• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45 
46 static void tls_device_gc_task(struct work_struct *work);
47 
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52 
tls_device_free_ctx(struct tls_context * ctx)53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55 	if (ctx->tx_conf == TLS_HW) {
56 		kfree(tls_offload_ctx_tx(ctx));
57 		kfree(ctx->tx.rec_seq);
58 		kfree(ctx->tx.iv);
59 	}
60 
61 	if (ctx->rx_conf == TLS_HW)
62 		kfree(tls_offload_ctx_rx(ctx));
63 
64 	tls_ctx_free(NULL, ctx);
65 }
66 
tls_device_gc_task(struct work_struct * work)67 static void tls_device_gc_task(struct work_struct *work)
68 {
69 	struct tls_context *ctx, *tmp;
70 	unsigned long flags;
71 	LIST_HEAD(gc_list);
72 
73 	spin_lock_irqsave(&tls_device_lock, flags);
74 	list_splice_init(&tls_device_gc_list, &gc_list);
75 	spin_unlock_irqrestore(&tls_device_lock, flags);
76 
77 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 		struct net_device *netdev = ctx->netdev;
79 
80 		if (netdev && ctx->tx_conf == TLS_HW) {
81 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 							TLS_OFFLOAD_CTX_DIR_TX);
83 			dev_put(netdev);
84 			ctx->netdev = NULL;
85 		}
86 
87 		list_del(&ctx->list);
88 		tls_device_free_ctx(ctx);
89 	}
90 }
91 
tls_device_queue_ctx_destruction(struct tls_context * ctx)92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&tls_device_lock, flags);
97 	if (unlikely(!refcount_dec_and_test(&ctx->refcount)))
98 		goto unlock;
99 
100 	list_move_tail(&ctx->list, &tls_device_gc_list);
101 
102 	/* schedule_work inside the spinlock
103 	 * to make sure tls_device_down waits for that work.
104 	 */
105 	schedule_work(&tls_device_gc_work);
106 unlock:
107 	spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109 
110 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113 	struct dst_entry *dst = sk_dst_get(sk);
114 	struct net_device *netdev = NULL;
115 
116 	if (likely(dst)) {
117 		netdev = dst->dev;
118 		dev_hold(netdev);
119 	}
120 
121 	dst_release(dst);
122 
123 	return netdev;
124 }
125 
destroy_record(struct tls_record_info * record)126 static void destroy_record(struct tls_record_info *record)
127 {
128 	int i;
129 
130 	for (i = 0; i < record->num_frags; i++)
131 		__skb_frag_unref(&record->frags[i]);
132 	kfree(record);
133 }
134 
delete_all_records(struct tls_offload_context_tx * offload_ctx)135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137 	struct tls_record_info *info, *temp;
138 
139 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140 		list_del(&info->list);
141 		destroy_record(info);
142 	}
143 
144 	offload_ctx->retransmit_hint = NULL;
145 }
146 
tls_icsk_clean_acked(struct sock * sk,u32 acked_seq)147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
150 	struct tls_record_info *info, *temp;
151 	struct tls_offload_context_tx *ctx;
152 	u64 deleted_records = 0;
153 	unsigned long flags;
154 
155 	if (!tls_ctx)
156 		return;
157 
158 	ctx = tls_offload_ctx_tx(tls_ctx);
159 
160 	spin_lock_irqsave(&ctx->lock, flags);
161 	info = ctx->retransmit_hint;
162 	if (info && !before(acked_seq, info->end_seq))
163 		ctx->retransmit_hint = NULL;
164 
165 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166 		if (before(acked_seq, info->end_seq))
167 			break;
168 		list_del(&info->list);
169 
170 		destroy_record(info);
171 		deleted_records++;
172 	}
173 
174 	ctx->unacked_record_sn += deleted_records;
175 	spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177 
178 /* At this point, there should be no references on this
179  * socket and no in-flight SKBs associated with this
180  * socket, so it is safe to free all the resources.
