1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60
61 struct vmci_transport_recv_pkt_info {
62 struct work_struct work;
63 struct sock *sk;
64 struct vmci_transport_packet pkt;
65 };
66
67 static LIST_HEAD(vmci_transport_cleanup_list);
68 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
69 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
70
71 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
72 VMCI_INVALID_ID };
73 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
74
75 static int PROTOCOL_OVERRIDE = -1;
76
77 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
78 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
79 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
80
81 /* The default peer timeout indicates how long we will wait for a peer response
82 * to a control message.
83 */
84 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
85
86 /* Helper function to convert from a VMCI error code to a VSock error code. */
87
vmci_transport_error_to_vsock_error(s32 vmci_error)88 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
89 {
90 switch (vmci_error) {
91 case VMCI_ERROR_NO_MEM:
92 return -ENOMEM;
93 case VMCI_ERROR_DUPLICATE_ENTRY:
94 case VMCI_ERROR_ALREADY_EXISTS:
95 return -EADDRINUSE;
96 case VMCI_ERROR_NO_ACCESS:
97 return -EPERM;
98 case VMCI_ERROR_NO_RESOURCES:
99 return -ENOBUFS;
100 case VMCI_ERROR_INVALID_RESOURCE:
101 return -EHOSTUNREACH;
102 case VMCI_ERROR_INVALID_ARGS:
103 default:
104 break;
105 }
106 return -EINVAL;
107 }
108
vmci_transport_peer_rid(u32 peer_cid)109 static u32 vmci_transport_peer_rid(u32 peer_cid)
110 {
111 if (VMADDR_CID_HYPERVISOR == peer_cid)
112 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
113
114 return VMCI_TRANSPORT_PACKET_RID;
115 }
116
117 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)118 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
119 struct sockaddr_vm *src,
120 struct sockaddr_vm *dst,
121 u8 type,
122 u64 size,
123 u64 mode,
124 struct vmci_transport_waiting_info *wait,
125 u16 proto,
126 struct vmci_handle handle)
127 {
128 /* We register the stream control handler as an any cid handle so we
129 * must always send from a source address of VMADDR_CID_ANY
130 */
131 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
132 VMCI_TRANSPORT_PACKET_RID);
133 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
134 vmci_transport_peer_rid(dst->svm_cid));
135 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
136 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
137 pkt->type = type;
138 pkt->src_port = src->svm_port;
139 pkt->dst_port = dst->svm_port;
140 memset(&pkt->proto, 0, sizeof(pkt->proto));
141 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
142
143 switch (pkt->type) {
144 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
145 pkt->u.size = 0;
146 break;
147
148 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
149 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
150 pkt->u.size = size;
151 break;
152
153 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
154 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
155 pkt->u.handle = handle;
156 break;
157
158 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
159 case VMCI_TRANSPORT_PACKET_TYPE_READ:
160 case VMCI_TRANSPORT_PACKET_TYPE_RST:
161 pkt->u.size = 0;
162 break;
163
164 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
165 pkt->u.mode = mode;
166 break;
167
168 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
169 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
170 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
171 break;
172
173 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
174 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
175 pkt->u.size = size;
176 pkt->proto = proto;
177 break;
178 }
179 }
180
181 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)182 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
183 struct sockaddr_vm *local,
184 struct sockaddr_vm *remote)
185 {
186 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
187 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
188 }
189
190 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)191 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
192 struct sockaddr_vm *src,
193 struct sockaddr_vm *dst,
194 enum vmci_transport_packet_type type,
195 u64 size,
196 u64 mode,
197 struct vmci_transport_waiting_info *wait,
198 u16 proto,
199 struct vmci_handle handle,
200 bool convert_error)
201 {
202 int err;
203
204 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
205 proto, handle);
206 err = vmci_datagram_send(&pkt->dg);
207 if (convert_error && (err < 0))
208 return vmci_transport_error_to_vsock_error(err);
209
210 return err;
211 }
212
213 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)214 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
215 enum vmci_transport_packet_type type,
216 u64 size,
217 u64 mode,
218 struct vmci_transport_waiting_info *wait,
219 struct vmci_handle handle)
220 {
221 struct vmci_transport_packet reply;
222 struct sockaddr_vm src, dst;
223
224 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
225 return 0;
226 } else {
227 vmci_transport_packet_get_addresses(pkt, &src, &dst);
228 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
229 type,
230 size, mode, wait,
231 VSOCK_PROTO_INVALID,
232 handle, true);
233 }
234 }
235
236 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)237 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
238 struct sockaddr_vm *dst,
239 enum vmci_transport_packet_type type,
240 u64 size,
241 u64 mode,
242 struct vmci_transport_waiting_info *wait,
243 struct vmci_handle handle)
244 {
245 /* Note that it is safe to use a single packet across all CPUs since
246 * two tasklets of the same type are guaranteed to not ever run
247 * simultaneously. If that ever changes, or VMCI stops using tasklets,
248 * we can use per-cpu packets.
249 */
250 static struct vmci_transport_packet pkt;
251
252 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
253 size, mode, wait,
254 VSOCK_PROTO_INVALID, handle,
255 false);
256 }
257
258 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)259 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
260 struct sockaddr_vm *dst,
261 enum vmci_transport_packet_type type,
262 u64 size,
263 u64 mode,
264 struct vmci_transport_waiting_info *wait,
265 u16 proto,
266 struct vmci_handle handle)
267 {
268 struct vmci_transport_packet *pkt;
269 int err;
270
271 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
272 if (!pkt)
273 return -ENOMEM;
274
275 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
276 mode, wait, proto, handle,
277 true);
278 kfree(pkt);
279
280 return err;
281 }
282
283 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)284 vmci_transport_send_control_pkt(struct sock *sk,
285 enum vmci_transport_packet_type type,
286 u64 size,
287 u64 mode,
288 struct vmci_transport_waiting_info *wait,
289 u16 proto,
290 struct vmci_handle handle)
291 {
292 struct vsock_sock *vsk;
293
294 vsk = vsock_sk(sk);
295
296 if (!vsock_addr_bound(&vsk->local_addr))
297 return -EINVAL;
298
299 if (!vsock_addr_bound(&vsk->remote_addr))
300 return -EINVAL;
301
302 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
303 &vsk->remote_addr,
304 type, size, mode,
305 wait, proto, handle);
306 }
307
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)308 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
309 struct sockaddr_vm *src,
310 struct vmci_transport_packet *pkt)
311 {
312 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
313 return 0;
314 return vmci_transport_send_control_pkt_bh(
315 dst, src,
316 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
317 0, NULL, VMCI_INVALID_HANDLE);
318 }
319
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)320 static int vmci_transport_send_reset(struct sock *sk,
321 struct vmci_transport_packet *pkt)
322 {
323 struct sockaddr_vm *dst_ptr;
324 struct sockaddr_vm dst;
325 struct vsock_sock *vsk;
326
327 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
328 return 0;
329
330 vsk = vsock_sk(sk);
331
332 if (!vsock_addr_bound(&vsk->local_addr))
333 return -EINVAL;
334
335 if (vsock_addr_bound(&vsk->remote_addr)) {
336 dst_ptr = &vsk->remote_addr;
337 } else {
338 vsock_addr_init(&dst, pkt->dg.src.context,
339 pkt->src_port);
340 dst_ptr = &dst;
341 }
342 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
343 VMCI_TRANSPORT_PACKET_TYPE_RST,
344 0, 0, NULL, VSOCK_PROTO_INVALID,
345 VMCI_INVALID_HANDLE);
346 }
347
vmci_transport_send_negotiate(struct sock * sk,size_t size)348 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
349 {
350 return vmci_transport_send_control_pkt(
351 sk,
352 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
353 size, 0, NULL,
354 VSOCK_PROTO_INVALID,
355 VMCI_INVALID_HANDLE);
356 }
357
