• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29 
30 #include "vmci_transport_notify.h"
31 
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 					  const struct vmci_event_data *ed,
36 					  void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 				      struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 					struct sock *sk,
43 					struct sock *pending,
44 					struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 					struct sock *sk,
47 					struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 					struct sock *sk,
50 					struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 					struct sock *sk,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 					 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 						  bool old_pkt_proto);
60 
61 struct vmci_transport_recv_pkt_info {
62 	struct work_struct work;
63 	struct sock *sk;
64 	struct vmci_transport_packet pkt;
65 };
66 
67 static LIST_HEAD(vmci_transport_cleanup_list);
68 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
69 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
70 
71 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
72 							   VMCI_INVALID_ID };
73 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
74 
75 static int PROTOCOL_OVERRIDE = -1;
76 
77 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
78 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
79 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
80 
81 /* The default peer timeout indicates how long we will wait for a peer response
82  * to a control message.
83  */
84 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
85 
86 /* Helper function to convert from a VMCI error code to a VSock error code. */
87 
vmci_transport_error_to_vsock_error(s32 vmci_error)88 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
89 {
90 	switch (vmci_error) {
91 	case VMCI_ERROR_NO_MEM:
92 		return -ENOMEM;
93 	case VMCI_ERROR_DUPLICATE_ENTRY:
94 	case VMCI_ERROR_ALREADY_EXISTS:
95 		return -EADDRINUSE;
96 	case VMCI_ERROR_NO_ACCESS:
97 		return -EPERM;
98 	case VMCI_ERROR_NO_RESOURCES:
99 		return -ENOBUFS;
100 	case VMCI_ERROR_INVALID_RESOURCE:
101 		return -EHOSTUNREACH;
102 	case VMCI_ERROR_INVALID_ARGS:
103 	default:
104 		break;
105 	}
106 	return -EINVAL;
107 }
108 
vmci_transport_peer_rid(u32 peer_cid)109 static u32 vmci_transport_peer_rid(u32 peer_cid)
110 {
111 	if (VMADDR_CID_HYPERVISOR == peer_cid)
112 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
113 
114 	return VMCI_TRANSPORT_PACKET_RID;
115 }
116 
117 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)118 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
119 			   struct sockaddr_vm *src,
120 			   struct sockaddr_vm *dst,
121 			   u8 type,
122 			   u64 size,
123 			   u64 mode,
124 			   struct vmci_transport_waiting_info *wait,
125 			   u16 proto,
126 			   struct vmci_handle handle)
127 {
128 	/* We register the stream control handler as an any cid handle so we
129 	 * must always send from a source address of VMADDR_CID_ANY
130 	 */
131 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
132 				       VMCI_TRANSPORT_PACKET_RID);
133 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
134 				       vmci_transport_peer_rid(dst->svm_cid));
135 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
136 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
137 	pkt->type = type;
138 	pkt->src_port = src->svm_port;
139 	pkt->dst_port = dst->svm_port;
140 	memset(&pkt->proto, 0, sizeof(pkt->proto));
141 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
142 
143 	switch (pkt->type) {
144 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
145 		pkt->u.size = 0;
146 		break;
147 
148 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
149 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
150 		pkt->u.size = size;
151 		break;
152 
153 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
154 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
155 		pkt->u.handle = handle;
156 		break;
157 
158 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
159 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
160 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
161 		pkt->u.size = 0;
162 		break;
163 
164 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
165 		pkt->u.mode = mode;
166 		break;
167 
168 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
169 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
170 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
171 		break;
172 
173 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
174 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
175 		pkt->u.size = size;
176 		pkt->proto = proto;
177 		break;
178 	}
179 }
180 
181 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)182 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
183 				    struct sockaddr_vm *local,
184 				    struct sockaddr_vm *remote)
185 {
186 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
187 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
188 }
189 
190 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)191 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
192 				  struct sockaddr_vm *src,
193 				  struct sockaddr_vm *dst,
194 				  enum vmci_transport_packet_type type,
195 				  u64 size,
196 				  u64 mode,
197 				  struct vmci_transport_waiting_info *wait,
198 				  u16 proto,
199 				  struct vmci_handle handle,
200 				  bool convert_error)
201 {
202 	int err;
203 
204 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
205 				   proto, handle);
206 	err = vmci_datagram_send(&pkt->dg);
207 	if (convert_error && (err < 0))
208 		return vmci_transport_error_to_vsock_error(err);
209 
210 	return err;
211 }
212 
213 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)214 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
215 				      enum vmci_transport_packet_type type,
216 				      u64 size,
217 				      u64 mode,
218 				      struct vmci_transport_waiting_info *wait,
219 				      struct vmci_handle handle)
220 {
221 	struct vmci_transport_packet reply;
222 	struct sockaddr_vm src, dst;
223 
224 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
225 		return 0;
226 	} else {
227 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
228 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
229 							 type,
230 							 size, mode, wait,
231 							 VSOCK_PROTO_INVALID,
232 							 handle, true);
233 	}
234 }
235 
236 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)237 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
238 				   struct sockaddr_vm *dst,
239 				   enum vmci_transport_packet_type type,
240 				   u64 size,
241 				   u64 mode,
242 				   struct vmci_transport_waiting_info *wait,
243 				   struct vmci_handle handle)
244 {
245 	/* Note that it is safe to use a single packet across all CPUs since
246 	 * two tasklets of the same type are guaranteed to not ever run
247 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
248 	 * we can use per-cpu packets.
249 	 */
250 	static struct vmci_transport_packet pkt;
251 
252 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
253 						 size, mode, wait,
254 						 VSOCK_PROTO_INVALID, handle,
255 						 false);
256 }
257 
258 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)259 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
260 				      struct sockaddr_vm *dst,
261 				      enum vmci_transport_packet_type type,
262 				      u64 size,
263 				      u64 mode,
264 				      struct vmci_transport_waiting_info *wait,
265 				      u16 proto,
266 				      struct vmci_handle handle)
267 {
268 	struct vmci_transport_packet *pkt;
269 	int err;
270 
271 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
272 	if (!pkt)
273 		return -ENOMEM;
274 
275 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
276 						mode, wait, proto, handle,
277 						true);
278 	kfree(pkt);
279 
280 	return err;
281 }
282 
283 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)284 vmci_transport_send_control_pkt(struct sock *sk,
285 				enum vmci_transport_packet_type type,
286 				u64 size,
287 				u64 mode,
288 				struct vmci_transport_waiting_info *wait,
289 				u16 proto,
290 				struct vmci_handle handle)
291 {
292 	struct vsock_sock *vsk;
293 
294 	vsk = vsock_sk(sk);
295 
296 	if (!vsock_addr_bound(&vsk->local_addr))
297 		return -EINVAL;
298 
299 	if (!vsock_addr_bound(&vsk->remote_addr))
300 		return -EINVAL;
301 
302 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
303 						     &vsk->remote_addr,
304 						     type, size, mode,
305 						     wait, proto, handle);
306 }
307 
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)308 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
309 					struct sockaddr_vm *src,
310 					struct vmci_transport_packet *pkt)
311 {
312 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
313 		return 0;
314 	return vmci_transport_send_control_pkt_bh(
315 					dst, src,
316 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
317 					0, NULL, VMCI_INVALID_HANDLE);
318 }
319 
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)320 static int vmci_transport_send_reset(struct sock *sk,
321 				     struct vmci_transport_packet *pkt)
322 {
323 	struct sockaddr_vm *dst_ptr;
324 	struct sockaddr_vm dst;
325 	struct vsock_sock *vsk;
326 
327 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
328 		return 0;
329 
330 	vsk = vsock_sk(sk);
331 
332 	if (!vsock_addr_bound(&vsk->local_addr))
333 		return -EINVAL;
334 
335 	if (vsock_addr_bound(&vsk->remote_addr)) {
336 		dst_ptr = &vsk->remote_addr;
337 	} else {
338 		vsock_addr_init(&dst, pkt->dg.src.context,
339 				pkt->src_port);
340 		dst_ptr = &dst;
341 	}
342 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
343 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