181  */
tls_device_sk_destruct(struct sock * sk)182 static void tls_device_sk_destruct(struct sock *sk)
183 {
184 	struct tls_context *tls_ctx = tls_get_ctx(sk);
185 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186 
187 	tls_ctx->sk_destruct(sk);
188 
189 	if (tls_ctx->tx_conf == TLS_HW) {
190 		if (ctx->open_record)
191 			destroy_record(ctx->open_record);
192 		delete_all_records(ctx);
193 		crypto_free_aead(ctx->aead_send);
194 		clean_acked_data_disable(inet_csk(sk));
195 	}
196 
197 	tls_device_queue_ctx_destruction(tls_ctx);
198 }
199 
tls_device_free_resources_tx(struct sock * sk)200 void tls_device_free_resources_tx(struct sock *sk)
201 {
202 	struct tls_context *tls_ctx = tls_get_ctx(sk);
203 
204 	tls_free_partial_record(sk, tls_ctx);
205 }
206 
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)207 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
208 				 u32 seq)
209 {
210 	struct net_device *netdev;
211 	struct sk_buff *skb;
212 	int err = 0;
213 	u8 *rcd_sn;
214 
215 	skb = tcp_write_queue_tail(sk);
216 	if (skb)
217 		TCP_SKB_CB(skb)->eor = 1;
218 
219 	rcd_sn = tls_ctx->tx.rec_seq;
220 
221 	down_read(&device_offload_lock);
222 	netdev = tls_ctx->netdev;
223 	if (netdev)
224 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
225 							 rcd_sn,
226 							 TLS_OFFLOAD_CTX_DIR_TX);
227 	up_read(&device_offload_lock);
228 	if (err)
229 		return;
230 
231 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
232 }
233 
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)234 static void tls_append_frag(struct tls_record_info *record,
235 			    struct page_frag *pfrag,
236 			    int size)
237 {
238 	skb_frag_t *frag;
239 
240 	frag = &record->frags[record->num_frags - 1];
241 	if (skb_frag_page(frag) == pfrag->page &&
242 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
243 		skb_frag_size_add(frag, size);
244 	} else {
245 		++frag;
246 		__skb_frag_set_page(frag, pfrag->page);
247 		skb_frag_off_set(frag, pfrag->offset);
248 		skb_frag_size_set(frag, size);
249 		++record->num_frags;
250 		get_page(pfrag->page);
251 	}
252 
253 	pfrag->offset += size;
254 	record->len += size;
255 }
256 
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)257 static int tls_push_record(struct sock *sk,
258 			   struct tls_context *ctx,
259 			   struct tls_offload_context_tx *offload_ctx,
260 			   struct tls_record_info *record,
261 			   int flags)
262 {
263 	struct tls_prot_info *prot = &ctx->prot_info;
264 	struct tcp_sock *tp = tcp_sk(sk);
265 	skb_frag_t *frag;
266 	int i;
267 
268 	record->end_seq = tp->write_seq + record->len;
269 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
270 	offload_ctx->open_record = NULL;
271 
272 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
273 		tls_device_resync_tx(sk, ctx, tp->write_seq);
274 
275 	tls_advance_record_sn(sk, prot, &ctx->tx);
276 
277 	for (i = 0; i < record->num_frags; i++) {
278 		frag = &record->frags[i];
279 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
280 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
281 			    skb_frag_size(frag), skb_frag_off(frag));
282 		sk_mem_charge(sk, skb_frag_size(frag));
283 		get_page(skb_frag_page(frag));
284 	}
285 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
286 
287 	/* all ready, send */
288 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
289 }
290 
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)291 static int tls_device_record_close(struct sock *sk,
292 				   struct tls_context *ctx,
293 				   struct tls_record_info *record,
294 				   struct page_frag *pfrag,
295 				   unsigned char record_type)
296 {
297 	struct tls_prot_info *prot = &ctx->prot_info;
298 	int ret;
299 
300 	/* append tag
301 	 * device will fill in the tag, we just need to append a placeholder
302 	 * use socket memory to improve coalescing (re-using a single buffer
303 	 * increases frag count)
304 	 * if we can't allocate memory now, steal some back from data
305 	 */
306 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
307 					sk->sk_allocation))) {
308 		ret = 0;
309 		tls_append_frag(record, pfrag, prot->tag_size);
310 	} else {
311 		ret = prot->tag_size;
312 		if (record->len <= prot->overhead_size)
313 			return -ENOMEM;
314 	}
315 
316 	/* fill prepend */
317 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
318 			 record->len - prot->overhead_size,
319 			 record_type, prot->version);
320 	return ret;
321 }
322 
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)323 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
324 				 struct page_frag *pfrag,
325 				 size_t prepend_size)
326 {
327 	struct tls_record_info *record;
328 	skb_frag_t *frag;
329 
330 	record = kmalloc(sizeof(*record), GFP_KERNEL);
331 	if (!record)
332 		return -ENOMEM;
333 
334 	frag = &record->frags[0];
335 	__skb_frag_set_page(frag, pfrag->page);
336 	skb_frag_off_set(frag, pfrag->offset);