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)358 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
359 u16 version)
360 {
361 return vmci_transport_send_control_pkt(
362 sk,
363 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
364 size, 0, NULL, version,
365 VMCI_INVALID_HANDLE);
366 }
367
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)368 static int vmci_transport_send_qp_offer(struct sock *sk,
369 struct vmci_handle handle)
370 {
371 return vmci_transport_send_control_pkt(
372 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
373 0, NULL,
374 VSOCK_PROTO_INVALID, handle);
375 }
376
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)377 static int vmci_transport_send_attach(struct sock *sk,
378 struct vmci_handle handle)
379 {
380 return vmci_transport_send_control_pkt(
381 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
382 0, 0, NULL, VSOCK_PROTO_INVALID,
383 handle);
384 }
385
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)386 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
387 {
388 return vmci_transport_reply_control_pkt_fast(
389 pkt,
390 VMCI_TRANSPORT_PACKET_TYPE_RST,
391 0, 0, NULL,
392 VMCI_INVALID_HANDLE);
393 }
394
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)395 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
396 struct sockaddr_vm *src)
397 {
398 return vmci_transport_send_control_pkt_bh(
399 dst, src,
400 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
401 0, 0, NULL, VMCI_INVALID_HANDLE);
402 }
403
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)404 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
405 struct sockaddr_vm *src)
406 {
407 return vmci_transport_send_control_pkt_bh(
408 dst, src,
409 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 0, NULL, VMCI_INVALID_HANDLE);
411 }
412
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)413 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
414 struct sockaddr_vm *src)
415 {
416 return vmci_transport_send_control_pkt_bh(
417 dst, src,
418 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
419 0, NULL, VMCI_INVALID_HANDLE);
420 }
421
vmci_transport_send_wrote(struct sock * sk)422 int vmci_transport_send_wrote(struct sock *sk)
423 {
424 return vmci_transport_send_control_pkt(
425 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
426 0, NULL, VSOCK_PROTO_INVALID,
427 VMCI_INVALID_HANDLE);
428 }
429
vmci_transport_send_read(struct sock * sk)430 int vmci_transport_send_read(struct sock *sk)
431 {
432 return vmci_transport_send_control_pkt(
433 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
434 0, NULL, VSOCK_PROTO_INVALID,
435 VMCI_INVALID_HANDLE);
436 }
437
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)438 int vmci_transport_send_waiting_write(struct sock *sk,
439 struct vmci_transport_waiting_info *wait)
440 {
441 return vmci_transport_send_control_pkt(
442 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
443 0, 0, wait, VSOCK_PROTO_INVALID,
444 VMCI_INVALID_HANDLE);
445 }
446
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)447 int vmci_transport_send_waiting_read(struct sock *sk,
448 struct vmci_transport_waiting_info *wait)
449 {
450 return vmci_transport_send_control_pkt(
451 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
452 0, 0, wait, VSOCK_PROTO_INVALID,
453 VMCI_INVALID_HANDLE);
454 }
455
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)456 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
457 {
458 return vmci_transport_send_control_pkt(
459 &vsk->sk,
460 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
461 0, mode, NULL,
462 VSOCK_PROTO_INVALID,
463 VMCI_INVALID_HANDLE);
464 }
465
vmci_transport_send_conn_request(struct sock * sk,size_t size)466 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
467 {
468 return vmci_transport_send_control_pkt(sk,
469 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
470 size, 0, NULL,
471 VSOCK_PROTO_INVALID,
472 VMCI_INVALID_HANDLE);
473 }
474
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)475 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
476 u16 version)
477 {
478 return vmci_transport_send_control_pkt(
479 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
480 size, 0, NULL, version,
481 VMCI_INVALID_HANDLE);
482 }
483
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)484 static struct sock *vmci_transport_get_pending(
485 struct sock *listener,
486 struct vmci_transport_packet *pkt)
487 {
488 struct vsock_sock *vlistener;
489 struct vsock_sock *vpending;
490 struct sock *pending;
491 struct sockaddr_vm src;
492
493 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
494
495 vlistener = vsock_sk(listener);
496
497 list_for_each_entry(vpending, &vlistener->pending_links,
498 pending_links) {
499 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
500 pkt->dst_port == vpending->local_addr.svm_port) {
501 pending = sk_vsock(vpending);
502 sock_hold(pending);
503 goto found;
504 }
505 }
506
507 pending = NULL;
508 found:
509 return pending;
510
511 }
512
vmci_transport_release_pending(struct sock * pending)513 static void vmci_transport_release_pending(struct sock *pending)
514 {
515 sock_put(pending);
516 }
517
518 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
519 * trusted sockets 2) sockets from applications running as the same user as the
520 * VM (this is only true for the host side and only when using hosted products)
521 */
522
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)523 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
524 {
525 return vsock->trusted ||
526 vmci_is_context_owner(peer_cid, vsock->owner->uid);
527 }
528
529 /* We allow sending datagrams to and receiving datagrams from a restricted VM
530 * only if it is trusted as described in vmci_transport_is_trusted.
531 */
532
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)533 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
534 {
535 if (VMADDR_CID_HYPERVISOR == peer_cid)
536 return true;
537
538 if (vsock->cached_peer != peer_cid) {
539 vsock->cached_peer = peer_cid;
540 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
541 (vmci_context_get_priv_flags(peer_cid) &
542 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
543 vsock->cached_peer_allow_dgram = false;
544 } else {
545 vsock->cached_peer_allow_dgram = true;
546 }
547 }
548
549 return vsock->cached_peer_allow_dgram;
550 }
551
552 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)553 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
554 struct vmci_handle *handle,
555 u64 produce_size,
556 u64 consume_size,
557 u32 peer, u32 flags, bool trusted)
558 {
559 int err = 0;
560
561 if (trusted) {
562 /* Try to allocate our queue pair as trusted. This will only
563 * work if vsock is running in the host.
564 */
565
566 err = vmci_qpair_alloc(qpair, handle, produce_size,
567 consume_size,
568 peer, flags,
569 VMCI_PRIVILEGE_FLAG_TRUSTED);
570 if (err != VMCI_ERROR_NO_ACCESS)
571 goto out;
572
573 }
574
575 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
576 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
577 out:
578 if (err < 0) {
579 pr_err_once("Could not attach to queue pair with %d\n", err);
580 err = vmci_transport_error_to_vsock_error(err);
581 }
582
583 return err;
584 }
585
586 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)587 vmci_transport_datagram_create_hnd(u32 resource_id,
588 u32 flags,
589 vmci_datagram_recv_cb recv_cb,
590 void *client_data,
591 struct vmci_handle *out_handle)
592 {
593 int err = 0;
594
595 /* Try to allocate our datagram handler as trusted. This will only work
596 * if vsock is running in the host.
597 */
598
599 err = vmci_datagram_create_handle_priv(resource_id, flags,
600 VMCI_PRIVILEGE_FLAG_TRUSTED,
601 recv_cb,
602 client_data, out_handle);
603
604 if (err == VMCI_ERROR_NO_ACCESS)
605 err = vmci_datagram_create_handle(resource_id, flags,
606 recv_cb, client_data,
607 out_handle);
608
609 return err;
610 }
611
612 /* This is invoked as part of a tasklet that's scheduled when the VMCI
613 * interrupt fires. This is run in bottom-half context and if it ever needs to
614 * sleep it should defer that work to a work queue.
615 */
616
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)617 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
618 {
619 struct sock *sk;
620 size_t size;
621 struct sk_buff *skb;
622 struct vsock_sock *vsk;
623
624 sk = (struct sock *)data;
625
626 /* This handler is privileged when this module is running on the host.
627 * We will get datagrams from all endpoints (even VMs that are in a
628 * restricted context). If we get one from a restricted context then
629 * the destination socket must be trusted.
630 *
631 * NOTE: We access the socket struct without holding the lock here.
632 * This is ok because the field we are interested is never modified
633 * outside of the create and destruct socket functions.
