1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52 TLSV4,
53 TLSV6,
54 TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 struct proto *base);
67
update_sk_prot(struct sock * sk,struct tls_context * ctx)68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
wait_on_pending_writer(struct sock * sk,long * timeo)75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77 int rc = 0;
78 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 if (!*timeo) {
83 rc = -EAGAIN;
84 break;
85 }
86
87 if (signal_pending(current)) {
88 rc = sock_intr_errno(*timeo);
89 break;
90 }
91
92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 break;
94 }
95 remove_wait_queue(sk_sleep(sk), &wait);
96 return rc;
97 }
98
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)99 int tls_push_sg(struct sock *sk,
100 struct tls_context *ctx,
101 struct scatterlist *sg,
102 u16 first_offset,
103 int flags)
104 {
105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 int ret = 0;
107 struct page *p;
108 size_t size;
109 int offset = first_offset;
110
111 size = sg->length - offset;
112 offset += sg->offset;
113
114 ctx->in_tcp_sendpages = true;
115 while (1) {
116 if (sg_is_last(sg))
117 sendpage_flags = flags;
118
119 /* is sending application-limited? */
120 tcp_rate_check_app_limited(sk);
121 p = sg_page(sg);
122 retry:
123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125 if (ret != size) {
126 if (ret > 0) {
127 offset += ret;
128 size -= ret;
129 goto retry;
130 }
131
132 offset -= sg->offset;
133 ctx->partially_sent_offset = offset;
134 ctx->partially_sent_record = (void *)sg;
135 ctx->in_tcp_sendpages = false;
136 return ret;
137 }
138
139 put_page(p);
140 sk_mem_uncharge(sk, sg->length);
141 sg = sg_next(sg);
142 if (!sg)
143 break;
144
145 offset = sg->offset;
146 size = sg->length;
147 }
148
149 ctx->in_tcp_sendpages = false;
150
151 return 0;
152 }
153
tls_handle_open_record(struct sock * sk,int flags)154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 struct tls_context *ctx = tls_get_ctx(sk);
157
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
160
161 return 0;
162 }
163
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
166 {
167 struct cmsghdr *cmsg;
168 int rc = -EINVAL;
169
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
172 return -EINVAL;
173 if (cmsg->cmsg_level != SOL_TLS)
174 continue;
175
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 return -EINVAL;
180
181 if (msg->msg_flags & MSG_MORE)
182 return -EINVAL;
183
184 rc = tls_handle_open_record(sk, msg->msg_flags);
185 if (rc)
186 return rc;
187
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 rc = 0;
190 break;
191 default:
192 return -EINVAL;
193 }
194 }
195
196 return rc;
197 }
198
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 int flags)
201 {
202 struct scatterlist *sg;
203 u16 offset;
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)212 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214 struct scatterlist *sg;
215
216 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
217 put_page(sg_page(sg));
218 sk_mem_uncharge(sk, sg->length);
219 }
220 ctx->partially_sent_record = NULL;
221 }
222
tls_write_space(struct sock * sk)223 static void tls_write_space(struct sock *sk)
224 {
225 struct tls_context *ctx = tls_get_ctx(sk);
226
227 /* If in_tcp_sendpages call lower protocol write space handler
228 * to ensure we wake up any waiting operations there. For example
229 * if do_tcp_sendpages where to call sk_wait_event.
230 */
231 if (ctx->in_tcp_sendpages) {
232 ctx->sk_write_space(sk);
233 return;
234 }
235
236 #ifdef CONFIG_TLS_DEVICE
237 if (ctx->tx_conf == TLS_HW)
238 tls_device_write_space(sk, ctx);
239 else
240 #endif
241 tls_sw_write_space(sk, ctx);
242
243 ctx->sk_write_space(sk);
244 }
245
246 /**
247 * tls_ctx_free() - free TLS ULP context
248 * @sk: socket to with @ctx is attached
249 * @ctx: TLS context structure
250 *
251 * Free TLS context. If @sk is %NULL caller guarantees that the socket
252 * to which @ctx was attached has no outstanding references.