344 					     0, 0, NULL, VSOCK_PROTO_INVALID,
345 					     VMCI_INVALID_HANDLE);
346 }
347 
vmci_transport_send_negotiate(struct sock * sk,size_t size)348 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
349 {
350 	return vmci_transport_send_control_pkt(
351 					sk,
352 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
353 					size, 0, NULL,
354 					VSOCK_PROTO_INVALID,
355 					VMCI_INVALID_HANDLE);
356 }
357 
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)358 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
359 					  u16 version)
360 {
361 	return vmci_transport_send_control_pkt(
362 					sk,
363 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
364 					size, 0, NULL, version,
365 					VMCI_INVALID_HANDLE);
366 }
367 
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)368 static int vmci_transport_send_qp_offer(struct sock *sk,
369 					struct vmci_handle handle)
370 {
371 	return vmci_transport_send_control_pkt(
372 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
373 					0, NULL,
374 					VSOCK_PROTO_INVALID, handle);
375 }
376 
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)377 static int vmci_transport_send_attach(struct sock *sk,
378 				      struct vmci_handle handle)
379 {
380 	return vmci_transport_send_control_pkt(
381 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
382 					0, 0, NULL, VSOCK_PROTO_INVALID,
383 					handle);
384 }
385 
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)386 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
387 {
388 	return vmci_transport_reply_control_pkt_fast(
389 						pkt,
390 						VMCI_TRANSPORT_PACKET_TYPE_RST,
391 						0, 0, NULL,
392 						VMCI_INVALID_HANDLE);
393 }
394 
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)395 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
396 					  struct sockaddr_vm *src)
397 {
398 	return vmci_transport_send_control_pkt_bh(
399 					dst, src,
400 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
401 					0, 0, NULL, VMCI_INVALID_HANDLE);
402 }
403 
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)404 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
405 				 struct sockaddr_vm *src)
406 {
407 	return vmci_transport_send_control_pkt_bh(
408 					dst, src,
409 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 					0, NULL, VMCI_INVALID_HANDLE);
411 }
412 
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)413 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
414 				struct sockaddr_vm *src)
415 {
416 	return vmci_transport_send_control_pkt_bh(
417 					dst, src,
418 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
419 					0, NULL, VMCI_INVALID_HANDLE);
420 }
421 
vmci_transport_send_wrote(struct sock * sk)422 int vmci_transport_send_wrote(struct sock *sk)
423 {
424 	return vmci_transport_send_control_pkt(
425 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
426 					0, NULL, VSOCK_PROTO_INVALID,
427 					VMCI_INVALID_HANDLE);
428 }
429 
vmci_transport_send_read(struct sock * sk)430 int vmci_transport_send_read(struct sock *sk)
431 {
432 	return vmci_transport_send_control_pkt(
433 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
434 					0, NULL, VSOCK_PROTO_INVALID,
435 					VMCI_INVALID_HANDLE);
436 }
437 
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)438 int vmci_transport_send_waiting_write(struct sock *sk,
439 				      struct vmci_transport_waiting_info *wait)
440 {
441 	return vmci_transport_send_control_pkt(
442 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
443 				0, 0, wait, VSOCK_PROTO_INVALID,
444 				VMCI_INVALID_HANDLE);
445 }
446 
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)447 int vmci_transport_send_waiting_read(struct sock *sk,
448 				     struct vmci_transport_waiting_info *wait)
449 {
450 	return vmci_transport_send_control_pkt(
451 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
452 				0, 0, wait, VSOCK_PROTO_INVALID,
453 				VMCI_INVALID_HANDLE);
454 }
455 
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)456 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
457 {
458 	return vmci_transport_send_control_pkt(
459 					&vsk->sk,
460 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
461 					0, mode, NULL,
462 					VSOCK_PROTO_INVALID,
463 					VMCI_INVALID_HANDLE);
464 }
465 
vmci_transport_send_conn_request(struct sock * sk,size_t size)466 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
467 {
468 	return vmci_transport_send_control_pkt(sk,
469 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
470 					size, 0, NULL,
471 					VSOCK_PROTO_INVALID,
472 					VMCI_INVALID_HANDLE);
473 }
474 
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)475 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
476 					     u16 version)
477 {
478 	return vmci_transport_send_control_pkt(
479 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
480 					size, 0, NULL, version,
481 					VMCI_INVALID_HANDLE);
482 }
483 
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)484 static struct sock *vmci_transport_get_pending(
485 					struct sock *listener,
486 					struct vmci_transport_packet *pkt)
487 {
488 	struct vsock_sock *vlistener;
489 	struct vsock_sock *vpending;
490 	struct sock *pending;
491 	struct sockaddr_vm src;
492 
493 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
494 
495 	vlistener = vsock_sk(listener);
496 
497 	list_for_each_entry(vpending, &vlistener->pending_links,
498 			    pending_links) {
499 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
500 		    pkt->dst_port == vpending->local_addr.svm_port) {
501 			pending = sk_vsock(vpending);
502 			sock_hold(pending);
503 			goto found;
504 		}
505 	}
506 
507 	pending = NULL;
508 found:
509 	return pending;
510 
511 }
512 
vmci_transport_release_pending(struct sock * pending)513 static void vmci_transport_release_pending(struct sock *pending)
514 {
515 	sock_put(pending);
516 }
517 
518 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
519  * trusted sockets 2) sockets from applications running as the same user as the
520  * VM (this is only true for the host side and only when using hosted products)
521  */
522 
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)523 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
524 {
525 	return vsock->trusted ||
526 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
527 }
528 
529 /* We allow sending datagrams to and receiving datagrams from a restricted VM
530  * only if it is trusted as described in vmci_transport_is_trusted.
531  */
532 
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)533 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
534 {
535 	if (VMADDR_CID_HYPERVISOR == peer_cid)
536 		return true;
537 
538 	if (vsock->cached_peer != peer_cid) {
539 		vsock->cached_peer = peer_cid;
540 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
541 		    (vmci_context_get_priv_flags(peer_cid) &
542 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
543 			vsock->cached_peer_allow_dgram = false;
544 		} else {
545 			vsock->cached_peer_allow_dgram = true;
546 		}
547 	}
548 
549 	return vsock->cached_peer_allow_dgram;
550 }
551 
552 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)553 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
554 				struct vmci_handle *handle,
555 				u64 produce_size,
556 				u64 consume_size,
557 				u32 peer, u32 flags, bool trusted)
558 {
559 	int err = 0;
560 
561 	if (trusted) {
562 		/* Try to allocate our queue pair as trusted. This will only
563 		 * work if vsock is running in the host.
564 		 */
565 
566 		err = vmci_qpair_alloc(qpair, handle, produce_size,
567 				       consume_size,
568 				       peer, flags,
569 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
570 		if (err != VMCI_ERROR_NO_ACCESS)
571 			goto out;
572 
573 	}
574 
575 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
576 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
577 out:
578 	if (err < 0) {
579 		pr_err_once("Could not attach to queue pair with %d\n", err);
580 		err = vmci_transport_error_to_vsock_error(err);
581 	}
582 
583 	return err;
584 }
585 
586 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)587 vmci_transport_datagram_create_hnd(u32 resource_id,
588 				   u32 flags,
589 				   vmci_datagram_recv_cb recv_cb,
590 				   void *client_data,
591 				   struct vmci_handle *out_handle)
592 {
593 	int err = 0;
594 
595 	/* Try to allocate our datagram handler as trusted. This will only work
596 	 * if vsock is running in the host.
597 	 */
598 
599 	err = vmci_datagram_create_handle_priv(resource_id, flags,
600 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
601 					       recv_cb,
602 					       client_data, out_handle);
603 
604 	if (err == VMCI_ERROR_NO_ACCESS)
605 		err = vmci_datagram_create_handle(resource_id, flags,
606 						  recv_cb, client_data,
607 						  out_handle);
608 
609 	return err;
610 }
611 
612 /* This is invoked as part of a tasklet that's scheduled when the VMCI
613  * interrupt fires.  This is run in bottom-half context and if it ever needs to
614  * sleep it should defer that work to a work queue.
615  */
616 
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)617 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
618 {
619 	struct sock *sk;
620 	size_t size;
621 	struct sk_buff *skb;
622 	struct vsock_sock *vsk;
623 
624 	sk = (struct sock *)data;
625 
626 	/* This handler is privileged when this module is running on the host.
627 	 * We will get datagrams from all endpoints (even VMs that are in a
628 	 * restricted context). If we get one from a restricted context then
629 	 * the destination socket must be trusted.
630 	 *
631 	 * NOTE: We access the socket struct without holding the lock here.
632 	 * This is ok because the field we are interested is never modified
633 	 * outside of the create and destruct socket functions.
