1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale DMA ALSA SoC PCM driver
4 //
5 // Author: Timur Tabi <timur@freescale.com>
6 //
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
8 //
9 // This driver implements ASoC support for the Elo DMA controller, which is
10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11 // the PCM driver is what handles the DMA buffer.
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/gfp.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30
31 #include <asm/io.h>
32
33 #include "fsl_dma.h"
34 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
35
36 #define DRV_NAME "fsl_dma"
37
38 /*
39 * The formats that the DMA controller supports, which is anything
40 * that is 8, 16, or 32 bits.
41 */
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43 SNDRV_PCM_FMTBIT_U8 | \
44 SNDRV_PCM_FMTBIT_S16_LE | \
45 SNDRV_PCM_FMTBIT_S16_BE | \
46 SNDRV_PCM_FMTBIT_U16_LE | \
47 SNDRV_PCM_FMTBIT_U16_BE | \
48 SNDRV_PCM_FMTBIT_S24_LE | \
49 SNDRV_PCM_FMTBIT_S24_BE | \
50 SNDRV_PCM_FMTBIT_U24_LE | \
51 SNDRV_PCM_FMTBIT_U24_BE | \
52 SNDRV_PCM_FMTBIT_S32_LE | \
53 SNDRV_PCM_FMTBIT_S32_BE | \
54 SNDRV_PCM_FMTBIT_U32_LE | \
55 SNDRV_PCM_FMTBIT_U32_BE)
56 struct dma_object {
57 struct snd_soc_component_driver dai;
58 dma_addr_t ssi_stx_phys;
59 dma_addr_t ssi_srx_phys;
60 unsigned int ssi_fifo_depth;
61 struct ccsr_dma_channel __iomem *channel;
62 unsigned int irq;
63 bool assigned;
64 };
65
66 /*
67 * The number of DMA links to use. Two is the bare minimum, but if you
68 * have really small links you might need more.
69 */
70 #define NUM_DMA_LINKS 2
71
72 /** fsl_dma_private: p-substream DMA data
73 *
74 * Each substream has a 1-to-1 association with a DMA channel.
75 *
76 * The link[] array is first because it needs to be aligned on a 32-byte
77 * boundary, so putting it first will ensure alignment without padding the
78 * structure.
79 *
80 * @link[]: array of link descriptors
81 * @dma_channel: pointer to the DMA channel's registers
82 * @irq: IRQ for this DMA channel
83 * @substream: pointer to the substream object, needed by the ISR
84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
85 * @ld_buf_phys: physical address of the LD buffer
86 * @current_link: index into link[] of the link currently being processed
87 * @dma_buf_phys: physical address of the DMA buffer
88 * @dma_buf_next: physical address of the next period to process
89 * @dma_buf_end: physical address of the byte after the end of the DMA
90 * @buffer period_size: the size of a single period
91 * @num_periods: the number of periods in the DMA buffer
92 */
93 struct fsl_dma_private {
94 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
95 struct ccsr_dma_channel __iomem *dma_channel;
96 unsigned int irq;
97 struct snd_pcm_substream *substream;
98 dma_addr_t ssi_sxx_phys;
99 unsigned int ssi_fifo_depth;
100 dma_addr_t ld_buf_phys;
101 unsigned int current_link;
102 dma_addr_t dma_buf_phys;
103 dma_addr_t dma_buf_next;
104 dma_addr_t dma_buf_end;
105 size_t period_size;
106 unsigned int num_periods;
107 };
108
109 /**
110 * fsl_dma_hardare: define characteristics of the PCM hardware.
111 *
112 * The PCM hardware is the Freescale DMA controller. This structure defines
113 * the capabilities of that hardware.
114 *
115 * Since the sampling rate and data format are not controlled by the DMA
116 * controller, we specify no limits for those values. The only exception is
117 * period_bytes_min, which is set to a reasonably low value to prevent the
118 * DMA controller from generating too many interrupts per second.