634 */
635 vsk = vsock_sk(sk);
636 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
637 return VMCI_ERROR_NO_ACCESS;
638
639 size = VMCI_DG_SIZE(dg);
640
641 /* Attach the packet to the socket's receive queue as an sk_buff. */
642 skb = alloc_skb(size, GFP_ATOMIC);
643 if (!skb)
644 return VMCI_ERROR_NO_MEM;
645
646 /* sk_receive_skb() will do a sock_put(), so hold here. */
647 sock_hold(sk);
648 skb_put(skb, size);
649 memcpy(skb->data, dg, size);
650 sk_receive_skb(sk, skb, 0);
651
652 return VMCI_SUCCESS;
653 }
654
vmci_transport_stream_allow(u32 cid,u32 port)655 static bool vmci_transport_stream_allow(u32 cid, u32 port)
656 {
657 static const u32 non_socket_contexts[] = {
658 VMADDR_CID_RESERVED,
659 };
660 int i;
661
662 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
663
664 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
665 if (cid == non_socket_contexts[i])
666 return false;
667 }
668
669 return true;
670 }
671
672 /* This is invoked as part of a tasklet that's scheduled when the VMCI
673 * interrupt fires. This is run in bottom-half context but it defers most of
674 * its work to the packet handling work queue.
675 */
676
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)677 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
678 {
679 struct sock *sk;
680 struct sockaddr_vm dst;
681 struct sockaddr_vm src;
682 struct vmci_transport_packet *pkt;
683 struct vsock_sock *vsk;
684 bool bh_process_pkt;
685 int err;
686
687 sk = NULL;
688 err = VMCI_SUCCESS;
689 bh_process_pkt = false;
690
691 /* Ignore incoming packets from contexts without sockets, or resources
692 * that aren't vsock implementations.
693 */
694
695 if (!vmci_transport_stream_allow(dg->src.context, -1)
696 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
697 return VMCI_ERROR_NO_ACCESS;
698
699 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
700 /* Drop datagrams that do not contain full VSock packets. */
701 return VMCI_ERROR_INVALID_ARGS;
702
703 pkt = (struct vmci_transport_packet *)dg;
704
705 /* Find the socket that should handle this packet. First we look for a
706 * connected socket and if there is none we look for a socket bound to
707 * the destintation address.
708 */
709 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
710 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
711
712 sk = vsock_find_connected_socket(&src, &dst);
713 if (!sk) {
714 sk = vsock_find_bound_socket(&dst);
715 if (!sk) {
716 /* We could not find a socket for this specified
717 * address. If this packet is a RST, we just drop it.
718 * If it is another packet, we send a RST. Note that
719 * we do not send a RST reply to RSTs so that we do not
720 * continually send RSTs between two endpoints.
721 *
722 * Note that since this is a reply, dst is src and src
723 * is dst.
724 */
725 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
726 pr_err("unable to send reset\n");
727
728 err = VMCI_ERROR_NOT_FOUND;
729 goto out;
730 }
731 }
732
733 /* If the received packet type is beyond all types known to this
734 * implementation, reply with an invalid message. Hopefully this will
735 * help when implementing backwards compatibility in the future.
736 */
737 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
738 vmci_transport_send_invalid_bh(&dst, &src);
739 err = VMCI_ERROR_INVALID_ARGS;
740 goto out;
741 }
742
743 /* This handler is privileged when this module is running on the host.
744 * We will get datagram connect requests from all endpoints (even VMs
745 * that are in a restricted context). If we get one from a restricted
746 * context then the destination socket must be trusted.
747 *
748 * NOTE: We access the socket struct without holding the lock here.
749 * This is ok because the field we are interested is never modified
750 * outside of the create and destruct socket functions.
751 */
752 vsk = vsock_sk(sk);
753 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
754 err = VMCI_ERROR_NO_ACCESS;
755 goto out;
756 }
757
758 /* We do most everything in a work queue, but let's fast path the
759 * notification of reads and writes to help data transfer performance.
760 * We can only do this if there is no process context code executing
761 * for this socket since that may change the state.
762 */
763 bh_lock_sock(sk);
764
765 if (!sock_owned_by_user(sk)) {
766 /* The local context ID may be out of date, update it. */
767 vsk->local_addr.svm_cid = dst.svm_cid;
768
769 if (sk->sk_state == TCP_ESTABLISHED)
770 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
771 sk, pkt, true, &dst, &src,
772 &bh_process_pkt);
773 }
774
775 bh_unlock_sock(sk);
776
777 if (!bh_process_pkt) {
778 struct vmci_transport_recv_pkt_info *recv_pkt_info;
779
780 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
781 if (!recv_pkt_info) {
782 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
783 pr_err("unable to send reset\n");
784
785 err = VMCI_ERROR_NO_MEM;
786 goto out;
787 }
788
789 recv_pkt_info->sk = sk;
790 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
791 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
792
793 schedule_work(&recv_pkt_info->work);
794 /* Clear sk so that the reference count incremented by one of
795 * the Find functions above is not decremented below. We need
796 * that reference count for the packet handler we've scheduled
797 * to run.
798 */
799 sk = NULL;
800 }
801
802 out:
803 if (sk)
804 sock_put(sk);
805
806 return err;
807 }
808
vmci_transport_handle_detach(struct sock * sk)809 static void vmci_transport_handle_detach(struct sock *sk)
810 {
811 struct vsock_sock *vsk;
812
813 vsk = vsock_sk(sk);
814 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
815 sock_set_flag(sk, SOCK_DONE);
816
817 /* On a detach the peer will not be sending or receiving
818 * anymore.
819 */
820 vsk->peer_shutdown = SHUTDOWN_MASK;
821
822 /* We should not be sending anymore since the peer won't be
823 * there to receive, but we can still receive if there is data
824 * left in our consume queue. If the local endpoint is a host,
825 * we can't call vsock_stream_has_data, since that may block,
826 * but a host endpoint can't read data once the VM has
827 * detached, so there is no available data in that case.
828 */
829 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
830 vsock_stream_has_data(vsk) <= 0) {
831 if (sk->sk_state == TCP_SYN_SENT) {
832 /* The peer may detach from a queue pair while
833 * we are still in the connecting state, i.e.,
834 * if the peer VM is killed after attaching to
835 * a queue pair, but before we complete the
836 * handshake. In that case, we treat the detach
837 * event like a reset.
838 */
839
840 sk->sk_state = TCP_CLOSE;
841 sk->sk_err = ECONNRESET;
842 sk->sk_error_report(sk);
843 return;
844 }
845 sk->sk_state = TCP_CLOSE;
846 }
847 sk->sk_state_change(sk);
848 }
849 }
850
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)851 static void vmci_transport_peer_detach_cb(u32 sub_id,
852 const struct vmci_event_data *e_data,
853 void *client_data)
854 {
855 struct vmci_transport *trans = client_data;
856 const struct vmci_event_payload_qp *e_payload;
857
858 e_payload = vmci_event_data_const_payload(e_data);
859
860 /* XXX This is lame, we should provide a way to lookup sockets by
861 * qp_handle.
862 */
863 if (vmci_handle_is_invalid(e_payload->handle) ||
864 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
865 return;
866
867 /* We don't ask for delayed CBs when we subscribe to this event (we
868 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
869 * guarantees in that case about what context we might be running in,
870 * so it could be BH or process, blockable or non-blockable. So we
871 * need to account for all possible contexts here.
872 */
873 spin_lock_bh(&trans->lock);
874 if (!trans->sk)
875 goto out;
876
877 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
878 * where trans->sk isn't locked.
879 */
880 bh_lock_sock(trans->sk);
881
882 vmci_transport_handle_detach(trans->sk);
883
884 bh_unlock_sock(trans->sk);
885 out:
886 spin_unlock_bh(&trans->lock);
887 }
888
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)889 static void vmci_transport_qp_resumed_cb(u32 sub_id,
890 const struct vmci_event_data *e_data,
891 void *client_data)
892 {
893 vsock_for_each_connected_socket(vmci_transport_handle_detach);
894 }
895
vmci_transport_recv_pkt_work(struct work_struct * work)896 static void vmci_transport_recv_pkt_work(struct work_struct *work)
897 {
898 struct vmci_transport_recv_pkt_info *recv_pkt_info;
899 struct vmci_transport_packet *pkt;
900 struct sock *sk;
901
902 recv_pkt_info =
903 container_of(work, struct vmci_transport_recv_pkt_info, work);
904 sk = recv_pkt_info->sk;
905 pkt = &recv_pkt_info->pkt;
906
907 lock_sock(sk);
908
909 /* The local context ID may be out of date. */
910 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
911
912 switch (sk->sk_state) {
913 case TCP_LISTEN:
914 vmci_transport_recv_listen(sk, pkt);
915 break;
916 case TCP_SYN_SENT:
917 /* Processing of pending connections for servers goes through
918 * the listening socket, so see vmci_transport_recv_listen()
919 * for that path.