634 	 */
635 	vsk = vsock_sk(sk);
636 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
637 		return VMCI_ERROR_NO_ACCESS;
638 
639 	size = VMCI_DG_SIZE(dg);
640 
641 	/* Attach the packet to the socket's receive queue as an sk_buff. */
642 	skb = alloc_skb(size, GFP_ATOMIC);
643 	if (!skb)
644 		return VMCI_ERROR_NO_MEM;
645 
646 	/* sk_receive_skb() will do a sock_put(), so hold here. */
647 	sock_hold(sk);
648 	skb_put(skb, size);
649 	memcpy(skb->data, dg, size);
650 	sk_receive_skb(sk, skb, 0);
651 
652 	return VMCI_SUCCESS;
653 }
654 
vmci_transport_stream_allow(u32 cid,u32 port)655 static bool vmci_transport_stream_allow(u32 cid, u32 port)
656 {
657 	static const u32 non_socket_contexts[] = {
658 		VMADDR_CID_RESERVED,
659 	};
660 	int i;
661 
662 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
663 
664 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
665 		if (cid == non_socket_contexts[i])
666 			return false;
667 	}
668 
669 	return true;
670 }
671 
672 /* This is invoked as part of a tasklet that's scheduled when the VMCI
673  * interrupt fires.  This is run in bottom-half context but it defers most of
674  * its work to the packet handling work queue.
675  */
676 
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)677 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
678 {
679 	struct sock *sk;
680 	struct sockaddr_vm dst;
681 	struct sockaddr_vm src;
682 	struct vmci_transport_packet *pkt;
683 	struct vsock_sock *vsk;
684 	bool bh_process_pkt;
685 	int err;
686 
687 	sk = NULL;
688 	err = VMCI_SUCCESS;
689 	bh_process_pkt = false;
690 
691 	/* Ignore incoming packets from contexts without sockets, or resources
692 	 * that aren't vsock implementations.
693 	 */
694 
695 	if (!vmci_transport_stream_allow(dg->src.context, -1)
696 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
697 		return VMCI_ERROR_NO_ACCESS;
698 
699 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
700 		/* Drop datagrams that do not contain full VSock packets. */
701 		return VMCI_ERROR_INVALID_ARGS;
702 
703 	pkt = (struct vmci_transport_packet *)dg;
704 
705 	/* Find the socket that should handle this packet.  First we look for a
706 	 * connected socket and if there is none we look for a socket bound to
707 	 * the destintation address.
708 	 */
709 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
710 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
711 
712 	sk = vsock_find_connected_socket(&src, &dst);
713 	if (!sk) {
714 		sk = vsock_find_bound_socket(&dst);
715 		if (!sk) {
716 			/* We could not find a socket for this specified
717 			 * address.  If this packet is a RST, we just drop it.
718 			 * If it is another packet, we send a RST.  Note that
719 			 * we do not send a RST reply to RSTs so that we do not
720 			 * continually send RSTs between two endpoints.
721 			 *
722 			 * Note that since this is a reply, dst is src and src
723 			 * is dst.
724 			 */
725 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
726 				pr_err("unable to send reset\n");
727 
728 			err = VMCI_ERROR_NOT_FOUND;
729 			goto out;
730 		}
731 	}
732 
733 	/* If the received packet type is beyond all types known to this
734 	 * implementation, reply with an invalid message.  Hopefully this will
735 	 * help when implementing backwards compatibility in the future.
736 	 */
737 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
738 		vmci_transport_send_invalid_bh(&dst, &src);
739 		err = VMCI_ERROR_INVALID_ARGS;
740 		goto out;
741 	}
742 
743 	/* This handler is privileged when this module is running on the host.
744 	 * We will get datagram connect requests from all endpoints (even VMs
745 	 * that are in a restricted context). If we get one from a restricted
746 	 * context then the destination socket must be trusted.
747 	 *
748 	 * NOTE: We access the socket struct without holding the lock here.
749 	 * This is ok because the field we are interested is never modified
750 	 * outside of the create and destruct socket functions.
751 	 */
752 	vsk = vsock_sk(sk);
753 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
754 		err = VMCI_ERROR_NO_ACCESS;
755 		goto out;
756 	}
757 
758 	/* We do most everything in a work queue, but let's fast path the
759 	 * notification of reads and writes to help data transfer performance.
760 	 * We can only do this if there is no process context code executing
761 	 * for this socket since that may change the state.
762 	 */
763 	bh_lock_sock(sk);
764 
765 	if (!sock_owned_by_user(sk)) {
766 		/* The local context ID may be out of date, update it. */
767 		vsk->local_addr.svm_cid = dst.svm_cid;
768 
769 		if (sk->sk_state == TCP_ESTABLISHED)
770 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
771 					sk, pkt, true, &dst, &src,
772 					&bh_process_pkt);
773 	}
774 
775 	bh_unlock_sock(sk);
776 
777 	if (!bh_process_pkt) {
778 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
779 
780 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
781 		if (!recv_pkt_info) {
782 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
783 				pr_err("unable to send reset\n");
784 
785 			err = VMCI_ERROR_NO_MEM;
786 			goto out;
787 		}
788 
789 		recv_pkt_info->sk = sk;
790 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
791 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
792 
793 		schedule_work(&recv_pkt_info->work);
794 		/* Clear sk so that the reference count incremented by one of
795 		 * the Find functions above is not decremented below.  We need
796 		 * that reference count for the packet handler we've scheduled
797 		 * to run.
798 		 */
799 		sk = NULL;
800 	}
801 
802 out:
803 	if (sk)
804 		sock_put(sk);
805 
806 	return err;
807 }
808 
vmci_transport_handle_detach(struct sock * sk)809 static void vmci_transport_handle_detach(struct sock *sk)
810 {
811 	struct vsock_sock *vsk;
812 
813 	vsk = vsock_sk(sk);
814 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
815 		sock_set_flag(sk, SOCK_DONE);
816 
817 		/* On a detach the peer will not be sending or receiving
818 		 * anymore.
819 		 */
820 		vsk->peer_shutdown = SHUTDOWN_MASK;
821 
822 		/* We should not be sending anymore since the peer won't be
823 		 * there to receive, but we can still receive if there is data
824 		 * left in our consume queue. If the local endpoint is a host,
825 		 * we can't call vsock_stream_has_data, since that may block,
826 		 * but a host endpoint can't read data once the VM has
827 		 * detached, so there is no available data in that case.
828 		 */
829 		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
830 		    vsock_stream_has_data(vsk) <= 0) {
831 			if (sk->sk_state == TCP_SYN_SENT) {
832 				/* The peer may detach from a queue pair while
833 				 * we are still in the connecting state, i.e.,
834 				 * if the peer VM is killed after attaching to
835 				 * a queue pair, but before we complete the
836 				 * handshake. In that case, we treat the detach
837 				 * event like a reset.
838 				 */
839 
840 				sk->sk_state = TCP_CLOSE;
841 				sk->sk_err = ECONNRESET;
842 				sk->sk_error_report(sk);
843 				return;
844 			}
845 			sk->sk_state = TCP_CLOSE;
846 		}
847 		sk->sk_state_change(sk);
848 	}
849 }
850 
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)851 static void vmci_transport_peer_detach_cb(u32 sub_id,
852 					  const struct vmci_event_data *e_data,
853 					  void *client_data)
854 {
855 	struct vmci_transport *trans = client_data;
856 	const struct vmci_event_payload_qp *e_payload;
857 
858 	e_payload = vmci_event_data_const_payload(e_data);
859 
860 	/* XXX This is lame, we should provide a way to lookup sockets by
861 	 * qp_handle.
862 	 */
863 	if (vmci_handle_is_invalid(e_payload->handle) ||
864 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
865 		return;
866 
867 	/* We don't ask for delayed CBs when we subscribe to this event (we
868 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
869 	 * guarantees in that case about what context we might be running in,
870 	 * so it could be BH or process, blockable or non-blockable.  So we
871 	 * need to account for all possible contexts here.
872 	 */
873 	spin_lock_bh(&trans->lock);
874 	if (!trans->sk)
875 		goto out;
876 
877 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
878 	 * where trans->sk isn't locked.
879 	 */
880 	bh_lock_sock(trans->sk);
881 
882 	vmci_transport_handle_detach(trans->sk);
883 
884 	bh_unlock_sock(trans->sk);
885  out:
886 	spin_unlock_bh(&trans->lock);
887 }
888 
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)889 static void vmci_transport_qp_resumed_cb(u32 sub_id,
890 					 const struct vmci_event_data *e_data,
891 					 void *client_data)
892 {
893 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
894 }
895 
vmci_transport_recv_pkt_work(struct work_struct * work)896 static void vmci_transport_recv_pkt_work(struct work_struct *work)
897 {
898 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
899 	struct vmci_transport_packet *pkt;
900 	struct sock *sk;
901 
902 	recv_pkt_info =
903 		container_of(work, struct vmci_transport_recv_pkt_info, work);
904 	sk = recv_pkt_info->sk;
905 	pkt = &recv_pkt_info->pkt;
906 
907 	lock_sock(sk);
908 
909 	/* The local context ID may be out of date. */
910 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
911 
912 	switch (sk->sk_state) {
913 	case TCP_LISTEN:
914 		vmci_transport_recv_listen(sk, pkt);
915 		break;
916 	case TCP_SYN_SENT:
917 		/* Processing of pending connections for servers goes through
918 		 * the listening socket, so see vmci_transport_recv_listen()
919 		 * for that path.