253 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)254 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
255 {
256 if (!ctx)
257 return;
258
259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 mutex_destroy(&ctx->tx_lock);
262
263 if (sk)
264 kfree_rcu(ctx, rcu);
265 else
266 kfree(ctx);
267 }
268
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)269 static void tls_sk_proto_cleanup(struct sock *sk,
270 struct tls_context *ctx, long timeo)
271 {
272 if (unlikely(sk->sk_write_pending) &&
273 !wait_on_pending_writer(sk, &timeo))
274 tls_handle_open_record(sk, 0);
275
276 /* We need these for tls_sw_fallback handling of other packets */
277 if (ctx->tx_conf == TLS_SW) {
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 tls_sw_release_resources_tx(sk);
281 } else if (ctx->tx_conf == TLS_HW) {
282 tls_device_free_resources_tx(sk);
283 }
284
285 if (ctx->rx_conf == TLS_SW)
286 tls_sw_release_resources_rx(sk);
287 else if (ctx->rx_conf == TLS_HW)
288 tls_device_offload_cleanup_rx(sk);
289 }
290
tls_sk_proto_close(struct sock * sk,long timeout)291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293 struct inet_connection_sock *icsk = inet_csk(sk);
294 struct tls_context *ctx = tls_get_ctx(sk);
295 long timeo = sock_sndtimeo(sk, 0);
296 bool free_ctx;
297
298 if (ctx->tx_conf == TLS_SW)
299 tls_sw_cancel_work_tx(ctx);
300
301 lock_sock(sk);
302 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303
304 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
305 tls_sk_proto_cleanup(sk, ctx, timeo);
306
307 write_lock_bh(&sk->sk_callback_lock);
308 if (free_ctx)
309 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
310 sk->sk_prot = ctx->sk_proto;
311 if (sk->sk_write_space == tls_write_space)
312 sk->sk_write_space = ctx->sk_write_space;
313 write_unlock_bh(&sk->sk_callback_lock);
314 release_sock(sk);
315 if (ctx->tx_conf == TLS_SW)
316 tls_sw_free_ctx_tx(ctx);
317 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
318 tls_sw_strparser_done(ctx);
319 if (ctx->rx_conf == TLS_SW)
320 tls_sw_free_ctx_rx(ctx);
321 ctx->sk_proto->close(sk, timeout);
322
323 if (free_ctx)
324 tls_ctx_free(sk, ctx);
325 }
326
do_tls_getsockopt_tx(struct sock * sk,char __user * optval,int __user * optlen)327 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
328 int __user *optlen)
329 {
330 int rc = 0;
331 struct tls_context *ctx = tls_get_ctx(sk);
332 struct tls_crypto_info *crypto_info;
333 int len;
334
335 if (get_user(len, optlen))
336 return -EFAULT;
337
338 if (!optval || (len < sizeof(*crypto_info))) {
339 rc = -EINVAL;
340 goto out;
341 }
342
343 if (!ctx) {
344 rc = -EBUSY;
345 goto out;
346 }
347
348 /* get user crypto info */
349 crypto_info = &ctx->crypto_send.info;
350
351 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
352 rc = -EBUSY;
353 goto out;
354 }
355
356 if (len == sizeof(*crypto_info)) {
357 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
358 rc = -EFAULT;
359 goto out;
360 }
361
362 switch (crypto_info->cipher_type) {
363 case TLS_CIPHER_AES_GCM_128: {
364 struct tls12_crypto_info_aes_gcm_128 *
365 crypto_info_aes_gcm_128 =
366 container_of(crypto_info,
367 struct tls12_crypto_info_aes_gcm_128,
368 info);
369
370 if (len != sizeof(*crypto_info_aes_gcm_128)) {
371 rc = -EINVAL;
372 goto out;
373 }
374 memcpy(crypto_info_aes_gcm_128->iv,
375 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
376 TLS_CIPHER_AES_GCM_128_IV_SIZE);
377 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
378 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
379 if (copy_to_user(optval,
380 crypto_info_aes_gcm_128,
381 sizeof(*crypto_info_aes_gcm_128)))
382 rc = -EFAULT;