920 */
921 vmci_transport_recv_connecting_client(sk, pkt);
922 break;
923 case TCP_ESTABLISHED:
924 vmci_transport_recv_connected(sk, pkt);
925 break;
926 default:
927 /* Because this function does not run in the same context as
928 * vmci_transport_recv_stream_cb it is possible that the
929 * socket has closed. We need to let the other side know or it
930 * could be sitting in a connect and hang forever. Send a
931 * reset to prevent that.
932 */
933 vmci_transport_send_reset(sk, pkt);
934 break;
935 }
936
937 release_sock(sk);
938 kfree(recv_pkt_info);
939 /* Release reference obtained in the stream callback when we fetched
940 * this socket out of the bound or connected list.
941 */
942 sock_put(sk);
943 }
944
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)945 static int vmci_transport_recv_listen(struct sock *sk,
946 struct vmci_transport_packet *pkt)
947 {
948 struct sock *pending;
949 struct vsock_sock *vpending;
950 int err;
951 u64 qp_size;
952 bool old_request = false;
953 bool old_pkt_proto = false;
954
955 err = 0;
956
957 /* Because we are in the listen state, we could be receiving a packet
958 * for ourself or any previous connection requests that we received.
959 * If it's the latter, we try to find a socket in our list of pending
960 * connections and, if we do, call the appropriate handler for the
961 * state that that socket is in. Otherwise we try to service the
962 * connection request.
963 */
964 pending = vmci_transport_get_pending(sk, pkt);
965 if (pending) {
966 lock_sock(pending);
967
968 /* The local context ID may be out of date. */
969 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
970
971 switch (pending->sk_state) {
972 case TCP_SYN_SENT:
973 err = vmci_transport_recv_connecting_server(sk,
974 pending,
975 pkt);
976 break;
977 default:
978 vmci_transport_send_reset(pending, pkt);
979 err = -EINVAL;
980 }
981
982 if (err < 0)
983 vsock_remove_pending(sk, pending);
984
985 release_sock(pending);
986 vmci_transport_release_pending(pending);
987
988 return err;
989 }
990
991 /* The listen state only accepts connection requests. Reply with a
992 * reset unless we received a reset.
993 */
994
995 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
996 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
997 vmci_transport_reply_reset(pkt);
998 return -EINVAL;
999 }
1000
1001 if (pkt->u.size == 0) {
1002 vmci_transport_reply_reset(pkt);
1003 return -EINVAL;
1004 }
1005
1006 /* If this socket can't accommodate this connection request, we send a
1007 * reset. Otherwise we create and initialize a child socket and reply
1008 * with a connection negotiation.
1009 */
1010 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1011 vmci_transport_reply_reset(pkt);
1012 return -ECONNREFUSED;
1013 }
1014
1015 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1016 sk->sk_type, 0);
1017 if (!pending) {
1018 vmci_transport_send_reset(sk, pkt);
1019 return -ENOMEM;
1020 }
1021
1022 vpending = vsock_sk(pending);
1023
1024 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1025 pkt->dst_port);
1026 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1027 pkt->src_port);
1028
1029 /* If the proposed size fits within our min/max, accept it. Otherwise
1030 * propose our own size.
1031 */
1032 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1033 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1034 qp_size = pkt->u.size;
1035 } else {
1036 qp_size = vmci_trans(vpending)->queue_pair_size;
1037 }
1038
1039 /* Figure out if we are using old or new requests based on the
1040 * overrides pkt types sent by our peer.
1041 */
1042 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1043 old_request = old_pkt_proto;
1044 } else {
1045 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1046 old_request = true;
1047 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1048 old_request = false;
1049
1050 }
1051
1052 if (old_request) {
1053 /* Handle a REQUEST (or override) */
1054 u16 version = VSOCK_PROTO_INVALID;
1055 if (vmci_transport_proto_to_notify_struct(
1056 pending, &version, true))
1057 err = vmci_transport_send_negotiate(pending, qp_size);
1058 else
1059 err = -EINVAL;
1060
1061 } else {
1062 /* Handle a REQUEST2 (or override) */
1063 int proto_int = pkt->proto;
1064 int pos;
1065 u16 active_proto_version = 0;
1066
1067 /* The list of possible protocols is the intersection of all
1068 * protocols the client supports ... plus all the protocols we
1069 * support.
1070 */
1071 proto_int &= vmci_transport_new_proto_supported_versions();
1072
1073 /* We choose the highest possible protocol version and use that
1074 * one.
1075 */
1076 pos = fls(proto_int);
1077 if (pos) {
1078 active_proto_version = (1 << (pos - 1));
1079 if (vmci_transport_proto_to_notify_struct(
1080 pending, &active_proto_version, false))
1081 err = vmci_transport_send_negotiate2(pending,
1082 qp_size,
1083 active_proto_version);
1084 else
1085 err = -EINVAL;
1086
1087 } else {
1088 err = -EINVAL;
1089 }
1090 }
1091
1092 if (err < 0) {
1093 vmci_transport_send_reset(sk, pkt);
1094 sock_put(pending);
1095 err = vmci_transport_error_to_vsock_error(err);
1096 goto out;
1097 }
1098
1099 vsock_add_pending(sk, pending);
1100 sk->sk_ack_backlog++;
1101
1102 pending->sk_state = TCP_SYN_SENT;
1103 vmci_trans(vpending)->produce_size =
1104 vmci_trans(vpending)->consume_size = qp_size;
1105 vmci_trans(vpending)->queue_pair_size = qp_size;
1106
1107 vmci_trans(vpending)->notify_ops->process_request(pending);
1108
1109 /* We might never receive another message for this socket and it's not
1110 * connected to any process, so we have to ensure it gets cleaned up
1111 * ourself. Our delayed work function will take care of that. Note
1112 * that we do not ever cancel this function since we have few
1113 * guarantees about its state when calling cancel_delayed_work().
1114 * Instead we hold a reference on the socket for that function and make
1115 * it capable of handling cases where it needs to do nothing but
1116 * release that reference.
1117 */
1118 vpending->listener = sk;
1119 sock_hold(sk);
1120 sock_hold(pending);
1121 schedule_delayed_work(&vpending->pending_work, HZ);
1122
1123 out:
1124 return err;
1125 }
1126
1127 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1128 vmci_transport_recv_connecting_server(struct sock *listener,
1129 struct sock *pending,
1130 struct vmci_transport_packet *pkt)
1131 {
1132 struct vsock_sock *vpending;
1133 struct vmci_handle handle;
1134 struct vmci_qp *qpair;
1135 bool is_local;
1136 u32 flags;
1137 u32 detach_sub_id;
1138 int err;
1139 int skerr;
1140
1141 vpending = vsock_sk(pending);
1142 detach_sub_id = VMCI_INVALID_ID;
1143
1144 switch (pkt->type) {
1145 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1146 if (vmci_handle_is_invalid(pkt->u.handle)) {
1147 vmci_transport_send_reset(pending, pkt);
1148 skerr = EPROTO;
1149 err = -EINVAL;
1150 goto destroy;
1151 }
1152 break;
1153 default:
1154 /* Close and cleanup the connection. */
1155 vmci_transport_send_reset(pending, pkt);
1156 skerr = EPROTO;
1157 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1158 goto destroy;
1159 }
1160
1161 /* In order to complete the connection we need to attach to the offered
1162 * queue pair and send an attach notification. We also subscribe to the
1163 * detach event so we know when our peer goes away, and we do that
1164 * before attaching so we don't miss an event. If all this succeeds,
1165 * we update our state and wakeup anything waiting in accept() for a
1166 * connection.
1167 */
1168
1169 /* We don't care about attach since we ensure the other side has
1170 * attached by specifying the ATTACH_ONLY flag below.