119 *
120 * Since each link descriptor has a 32-bit byte count field, we set
121 * period_bytes_max to the largest 32-bit number. We also have no maximum
122 * number of periods.
123 *
124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125 * limitation in the SSI driver requires the sample rates for playback and
126 * capture to be the same.
127 */
128 static const struct snd_pcm_hardware fsl_dma_hardware = {
129
130 .info = SNDRV_PCM_INFO_INTERLEAVED |
131 SNDRV_PCM_INFO_MMAP |
132 SNDRV_PCM_INFO_MMAP_VALID |
133 SNDRV_PCM_INFO_JOINT_DUPLEX |
134 SNDRV_PCM_INFO_PAUSE,
135 .formats = FSLDMA_PCM_FORMATS,
136 .period_bytes_min = 512, /* A reasonable limit */
137 .period_bytes_max = (u32) -1,
138 .periods_min = NUM_DMA_LINKS,
139 .periods_max = (unsigned int) -1,
140 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
141 };
142
143 /**
144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145 *
146 * This function should be called by the ISR whenever the DMA controller
147 * halts data transfer.
148 */
fsl_dma_abort_stream(struct snd_pcm_substream * substream)149 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150 {
151 snd_pcm_stop_xrun(substream);
152 }
153
154 /**
155 * fsl_dma_update_pointers - update LD pointers to point to the next period
156 *
157 * As each period is completed, this function changes the the link
158 * descriptor pointers for that period to point to the next period.
159 */
fsl_dma_update_pointers(struct fsl_dma_private * dma_private)160 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161 {
162 struct fsl_dma_link_descriptor *link =
163 &dma_private->link[dma_private->current_link];
164
165 /* Update our link descriptors to point to the next period. On a 36-bit
166 * system, we also need to update the ESAD bits. We also set (keep) the
167 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
168 */
169 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171 #ifdef CONFIG_PHYS_64BIT
172 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173 upper_32_bits(dma_private->dma_buf_next));
174 #endif
175 } else {
176 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177 #ifdef CONFIG_PHYS_64BIT
178 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179 upper_32_bits(dma_private->dma_buf_next));
180 #endif
181 }
182
183 /* Update our variables for next time */
184 dma_private->dma_buf_next += dma_private->period_size;
185
186 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187 dma_private->dma_buf_next = dma_private->dma_buf_phys;
188
189 if (++dma_private->current_link >= NUM_DMA_LINKS)
190 dma_private->current_link = 0;
191 }
192
193 /**
194 * fsl_dma_isr: interrupt handler for the DMA controller
195 *
196 * @irq: IRQ of the DMA channel
197 * @dev_id: pointer to the dma_private structure for this DMA channel
198 */
fsl_dma_isr(int irq,void * dev_id)199 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200 {
201 struct fsl_dma_private *dma_private = dev_id;
202 struct snd_pcm_substream *substream = dma_private->substream;
203 struct snd_soc_pcm_runtime *rtd = substream->private_data;
204 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
205 struct device *dev = component->dev;
206 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
207 irqreturn_t ret = IRQ_NONE;
208 u32 sr, sr2 = 0;
209
210 /* We got an interrupt, so read the status register to see what we
211 were interrupted for.
212 */
213 sr = in_be32(&dma_channel->sr);
214
215 if (sr & CCSR_DMA_SR_TE) {
216 dev_err(dev, "dma transmit error\n");
217 fsl_dma_abort_stream(substream);
218 sr2 |= CCSR_DMA_SR_TE;
219 ret = IRQ_HANDLED;
220 }
221
222 if (sr & CCSR_DMA_SR_CH)
223 ret = IRQ_HANDLED;
224
225 if (sr & CCSR_DMA_SR_PE) {
226 dev_err(dev, "dma programming error\n");
227 fsl_dma_abort_stream(substream);
228 sr2 |= CCSR_DMA_SR_PE;
229 ret = IRQ_HANDLED;
230 }
231
232 if (sr & CCSR_DMA_SR_EOLNI) {
233 sr2 |= CCSR_DMA_SR_EOLNI;
234 ret = IRQ_HANDLED;
235 }
236
237 if (sr & CCSR_DMA_SR_CB)
238 ret = IRQ_HANDLED;
239
240 if (sr & CCSR_DMA_SR_EOSI) {
241 /* Tell ALSA we completed a period. */
242 snd_pcm_period_elapsed(substream);
243
244 /*
245 * Update our link descriptors to point to the next period. We
246 * only need to do this if the number of periods is not equal to
247 * the number of links.