920 		 */
921 		vmci_transport_recv_connecting_client(sk, pkt);
922 		break;
923 	case TCP_ESTABLISHED:
924 		vmci_transport_recv_connected(sk, pkt);
925 		break;
926 	default:
927 		/* Because this function does not run in the same context as
928 		 * vmci_transport_recv_stream_cb it is possible that the
929 		 * socket has closed. We need to let the other side know or it
930 		 * could be sitting in a connect and hang forever. Send a
931 		 * reset to prevent that.
932 		 */
933 		vmci_transport_send_reset(sk, pkt);
934 		break;
935 	}
936 
937 	release_sock(sk);
938 	kfree(recv_pkt_info);
939 	/* Release reference obtained in the stream callback when we fetched
940 	 * this socket out of the bound or connected list.
941 	 */
942 	sock_put(sk);
943 }
944 
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)945 static int vmci_transport_recv_listen(struct sock *sk,
946 				      struct vmci_transport_packet *pkt)
947 {
948 	struct sock *pending;
949 	struct vsock_sock *vpending;
950 	int err;
951 	u64 qp_size;
952 	bool old_request = false;
953 	bool old_pkt_proto = false;
954 
955 	err = 0;
956 
957 	/* Because we are in the listen state, we could be receiving a packet
958 	 * for ourself or any previous connection requests that we received.
959 	 * If it's the latter, we try to find a socket in our list of pending
960 	 * connections and, if we do, call the appropriate handler for the
961 	 * state that that socket is in.  Otherwise we try to service the
962 	 * connection request.
963 	 */
964 	pending = vmci_transport_get_pending(sk, pkt);
965 	if (pending) {
966 		lock_sock(pending);
967 
968 		/* The local context ID may be out of date. */
969 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
970 
971 		switch (pending->sk_state) {
972 		case TCP_SYN_SENT:
973 			err = vmci_transport_recv_connecting_server(sk,
974 								    pending,
975 								    pkt);
976 			break;
977 		default:
978 			vmci_transport_send_reset(pending, pkt);
979 			err = -EINVAL;
980 		}
981 
982 		if (err < 0)
983 			vsock_remove_pending(sk, pending);
984 
985 		release_sock(pending);
986 		vmci_transport_release_pending(pending);
987 
988 		return err;
989 	}
990 
991 	/* The listen state only accepts connection requests.  Reply with a
992 	 * reset unless we received a reset.
993 	 */
994 
995 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
996 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
997 		vmci_transport_reply_reset(pkt);
998 		return -EINVAL;
999 	}
1000 
1001 	if (pkt->u.size == 0) {
1002 		vmci_transport_reply_reset(pkt);
1003 		return -EINVAL;
1004 	}
1005 
1006 	/* If this socket can't accommodate this connection request, we send a
1007 	 * reset.  Otherwise we create and initialize a child socket and reply
1008 	 * with a connection negotiation.
1009 	 */
1010 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1011 		vmci_transport_reply_reset(pkt);
1012 		return -ECONNREFUSED;
1013 	}
1014 
1015 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1016 				 sk->sk_type, 0);
1017 	if (!pending) {
1018 		vmci_transport_send_reset(sk, pkt);
1019 		return -ENOMEM;
1020 	}
1021 
1022 	vpending = vsock_sk(pending);
1023 
1024 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1025 			pkt->dst_port);
1026 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1027 			pkt->src_port);
1028 
1029 	/* If the proposed size fits within our min/max, accept it. Otherwise
1030 	 * propose our own size.
1031 	 */
1032 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1033 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1034 		qp_size = pkt->u.size;
1035 	} else {
1036 		qp_size = vmci_trans(vpending)->queue_pair_size;
1037 	}
1038 
1039 	/* Figure out if we are using old or new requests based on the
1040 	 * overrides pkt types sent by our peer.
1041 	 */
1042 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1043 		old_request = old_pkt_proto;
1044 	} else {
1045 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1046 			old_request = true;
1047 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1048 			old_request = false;
1049 
1050 	}
1051 
1052 	if (old_request) {
1053 		/* Handle a REQUEST (or override) */
1054 		u16 version = VSOCK_PROTO_INVALID;
1055 		if (vmci_transport_proto_to_notify_struct(
1056 			pending, &version, true))
1057 			err = vmci_transport_send_negotiate(pending, qp_size);
1058 		else
1059 			err = -EINVAL;
1060 
1061 	} else {
1062 		/* Handle a REQUEST2 (or override) */
1063 		int proto_int = pkt->proto;
1064 		int pos;
1065 		u16 active_proto_version = 0;
1066 
1067 		/* The list of possible protocols is the intersection of all
1068 		 * protocols the client supports ... plus all the protocols we
1069 		 * support.
1070 		 */
1071 		proto_int &= vmci_transport_new_proto_supported_versions();
1072 
1073 		/* We choose the highest possible protocol version and use that
1074 		 * one.
1075 		 */
1076 		pos = fls(proto_int);
1077 		if (pos) {
1078 			active_proto_version = (1 << (pos - 1));
1079 			if (vmci_transport_proto_to_notify_struct(
1080 				pending, &active_proto_version, false))
1081 				err = vmci_transport_send_negotiate2(pending,
1082 							qp_size,
1083 							active_proto_version);
1084 			else
1085 				err = -EINVAL;
1086 
1087 		} else {
1088 			err = -EINVAL;
1089 		}
1090 	}
1091 
1092 	if (err < 0) {
1093 		vmci_transport_send_reset(sk, pkt);
1094 		sock_put(pending);
1095 		err = vmci_transport_error_to_vsock_error(err);
1096 		goto out;
1097 	}
1098 
1099 	vsock_add_pending(sk, pending);
1100 	sk->sk_ack_backlog++;
1101 
1102 	pending->sk_state = TCP_SYN_SENT;
1103 	vmci_trans(vpending)->produce_size =
1104 		vmci_trans(vpending)->consume_size = qp_size;
1105 	vmci_trans(vpending)->queue_pair_size = qp_size;
1106 
1107 	vmci_trans(vpending)->notify_ops->process_request(pending);
1108 
1109 	/* We might never receive another message for this socket and it's not
1110 	 * connected to any process, so we have to ensure it gets cleaned up
1111 	 * ourself.  Our delayed work function will take care of that.  Note
1112 	 * that we do not ever cancel this function since we have few
1113 	 * guarantees about its state when calling cancel_delayed_work().
1114 	 * Instead we hold a reference on the socket for that function and make
1115 	 * it capable of handling cases where it needs to do nothing but
1116 	 * release that reference.
1117 	 */
1118 	vpending->listener = sk;
1119 	sock_hold(sk);
1120 	sock_hold(pending);
1121 	schedule_delayed_work(&vpending->pending_work, HZ);
1122 
1123 out:
1124 	return err;
1125 }
1126 
1127 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1128 vmci_transport_recv_connecting_server(struct sock *listener,
1129 				      struct sock *pending,
1130 				      struct vmci_transport_packet *pkt)
1131 {
1132 	struct vsock_sock *vpending;
1133 	struct vmci_handle handle;
1134 	struct vmci_qp *qpair;
1135 	bool is_local;
1136 	u32 flags;
1137 	u32 detach_sub_id;
1138 	int err;
1139 	int skerr;
1140 
1141 	vpending = vsock_sk(pending);
1142 	detach_sub_id = VMCI_INVALID_ID;
1143 
1144 	switch (pkt->type) {
1145 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1146 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1147 			vmci_transport_send_reset(pending, pkt);
1148 			skerr = EPROTO;
1149 			err = -EINVAL;
1150 			goto destroy;
1151 		}
1152 		break;
1153 	default:
1154 		/* Close and cleanup the connection. */
1155 		vmci_transport_send_reset(pending, pkt);
1156 		skerr = EPROTO;
1157 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1158 		goto destroy;
1159 	}
1160 
1161 	/* In order to complete the connection we need to attach to the offered
1162 	 * queue pair and send an attach notification.  We also subscribe to the
1163 	 * detach event so we know when our peer goes away, and we do that
1164 	 * before attaching so we don't miss an event.  If all this succeeds,
1165 	 * we update our state and wakeup anything waiting in accept() for a
1166 	 * connection.
