628 static ssize_t write_flush_procfs(struct file *filp,
1629 const char __user *buf,
1630 size_t count, loff_t *ppos)
1631 {
1632 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1633
1634 return write_flush(filp, buf, count, ppos, cd);
1635 }
1636
1637 static const struct file_operations cache_flush_operations_procfs = {
1638 .open = open_flush_procfs,
1639 .read = read_flush_procfs,
1640 .write = write_flush_procfs,
1641 .release = release_flush_procfs,
1642 .llseek = no_llseek,
1643 };
1644
remove_cache_proc_entries(struct cache_detail * cd)1645 static void remove_cache_proc_entries(struct cache_detail *cd)
1646 {
1647 if (cd->procfs) {
1648 proc_remove(cd->procfs);
1649 cd->procfs = NULL;
1650 }
1651 }
1652
1653 #ifdef CONFIG_PROC_FS
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1655 {
1656 struct proc_dir_entry *p;
1657 struct sunrpc_net *sn;
1658
1659 sn = net_generic(net, sunrpc_net_id);
1660 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1661 if (cd->procfs == NULL)
1662 goto out_nomem;
1663
1664 p = proc_create_data("flush", S_IFREG | 0600,
1665 cd->procfs, &cache_flush_operations_procfs, cd);
1666 if (p == NULL)
1667 goto out_nomem;
1668
1669 if (cd->cache_request || cd->cache_parse) {
1670 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1671 &cache_file_operations_procfs, cd);
1672 if (p == NULL)
1673 goto out_nomem;
1674 }
1675 if (cd->cache_show) {
1676 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1677 &content_file_operations_procfs, cd);
1678 if (p == NULL)
1679 goto out_nomem;
1680 }
1681 return 0;
1682 out_nomem:
1683 remove_cache_proc_entries(cd);
1684 return -ENOMEM;
1685 }
1686 #else /* CONFIG_PROC_FS */
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1688 {
1689 return 0;
1690 }
1691 #endif
1692
cache_initialize(void)1693 void __init cache_initialize(void)
1694 {
1695 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1696 }
1697
cache_register_net(struct cache_detail * cd,struct net * net)1698 int cache_register_net(struct cache_detail *cd, struct net *net)
1699 {
1700 int ret;
1701
1702 sunrpc_init_cache_detail(cd);
1703 ret = create_cache_proc_entries(cd, net);
1704 if (ret)
1705 sunrpc_destroy_cache_detail(cd);
1706 return ret;
1707 }
1708 EXPORT_SYMBOL_GPL(cache_register_net);
1709
cache_unregister_net(struct cache_detail * cd,struct net * net)1710 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1711 {
1712 remove_cache_proc_entries(cd);
1713 sunrpc_destroy_cache_detail(cd);
1714 }
1715 EXPORT_SYMBOL_GPL(cache_unregister_net);
1716
cache_create_net(const struct cache_detail * tmpl,struct net * net)1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1718 {
1719 struct cache_detail *cd;
1720 int i;
1721
1722 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1723 if (cd == NULL)
1724 return ERR_PTR(-ENOMEM);
1725
1726 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1727 GFP_KERNEL);
1728 if (cd->hash_table == NULL) {
1729 kfree(cd);
1730 return ERR_PTR(-ENOMEM);
1731 }
1732
1733 for (i = 0; i < cd->hash_size; i++)
1734 INIT_HLIST_HEAD(&cd->hash_table[i]);
1735 cd->net = net;
1736 return cd;
1737 }
1738 EXPORT_SYMBOL_GPL(cache_create_net);
1739
cache_destroy_net(struct cache_detail * cd,struct net * net)1740 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1741 {
1742 kfree(cd->hash_table);
1743 kfree(cd);
1744 }
1745 EXPORT_SYMBOL_GPL(cache_destroy_net);
1746
cache_read_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1748 size_t count, loff_t *ppos)
1749 {
1750 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1751
1752 return cache_read(filp, buf, count, ppos, cd);
1753 }
1754
cache_write_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1756 size_t count, loff_t *ppos)
1757 {
1758 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1759
1760 return cache_write(filp, buf, count, ppos, cd);
1761 }
1762
cache_poll_pipefs(struct file * filp,poll_table * wait)1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1764 {
1765 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766
1767 return cache_poll(filp, wait, cd);
1768 }
1769
cache_ioctl_pipefs(struct file * filp,unsigned int cmd,unsigned long arg)1770 static long cache_ioctl_pipefs(struct file *filp,
1771 unsigned int cmd, unsigned long arg)