1171 */
1172 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1173 vmci_transport_peer_detach_cb,
1174 vmci_trans(vpending), &detach_sub_id);
1175 if (err < VMCI_SUCCESS) {
1176 vmci_transport_send_reset(pending, pkt);
1177 err = vmci_transport_error_to_vsock_error(err);
1178 skerr = -err;
1179 goto destroy;
1180 }
1181
1182 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1183
1184 /* Now attach to the queue pair the client created. */
1185 handle = pkt->u.handle;
1186
1187 /* vpending->local_addr always has a context id so we do not need to
1188 * worry about VMADDR_CID_ANY in this case.
1189 */
1190 is_local =
1191 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1192 flags = VMCI_QPFLAG_ATTACH_ONLY;
1193 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1194
1195 err = vmci_transport_queue_pair_alloc(
1196 &qpair,
1197 &handle,
1198 vmci_trans(vpending)->produce_size,
1199 vmci_trans(vpending)->consume_size,
1200 pkt->dg.src.context,
1201 flags,
1202 vmci_transport_is_trusted(
1203 vpending,
1204 vpending->remote_addr.svm_cid));
1205 if (err < 0) {
1206 vmci_transport_send_reset(pending, pkt);
1207 skerr = -err;
1208 goto destroy;
1209 }
1210
1211 vmci_trans(vpending)->qp_handle = handle;
1212 vmci_trans(vpending)->qpair = qpair;
1213
1214 /* When we send the attach message, we must be ready to handle incoming
1215 * control messages on the newly connected socket. So we move the
1216 * pending socket to the connected state before sending the attach
1217 * message. Otherwise, an incoming packet triggered by the attach being
1218 * received by the peer may be processed concurrently with what happens
1219 * below after sending the attach message, and that incoming packet
1220 * will find the listening socket instead of the (currently) pending
1221 * socket. Note that enqueueing the socket increments the reference
1222 * count, so even if a reset comes before the connection is accepted,
1223 * the socket will be valid until it is removed from the queue.
1224 *
1225 * If we fail sending the attach below, we remove the socket from the
1226 * connected list and move the socket to TCP_CLOSE before
1227 * releasing the lock, so a pending slow path processing of an incoming
1228 * packet will not see the socket in the connected state in that case.
1229 */
1230 pending->sk_state = TCP_ESTABLISHED;
1231
1232 vsock_insert_connected(vpending);
1233
1234 /* Notify our peer of our attach. */
1235 err = vmci_transport_send_attach(pending, handle);
1236 if (err < 0) {
1237 vsock_remove_connected(vpending);
1238 pr_err("Could not send attach\n");
1239 vmci_transport_send_reset(pending, pkt);
1240 err = vmci_transport_error_to_vsock_error(err);
1241 skerr = -err;
1242 goto destroy;
1243 }
1244
1245 /* We have a connection. Move the now connected socket from the
1246 * listener's pending list to the accept queue so callers of accept()
1247 * can find it.
1248 */
1249 vsock_remove_pending(listener, pending);
1250 vsock_enqueue_accept(listener, pending);
1251
1252 /* Callers of accept() will be be waiting on the listening socket, not
1253 * the pending socket.
1254 */
1255 listener->sk_data_ready(listener);
1256
1257 return 0;
1258
1259 destroy:
1260 pending->sk_err = skerr;
1261 pending->sk_state = TCP_CLOSE;
1262 /* As long as we drop our reference, all necessary cleanup will handle
1263 * when the cleanup function drops its reference and our destruct
1264 * implementation is called. Note that since the listen handler will
1265 * remove pending from the pending list upon our failure, the cleanup
1266 * function won't drop the additional reference, which is why we do it
1267 * here.
1268 */
1269 sock_put(pending);
1270
1271 return err;
1272 }
1273
1274 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1275 vmci_transport_recv_connecting_client(struct sock *sk,
1276 struct vmci_transport_packet *pkt)
1277 {
1278 struct vsock_sock *vsk;
1279 int err;
1280 int skerr;
1281
1282 vsk = vsock_sk(sk);
1283
1284 switch (pkt->type) {
1285 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1286 if (vmci_handle_is_invalid(pkt->u.handle) ||
1287 !vmci_handle_is_equal(pkt->u.handle,
1288 vmci_trans(vsk)->qp_handle)) {
1289 skerr = EPROTO;
1290 err = -EINVAL;
1291 goto destroy;
1292 }
1293
1294 /* Signify the socket is connected and wakeup the waiter in
1295 * connect(). Also place the socket in the connected table for
1296 * accounting (it can already be found since it's in the bound
1297 * table).
1298 */
1299 sk->sk_state = TCP_ESTABLISHED;
1300 sk->sk_socket->state = SS_CONNECTED;
1301 vsock_insert_connected(vsk);
1302 sk->sk_state_change(sk);
1303
1304 break;
1305 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1306 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1307 if (pkt->u.size == 0
1308 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1309 || pkt->src_port != vsk->remote_addr.svm_port
1310 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1311 || vmci_trans(vsk)->qpair
1312 || vmci_trans(vsk)->produce_size != 0
1313 || vmci_trans(vsk)->consume_size != 0
1314 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1315 skerr = EPROTO;
1316 err = -EINVAL;
1317
1318 goto destroy;
1319 }
1320
1321 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1322 if (err) {
1323 skerr = -err;
1324 goto destroy;
1325 }
1326
1327 break;
1328 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1329 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1330 if (err) {
1331 skerr = -err;
1332 goto destroy;
1333 }
1334
1335 break;
1336 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1337 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1338 * continue processing here after they sent an INVALID packet.
1339 * This meant that we got a RST after the INVALID. We ignore a
1340 * RST after an INVALID. The common code doesn't send the RST
1341 * ... so we can hang if an old version of the common code
1342 * fails between getting a REQUEST and sending an OFFER back.
1343 * Not much we can do about it... except hope that it doesn't
1344 * happen.
1345 */
1346 if (vsk->ignore_connecting_rst) {
1347 vsk->ignore_connecting_rst = false;
1348 } else {
1349 skerr = ECONNRESET;
1350 err = 0;
1351 goto destroy;
1352 }
1353
1354 break;
1355 default:
1356 /* Close and cleanup the connection. */
1357 skerr = EPROTO;
1358 err = -EINVAL;
1359 goto destroy;
1360 }
1361
1362 return 0;
1363
1364 destroy:
1365 vmci_transport_send_reset(sk, pkt);
1366
1367 sk->sk_state = TCP_CLOSE;
1368 sk->sk_err = skerr;
1369 sk->sk_error_report(sk);
1370 return err;
1371 }
1372
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1373 static int vmci_transport_recv_connecting_client_negotiate(
1374 struct sock *sk,
1375 struct vmci_transport_packet *pkt)
1376 {
1377 int err;
1378 struct vsock_sock *vsk;
1379 struct vmci_handle handle;
1380 struct vmci_qp *qpair;
1381 u32 detach_sub_id;
1382 bool is_local;
1383 u32 flags;
1384 bool old_proto = true;
1385 bool old_pkt_proto;
1386 u16 version;
1387
1388 vsk = vsock_sk(sk);
1389 handle = VMCI_INVALID_HANDLE;
1390 detach_sub_id = VMCI_INVALID_ID;
1391
1392 /* If we have gotten here then we should be past the point where old
1393 * linux vsock could have sent the bogus rst.
1394 */
1395 vsk->sent_request = false;
1396 vsk->ignore_connecting_rst = false;
1397
1398 /* Verify that we're OK with the proposed queue pair size */
1399 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1400 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1401 err = -EINVAL;
1402 goto destroy;
1403 }
1404
1405 /* At this point we know the CID the peer is using to talk to us. */
1406
1407 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1408 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1409
1410 /* Setup the notify ops to be the highest supported version that both
1411 * the server and the client support.
1412 */
1413
1414 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1415 old_proto = old_pkt_proto;
1416 } else {
1417 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1418 old_proto = true;
1419 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1420 old_proto = false;
1421
1422 }
1423
1424 if (old_proto)
1425 version = VSOCK_PROTO_INVALID;
1426 else
1427 version = pkt->proto;
1428
1429 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1430 err = -EINVAL;
1431 goto destroy;
1432 }
1433
1434 /* Subscribe to detach events first.