248 */
249 if (dma_private->num_periods != NUM_DMA_LINKS)
250 fsl_dma_update_pointers(dma_private);
251
252 sr2 |= CCSR_DMA_SR_EOSI;
253 ret = IRQ_HANDLED;
254 }
255
256 if (sr & CCSR_DMA_SR_EOLSI) {
257 sr2 |= CCSR_DMA_SR_EOLSI;
258 ret = IRQ_HANDLED;
259 }
260
261 /* Clear the bits that we set */
262 if (sr2)
263 out_be32(&dma_channel->sr, sr2);
264
265 return ret;
266 }
267
268 /**
269 * fsl_dma_new: initialize this PCM driver.
270 *
271 * This function is called when the codec driver calls snd_soc_new_pcms(),
272 * once for each .dai_link in the machine driver's snd_soc_card
273 * structure.
274 *
275 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
276 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
277 * is specified. Therefore, any DMA buffers we allocate will always be in low
278 * memory, but we support for 36-bit physical addresses anyway.
279 *
280 * Regardless of where the memory is actually allocated, since the device can
281 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
282 */
fsl_dma_new(struct snd_soc_pcm_runtime * rtd)283 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
284 {
285 struct snd_card *card = rtd->card->snd_card;
286 struct snd_pcm *pcm = rtd->pcm;
287 int ret;
288
289 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290 if (ret)
291 return ret;
292
293 /* Some codecs have separate DAIs for playback and capture, so we
294 * should allocate a DMA buffer only for the streams that are valid.
295 */
296
297 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
298 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
299 fsl_dma_hardware.buffer_bytes_max,
300 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
301 if (ret) {
302 dev_err(card->dev, "can't alloc playback dma buffer\n");
303 return ret;
304 }
305 }
306
307 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
308 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
309 fsl_dma_hardware.buffer_bytes_max,
310 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
311 if (ret) {
312 dev_err(card->dev, "can't alloc capture dma buffer\n");
313 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
314 return ret;
315 }
316 }
317
318 return 0;
319 }
320
321 /**
322 * fsl_dma_open: open a new substream.
323 *
324 * Each substream has its own DMA buffer.
325 *
326 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
327 * descriptors that ping-pong from one period to the next. For example, if
328 * there are six periods and two link descriptors, this is how they look
329 * before playback starts:
330 *
331 * The last link descriptor
332 * ____________ points back to the first
333 * | |
334 * V |
335 * ___ ___ |
336 * | |->| |->|
337 * |___| |___|
338 * | |
339 * | |
340 * V V
341 * _________________________________________
342 * | | | | | | | The DMA buffer is
343 * | | | | | | | divided into 6 parts
344 * |______|______|______|______|______|______|
345 *
346 * and here's how they look after the first period is finished playing:
347 *
348 * ____________
349 * | |
350 * V |
351 * ___ ___ |
352 * | |->| |->|
353 * |___| |___|
354 * | |
355 * |______________
356 * | |
357 * V V
358 * _________________________________________
359 * | | | | | | |
360 * | | | | | | |
361 * |______|______|______|______|______|______|
362 *
363 * The first link descriptor now points to the third period. The DMA
364 * controller is currently playing the second period. When it finishes, it
365 * will jump back to the first descriptor and play the third period.
366 *
367 * There are four reasons we do this:
368 *
369 * 1. The only way to get the DMA controller to automatically restart the
370 * transfer when it gets to the end of the buffer is to use chaining
371 * mode. Basic direct mode doesn't offer that feature.