383 break;
384 }
385 case TLS_CIPHER_AES_GCM_256: {
386 struct tls12_crypto_info_aes_gcm_256 *
387 crypto_info_aes_gcm_256 =
388 container_of(crypto_info,
389 struct tls12_crypto_info_aes_gcm_256,
390 info);
391
392 if (len != sizeof(*crypto_info_aes_gcm_256)) {
393 rc = -EINVAL;
394 goto out;
395 }
396 memcpy(crypto_info_aes_gcm_256->iv,
397 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
398 TLS_CIPHER_AES_GCM_256_IV_SIZE);
399 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
400 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
401 if (copy_to_user(optval,
402 crypto_info_aes_gcm_256,
403 sizeof(*crypto_info_aes_gcm_256)))
404 rc = -EFAULT;
405 break;
406 }
407 default:
408 rc = -EINVAL;
409 }
410
411 out:
412 return rc;
413 }
414
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)415 static int do_tls_getsockopt(struct sock *sk, int optname,
416 char __user *optval, int __user *optlen)
417 {
418 int rc = 0;
419
420 lock_sock(sk);
421
422 switch (optname) {
423 case TLS_TX:
424 rc = do_tls_getsockopt_tx(sk, optval, optlen);
425 break;
426 default:
427 rc = -ENOPROTOOPT;
428 break;
429 }
430
431 release_sock(sk);
432
433 return rc;
434 }
435
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)436 static int tls_getsockopt(struct sock *sk, int level, int optname,
437 char __user *optval, int __user *optlen)
438 {
439 struct tls_context *ctx = tls_get_ctx(sk);
440
441 if (level != SOL_TLS)
442 return ctx->sk_proto->getsockopt(sk, level,
443 optname, optval, optlen);
444
445 return do_tls_getsockopt(sk, optname, optval, optlen);
446 }
447
do_tls_setsockopt_conf(struct sock * sk,char __user * optval,unsigned int optlen,int tx)448 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
449 unsigned int optlen, int tx)
450 {
451 struct tls_crypto_info *crypto_info;
452 struct tls_crypto_info *alt_crypto_info;
453 struct tls_context *ctx = tls_get_ctx(sk);
454 size_t optsize;
455 int rc = 0;
456 int conf;
457
458 if (!optval || (optlen < sizeof(*crypto_info))) {
459 rc = -EINVAL;
460 goto out;
461 }
462
463 if (tx) {
464 crypto_info = &ctx->crypto_send.info;
465 alt_crypto_info = &ctx->crypto_recv.info;
466 } else {
467 crypto_info = &ctx->crypto_recv.info;
468 alt_crypto_info = &ctx->crypto_send.info;
469 }
470
471 /* Currently we don't support set crypto info more than one time */
472 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
473 rc = -EBUSY;
474 goto out;
475 }
476
477 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
478 if (rc) {
479 rc = -EFAULT;
480 goto err_crypto_info;
481 }
482
483 /* check version */
484 if (crypto_info->version != TLS_1_2_VERSION &&
485 crypto_info->version != TLS_1_3_VERSION) {
486 rc = -EINVAL;
487 goto err_crypto_info;
488 }
489
490 /* Ensure that TLS version and ciphers are same in both directions */
491 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
492 if (alt_crypto_info->version != crypto_info->version ||
493 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
494 rc = -EINVAL;
495 goto err_crypto_info;
496 }
497 }
498
499 switch (crypto_info->cipher_type) {
500 case TLS_CIPHER_AES_GCM_128:
501 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
502 break;
503 case TLS_CIPHER_AES_GCM_256: {
504 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
505 break;
506 }
507 case TLS_CIPHER_AES_CCM_128:
508 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
509 break;
510 default:
511 rc = -EINVAL;
512 goto err_crypto_info;
513 }
514
515 if (optlen != optsize) {
516 rc = -EINVAL;
517 goto err_crypto_info;
518 }
519
520 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
521 optlen - sizeof(*crypto_info));
522 if (rc) {
523 rc = -EFAULT;