1435 *
1436 * XXX We attach once for each queue pair created for now so it is easy
1437 * to find the socket (it's provided), but later we should only
1438 * subscribe once and add a way to lookup sockets by queue pair handle.
1439 */
1440 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1441 vmci_transport_peer_detach_cb,
1442 vmci_trans(vsk), &detach_sub_id);
1443 if (err < VMCI_SUCCESS) {
1444 err = vmci_transport_error_to_vsock_error(err);
1445 goto destroy;
1446 }
1447
1448 /* Make VMCI select the handle for us. */
1449 handle = VMCI_INVALID_HANDLE;
1450 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1451 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1452
1453 err = vmci_transport_queue_pair_alloc(&qpair,
1454 &handle,
1455 pkt->u.size,
1456 pkt->u.size,
1457 vsk->remote_addr.svm_cid,
1458 flags,
1459 vmci_transport_is_trusted(
1460 vsk,
1461 vsk->
1462 remote_addr.svm_cid));
1463 if (err < 0)
1464 goto destroy;
1465
1466 err = vmci_transport_send_qp_offer(sk, handle);
1467 if (err < 0) {
1468 err = vmci_transport_error_to_vsock_error(err);
1469 goto destroy;
1470 }
1471
1472 vmci_trans(vsk)->qp_handle = handle;
1473 vmci_trans(vsk)->qpair = qpair;
1474
1475 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1476 pkt->u.size;
1477
1478 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1479
1480 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1481
1482 return 0;
1483
1484 destroy:
1485 if (detach_sub_id != VMCI_INVALID_ID)
1486 vmci_event_unsubscribe(detach_sub_id);
1487
1488 if (!vmci_handle_is_invalid(handle))
1489 vmci_qpair_detach(&qpair);
1490
1491 return err;
1492 }
1493
1494 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1495 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1496 struct vmci_transport_packet *pkt)
1497 {
1498 int err = 0;
1499 struct vsock_sock *vsk = vsock_sk(sk);
1500
1501 if (vsk->sent_request) {
1502 vsk->sent_request = false;
1503 vsk->ignore_connecting_rst = true;
1504
1505 err = vmci_transport_send_conn_request(
1506 sk, vmci_trans(vsk)->queue_pair_size);
1507 if (err < 0)
1508 err = vmci_transport_error_to_vsock_error(err);
1509 else
1510 err = 0;
1511
1512 }
1513
1514 return err;
1515 }
1516
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1517 static int vmci_transport_recv_connected(struct sock *sk,
1518 struct vmci_transport_packet *pkt)
1519 {
1520 struct vsock_sock *vsk;
1521 bool pkt_processed = false;
1522
1523 /* In cases where we are closing the connection, it's sufficient to
1524 * mark the state change (and maybe error) and wake up any waiting
1525 * threads. Since this is a connected socket, it's owned by a user
1526 * process and will be cleaned up when the failure is passed back on
1527 * the current or next system call. Our system call implementations
1528 * must therefore check for error and state changes on entry and when
1529 * being awoken.
1530 */
1531 switch (pkt->type) {
1532 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1533 if (pkt->u.mode) {
1534 vsk = vsock_sk(sk);
1535
1536 vsk->peer_shutdown |= pkt->u.mode;
1537 sk->sk_state_change(sk);
1538 }
1539 break;
1540
1541 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1542 vsk = vsock_sk(sk);
1543 /* It is possible that we sent our peer a message (e.g a
1544 * WAITING_READ) right before we got notified that the peer had
1545 * detached. If that happens then we can get a RST pkt back
1546 * from our peer even though there is data available for us to
1547 * read. In that case, don't shutdown the socket completely but
1548 * instead allow the local client to finish reading data off
1549 * the queuepair. Always treat a RST pkt in connected mode like
1550 * a clean shutdown.
1551 */
1552 sock_set_flag(sk, SOCK_DONE);
1553 vsk->peer_shutdown = SHUTDOWN_MASK;
1554 if (vsock_stream_has_data(vsk) <= 0)
1555 sk->sk_state = TCP_CLOSING;
1556
1557 sk->sk_state_change(sk);
1558 break;
1559
1560 default:
1561 vsk = vsock_sk(sk);
1562 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1563 sk, pkt, false, NULL, NULL,
1564 &pkt_processed);
1565 if (!pkt_processed)
1566 return -EINVAL;
1567
1568 break;
1569 }
1570
1571 return 0;
1572 }
1573
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1574 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1575 struct vsock_sock *psk)
1576 {
1577 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1578 if (!vsk->trans)
1579 return -ENOMEM;
1580
1581 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1582 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1583 vmci_trans(vsk)->qpair = NULL;
1584 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1585 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1586 vmci_trans(vsk)->notify_ops = NULL;
1587 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1588 vmci_trans(vsk)->sk = &vsk->sk;
1589 spin_lock_init(&vmci_trans(vsk)->lock);
1590 if (psk) {
1591 vmci_trans(vsk)->queue_pair_size =
1592 vmci_trans(psk)->queue_pair_size;
1593 vmci_trans(vsk)->queue_pair_min_size =
1594 vmci_trans(psk)->queue_pair_min_size;
1595 vmci_trans(vsk)->queue_pair_max_size =
1596 vmci_trans(psk)->queue_pair_max_size;
1597 } else {
1598 vmci_trans(vsk)->queue_pair_size =
1599 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1600 vmci_trans(vsk)->queue_pair_min_size =
1601 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1602 vmci_trans(vsk)->queue_pair_max_size =
1603 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1604 }
1605
1606 return 0;
1607 }
1608
vmci_transport_free_resources(struct list_head * transport_list)1609 static void vmci_transport_free_resources(struct list_head *transport_list)
1610 {
1611 while (!list_empty(transport_list)) {
1612 struct vmci_transport *transport =
1613 list_first_entry(transport_list, struct vmci_transport,
1614 elem);
1615 list_del(&transport->elem);
1616
1617 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1618 vmci_event_unsubscribe(transport->detach_sub_id);
1619 transport->detach_sub_id = VMCI_INVALID_ID;
1620 }
1621
1622 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1623 vmci_qpair_detach(&transport->qpair);
1624 transport->qp_handle = VMCI_INVALID_HANDLE;
1625 transport->produce_size = 0;
1626 transport->consume_size = 0;
1627 }
1628
1629 kfree(transport);
1630 }
1631 }
1632
vmci_transport_cleanup(struct work_struct * work)1633 static void vmci_transport_cleanup(struct work_struct *work)
1634 {
1635 LIST_HEAD(pending);
1636
1637 spin_lock_bh(&vmci_transport_cleanup_lock);
1638 list_replace_init(&vmci_transport_cleanup_list, &pending);
1639 spin_unlock_bh(&vmci_transport_cleanup_lock);
1640 vmci_transport_free_resources(&pending);
1641 }
1642
vmci_transport_destruct(struct vsock_sock * vsk)1643 static void vmci_transport_destruct(struct vsock_sock *vsk)
1644 {
1645 /* transport can be NULL if we hit a failure at init() time */
1646 if (!vmci_trans(vsk))
1647 return;
1648
1649 /* Ensure that the detach callback doesn't use the sk/vsk
1650 * we are about to destruct.
1651 */
1652 spin_lock_bh(&vmci_trans(vsk)->lock);
1653 vmci_trans(vsk)->sk = NULL;
1654 spin_unlock_bh(&vmci_trans(vsk)->lock);
1655
1656 if (vmci_trans(vsk)->notify_ops)
1657 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1658
1659 spin_lock_bh(&vmci_transport_cleanup_lock);
1660 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1661 spin_unlock_bh(&vmci_transport_cleanup_lock);
1662 schedule_work(&vmci_transport_cleanup_work);
1663
1664 vsk->trans = NULL;
1665 }
1666
vmci_transport_release(struct vsock_sock * vsk)1667 static void vmci_transport_release(struct vsock_sock *vsk)
1668 {
1669 vsock_remove_sock(vsk);
1670
1671 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1672 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1673 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1674 }
1675 }
1676
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1677 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1678 struct sockaddr_vm *addr)
1679 {
1680 u32 port;
1681 u32 flags;
1682 int err;
1683
1684 /* VMCI will select a resource ID for us if we provide
1685 * VMCI_INVALID_ID.