337 	skb_frag_size_set(frag, prepend_size);
338 
339 	get_page(pfrag->page);
340 	pfrag->offset += prepend_size;
341 
342 	record->num_frags = 1;
343 	record->len = prepend_size;
344 	offload_ctx->open_record = record;
345 	return 0;
346 }
347 
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)348 static int tls_do_allocation(struct sock *sk,
349 			     struct tls_offload_context_tx *offload_ctx,
350 			     struct page_frag *pfrag,
351 			     size_t prepend_size)
352 {
353 	int ret;
354 
355 	if (!offload_ctx->open_record) {
356 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
357 						   sk->sk_allocation))) {
358 			sk->sk_prot->enter_memory_pressure(sk);
359 			sk_stream_moderate_sndbuf(sk);
360 			return -ENOMEM;
361 		}
362 
363 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
364 		if (ret)
365 			return ret;
366 
367 		if (pfrag->size > pfrag->offset)
368 			return 0;
369 	}
370 
371 	if (!sk_page_frag_refill(sk, pfrag))
372 		return -ENOMEM;
373 
374 	return 0;
375 }
376 
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)377 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
378 {
379 	size_t pre_copy, nocache;
380 
381 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
382 	if (pre_copy) {
383 		pre_copy = min(pre_copy, bytes);
384 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
385 			return -EFAULT;
386 		bytes -= pre_copy;
387 		addr += pre_copy;
388 	}
389 
390 	nocache = round_down(bytes, SMP_CACHE_BYTES);
391 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
392 		return -EFAULT;
393 	bytes -= nocache;
394 	addr += nocache;
395 
396 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
397 		return -EFAULT;
398 
399 	return 0;
400 }
401 
tls_push_data(struct sock * sk,struct iov_iter * msg_iter,size_t size,int flags,unsigned char record_type)402 static int tls_push_data(struct sock *sk,
403 			 struct iov_iter *msg_iter,
404 			 size_t size, int flags,
405 			 unsigned char record_type)
406 {
407 	struct tls_context *tls_ctx = tls_get_ctx(sk);
408 	struct tls_prot_info *prot = &tls_ctx->prot_info;
409 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
410 	struct tls_record_info *record = ctx->open_record;
411 	int tls_push_record_flags;
412 	struct page_frag *pfrag;
413 	size_t orig_size = size;
414 	u32 max_open_record_len;
415 	bool more = false;
416 	bool done = false;
417 	int copy, rc = 0;
418 	long timeo;
419 
420 	if (flags &
421 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
422 		return -EOPNOTSUPP;
423 
424 	if (sk->sk_err)
425 		return -sk->sk_err;
426 
427 	flags |= MSG_SENDPAGE_DECRYPTED;
428 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
429 
430 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
431 	if (tls_is_partially_sent_record(tls_ctx)) {
432 		rc = tls_push_partial_record(sk, tls_ctx, flags);
433 		if (rc < 0)
434 			return rc;
435 	}
436 
437 	pfrag = sk_page_frag(sk);
438 
439 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
440 	 * we need to leave room for an authentication tag.
441 	 */
442 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
443 			      prot->prepend_size;
444 	do {
445 		rc = tls_do_allocation(sk, ctx, pfrag,
446 				       prot->prepend_size);
447 		if (rc) {
448 			rc = sk_stream_wait_memory(sk, &timeo);
449 			if (!rc)
450 				continue;
451 
452 			record = ctx->open_record;
453 			if (!record)
454 				break;
455 handle_error:
456 			if (record_type != TLS_RECORD_TYPE_DATA) {
457 				/* avoid sending partial
458 				 * record with type !=
459 				 * application_data
460 				 */
461 				size = orig_size;
462 				destroy_record(record);
463 				ctx->open_record = NULL;
464 			} else if (record->len > prot->prepend_size) {
465 				goto last_record;
466 			}
467 
468 			break;
469 		}
470 
471 		record = ctx->open_record;
472 		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
473 		copy = min_t(size_t, copy, (max_open_record_len - record->len));
474 
475 		if (copy) {
476 			rc = tls_device_copy_data(page_address(pfrag->page) +
477 						  pfrag->offset, copy, msg_iter);
478 			if (rc)
479 				goto handle_error;
480 			tls_append_frag(record, pfrag, copy);
481 		}
482 
483 		size -= copy;
484 		if (!size) {
485 last_record:
486 			tls_push_record_flags = flags;
487 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
488 				more = true;
489 				break;
490 			}
491 
492 			done = true;
493 		}
494 
495 		if (done || record->len >= max_open_record_len ||
496 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
497 			rc = tls_device_record_close(sk, tls_ctx, record,
498 						     pfrag, record_type);
499 			if (rc) {
500 				if (rc > 0) {
501 					size += rc;
502 				} else {
503 					size = orig_size;
504 					destroy_record(record);
505 					ctx->open_record = NULL;
506 					break;
507 				}
508 			}
509 
510 			rc = tls_push_record(sk,
511 					     tls_ctx,
512 					     ctx,
513 					     record,