1167 	 */
1168 
1169 	/* We don't care about attach since we ensure the other side has
1170 	 * attached by specifying the ATTACH_ONLY flag below.
1171 	 */
1172 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1173 				   vmci_transport_peer_detach_cb,
1174 				   vmci_trans(vpending), &detach_sub_id);
1175 	if (err < VMCI_SUCCESS) {
1176 		vmci_transport_send_reset(pending, pkt);
1177 		err = vmci_transport_error_to_vsock_error(err);
1178 		skerr = -err;
1179 		goto destroy;
1180 	}
1181 
1182 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1183 
1184 	/* Now attach to the queue pair the client created. */
1185 	handle = pkt->u.handle;
1186 
1187 	/* vpending->local_addr always has a context id so we do not need to
1188 	 * worry about VMADDR_CID_ANY in this case.
1189 	 */
1190 	is_local =
1191 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1192 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1193 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1194 
1195 	err = vmci_transport_queue_pair_alloc(
1196 					&qpair,
1197 					&handle,
1198 					vmci_trans(vpending)->produce_size,
1199 					vmci_trans(vpending)->consume_size,
1200 					pkt->dg.src.context,
1201 					flags,
1202 					vmci_transport_is_trusted(
1203 						vpending,
1204 						vpending->remote_addr.svm_cid));
1205 	if (err < 0) {
1206 		vmci_transport_send_reset(pending, pkt);
1207 		skerr = -err;
1208 		goto destroy;
1209 	}
1210 
1211 	vmci_trans(vpending)->qp_handle = handle;
1212 	vmci_trans(vpending)->qpair = qpair;
1213 
1214 	/* When we send the attach message, we must be ready to handle incoming
1215 	 * control messages on the newly connected socket. So we move the
1216 	 * pending socket to the connected state before sending the attach
1217 	 * message. Otherwise, an incoming packet triggered by the attach being
1218 	 * received by the peer may be processed concurrently with what happens
1219 	 * below after sending the attach message, and that incoming packet
1220 	 * will find the listening socket instead of the (currently) pending
1221 	 * socket. Note that enqueueing the socket increments the reference
1222 	 * count, so even if a reset comes before the connection is accepted,
1223 	 * the socket will be valid until it is removed from the queue.
1224 	 *
1225 	 * If we fail sending the attach below, we remove the socket from the
1226 	 * connected list and move the socket to TCP_CLOSE before
1227 	 * releasing the lock, so a pending slow path processing of an incoming
1228 	 * packet will not see the socket in the connected state in that case.
1229 	 */
1230 	pending->sk_state = TCP_ESTABLISHED;
1231 
1232 	vsock_insert_connected(vpending);
1233 
1234 	/* Notify our peer of our attach. */
1235 	err = vmci_transport_send_attach(pending, handle);
1236 	if (err < 0) {
1237 		vsock_remove_connected(vpending);
1238 		pr_err("Could not send attach\n");
1239 		vmci_transport_send_reset(pending, pkt);
1240 		err = vmci_transport_error_to_vsock_error(err);
1241 		skerr = -err;
1242 		goto destroy;
1243 	}
1244 
1245 	/* We have a connection. Move the now connected socket from the
1246 	 * listener's pending list to the accept queue so callers of accept()
1247 	 * can find it.
1248 	 */
1249 	vsock_remove_pending(listener, pending);
1250 	vsock_enqueue_accept(listener, pending);
1251 
1252 	/* Callers of accept() will be be waiting on the listening socket, not
1253 	 * the pending socket.
1254 	 */
1255 	listener->sk_data_ready(listener);
1256 
1257 	return 0;
1258 
1259 destroy:
1260 	pending->sk_err = skerr;
1261 	pending->sk_state = TCP_CLOSE;
1262 	/* As long as we drop our reference, all necessary cleanup will handle
1263 	 * when the cleanup function drops its reference and our destruct
1264 	 * implementation is called.  Note that since the listen handler will
1265 	 * remove pending from the pending list upon our failure, the cleanup
1266 	 * function won't drop the additional reference, which is why we do it
1267 	 * here.
1268 	 */
1269 	sock_put(pending);
1270 
1271 	return err;
1272 }
1273 
1274 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1275 vmci_transport_recv_connecting_client(struct sock *sk,
1276 				      struct vmci_transport_packet *pkt)
1277 {
1278 	struct vsock_sock *vsk;
1279 	int err;
1280 	int skerr;
1281 
1282 	vsk = vsock_sk(sk);
1283 
1284 	switch (pkt->type) {
1285 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1286 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1287 		    !vmci_handle_is_equal(pkt->u.handle,
1288 					  vmci_trans(vsk)->qp_handle)) {
1289 			skerr = EPROTO;
1290 			err = -EINVAL;
1291 			goto destroy;
1292 		}
1293 
1294 		/* Signify the socket is connected and wakeup the waiter in
1295 		 * connect(). Also place the socket in the connected table for
1296 		 * accounting (it can already be found since it's in the bound
1297 		 * table).
1298 		 */
1299 		sk->sk_state = TCP_ESTABLISHED;
1300 		sk->sk_socket->state = SS_CONNECTED;
1301 		vsock_insert_connected(vsk);
1302 		sk->sk_state_change(sk);
1303 
1304 		break;
1305 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1306 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1307 		if (pkt->u.size == 0
1308 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1309 		    || pkt->src_port != vsk->remote_addr.svm_port
1310 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1311 		    || vmci_trans(vsk)->qpair
1312 		    || vmci_trans(vsk)->produce_size != 0
1313 		    || vmci_trans(vsk)->consume_size != 0
1314 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1315 			skerr = EPROTO;
1316 			err = -EINVAL;
1317 
1318 			goto destroy;
1319 		}
1320 
1321 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1322 		if (err) {
1323 			skerr = -err;
1324 			goto destroy;
1325 		}
1326 
1327 		break;
1328 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1329 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1330 		if (err) {
1331 			skerr = -err;
1332 			goto destroy;
1333 		}
1334 
1335 		break;
1336 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1337 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1338 		 * continue processing here after they sent an INVALID packet.
1339 		 * This meant that we got a RST after the INVALID. We ignore a
1340 		 * RST after an INVALID. The common code doesn't send the RST
1341 		 * ... so we can hang if an old version of the common code
1342 		 * fails between getting a REQUEST and sending an OFFER back.
1343 		 * Not much we can do about it... except hope that it doesn't
1344 		 * happen.
1345 		 */
1346 		if (vsk->ignore_connecting_rst) {
1347 			vsk->ignore_connecting_rst = false;
1348 		} else {
1349 			skerr = ECONNRESET;
1350 			err = 0;
1351 			goto destroy;
1352 		}
1353 
1354 		break;
1355 	default:
1356 		/* Close and cleanup the connection. */
1357 		skerr = EPROTO;
1358 		err = -EINVAL;
1359 		goto destroy;
1360 	}
1361 
1362 	return 0;
1363 
1364 destroy:
1365 	vmci_transport_send_reset(sk, pkt);
1366 
1367 	sk->sk_state = TCP_CLOSE;
1368 	sk->sk_err = skerr;
1369 	sk->sk_error_report(sk);
1370 	return err;
1371 }
1372 
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1373 static int vmci_transport_recv_connecting_client_negotiate(
1374 					struct sock *sk,
1375 					struct vmci_transport_packet *pkt)
1376 {
1377 	int err;
1378 	struct vsock_sock *vsk;
1379 	struct vmci_handle handle;
1380 	struct vmci_qp *qpair;
1381 	u32 detach_sub_id;
1382 	bool is_local;
1383 	u32 flags;
1384 	bool old_proto = true;
1385 	bool old_pkt_proto;
1386 	u16 version;
1387 
1388 	vsk = vsock_sk(sk);
1389 	handle = VMCI_INVALID_HANDLE;
1390 	detach_sub_id = VMCI_INVALID_ID;
1391 
1392 	/* If we have gotten here then we should be past the point where old
1393 	 * linux vsock could have sent the bogus rst.