1686 */
1687 port = addr->svm_port == VMADDR_PORT_ANY ?
1688 VMCI_INVALID_ID : addr->svm_port;
1689
1690 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1691 return -EACCES;
1692
1693 flags = addr->svm_cid == VMADDR_CID_ANY ?
1694 VMCI_FLAG_ANYCID_DG_HND : 0;
1695
1696 err = vmci_transport_datagram_create_hnd(port, flags,
1697 vmci_transport_recv_dgram_cb,
1698 &vsk->sk,
1699 &vmci_trans(vsk)->dg_handle);
1700 if (err < VMCI_SUCCESS)
1701 return vmci_transport_error_to_vsock_error(err);
1702 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1703 vmci_trans(vsk)->dg_handle.resource);
1704
1705 return 0;
1706 }
1707
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1708 static int vmci_transport_dgram_enqueue(
1709 struct vsock_sock *vsk,
1710 struct sockaddr_vm *remote_addr,
1711 struct msghdr *msg,
1712 size_t len)
1713 {
1714 int err;
1715 struct vmci_datagram *dg;
1716
1717 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1718 return -EMSGSIZE;
1719
1720 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1721 return -EPERM;
1722
1723 /* Allocate a buffer for the user's message and our packet header. */
1724 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1725 if (!dg)
1726 return -ENOMEM;
1727
1728 err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1729 if (err) {
1730 kfree(dg);
1731 return err;
1732 }
1733
1734 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1735 remote_addr->svm_port);
1736 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1737 vsk->local_addr.svm_port);
1738 dg->payload_size = len;
1739
1740 err = vmci_datagram_send(dg);
1741 kfree(dg);
1742 if (err < 0)
1743 return vmci_transport_error_to_vsock_error(err);
1744
1745 return err - sizeof(*dg);
1746 }
1747
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1748 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1749 struct msghdr *msg, size_t len,
1750 int flags)
1751 {
1752 int err;
1753 int noblock;
1754 struct vmci_datagram *dg;
1755 size_t payload_len;
1756 struct sk_buff *skb;
1757
1758 noblock = flags & MSG_DONTWAIT;
1759
1760 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1761 return -EOPNOTSUPP;
1762
1763 /* Retrieve the head sk_buff from the socket's receive queue. */
1764 err = 0;
1765 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1766 if (!skb)
1767 return err;
1768
1769 dg = (struct vmci_datagram *)skb->data;
1770 if (!dg)
1771 /* err is 0, meaning we read zero bytes. */
1772 goto out;
1773
1774 payload_len = dg->payload_size;
1775 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1776 if (payload_len != skb->len - sizeof(*dg)) {
1777 err = -EINVAL;
1778 goto out;
1779 }
1780
1781 if (payload_len > len) {
1782 payload_len = len;
1783 msg->msg_flags |= MSG_TRUNC;
1784 }
1785
1786 /* Place the datagram payload in the user's iovec. */
1787 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1788 if (err)
1789 goto out;
1790
1791 if (msg->msg_name) {
1792 /* Provide the address of the sender. */
1793 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1794 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1795 msg->msg_namelen = sizeof(*vm_addr);
1796 }
1797 err = payload_len;
1798
1799 out:
1800 skb_free_datagram(&vsk->sk, skb);
1801 return err;
1802 }
1803
vmci_transport_dgram_allow(u32 cid,u32 port)1804 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1805 {
1806 if (cid == VMADDR_CID_HYPERVISOR) {
1807 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1808 * state and are allowed.
1809 */
1810 return port == VMCI_UNITY_PBRPC_REGISTER;
1811 }
1812
1813 return true;
1814 }
1815
vmci_transport_connect(struct vsock_sock * vsk)1816 static int vmci_transport_connect(struct vsock_sock *vsk)
1817 {
1818 int err;
1819 bool old_pkt_proto = false;
1820 struct sock *sk = &vsk->sk;
1821
1822 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1823 old_pkt_proto) {
1824 err = vmci_transport_send_conn_request(
1825 sk, vmci_trans(vsk)->queue_pair_size);
1826 if (err < 0) {
1827 sk->sk_state = TCP_CLOSE;
1828 return err;
1829 }
1830 } else {
1831 int supported_proto_versions =
1832 vmci_transport_new_proto_supported_versions();
1833 err = vmci_transport_send_conn_request2(
1834 sk, vmci_trans(vsk)->queue_pair_size,
1835 supported_proto_versions);
1836 if (err < 0) {
1837 sk->sk_state = TCP_CLOSE;
1838 return err;
1839 }
1840
1841 vsk->sent_request = true;
1842 }
1843
1844 return err;
1845 }
1846
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1847 static ssize_t vmci_transport_stream_dequeue(
1848 struct vsock_sock *vsk,
1849 struct msghdr *msg,
1850 size_t len,
1851 int flags)
1852 {
1853 if (flags & MSG_PEEK)
1854 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1855 else
1856 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1857 }
1858
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1859 static ssize_t vmci_transport_stream_enqueue(
1860 struct vsock_sock *vsk,
1861 struct msghdr *msg,
1862 size_t len)
1863 {
1864 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1865 }
1866
vmci_transport_stream_has_data(struct vsock_sock * vsk)1867 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1868 {
1869 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1870 }
1871
vmci_transport_stream_has_space(struct vsock_sock * vsk)1872 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1873 {
1874 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1875 }
1876
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1877 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1878 {
1879 return vmci_trans(vsk)->consume_size;
1880 }
1881
vmci_transport_stream_is_active(struct vsock_sock * vsk)1882 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1883 {
1884 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1885 }
1886
vmci_transport_get_buffer_size(struct vsock_sock * vsk)1887 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1888 {
1889 return vmci_trans(vsk)->queue_pair_size;
1890 }
1891
vmci_transport_get_min_buffer_size(struct vsock_sock * vsk)1892 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1893 {
1894 return vmci_trans(vsk)->queue_pair_min_size;
1895 }
1896
vmci_transport_get_max_buffer_size(struct vsock_sock * vsk)1897 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1898 {
1899 return vmci_trans(vsk)->queue_pair_max_size;
1900 }
1901
vmci_transport_set_buffer_size(struct vsock_sock * vsk,u64 val)1902 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1903 {
1904 if (val < vmci_trans(vsk)->queue_pair_min_size)
1905 vmci_trans(vsk)->queue_pair_min_size = val;
1906 if (val > vmci_trans(vsk)->queue_pair_max_size)
1907 vmci_trans(vsk)->queue_pair_max_size = val;
1908 vmci_trans(vsk)->queue_pair_size = val;
1909 }
1910
vmci_transport_set_min_buffer_size(struct vsock_sock * vsk,u64 val)1911 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1912 u64 val)
1913 {
1914 if (val > vmci_trans(vsk)->queue_pair_size)
1915 vmci_trans(vsk)->queue_pair_size = val;
1916 vmci_trans(vsk)->queue_pair_min_size = val;
1917 }
1918
vmci_transport_set_max_buffer_size(struct vsock_sock * vsk,u64 val)1919 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1920 u64 val)
1921 {
1922 if (val < vmci_trans(vsk)->queue_pair_size)
1923 vmci_trans(vsk)->queue_pair_size = val;
1924 vmci_trans(vsk)->queue_pair_max_size = val;
1925 }
1926
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1927 static int vmci_transport_notify_poll_in(
1928 struct vsock_sock *vsk,
1929 size_t target,
1930 bool *data_ready_now)
1931 {
1932 return vmci_trans(vsk)->notify_ops->poll_in(
1933 &vsk->sk, target, data_ready_now);
1934 }
1935
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1936 static int vmci_transport_notify_poll_out(
1937 struct vsock_sock *vsk,
1938 size_t target,
1939 bool *space_available_now)
1940 {
1941 return vmci_trans(vsk)->notify_ops->poll_out(
1942 &vsk->sk, target, space_available_now);
1943 }
1944
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1945 static int vmci_transport_notify_recv_init(
1946 struct vsock_sock *vsk,
1947 size_t target,
1948 struct vsock_transport_recv_notify_data *data)
1949 {
1950 return vmci_trans(vsk)->notify_ops->recv_init(
1951 &vsk->sk, target,
1952 (struct vmci_transport_recv_notify_data *)data);