514 					     tls_push_record_flags);
515 			if (rc < 0)
516 				break;
517 		}
518 	} while (!done);
519 
520 	tls_ctx->pending_open_record_frags = more;
521 
522 	if (orig_size - size > 0)
523 		rc = orig_size - size;
524 
525 	return rc;
526 }
527 
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)528 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
529 {
530 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
531 	struct tls_context *tls_ctx = tls_get_ctx(sk);
532 	int rc;
533 
534 	mutex_lock(&tls_ctx->tx_lock);
535 	lock_sock(sk);
536 
537 	if (unlikely(msg->msg_controllen)) {
538 		rc = tls_proccess_cmsg(sk, msg, &record_type);
539 		if (rc)
540 			goto out;
541 	}
542 
543 	rc = tls_push_data(sk, &msg->msg_iter, size,
544 			   msg->msg_flags, record_type);
545 
546 out:
547 	release_sock(sk);
548 	mutex_unlock(&tls_ctx->tx_lock);
549 	return rc;
550 }
551 
tls_device_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)552 int tls_device_sendpage(struct sock *sk, struct page *page,
553 			int offset, size_t size, int flags)
554 {
555 	struct tls_context *tls_ctx = tls_get_ctx(sk);
556 	struct iov_iter	msg_iter;
557 	char *kaddr;
558 	struct kvec iov;
559 	int rc;
560 
561 	if (flags & MSG_SENDPAGE_NOTLAST)
562 		flags |= MSG_MORE;
563 
564 	mutex_lock(&tls_ctx->tx_lock);
565 	lock_sock(sk);
566 
567 	if (flags & MSG_OOB) {
568 		rc = -EOPNOTSUPP;
569 		goto out;
570 	}
571 
572 	kaddr = kmap(page);
573 	iov.iov_base = kaddr + offset;
574 	iov.iov_len = size;
575 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
576 	rc = tls_push_data(sk, &msg_iter, size,
577 			   flags, TLS_RECORD_TYPE_DATA);
578 	kunmap(page);
579 
580 out:
581 	release_sock(sk);
582 	mutex_unlock(&tls_ctx->tx_lock);
583 	return rc;
584 }
585 
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)586 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
587 				       u32 seq, u64 *p_record_sn)
588 {
589 	u64 record_sn = context->hint_record_sn;
590 	struct tls_record_info *info, *last;
591 
592 	info = context->retransmit_hint;
593 	if (!info ||
594 	    before(seq, info->end_seq - info->len)) {
595 		/* if retransmit_hint is irrelevant start
596 		 * from the beggining of the list
597 		 */
598 		info = list_first_entry_or_null(&context->records_list,
599 						struct tls_record_info, list);
600 		if (!info)
601 			return NULL;
602 		/* send the start_marker record if seq number is before the
603 		 * tls offload start marker sequence number. This record is
604 		 * required to handle TCP packets which are before TLS offload
605 		 * started.
606 		 *  And if it's not start marker, look if this seq number
607 		 * belongs to the list.
608 		 */
609 		if (likely(!tls_record_is_start_marker(info))) {
610 			/* we have the first record, get the last record to see
611 			 * if this seq number belongs to the list.
612 			 */
613 			last = list_last_entry(&context->records_list,
614 					       struct tls_record_info, list);
615 
616 			if (!between(seq, tls_record_start_seq(info),
617 				     last->end_seq))
618 				return NULL;
619 		}
620 		record_sn = context->unacked_record_sn;
621 	}
622 
623 	/* We just need the _rcu for the READ_ONCE() */
624 	rcu_read_lock();
625 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
626 		if (before(seq, info->end_seq)) {
627 			if (!context->retransmit_hint ||
628 			    after(info->end_seq,
629 				  context->retransmit_hint->end_seq)) {
630 				context->hint_record_sn = record_sn;
631 				context->retransmit_hint = info;
632 			}
633 			*p_record_sn = record_sn;
634 			goto exit_rcu_unlock;
635 		}
636 		record_sn++;
637 	}
638 	info = NULL;
639 
640 exit_rcu_unlock:
641 	rcu_read_unlock();
642 	return info;
643 }
644 EXPORT_SYMBOL(tls_get_record);
645 
tls_device_push_pending_record(struct sock * sk,int flags)646 static int tls_device_push_pending_record(struct sock *sk, int flags)
647 {
648 	struct iov_iter	msg_iter;
649 
650 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
651 	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
652 }
653 
tls_device_write_space(struct sock * sk,struct tls_context * ctx)654 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
655 {
656 	if (tls_is_partially_sent_record(ctx)) {
657 		gfp_t sk_allocation = sk->sk_allocation;
658 
659 		WARN_ON_ONCE(sk->sk_write_pending);
660 
661 		sk->sk_allocation = GFP_ATOMIC;
662 		tls_push_partial_record(sk, ctx,
663 					MSG_DONTWAIT | MSG_NOSIGNAL |
664 					MSG_SENDPAGE_DECRYPTED);
665 		sk->sk_allocation = sk_allocation;
666 	}
667 }
668 
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)669 static void tls_device_resync_rx(struct tls_context *tls_ctx,
670 				 struct sock *sk, u32 seq, u8 *rcd_sn)
671 {
672 	struct net_device *netdev;
673 
674 	if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
675 		return;
676 	netdev = READ_ONCE(tls_ctx->netdev);
677 	if (netdev)
678 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