1394 	 */
1395 	vsk->sent_request = false;
1396 	vsk->ignore_connecting_rst = false;
1397 
1398 	/* Verify that we're OK with the proposed queue pair size */
1399 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1400 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1401 		err = -EINVAL;
1402 		goto destroy;
1403 	}
1404 
1405 	/* At this point we know the CID the peer is using to talk to us. */
1406 
1407 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1408 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1409 
1410 	/* Setup the notify ops to be the highest supported version that both
1411 	 * the server and the client support.
1412 	 */
1413 
1414 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1415 		old_proto = old_pkt_proto;
1416 	} else {
1417 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1418 			old_proto = true;
1419 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1420 			old_proto = false;
1421 
1422 	}
1423 
1424 	if (old_proto)
1425 		version = VSOCK_PROTO_INVALID;
1426 	else
1427 		version = pkt->proto;
1428 
1429 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1430 		err = -EINVAL;
1431 		goto destroy;
1432 	}
1433 
1434 	/* Subscribe to detach events first.
1435 	 *
1436 	 * XXX We attach once for each queue pair created for now so it is easy
1437 	 * to find the socket (it's provided), but later we should only
1438 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1439 	 */
1440 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1441 				   vmci_transport_peer_detach_cb,
1442 				   vmci_trans(vsk), &detach_sub_id);
1443 	if (err < VMCI_SUCCESS) {
1444 		err = vmci_transport_error_to_vsock_error(err);
1445 		goto destroy;
1446 	}
1447 
1448 	/* Make VMCI select the handle for us. */
1449 	handle = VMCI_INVALID_HANDLE;
1450 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1451 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1452 
1453 	err = vmci_transport_queue_pair_alloc(&qpair,
1454 					      &handle,
1455 					      pkt->u.size,
1456 					      pkt->u.size,
1457 					      vsk->remote_addr.svm_cid,
1458 					      flags,
1459 					      vmci_transport_is_trusted(
1460 						  vsk,
1461 						  vsk->
1462 						  remote_addr.svm_cid));
1463 	if (err < 0)
1464 		goto destroy;
1465 
1466 	err = vmci_transport_send_qp_offer(sk, handle);
1467 	if (err < 0) {
1468 		err = vmci_transport_error_to_vsock_error(err);
1469 		goto destroy;
1470 	}
1471 
1472 	vmci_trans(vsk)->qp_handle = handle;
1473 	vmci_trans(vsk)->qpair = qpair;
1474 
1475 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1476 		pkt->u.size;
1477 
1478 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1479 
1480 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1481 
1482 	return 0;
1483 
1484 destroy:
1485 	if (detach_sub_id != VMCI_INVALID_ID)
1486 		vmci_event_unsubscribe(detach_sub_id);
1487 
1488 	if (!vmci_handle_is_invalid(handle))
1489 		vmci_qpair_detach(&qpair);
1490 
1491 	return err;
1492 }
1493 
1494 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1495 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1496 					      struct vmci_transport_packet *pkt)
1497 {
1498 	int err = 0;
1499 	struct vsock_sock *vsk = vsock_sk(sk);
1500 
1501 	if (vsk->sent_request) {
1502 		vsk->sent_request = false;
1503 		vsk->ignore_connecting_rst = true;
1504 
1505 		err = vmci_transport_send_conn_request(
1506 			sk, vmci_trans(vsk)->queue_pair_size);
1507 		if (err < 0)
1508 			err = vmci_transport_error_to_vsock_error(err);
1509 		else
1510 			err = 0;
1511 
1512 	}
1513 
1514 	return err;
1515 }
1516 
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1517 static int vmci_transport_recv_connected(struct sock *sk,
1518 					 struct vmci_transport_packet *pkt)
1519 {
1520 	struct vsock_sock *vsk;
1521 	bool pkt_processed = false;
1522 
1523 	/* In cases where we are closing the connection, it's sufficient to
1524 	 * mark the state change (and maybe error) and wake up any waiting
1525 	 * threads. Since this is a connected socket, it's owned by a user
1526 	 * process and will be cleaned up when the failure is passed back on
1527 	 * the current or next system call.  Our system call implementations
1528 	 * must therefore check for error and state changes on entry and when
1529 	 * being awoken.
1530 	 */
1531 	switch (pkt->type) {
1532 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1533 		if (pkt->u.mode) {
1534 			vsk = vsock_sk(sk);
1535 
1536 			vsk->peer_shutdown |= pkt->u.mode;
1537 			sk->sk_state_change(sk);
1538 		}
1539 		break;
1540 
1541 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1542 		vsk = vsock_sk(sk);
1543 		/* It is possible that we sent our peer a message (e.g a
1544 		 * WAITING_READ) right before we got notified that the peer had
1545 		 * detached. If that happens then we can get a RST pkt back
1546 		 * from our peer even though there is data available for us to
1547 		 * read. In that case, don't shutdown the socket completely but
1548 		 * instead allow the local client to finish reading data off
1549 		 * the queuepair. Always treat a RST pkt in connected mode like
1550 		 * a clean shutdown.
1551 		 */
1552 		sock_set_flag(sk, SOCK_DONE);
1553 		vsk->peer_shutdown = SHUTDOWN_MASK;
1554 		if (vsock_stream_has_data(vsk) <= 0)
1555 			sk->sk_state = TCP_CLOSING;
1556 
1557 		sk->sk_state_change(sk);
1558 		break;
1559 
1560 	default:
1561 		vsk = vsock_sk(sk);
1562 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1563 				sk, pkt, false, NULL, NULL,
1564 				&pkt_processed);
1565 		if (!pkt_processed)
1566 			return -EINVAL;
1567 
1568 		break;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1574 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1575 				      struct vsock_sock *psk)
1576 {
1577 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1578 	if (!vsk->trans)
1579 		return -ENOMEM;
1580 
1581 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1582 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1583 	vmci_trans(vsk)->qpair = NULL;
1584 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1585 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1586 	vmci_trans(vsk)->notify_ops = NULL;
1587 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1588 	vmci_trans(vsk)->sk = &vsk->sk;
1589 	spin_lock_init(&vmci_trans(vsk)->lock);
1590 	if (psk) {
1591 		vmci_trans(vsk)->queue_pair_size =
1592 			vmci_trans(psk)->queue_pair_size;
1593 		vmci_trans(vsk)->queue_pair_min_size =
1594 			vmci_trans(psk)->queue_pair_min_size;
1595 		vmci_trans(vsk)->queue_pair_max_size =
1596 			vmci_trans(psk)->queue_pair_max_size;
1597 	} else {
1598 		vmci_trans(vsk)->queue_pair_size =
1599 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1600 		vmci_trans(vsk)->queue_pair_min_size =
1601 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1602 		vmci_trans(vsk)->queue_pair_max_size =
1603 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
vmci_transport_free_resources(struct list_head * transport_list)1609 static void vmci_transport_free_resources(struct list_head *transport_list)
1610 {
1611 	while (!list_empty(transport_list)) {
1612 		struct vmci_transport *transport =
1613 		    list_first_entry(transport_list, struct vmci_transport,
1614 				     elem);
1615 		list_del(&transport->elem);
1616 
1617 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1618 			vmci_event_unsubscribe(transport->detach_sub_id);
1619 			transport->detach_sub_id = VMCI_INVALID_ID;
1620 		}
1621 
1622 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1623 			vmci_qpair_detach(&transport->qpair);
1624 			transport->qp_handle = VMCI_INVALID_HANDLE;
1625 			transport->produce_size = 0;
1626 			transport->consume_size = 0;
1627 		}
1628 
1629 		kfree(transport);
1630 	}
1631 }
1632 
vmci_transport_cleanup(struct work_struct * work)1633 static void vmci_transport_cleanup(struct work_struct *work)
1634 {
1635 	LIST_HEAD(pending);
1636 
1637 	spin_lock_bh(&vmci_transport_cleanup_lock);
1638 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1639 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1640 	vmci_transport_free_resources(&pending);
1641 }
1642 
vmci_transport_destruct(struct vsock_sock * vsk)1643 static void vmci_transport_destruct(struct vsock_sock *vsk)
1644 {
1645 	/* transport can be NULL if we hit a failure at init() time */
1646 	if (!vmci_trans(vsk))
1647 		return;
1648 
1649 	/* Ensure that the detach callback doesn't use the sk/vsk
1650 	 * we are about to destruct.