1953 }
1954
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1955 static int vmci_transport_notify_recv_pre_block(
1956 struct vsock_sock *vsk,
1957 size_t target,
1958 struct vsock_transport_recv_notify_data *data)
1959 {
1960 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1961 &vsk->sk, target,
1962 (struct vmci_transport_recv_notify_data *)data);
1963 }
1964
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1965 static int vmci_transport_notify_recv_pre_dequeue(
1966 struct vsock_sock *vsk,
1967 size_t target,
1968 struct vsock_transport_recv_notify_data *data)
1969 {
1970 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1971 &vsk->sk, target,
1972 (struct vmci_transport_recv_notify_data *)data);
1973 }
1974
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1975 static int vmci_transport_notify_recv_post_dequeue(
1976 struct vsock_sock *vsk,
1977 size_t target,
1978 ssize_t copied,
1979 bool data_read,
1980 struct vsock_transport_recv_notify_data *data)
1981 {
1982 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1983 &vsk->sk, target, copied, data_read,
1984 (struct vmci_transport_recv_notify_data *)data);
1985 }
1986
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1987 static int vmci_transport_notify_send_init(
1988 struct vsock_sock *vsk,
1989 struct vsock_transport_send_notify_data *data)
1990 {
1991 return vmci_trans(vsk)->notify_ops->send_init(
1992 &vsk->sk,
1993 (struct vmci_transport_send_notify_data *)data);
1994 }
1995
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1996 static int vmci_transport_notify_send_pre_block(
1997 struct vsock_sock *vsk,
1998 struct vsock_transport_send_notify_data *data)
1999 {
2000 return vmci_trans(vsk)->notify_ops->send_pre_block(
2001 &vsk->sk,
2002 (struct vmci_transport_send_notify_data *)data);
2003 }
2004
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)2005 static int vmci_transport_notify_send_pre_enqueue(
2006 struct vsock_sock *vsk,
2007 struct vsock_transport_send_notify_data *data)
2008 {
2009 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2010 &vsk->sk,
2011 (struct vmci_transport_send_notify_data *)data);
2012 }
2013
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)2014 static int vmci_transport_notify_send_post_enqueue(
2015 struct vsock_sock *vsk,
2016 ssize_t written,
2017 struct vsock_transport_send_notify_data *data)
2018 {
2019 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2020 &vsk->sk, written,
2021 (struct vmci_transport_send_notify_data *)data);
2022 }
2023
vmci_transport_old_proto_override(bool * old_pkt_proto)2024 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2025 {
2026 if (PROTOCOL_OVERRIDE != -1) {
2027 if (PROTOCOL_OVERRIDE == 0)
2028 *old_pkt_proto = true;
2029 else
2030 *old_pkt_proto = false;
2031
2032 pr_info("Proto override in use\n");
2033 return true;
2034 }
2035
2036 return false;
2037 }
2038
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)2039 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2040 u16 *proto,
2041 bool old_pkt_proto)
2042 {
2043 struct vsock_sock *vsk = vsock_sk(sk);
2044
2045 if (old_pkt_proto) {
2046 if (*proto != VSOCK_PROTO_INVALID) {
2047 pr_err("Can't set both an old and new protocol\n");
2048 return false;
2049 }
2050 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2051 goto exit;
2052 }
2053
2054 switch (*proto) {
2055 case VSOCK_PROTO_PKT_ON_NOTIFY:
2056 vmci_trans(vsk)->notify_ops =
2057 &vmci_transport_notify_pkt_q_state_ops;
2058 break;
2059 default:
2060 pr_err("Unknown notify protocol version\n");
2061 return false;
2062 }
2063
2064 exit:
2065 vmci_trans(vsk)->notify_ops->socket_init(sk);
2066 return true;
2067 }
2068
vmci_transport_new_proto_supported_versions(void)2069 static u16 vmci_transport_new_proto_supported_versions(void)
2070 {
2071 if (PROTOCOL_OVERRIDE != -1)
2072 return PROTOCOL_OVERRIDE;
2073
2074 return VSOCK_PROTO_ALL_SUPPORTED;
2075 }
2076
vmci_transport_get_local_cid(void)2077 static u32 vmci_transport_get_local_cid(void)
2078 {
2079 return vmci_get_context_id();
2080 }
2081
2082 static const struct vsock_transport vmci_transport = {
2083 .init = vmci_transport_socket_init,
2084 .destruct = vmci_transport_destruct,
2085 .release = vmci_transport_release,
2086 .connect = vmci_transport_connect,
2087 .dgram_bind = vmci_transport_dgram_bind,
2088 .dgram_dequeue = vmci_transport_dgram_dequeue,
2089 .dgram_enqueue = vmci_transport_dgram_enqueue,
2090 .dgram_allow = vmci_transport_dgram_allow,
2091 .stream_dequeue = vmci_transport_stream_dequeue,
2092 .stream_enqueue = vmci_transport_stream_enqueue,
2093 .stream_has_data = vmci_transport_stream_has_data,
2094 .stream_has_space = vmci_transport_stream_has_space,
2095 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2096 .stream_is_active = vmci_transport_stream_is_active,
2097 .stream_allow = vmci_transport_stream_allow,
2098 .notify_poll_in = vmci_transport_notify_poll_in,
2099 .notify_poll_out = vmci_transport_notify_poll_out,
2100 .notify_recv_init = vmci_transport_notify_recv_init,
2101 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2102 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2103 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2104 .notify_send_init = vmci_transport_notify_send_init,
2105 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2106 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2107 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2108 .shutdown = vmci_transport_shutdown,
2109 .set_buffer_size = vmci_transport_set_buffer_size,
2110 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2111 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2112 .get_buffer_size = vmci_transport_get_buffer_size,
2113 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2114 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2115 .get_local_cid = vmci_transport_get_local_cid,
2116 };
2117
vmci_transport_init(void)2118 static int __init vmci_transport_init(void)
2119 {
2120 int err;
2121
2122 /* Create the datagram handle that we will use to send and receive all
2123 * VSocket control messages for this context.
2124 */
2125 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2126 VMCI_FLAG_ANYCID_DG_HND,
2127 vmci_transport_recv_stream_cb,
2128 NULL,
2129 &vmci_transport_stream_handle);
2130 if (err < VMCI_SUCCESS) {
2131 pr_err("Unable to create datagram handle. (%d)\n", err);
2132 return vmci_transport_error_to_vsock_error(err);
2133 }
2134
2135 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2136 vmci_transport_qp_resumed_cb,
2137 NULL, &vmci_transport_qp_resumed_sub_id);
2138 if (err < VMCI_SUCCESS) {
2139 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2140 err = vmci_transport_error_to_vsock_error(err);
2141 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2142 goto err_destroy_stream_handle;
2143 }
2144
2145 err = vsock_core_init(&vmci_transport);
2146 if (err < 0)
2147 goto err_unsubscribe;
2148
2149 return 0;
2150
2151 err_unsubscribe:
2152 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2153 err_destroy_stream_handle:
2154 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2155 return err;
2156 }
2157 module_init(vmci_transport_init);
2158
vmci_transport_exit(void)2159 static void __exit vmci_transport_exit(void)
2160 {
2161 cancel_work_sync(&vmci_transport_cleanup_work);
2162 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2163
2164 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2165 if (vmci_datagram_destroy_handle(
2166 vmci_transport_stream_handle) != VMCI_SUCCESS)
2167 pr_err("Couldn't destroy datagram handle\n");
2168 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2169 }
2170
2171 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2172 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2173 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2174 }
2175
2176 vsock_core_exit();
2177 }
2178 module_exit(vmci_transport_exit);
2179
2180 MODULE_AUTHOR("VMware, Inc.");
2181 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2182 MODULE_VERSION("1.0.5.0-k");
2183 MODULE_LICENSE("GPL v2");
2184 MODULE_ALIAS("vmware_vsock");
2185 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2186