679 						   TLS_OFFLOAD_CTX_DIR_RX);
680 	clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
681 }
682 
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)683 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
684 {
685 	struct tls_context *tls_ctx = tls_get_ctx(sk);
686 	struct tls_offload_context_rx *rx_ctx;
687 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
688 	struct tls_prot_info *prot;
689 	u32 is_req_pending;
690 	s64 resync_req;
691 	u32 req_seq;
692 
693 	if (tls_ctx->rx_conf != TLS_HW)
694 		return;
695 
696 	prot = &tls_ctx->prot_info;
697 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
698 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
699 
700 	switch (rx_ctx->resync_type) {
701 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
702 		resync_req = atomic64_read(&rx_ctx->resync_req);
703 		req_seq = resync_req >> 32;
704 		seq += TLS_HEADER_SIZE - 1;
705 		is_req_pending = resync_req;
706 
707 		if (likely(!is_req_pending) || req_seq != seq ||
708 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
709 			return;
710 		break;
711 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
712 		if (likely(!rx_ctx->resync_nh_do_now))
713 			return;
714 
715 		/* head of next rec is already in, note that the sock_inq will
716 		 * include the currently parsed message when called from parser
717 		 */
718 		if (tcp_inq(sk) > rcd_len)
719 			return;
720 
721 		rx_ctx->resync_nh_do_now = 0;
722 		seq += rcd_len;
723 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
724 		break;
725 	}
726 
727 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
728 }
729 
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)730 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
731 					   struct tls_offload_context_rx *ctx,
732 					   struct sock *sk, struct sk_buff *skb)
733 {
734 	struct strp_msg *rxm;
735 
736 	/* device will request resyncs by itself based on stream scan */
737 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
738 		return;
739 	/* already scheduled */
740 	if (ctx->resync_nh_do_now)
741 		return;
742 	/* seen decrypted fragments since last fully-failed record */
743 	if (ctx->resync_nh_reset) {
744 		ctx->resync_nh_reset = 0;
745 		ctx->resync_nh.decrypted_failed = 1;
746 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
747 		return;
748 	}
749 
750 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
751 		return;
752 
753 	/* doing resync, bump the next target in case it fails */
754 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
755 		ctx->resync_nh.decrypted_tgt *= 2;
756 	else
757 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
758 
759 	rxm = strp_msg(skb);
760 
761 	/* head of next rec is already in, parser will sync for us */
762 	if (tcp_inq(sk) > rxm->full_len) {
763 		ctx->resync_nh_do_now = 1;
764 	} else {
765 		struct tls_prot_info *prot = &tls_ctx->prot_info;
766 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
767 
768 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
769 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
770 
771 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
772 				     rcd_sn);
773 	}
774 }
775 
tls_device_reencrypt(struct sock * sk,struct sk_buff * skb)776 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
777 {
778 	struct strp_msg *rxm = strp_msg(skb);
779 	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
780 	struct sk_buff *skb_iter, *unused;
781 	struct scatterlist sg[1];
782 	char *orig_buf, *buf;
783 
784 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
785 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
786 	if (!orig_buf)
787 		return -ENOMEM;
788 	buf = orig_buf;
789 
790 	nsg = skb_cow_data(skb, 0, &unused);
791 	if (unlikely(nsg < 0)) {
792 		err = nsg;
793 		goto free_buf;
794 	}
795 
796 	sg_init_table(sg, 1);
797 	sg_set_buf(&sg[0], buf,
798 		   rxm->full_len + TLS_HEADER_SIZE +
799 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
800 	err = skb_copy_bits(skb, offset, buf,
801 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
802 	if (err)
803 		goto free_buf;
804 
805 	/* We are interested only in the decrypted data not the auth */
806 	err = decrypt_skb(sk, skb, sg);
807 	if (err != -EBADMSG)
808 		goto free_buf;
809 	else
810 		err = 0;
811 
812 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
813 
814 	if (skb_pagelen(skb) > offset) {
815 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
816 
817 		if (skb->decrypted) {
818 			err = skb_store_bits(skb, offset, buf, copy);
819 			if (err)
820 				goto free_buf;
821 		}
822 
823 		offset += copy;
824 		buf += copy;
825 	}
826 
827 	pos = skb_pagelen(skb);
828 	skb_walk_frags(skb, skb_iter) {
829 		int frag_pos;
830 
831 		/* Practically all frags must belong to msg if reencrypt
832 		 * is needed with current strparser and coalescing logic,
833 		 * but strparser may "get optimized", so let's be safe.