524 goto err_crypto_info;
525 }
526
527 if (tx) {
528 rc = tls_set_device_offload(sk, ctx);
529 conf = TLS_HW;
530 if (rc) {
531 rc = tls_set_sw_offload(sk, ctx, 1);
532 if (rc)
533 goto err_crypto_info;
534 conf = TLS_SW;
535 }
536 } else {
537 rc = tls_set_device_offload_rx(sk, ctx);
538 conf = TLS_HW;
539 if (rc) {
540 rc = tls_set_sw_offload(sk, ctx, 0);
541 if (rc)
542 goto err_crypto_info;
543 conf = TLS_SW;
544 }
545 tls_sw_strparser_arm(sk, ctx);
546 }
547
548 if (tx)
549 ctx->tx_conf = conf;
550 else
551 ctx->rx_conf = conf;
552 update_sk_prot(sk, ctx);
553 if (tx) {
554 ctx->sk_write_space = sk->sk_write_space;
555 sk->sk_write_space = tls_write_space;
556 } else {
557 sk->sk_socket->ops = &tls_sw_proto_ops;
558 }
559 goto out;
560
561 err_crypto_info:
562 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
563 out:
564 return rc;
565 }
566
do_tls_setsockopt(struct sock * sk,int optname,char __user * optval,unsigned int optlen)567 static int do_tls_setsockopt(struct sock *sk, int optname,
568 char __user *optval, unsigned int optlen)
569 {
570 int rc = 0;
571
572 switch (optname) {
573 case TLS_TX:
574 case TLS_RX:
575 lock_sock(sk);
576 rc = do_tls_setsockopt_conf(sk, optval, optlen,
577 optname == TLS_TX);
578 release_sock(sk);
579 break;
580 default:
581 rc = -ENOPROTOOPT;
582 break;
583 }
584 return rc;
585 }
586
tls_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)587 static int tls_setsockopt(struct sock *sk, int level, int optname,
588 char __user *optval, unsigned int optlen)
589 {
590 struct tls_context *ctx = tls_get_ctx(sk);
591
592 if (level != SOL_TLS)
593 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
594 optlen);
595
596 return do_tls_setsockopt(sk, optname, optval, optlen);
597 }
598
create_ctx(struct sock * sk)599 static struct tls_context *create_ctx(struct sock *sk)
600 {
601 struct inet_connection_sock *icsk = inet_csk(sk);
602 struct tls_context *ctx;
603
604 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
605 if (!ctx)
606 return NULL;
607
608 mutex_init(&ctx->tx_lock);
609 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
610 ctx->sk_proto = sk->sk_prot;
611 return ctx;
612 }
613
tls_build_proto(struct sock * sk)614 static void tls_build_proto(struct sock *sk)
615 {
616 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
617
618 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
619 if (ip_ver == TLSV6 &&
620 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
621 mutex_lock(&tcpv6_prot_mutex);
622 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
623 build_protos(tls_prots[TLSV6], sk->sk_prot);
624 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
625 }
626 mutex_unlock(&tcpv6_prot_mutex);
627 }
628
629 if (ip_ver == TLSV4 &&
630 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
631 mutex_lock(&tcpv4_prot_mutex);
632 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
633 build_protos(tls_prots[TLSV4], sk->sk_prot);
634 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
635 }
636 mutex_unlock(&tcpv4_prot_mutex);
637 }
638 }
639
tls_hw_sk_destruct(struct sock * sk)640 static void tls_hw_sk_destruct(struct sock *sk)
641 {
642 struct tls_context *ctx = tls_get_ctx(sk);
643 struct inet_connection_sock *icsk = inet_csk(sk);
644
645 ctx->sk_destruct(sk);
646 /* Free ctx */
647 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
648 tls_ctx_free(sk, ctx);
649 }
650
tls_hw_prot(struct sock * sk)651 static int tls_hw_prot(struct sock *sk)
652 {
653 struct tls_context *ctx;
654 struct tls_device *dev;
655 int rc = 0;
656
657 spin_lock_bh(&device_spinlock);
658 list_for_each_entry(dev, &device_list, dev_list) {