1772 {
1773 struct inode *inode = file_inode(filp);
1774 struct cache_detail *cd = RPC_I(inode)->private;
1775
1776 return cache_ioctl(inode, filp, cmd, arg, cd);
1777 }
1778
cache_open_pipefs(struct inode * inode,struct file * filp)1779 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1780 {
1781 struct cache_detail *cd = RPC_I(inode)->private;
1782
1783 return cache_open(inode, filp, cd);
1784 }
1785
cache_release_pipefs(struct inode * inode,struct file * filp)1786 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1787 {
1788 struct cache_detail *cd = RPC_I(inode)->private;
1789
1790 return cache_release(inode, filp, cd);
1791 }
1792
1793 const struct file_operations cache_file_operations_pipefs = {
1794 .owner = THIS_MODULE,
1795 .llseek = no_llseek,
1796 .read = cache_read_pipefs,
1797 .write = cache_write_pipefs,
1798 .poll = cache_poll_pipefs,
1799 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1800 .open = cache_open_pipefs,
1801 .release = cache_release_pipefs,
1802 };
1803
content_open_pipefs(struct inode * inode,struct file * filp)1804 static int content_open_pipefs(struct inode *inode, struct file *filp)
1805 {
1806 struct cache_detail *cd = RPC_I(inode)->private;
1807
1808 return content_open(inode, filp, cd);
1809 }
1810
content_release_pipefs(struct inode * inode,struct file * filp)1811 static int content_release_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 struct cache_detail *cd = RPC_I(inode)->private;
1814
1815 return content_release(inode, filp, cd);
1816 }
1817
1818 const struct file_operations content_file_operations_pipefs = {
1819 .open = content_open_pipefs,
1820 .read = seq_read,
1821 .llseek = seq_lseek,
1822 .release = content_release_pipefs,
1823 };
1824
open_flush_pipefs(struct inode * inode,struct file * filp)1825 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1826 {
1827 struct cache_detail *cd = RPC_I(inode)->private;
1828
1829 return open_flush(inode, filp, cd);
1830 }
1831
release_flush_pipefs(struct inode * inode,struct file * filp)1832 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1833 {
1834 struct cache_detail *cd = RPC_I(inode)->private;
1835
1836 return release_flush(inode, filp, cd);
1837 }
1838
read_flush_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1840 size_t count, loff_t *ppos)
1841 {
1842 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1843
1844 return read_flush(filp, buf, count, ppos, cd);
1845 }
1846
write_flush_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1847 static ssize_t write_flush_pipefs(struct file *filp,
1848 const char __user *buf,
1849 size_t count, loff_t *ppos)
1850 {
1851 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1852
1853 return write_flush(filp, buf, count, ppos, cd);
1854 }
1855
1856 const struct file_operations cache_flush_operations_pipefs = {
1857 .open = open_flush_pipefs,
1858 .read = read_flush_pipefs,
1859 .write = write_flush_pipefs,
1860 .release = release_flush_pipefs,
1861 .llseek = no_llseek,
1862 };
1863
sunrpc_cache_register_pipefs(struct dentry * parent,const char * name,umode_t umode,struct cache_detail * cd)1864 int sunrpc_cache_register_pipefs(struct dentry *parent,
1865 const char *name, umode_t umode,
1866 struct cache_detail *cd)
1867 {
1868 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1869 if (IS_ERR(dir))
1870 return PTR_ERR(dir);
1871 cd->pipefs = dir;
1872 return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1875
sunrpc_cache_unregister_pipefs(struct cache_detail * cd)1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1877 {
1878 if (cd->pipefs) {
1879 rpc_remove_cache_dir(cd->pipefs);
1880 cd->pipefs = NULL;
1881 }
1882 }
1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1884
sunrpc_cache_unhash(struct cache_detail * cd,struct cache_head * h)1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1886 {
1887 spin_lock(&cd->hash_lock);
1888 if (!hlist_unhashed(&h->cache_list)){
1889 hlist_del_init_rcu(&h->cache_list);
1890 cd->entries--;
1891 set_bit(CACHE_CLEANED, &h->flags);
1892 spin_unlock(&cd->hash_lock);
1893 cache_fresh_unlocked(h, cd);
1894 cache_put(h, cd);
1895 } else
1896 spin_unlock(&cd->hash_lock);
1897 }
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1899