834 		 */
835 		if (pos + skb_iter->len <= offset)
836 			goto done_with_frag;
837 		if (pos >= data_len + rxm->offset)
838 			break;
839 
840 		frag_pos = offset - pos;
841 		copy = min_t(int, skb_iter->len - frag_pos,
842 			     data_len + rxm->offset - offset);
843 
844 		if (skb_iter->decrypted) {
845 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
846 			if (err)
847 				goto free_buf;
848 		}
849 
850 		offset += copy;
851 		buf += copy;
852 done_with_frag:
853 		pos += skb_iter->len;
854 	}
855 
856 free_buf:
857 	kfree(orig_buf);
858 	return err;
859 }
860 
tls_device_decrypted(struct sock * sk,struct sk_buff * skb)861 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
862 {
863 	struct tls_context *tls_ctx = tls_get_ctx(sk);
864 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
865 	int is_decrypted = skb->decrypted;
866 	int is_encrypted = !is_decrypted;
867 	struct sk_buff *skb_iter;
868 
869 	/* Check if all the data is decrypted already */
870 	skb_walk_frags(skb, skb_iter) {
871 		is_decrypted &= skb_iter->decrypted;
872 		is_encrypted &= !skb_iter->decrypted;
873 	}
874 
875 	ctx->sw.decrypted |= is_decrypted;
876 
877 	/* Return immediately if the record is either entirely plaintext or
878 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
879 	 * record.
880 	 */
881 	if (is_decrypted) {
882 		ctx->resync_nh_reset = 1;
883 		return 0;
884 	}
885 	if (is_encrypted) {
886 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
887 		return 0;
888 	}
889 
890 	ctx->resync_nh_reset = 1;
891 	return tls_device_reencrypt(sk, skb);
892 }
893 
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)894 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
895 			      struct net_device *netdev)
896 {
897 	if (sk->sk_destruct != tls_device_sk_destruct) {
898 		refcount_set(&ctx->refcount, 1);
899 		dev_hold(netdev);
900 		ctx->netdev = netdev;
901 		spin_lock_irq(&tls_device_lock);
902 		list_add_tail(&ctx->list, &tls_device_list);
903 		spin_unlock_irq(&tls_device_lock);
904 
905 		ctx->sk_destruct = sk->sk_destruct;
906 		sk->sk_destruct = tls_device_sk_destruct;
907 	}
908 }
909 
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)910 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
911 {
912 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
913 	struct tls_context *tls_ctx = tls_get_ctx(sk);
914 	struct tls_prot_info *prot = &tls_ctx->prot_info;
915 	struct tls_record_info *start_marker_record;
916 	struct tls_offload_context_tx *offload_ctx;
917 	struct tls_crypto_info *crypto_info;
918 	struct net_device *netdev;
919 	char *iv, *rec_seq;
920 	struct sk_buff *skb;
921 	__be64 rcd_sn;
922 	int rc;
923 
924 	if (!ctx)
925 		return -EINVAL;
926 
927 	if (ctx->priv_ctx_tx)
928 		return -EEXIST;
929 
930 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
931 	if (!start_marker_record)
932 		return -ENOMEM;
933 
934 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
935 	if (!offload_ctx) {
936 		rc = -ENOMEM;
937 		goto free_marker_record;
938 	}
939 
940 	crypto_info = &ctx->crypto_send.info;
941 	if (crypto_info->version != TLS_1_2_VERSION) {
942 		rc = -EOPNOTSUPP;
943 		goto free_offload_ctx;
944 	}
945 
946 	switch (crypto_info->cipher_type) {
947 	case TLS_CIPHER_AES_GCM_128:
948 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
949 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
950 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
951 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
952 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
953 		rec_seq =
954 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
955 		break;
956 	default:
957 		rc = -EINVAL;
958 		goto free_offload_ctx;
959 	}
960 
961 	/* Sanity-check the rec_seq_size for stack allocations */
962 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
963 		rc = -EINVAL;
964 		goto free_offload_ctx;
965 	}
966 
967 	prot->version = crypto_info->version;
968 	prot->cipher_type = crypto_info->cipher_type;
969 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
970 	prot->tag_size = tag_size;
971 	prot->overhead_size = prot->prepend_size + prot->tag_size;
972 	prot->iv_size = iv_size;
973 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
974 			     GFP_KERNEL);
975 	if (!ctx->tx.iv) {
976 		rc = -ENOMEM;
977 		goto free_offload_ctx;
978 	}
979 
980 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
981 
982 	prot->rec_seq_size = rec_seq_size;
983 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
984 	if (!ctx->tx.rec_seq) {
985 		rc = -ENOMEM;
986 		goto free_iv;
987 	}
988 
989 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
990 	if (rc)
991 		goto free_rec_seq;
992 
993 	/* start at rec_seq - 1 to account for the start marker record */
994 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
995 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
996 
997 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
998 	start_marker_record->len = 0;
999 	start_marker_record->num_frags = 0;
1000 
1001 	INIT_LIST_HEAD(&offload_ctx->records_list);
1002 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1003 	spin_lock_init(&offload_ctx->lock);
1004 	sg_init_table(offload_ctx->sg_tx_data,
1005 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1006 
1007 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1008 	ctx->push_pending_record = tls_device_push_pending_record;
1009 
1010 	/* TLS offload is greatly simplified if we don't send
1011 	 * SKBs where only part of the payload needs to be encrypted.