659 if (dev->feature && dev->feature(dev)) {
660 ctx = create_ctx(sk);
661 if (!ctx)
662 goto out;
663
664 spin_unlock_bh(&device_spinlock);
665 tls_build_proto(sk);
666 ctx->sk_destruct = sk->sk_destruct;
667 sk->sk_destruct = tls_hw_sk_destruct;
668 ctx->rx_conf = TLS_HW_RECORD;
669 ctx->tx_conf = TLS_HW_RECORD;
670 update_sk_prot(sk, ctx);
671 spin_lock_bh(&device_spinlock);
672 rc = 1;
673 break;
674 }
675 }
676 out:
677 spin_unlock_bh(&device_spinlock);
678 return rc;
679 }
680
tls_hw_unhash(struct sock * sk)681 static void tls_hw_unhash(struct sock *sk)
682 {
683 struct tls_context *ctx = tls_get_ctx(sk);
684 struct tls_device *dev;
685
686 spin_lock_bh(&device_spinlock);
687 list_for_each_entry(dev, &device_list, dev_list) {
688 if (dev->unhash) {
689 kref_get(&dev->kref);
690 spin_unlock_bh(&device_spinlock);
691 dev->unhash(dev, sk);
692 kref_put(&dev->kref, dev->release);
693 spin_lock_bh(&device_spinlock);
694 }
695 }
696 spin_unlock_bh(&device_spinlock);
697 ctx->sk_proto->unhash(sk);
698 }
699
tls_hw_hash(struct sock * sk)700 static int tls_hw_hash(struct sock *sk)
701 {
702 struct tls_context *ctx = tls_get_ctx(sk);
703 struct tls_device *dev;
704 int err;
705
706 err = ctx->sk_proto->hash(sk);
707 spin_lock_bh(&device_spinlock);
708 list_for_each_entry(dev, &device_list, dev_list) {
709 if (dev->hash) {
710 kref_get(&dev->kref);
711 spin_unlock_bh(&device_spinlock);
712 err |= dev->hash(dev, sk);
713 kref_put(&dev->kref, dev->release);
714 spin_lock_bh(&device_spinlock);
715 }
716 }
717 spin_unlock_bh(&device_spinlock);
718
719 if (err)
720 tls_hw_unhash(sk);
721 return err;
722 }
723
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],struct proto * base)724 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
725 struct proto *base)
726 {
727 prot[TLS_BASE][TLS_BASE] = *base;
728 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
729 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
730 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
731
732 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
733 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
734 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
735
736 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
737 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
738 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
739 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
740
741 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
742 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
743 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
744 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
745
746 #ifdef CONFIG_TLS_DEVICE
747 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
748 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
749 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
750
751 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
752 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
753 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
754
755 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
756
757 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
758
759 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
760 #endif
761
762 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
763 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
764 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
765 }
766
tls_init(struct sock * sk)767 static int tls_init(struct sock *sk)
768 {
769 struct tls_context *ctx;
770 int rc = 0;
771
772 if (tls_hw_prot(sk))
773 return 0;
774
775 /* The TLS ulp is currently supported only for TCP sockets
776 * in ESTABLISHED state.