1651 	 */
1652 	spin_lock_bh(&vmci_trans(vsk)->lock);
1653 	vmci_trans(vsk)->sk = NULL;
1654 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1655 
1656 	if (vmci_trans(vsk)->notify_ops)
1657 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1658 
1659 	spin_lock_bh(&vmci_transport_cleanup_lock);
1660 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1661 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1662 	schedule_work(&vmci_transport_cleanup_work);
1663 
1664 	vsk->trans = NULL;
1665 }
1666 
vmci_transport_release(struct vsock_sock * vsk)1667 static void vmci_transport_release(struct vsock_sock *vsk)
1668 {
1669 	vsock_remove_sock(vsk);
1670 
1671 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1672 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1673 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1674 	}
1675 }
1676 
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1677 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1678 				     struct sockaddr_vm *addr)
1679 {
1680 	u32 port;
1681 	u32 flags;
1682 	int err;
1683 
1684 	/* VMCI will select a resource ID for us if we provide
1685 	 * VMCI_INVALID_ID.
1686 	 */
1687 	port = addr->svm_port == VMADDR_PORT_ANY ?
1688 			VMCI_INVALID_ID : addr->svm_port;
1689 
1690 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1691 		return -EACCES;
1692 
1693 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1694 				VMCI_FLAG_ANYCID_DG_HND : 0;
1695 
1696 	err = vmci_transport_datagram_create_hnd(port, flags,
1697 						 vmci_transport_recv_dgram_cb,
1698 						 &vsk->sk,
1699 						 &vmci_trans(vsk)->dg_handle);
1700 	if (err < VMCI_SUCCESS)
1701 		return vmci_transport_error_to_vsock_error(err);
1702 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1703 			vmci_trans(vsk)->dg_handle.resource);
1704 
1705 	return 0;
1706 }
1707 
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1708 static int vmci_transport_dgram_enqueue(
1709 	struct vsock_sock *vsk,
1710 	struct sockaddr_vm *remote_addr,
1711 	struct msghdr *msg,
1712 	size_t len)
1713 {
1714 	int err;
1715 	struct vmci_datagram *dg;
1716 
1717 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1718 		return -EMSGSIZE;
1719 
1720 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1721 		return -EPERM;
1722 
1723 	/* Allocate a buffer for the user's message and our packet header. */
1724 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1725 	if (!dg)
1726 		return -ENOMEM;
1727 
1728 	err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1729 	if (err) {
1730 		kfree(dg);
1731 		return err;
1732 	}
1733 
1734 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1735 				   remote_addr->svm_port);
1736 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1737 				   vsk->local_addr.svm_port);
1738 	dg->payload_size = len;
1739 
1740 	err = vmci_datagram_send(dg);
1741 	kfree(dg);
1742 	if (err < 0)
1743 		return vmci_transport_error_to_vsock_error(err);
1744 
1745 	return err - sizeof(*dg);
1746 }
1747 
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1748 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1749 					struct msghdr *msg, size_t len,
1750 					int flags)
1751 {
1752 	int err;
1753 	int noblock;
1754 	struct vmci_datagram *dg;
1755 	size_t payload_len;
1756 	struct sk_buff *skb;
1757 
1758 	noblock = flags & MSG_DONTWAIT;
1759 
1760 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1761 		return -EOPNOTSUPP;
1762 
1763 	/* Retrieve the head sk_buff from the socket's receive queue. */
1764 	err = 0;
1765 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1766 	if (!skb)
1767 		return err;
1768 
1769 	dg = (struct vmci_datagram *)skb->data;
1770 	if (!dg)
1771 		/* err is 0, meaning we read zero bytes. */
1772 		goto out;
1773 
1774 	payload_len = dg->payload_size;
1775 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1776 	if (payload_len != skb->len - sizeof(*dg)) {
1777 		err = -EINVAL;
1778 		goto out;
1779 	}
1780 
1781 	if (payload_len > len) {
1782 		payload_len = len;
1783 		msg->msg_flags |= MSG_TRUNC;
1784 	}
1785 
1786 	/* Place the datagram payload in the user's iovec. */
1787 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1788 	if (err)
1789 		goto out;
1790 
1791 	if (msg->msg_name) {
1792 		/* Provide the address of the sender. */
1793 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1794 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1795 		msg->msg_namelen = sizeof(*vm_addr);
1796 	}
1797 	err = payload_len;
1798 
1799 out:
1800 	skb_free_datagram(&vsk->sk, skb);
1801 	return err;
1802 }
1803 
vmci_transport_dgram_allow(u32 cid,u32 port)1804 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1805 {
1806 	if (cid == VMADDR_CID_HYPERVISOR) {
1807 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1808 		 * state and are allowed.
1809 		 */
1810 		return port == VMCI_UNITY_PBRPC_REGISTER;
1811 	}
1812 
1813 	return true;
1814 }
1815 
vmci_transport_connect(struct vsock_sock * vsk)1816 static int vmci_transport_connect(struct vsock_sock *vsk)
1817 {
1818 	int err;
1819 	bool old_pkt_proto = false;
1820 	struct sock *sk = &vsk->sk;
1821 
1822 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1823 		old_pkt_proto) {
1824 		err = vmci_transport_send_conn_request(
1825 			sk, vmci_trans(vsk)->queue_pair_size);
1826 		if (err < 0) {
1827 			sk->sk_state = TCP_CLOSE;
1828 			return err;
1829 		}
1830 	} else {
1831 		int supported_proto_versions =
1832 			vmci_transport_new_proto_supported_versions();
1833 		err = vmci_transport_send_conn_request2(
1834 				sk, vmci_trans(vsk)->queue_pair_size,
1835 				supported_proto_versions);
1836 		if (err < 0) {
1837 			sk->sk_state = TCP_CLOSE;
1838 			return err;
1839 		}
1840 
1841 		vsk->sent_request = true;
1842 	}
1843 
1844 	return err;
1845 }
1846 
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1847 static ssize_t vmci_transport_stream_dequeue(
1848 	struct vsock_sock *vsk,
1849 	struct msghdr *msg,
1850 	size_t len,
1851 	int flags)
1852 {
1853 	if (flags & MSG_PEEK)
1854 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1855 	else
1856 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1857 }
1858 
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1859 static ssize_t vmci_transport_stream_enqueue(
1860 	struct vsock_sock *vsk,
1861 	struct msghdr *msg,
1862 	size_t len)
1863 {
1864 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1865 }
1866 
vmci_transport_stream_has_data(struct vsock_sock * vsk)1867 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1868 {
1869 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1870 }
1871 
vmci_transport_stream_has_space(struct vsock_sock * vsk)1872 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1873 {
1874 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1875 }
1876 
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1877 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1878 {
1879 	return vmci_trans(vsk)->consume_size;
1880 }
1881 
vmci_transport_stream_is_active(struct vsock_sock * vsk)1882 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1883 {
1884 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1885 }
1886 
vmci_transport_get_buffer_size(struct vsock_sock * vsk)1887 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1888 {
1889 	return vmci_trans(vsk)->queue_pair_size;
1890 }
1891 
vmci_transport_get_min_buffer_size(struct vsock_sock * vsk)1892 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1893 {
1894 	return vmci_trans(vsk)->queue_pair_min_size;
1895 }
1896 
vmci_transport_get_max_buffer_size(struct vsock_sock * vsk)1897 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1898 {
1899 	return vmci_trans(vsk)->queue_pair_max_size;
1900 }
1901 
vmci_transport_set_buffer_size(struct vsock_sock * vsk,u64 val)1902 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1903 {
1904 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1905 		vmci_trans(vsk)->queue_pair_min_size = val;
1906 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1907 		vmci_trans(vsk)->queue_pair_max_size = val;
1908 	vmci_trans(vsk)->queue_pair_size = val;
1909 }
1910 
vmci_transport_set_min_buffer_size(struct vsock_sock * vsk,u64 val)1911 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1912 					       u64 val)
1913 {
1914 	if (val > vmci_trans(vsk)->queue_pair_size)
1915 		vmci_trans(vsk)->queue_pair_size = val;
1916 	vmci_trans(vsk)->queue_pair_min_size = val;
1917 }
1918 
vmci_transport_set_max_buffer_size(struct vsock_sock * vsk,u64 val)1919 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1920 					       u64 val)
1921 {
1922 	if (val < vmci_trans(vsk)->queue_pair_size)
1923 		vmci_trans(vsk)->queue_pair_size = val;
1924 	vmci_trans(vsk)->queue_pair_max_size = val;
1925 }
1926 
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1927 static int vmci_transport_notify_poll_in(
1928 	struct vsock_sock *vsk,
1929 	size_t target,
1930 	bool *data_ready_now)
1931 {
1932 	return vmci_trans(vsk)->notify_ops->poll_in(
1933 			&vsk->sk, target, data_ready_now);
1934 }
1935 