372 * 2. We need to receive an interrupt at the end of every period. The DMA
373 * controller can generate an interrupt at the end of every link transfer
374 * (aka segment). Making each period into a DMA segment will give us the
375 * interrupts we need.
376 * 3. By creating only two link descriptors, regardless of the number of
377 * periods, we do not need to reallocate the link descriptors if the
378 * number of periods changes.
379 * 4. All of the audio data is still stored in a single, contiguous DMA
380 * buffer, which is what ALSA expects. We're just dividing it into
381 * contiguous parts, and creating a link descriptor for each one.
382 */
fsl_dma_open(struct snd_pcm_substream * substream)383 static int fsl_dma_open(struct snd_pcm_substream *substream)
384 {
385 struct snd_pcm_runtime *runtime = substream->runtime;
386 struct snd_soc_pcm_runtime *rtd = substream->private_data;
387 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
388 struct device *dev = component->dev;
389 struct dma_object *dma =
390 container_of(component->driver, struct dma_object, dai);
391 struct fsl_dma_private *dma_private;
392 struct ccsr_dma_channel __iomem *dma_channel;
393 dma_addr_t ld_buf_phys;
394 u64 temp_link; /* Pointer to next link descriptor */
395 u32 mr;
396 unsigned int channel;
397 int ret = 0;
398 unsigned int i;
399
400 /*
401 * Reject any DMA buffer whose size is not a multiple of the period
402 * size. We need to make sure that the DMA buffer can be evenly divided
403 * into periods.
404 */
405 ret = snd_pcm_hw_constraint_integer(runtime,
406 SNDRV_PCM_HW_PARAM_PERIODS);
407 if (ret < 0) {
408 dev_err(dev, "invalid buffer size\n");
409 return ret;
410 }
411
412 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413
414 if (dma->assigned) {
415 dev_err(dev, "dma channel already assigned\n");
416 return -EBUSY;
417 }
418
419 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
420 &ld_buf_phys, GFP_KERNEL);
421 if (!dma_private) {
422 dev_err(dev, "can't allocate dma private data\n");
423 return -ENOMEM;
424 }
425 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
426 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
427 else
428 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
429
430 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
431 dma_private->dma_channel = dma->channel;
432 dma_private->irq = dma->irq;
433 dma_private->substream = substream;
434 dma_private->ld_buf_phys = ld_buf_phys;
435 dma_private->dma_buf_phys = substream->dma_buffer.addr;
436
437 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
438 dma_private);
439 if (ret) {
440 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
441 dma_private->irq, ret);
442 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
443 dma_private, dma_private->ld_buf_phys);
444 return ret;
445 }
446
447 dma->assigned = true;
448
449 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
450 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
451 runtime->private_data = dma_private;
452
453 /* Program the fixed DMA controller parameters */
454
455 dma_channel = dma_private->dma_channel;
456
457 temp_link = dma_private->ld_buf_phys +
458 sizeof(struct fsl_dma_link_descriptor);
459
460 for (i = 0; i < NUM_DMA_LINKS; i++) {
461 dma_private->link[i].next = cpu_to_be64(temp_link);
462
463 temp_link += sizeof(struct fsl_dma_link_descriptor);
464 }
465 /* The last link descriptor points to the first */
466 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
467
468 /* Tell the DMA controller where the first link descriptor is */
469 out_be32(&dma_channel->clndar,
470 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
471 out_be32(&dma_channel->eclndar,
472 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
473
474 /* The manual says the BCR must be clear before enabling EMP */
475 out_be32(&dma_channel->bcr, 0);
476
477 /*
478 * Program the mode register for interrupts, external master control,
479 * and source/destination hold. Also clear the Channel Abort bit.
480 */
481 mr = in_be32(&dma_channel->mr) &
482 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
483
484 /*
485 * We want External Master Start and External Master Pause enabled,
486 * because the SSI is controlling the DMA controller. We want the DMA
487 * controller to be set up in advance, and then we signal only the SSI
488 * to start transferring.