777 * Supporting sockets in LISTEN state will require us
778 * to modify the accept implementation to clone rather then
779 * share the ulp context.
780 */
781 if (sk->sk_state != TCP_ESTABLISHED)
782 return -ENOTCONN;
783
784 tls_build_proto(sk);
785
786 /* allocate tls context */
787 write_lock_bh(&sk->sk_callback_lock);
788 ctx = create_ctx(sk);
789 if (!ctx) {
790 rc = -ENOMEM;
791 goto out;
792 }
793
794 ctx->tx_conf = TLS_BASE;
795 ctx->rx_conf = TLS_BASE;
796 update_sk_prot(sk, ctx);
797 out:
798 write_unlock_bh(&sk->sk_callback_lock);
799 return rc;
800 }
801
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))802 static void tls_update(struct sock *sk, struct proto *p,
803 void (*write_space)(struct sock *sk))
804 {
805 struct tls_context *ctx;
806
807 ctx = tls_get_ctx(sk);
808 if (likely(ctx)) {
809 ctx->sk_write_space = write_space;
810 ctx->sk_proto = p;
811 } else {
812 sk->sk_prot = p;
813 sk->sk_write_space = write_space;
814 }
815 }
816
tls_get_info(const struct sock * sk,struct sk_buff * skb)817 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
818 {
819 u16 version, cipher_type;
820 struct tls_context *ctx;
821 struct nlattr *start;
822 int err;
823
824 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
825 if (!start)
826 return -EMSGSIZE;
827
828 rcu_read_lock();
829 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
830 if (!ctx) {
831 err = 0;
832 goto nla_failure;
833 }
834 version = ctx->prot_info.version;
835 if (version) {
836 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
837 if (err)
838 goto nla_failure;
839 }
840 cipher_type = ctx->prot_info.cipher_type;
841 if (cipher_type) {
842 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
843 if (err)
844 goto nla_failure;
845 }
846 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
847 if (err)
848 goto nla_failure;
849
850 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
851 if (err)
852 goto nla_failure;
853
854 rcu_read_unlock();
855 nla_nest_end(skb, start);
856 return 0;
857
858 nla_failure:
859 rcu_read_unlock();
860 nla_nest_cancel(skb, start);
861 return err;
862 }
863
tls_get_info_size(const struct sock * sk)864 static size_t tls_get_info_size(const struct sock *sk)
865 {
866 size_t size = 0;
867
868 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
869 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
870 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
871 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
872 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
873 0;
874
875 return size;
876 }
877
tls_register_device(struct tls_device * device)878 void tls_register_device(struct tls_device *device)
879 {
880 spin_lock_bh(&device_spinlock);
881 list_add_tail(&device->dev_list, &device_list);
882 spin_unlock_bh(&device_spinlock);
883 }
884 EXPORT_SYMBOL(tls_register_device);
885
tls_unregister_device(struct tls_device * device)886 void tls_unregister_device(struct tls_device *device)
887 {
888 spin_lock_bh(&device_spinlock);
889 list_del(&device->dev_list);
890 spin_unlock_bh(&device_spinlock);
891 }
892 EXPORT_SYMBOL(tls_unregister_device);
893
894 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
895 .name = "tls",
896 .owner = THIS_MODULE,
897 .init = tls_init,
898 .update = tls_update,
899 .get_info = tls_get_info,
900 .get_info_size = tls_get_info_size,
901 };
902
tls_register(void)903 static int __init tls_register(void)
904 {
905 tls_sw_proto_ops = inet_stream_ops;
906 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
907 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
908
909 tls_device_init();
910 tcp_register_ulp(&tcp_tls_ulp_ops);
911
912 return 0;
913 }
914
tls_unregister(void)915 static void __exit tls_unregister(void)
916 {
917 tcp_unregister_ulp(&tcp_tls_ulp_ops);
918 tls_device_cleanup();
919 }
920
921 module_init(tls_register);
922 module_exit(tls_unregister);
923