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1936 static int vmci_transport_notify_poll_out(
1937 	struct vsock_sock *vsk,
1938 	size_t target,
1939 	bool *space_available_now)
1940 {
1941 	return vmci_trans(vsk)->notify_ops->poll_out(
1942 			&vsk->sk, target, space_available_now);
1943 }
1944 
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1945 static int vmci_transport_notify_recv_init(
1946 	struct vsock_sock *vsk,
1947 	size_t target,
1948 	struct vsock_transport_recv_notify_data *data)
1949 {
1950 	return vmci_trans(vsk)->notify_ops->recv_init(
1951 			&vsk->sk, target,
1952 			(struct vmci_transport_recv_notify_data *)data);
1953 }
1954 
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1955 static int vmci_transport_notify_recv_pre_block(
1956 	struct vsock_sock *vsk,
1957 	size_t target,
1958 	struct vsock_transport_recv_notify_data *data)
1959 {
1960 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1961 			&vsk->sk, target,
1962 			(struct vmci_transport_recv_notify_data *)data);
1963 }
1964 
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1965 static int vmci_transport_notify_recv_pre_dequeue(
1966 	struct vsock_sock *vsk,
1967 	size_t target,
1968 	struct vsock_transport_recv_notify_data *data)
1969 {
1970 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1971 			&vsk->sk, target,
1972 			(struct vmci_transport_recv_notify_data *)data);
1973 }
1974 
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1975 static int vmci_transport_notify_recv_post_dequeue(
1976 	struct vsock_sock *vsk,
1977 	size_t target,
1978 	ssize_t copied,
1979 	bool data_read,
1980 	struct vsock_transport_recv_notify_data *data)
1981 {
1982 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1983 			&vsk->sk, target, copied, data_read,
1984 			(struct vmci_transport_recv_notify_data *)data);
1985 }
1986 
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1987 static int vmci_transport_notify_send_init(
1988 	struct vsock_sock *vsk,
1989 	struct vsock_transport_send_notify_data *data)
1990 {
1991 	return vmci_trans(vsk)->notify_ops->send_init(
1992 			&vsk->sk,
1993 			(struct vmci_transport_send_notify_data *)data);
1994 }
1995 
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1996 static int vmci_transport_notify_send_pre_block(
1997 	struct vsock_sock *vsk,
1998 	struct vsock_transport_send_notify_data *data)
1999 {
2000 	return vmci_trans(vsk)->notify_ops->send_pre_block(
2001 			&vsk->sk,
2002 			(struct vmci_transport_send_notify_data *)data);
2003 }
2004 
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)2005 static int vmci_transport_notify_send_pre_enqueue(
2006 	struct vsock_sock *vsk,
2007 	struct vsock_transport_send_notify_data *data)
2008 {
2009 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2010 			&vsk->sk,
2011 			(struct vmci_transport_send_notify_data *)data);
2012 }
2013 
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)2014 static int vmci_transport_notify_send_post_enqueue(
2015 	struct vsock_sock *vsk,
2016 	ssize_t written,
2017 	struct vsock_transport_send_notify_data *data)
2018 {
2019 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2020 			&vsk->sk, written,
2021 			(struct vmci_transport_send_notify_data *)data);
2022 }
2023 
vmci_transport_old_proto_override(bool * old_pkt_proto)2024 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2025 {
2026 	if (PROTOCOL_OVERRIDE != -1) {
2027 		if (PROTOCOL_OVERRIDE == 0)
2028 			*old_pkt_proto = true;
2029 		else
2030 			*old_pkt_proto = false;
2031 
2032 		pr_info("Proto override in use\n");
2033 		return true;
2034 	}
2035 
2036 	return false;
2037 }
2038 
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)2039 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2040 						  u16 *proto,
2041 						  bool old_pkt_proto)
2042 {
2043 	struct vsock_sock *vsk = vsock_sk(sk);
2044 
2045 	if (old_pkt_proto) {
2046 		if (*proto != VSOCK_PROTO_INVALID) {
2047 			pr_err("Can't set both an old and new protocol\n");
2048 			return false;
2049 		}
2050 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2051 		goto exit;
2052 	}
2053 
2054 	switch (*proto) {
2055 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2056 		vmci_trans(vsk)->notify_ops =
2057 			&vmci_transport_notify_pkt_q_state_ops;
2058 		break;
2059 	default:
2060 		pr_err("Unknown notify protocol version\n");
2061 		return false;
2062 	}
2063 
2064 exit:
2065 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2066 	return true;
2067 }
2068 
vmci_transport_new_proto_supported_versions(void)2069 static u16 vmci_transport_new_proto_supported_versions(void)
2070 {
2071 	if (PROTOCOL_OVERRIDE != -1)
2072 		return PROTOCOL_OVERRIDE;
2073 
2074 	return VSOCK_PROTO_ALL_SUPPORTED;
2075 }
2076 
vmci_transport_get_local_cid(void)2077 static u32 vmci_transport_get_local_cid(void)
2078 {
2079 	return vmci_get_context_id();
2080 }
2081 
2082 static const struct vsock_transport vmci_transport = {
2083 	.init = vmci_transport_socket_init,
2084 	.destruct = vmci_transport_destruct,
2085 	.release = vmci_transport_release,
2086 	.connect = vmci_transport_connect,
2087 	.dgram_bind = vmci_transport_dgram_bind,
2088 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2089 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2090 	.dgram_allow = vmci_transport_dgram_allow,
2091 	.stream_dequeue = vmci_transport_stream_dequeue,
2092 	.stream_enqueue = vmci_transport_stream_enqueue,
2093 	.stream_has_data = vmci_transport_stream_has_data,
2094 	.stream_has_space = vmci_transport_stream_has_space,
2095 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2096 	.stream_is_active = vmci_transport_stream_is_active,
2097 	.stream_allow = vmci_transport_stream_allow,
2098 	.notify_poll_in = vmci_transport_notify_poll_in,
2099 	.notify_poll_out = vmci_transport_notify_poll_out,
2100 	.notify_recv_init = vmci_transport_notify_recv_init,
2101 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2102 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2103 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2104 	.notify_send_init = vmci_transport_notify_send_init,
2105 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2106 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2107 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2108 	.shutdown = vmci_transport_shutdown,
2109 	.set_buffer_size = vmci_transport_set_buffer_size,
2110 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2111 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2112 	.get_buffer_size = vmci_transport_get_buffer_size,
2113 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2114 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2115 	.get_local_cid = vmci_transport_get_local_cid,
2116 };
2117 
vmci_transport_init(void)2118 static int __init vmci_transport_init(void)
2119 {
2120 	int err;
2121 
2122 	/* Create the datagram handle that we will use to send and receive all
2123 	 * VSocket control messages for this context.
2124 	 */
2125 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2126 						 VMCI_FLAG_ANYCID_DG_HND,
2127 						 vmci_transport_recv_stream_cb,
2128 						 NULL,
2129 						 &vmci_transport_stream_handle);
2130 	if (err < VMCI_SUCCESS) {
2131 		pr_err("Unable to create datagram handle. (%d)\n", err);
2132 		return vmci_transport_error_to_vsock_error(err);
2133 	}
2134 
2135 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2136 				   vmci_transport_qp_resumed_cb,
2137 				   NULL, &vmci_transport_qp_resumed_sub_id);
2138 	if (err < VMCI_SUCCESS) {
2139 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2140 		err = vmci_transport_error_to_vsock_error(err);
2141 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2142 		goto err_destroy_stream_handle;
2143 	}
2144 
2145 	err = vsock_core_init(&vmci_transport);
2146 	if (err < 0)
2147 		goto err_unsubscribe;
2148 
2149 	return 0;
2150 
2151 err_unsubscribe:
2152 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2153 err_destroy_stream_handle:
2154 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2155 	return err;
2156 }
2157 module_init(vmci_transport_init);
2158 
vmci_transport_exit(void)2159 static void __exit vmci_transport_exit(void)
2160 {
2161 	cancel_work_sync(&vmci_transport_cleanup_work);
2162 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2163 
2164 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2165 		if (vmci_datagram_destroy_handle(
2166 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2167 			pr_err("Couldn't destroy datagram handle\n");
2168 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2169 	}
2170 
2171 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2172 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2173 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2174 	}
2175 
2176 	vsock_core_exit();
2177 }
2178 module_exit(vmci_transport_exit);
2179 
2180 MODULE_AUTHOR("VMware, Inc.");
2181 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2182 MODULE_VERSION("1.0.5.0-k");
2183 MODULE_LICENSE("GPL v2");
2184 MODULE_ALIAS("vmware_vsock");
2185 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2186