1012 	 * So mark the last skb in the write queue as end of record.
1013 	 */
1014 	skb = tcp_write_queue_tail(sk);
1015 	if (skb)
1016 		TCP_SKB_CB(skb)->eor = 1;
1017 
1018 	netdev = get_netdev_for_sock(sk);
1019 	if (!netdev) {
1020 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1021 		rc = -EINVAL;
1022 		goto disable_cad;
1023 	}
1024 
1025 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1026 		rc = -EOPNOTSUPP;
1027 		goto release_netdev;
1028 	}
1029 
1030 	/* Avoid offloading if the device is down
1031 	 * We don't want to offload new flows after
1032 	 * the NETDEV_DOWN event
1033 	 *
1034 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1035 	 * handler thus protecting from the device going down before
1036 	 * ctx was added to tls_device_list.
1037 	 */
1038 	down_read(&device_offload_lock);
1039 	if (!(netdev->flags & IFF_UP)) {
1040 		rc = -EINVAL;
1041 		goto release_lock;
1042 	}
1043 
1044 	ctx->priv_ctx_tx = offload_ctx;
1045 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1046 					     &ctx->crypto_send.info,
1047 					     tcp_sk(sk)->write_seq);
1048 	if (rc)
1049 		goto release_lock;
1050 
1051 	tls_device_attach(ctx, sk, netdev);
1052 	up_read(&device_offload_lock);
1053 
1054 	/* following this assignment tls_is_sk_tx_device_offloaded
1055 	 * will return true and the context might be accessed
1056 	 * by the netdev's xmit function.
1057 	 */
1058 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1059 	dev_put(netdev);
1060 
1061 	return 0;
1062 
1063 release_lock:
1064 	up_read(&device_offload_lock);
1065 release_netdev:
1066 	dev_put(netdev);
1067 disable_cad:
1068 	clean_acked_data_disable(inet_csk(sk));
1069 	crypto_free_aead(offload_ctx->aead_send);
1070 free_rec_seq:
1071 	kfree(ctx->tx.rec_seq);
1072 free_iv:
1073 	kfree(ctx->tx.iv);
1074 free_offload_ctx:
1075 	kfree(offload_ctx);
1076 	ctx->priv_ctx_tx = NULL;
1077 free_marker_record:
1078 	kfree(start_marker_record);
1079 	return rc;
1080 }
1081 
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1082 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1083 {
1084 	struct tls_offload_context_rx *context;
1085 	struct net_device *netdev;
1086 	int rc = 0;
1087 
1088 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1089 		return -EOPNOTSUPP;
1090 
1091 	netdev = get_netdev_for_sock(sk);
1092 	if (!netdev) {
1093 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1094 		return -EINVAL;
1095 	}
1096 
1097 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1098 		rc = -EOPNOTSUPP;
1099 		goto release_netdev;
1100 	}
1101 
1102 	/* Avoid offloading if the device is down
1103 	 * We don't want to offload new flows after
1104 	 * the NETDEV_DOWN event
1105 	 *
1106 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1107 	 * handler thus protecting from the device going down before
1108 	 * ctx was added to tls_device_list.
1109 	 */
1110 	down_read(&device_offload_lock);
1111 	if (!(netdev->flags & IFF_UP)) {
1112 		rc = -EINVAL;
1113 		goto release_lock;
1114 	}
1115 
1116 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1117 	if (!context) {
1118 		rc = -ENOMEM;
1119 		goto release_lock;
1120 	}
1121 	context->resync_nh_reset = 1;
1122 
1123 	ctx->priv_ctx_rx = context;
1124 	rc = tls_set_sw_offload(sk, ctx, 0);
1125 	if (rc)
1126 		goto release_ctx;
1127 
1128 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1129 					     &ctx->crypto_recv.info,
1130 					     tcp_sk(sk)->copied_seq);
1131 	if (rc)
1132 		goto free_sw_resources;
1133 
1134 	tls_device_attach(ctx, sk, netdev);
1135 	up_read(&device_offload_lock);
1136 
1137 	dev_put(netdev);
1138 
1139 	return 0;
1140 
1141 free_sw_resources:
1142 	up_read(&device_offload_lock);
1143 	tls_sw_free_resources_rx(sk);
1144 	down_read(&device_offload_lock);
1145 release_ctx:
1146 	ctx->priv_ctx_rx = NULL;
1147 release_lock:
1148 	up_read(&device_offload_lock);
1149 release_netdev:
1150 	dev_put(netdev);
1151 	return rc;
1152 }
1153 
tls_device_offload_cleanup_rx(struct sock * sk)1154 void tls_device_offload_cleanup_rx(struct sock *sk)
1155 {
1156 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1157 	struct net_device *netdev;
1158 
1159 	down_read(&device_offload_lock);
1160 	netdev = tls_ctx->netdev;
1161 	if (!netdev)
1162 		goto out;
1163 
1164 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1165 					TLS_OFFLOAD_CTX_DIR_RX);
1166 
1167 	if (tls_ctx->tx_conf != TLS_HW) {
1168 		dev_put(netdev);
1169 		tls_ctx->netdev = NULL;
1170 	} else {
1171 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1172 	}
1173 out:
1174 	up_read(&device_offload_lock);
1175 	tls_sw_release_resources_rx(sk);
1176 }
1177 
tls_device_down(struct net_device * netdev)1178 static int tls_device_down(struct net_device *netdev)
1179 {
1180 	struct tls_context *ctx, *tmp;
1181 	unsigned long flags;
1182 	LIST_HEAD(list);
1183 
1184 	/* Request a write lock to block new offload attempts */
1185 	down_write(&device_offload_lock);
1186 
1187 	spin_lock_irqsave(&tls_device_lock, flags);
1188 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1189 		if (ctx->netdev != netdev ||
1190 		    !refcount_inc_not_zero(&ctx->refcount))
1191 			continue;
1192 
1193 		list_move(&ctx->list, &list);
1194 	}
1195 	spin_unlock_irqrestore(&tls_device_lock, flags);
1196 
1197 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1198 		if (ctx->tx_conf == TLS_HW)
1199 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1200 							TLS_OFFLOAD_CTX_DIR_TX);
1201 		if (ctx->rx_conf == TLS_HW &&
1202 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1203 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1204 							TLS_OFFLOAD_CTX_DIR_RX);
1205 		WRITE_ONCE(ctx->netdev, NULL);
1206 		smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1207 		while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1208 			usleep_range(10, 200);
1209 		dev_put(netdev);
1210 		list_del_init(&ctx->list);
1211 
1212 		if (refcount_dec_and_test(&ctx->refcount))
1213 			tls_device_free_ctx(ctx);
1214 	}
1215 
1216 	up_write(&device_offload_lock);
1217 
1218 	flush_work(&tls_device_gc_work);
1219 
1220 	return NOTIFY_DONE;
1221 }
1222 
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1223 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1224 			 void *ptr)
1225 {
1226 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1227 
1228 	if (!dev->tlsdev_ops &&
1229 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1230 		return NOTIFY_DONE;
1231 
1232 	switch (event) {
1233 	case NETDEV_REGISTER:
1234 	case NETDEV_FEAT_CHANGE:
1235 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1236 		    !dev->tlsdev_ops->tls_dev_resync)
1237 			return NOTIFY_BAD;
1238 
1239 		if  (dev->tlsdev_ops &&
1240 		     dev->tlsdev_ops->tls_dev_add &&
1241 		     dev->tlsdev_ops->tls_dev_del)
1242 			return NOTIFY_DONE;
1243 		else
1244 			return NOTIFY_BAD;
1245 	case NETDEV_DOWN:
1246 		return tls_device_down(dev);
1247 	}
1248 	return NOTIFY_DONE;
1249 }
1250 
1251 static struct notifier_block tls_dev_notifier = {
1252 	.notifier_call	= tls_dev_event,
1253 };
1254 
tls_device_init(void)1255 void __init tls_device_init(void)
1256 {
1257 	register_netdevice_notifier(&tls_dev_notifier);
1258 }
1259 
tls_device_cleanup(void)1260 void __exit tls_device_cleanup(void)
1261 {
1262 	unregister_netdevice_notifier(&tls_dev_notifier);
1263 	flush_work(&tls_device_gc_work);
1264 	clean_acked_data_flush();
1265 }
1266