489 *
490 * We want End-Of-Segment Interrupts enabled, because this will generate
491 * an interrupt at the end of each segment (each link descriptor
492 * represents one segment). Each DMA segment is the same thing as an
493 * ALSA period, so this is how we get an interrupt at the end of every
494 * period.
495 *
496 * We want Error Interrupt enabled, so that we can get an error if
497 * the DMA controller is mis-programmed somehow.
498 */
499 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
500 CCSR_DMA_MR_EMS_EN;
501
502 /* For playback, we want the destination address to be held. For
503 capture, set the source address to be held. */
504 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
505 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
506
507 out_be32(&dma_channel->mr, mr);
508
509 return 0;
510 }
511
512 /**
513 * fsl_dma_hw_params: continue initializing the DMA links
514 *
515 * This function obtains hardware parameters about the opened stream and
516 * programs the DMA controller accordingly.
517 *
518 * One drawback of big-endian is that when copying integers of different
519 * sizes to a fixed-sized register, the address to which the integer must be
520 * copied is dependent on the size of the integer.
521 *
522 * For example, if P is the address of a 32-bit register, and X is a 32-bit
523 * integer, then X should be copied to address P. However, if X is a 16-bit
524 * integer, then it should be copied to P+2. If X is an 8-bit register,
525 * then it should be copied to P+3.
526 *
527 * So for playback of 8-bit samples, the DMA controller must transfer single
528 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
530 *
531 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
532 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533 * and 8 bytes at a time). So we do not support packed 24-bit samples.
534 * 24-bit data must be padded to 32 bits.
535 */
fsl_dma_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)536 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
537 struct snd_pcm_hw_params *hw_params)
538 {
539 struct snd_pcm_runtime *runtime = substream->runtime;
540 struct fsl_dma_private *dma_private = runtime->private_data;
541 struct snd_soc_pcm_runtime *rtd = substream->private_data;
542 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
543 struct device *dev = component->dev;
544
545 /* Number of bits per sample */
546 unsigned int sample_bits =
547 snd_pcm_format_physical_width(params_format(hw_params));
548
549 /* Number of bytes per frame */
550 unsigned int sample_bytes = sample_bits / 8;
551
552 /* Bus address of SSI STX register */
553 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
554
555 /* Size of the DMA buffer, in bytes */
556 size_t buffer_size = params_buffer_bytes(hw_params);
557
558 /* Number of bytes per period */
559 size_t period_size = params_period_bytes(hw_params);
560
561 /* Pointer to next period */
562 dma_addr_t temp_addr = substream->dma_buffer.addr;
563
564 /* Pointer to DMA controller */
565 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
566
567 u32 mr; /* DMA Mode Register */
568
569 unsigned int i;
570
571 /* Initialize our DMA tracking variables */
572 dma_private->period_size = period_size;
573 dma_private->num_periods = params_periods(hw_params);
574 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
575 dma_private->dma_buf_next = dma_private->dma_buf_phys +
576 (NUM_DMA_LINKS * period_size);
577
578 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
579 /* This happens if the number of periods == NUM_DMA_LINKS */
580 dma_private->dma_buf_next = dma_private->dma_buf_phys;
581
582 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
583 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
584
585 /* Due to a quirk of the SSI's STX register, the target address
586 * for the DMA operations depends on the sample size. So we calculate
587 * that offset here. While we're at it, also tell the DMA controller
588 * how much data to transfer per sample.
589 */
590 switch (sample_bits) {
591 case 8:
592 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
593 ssi_sxx_phys += 3;
594 break;
595 case 16:
596 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
597 ssi_sxx_phys += 2;
598 break;
599 case 32:
600 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
601 break;
602 default:
603 /* We should never get here */
604 dev_err(dev, "unsupported sample size %u\n", sample_bits);
605 return -EINVAL;
606 }
607
608 /*
609 * BWC determines how many bytes are sent/received before the DMA
610 * controller checks the SSI to see if it needs to stop. BWC should
611 * always be a multiple of the frame size, so that we always transmit
612 * whole frames. Each frame occupies two slots in the FIFO. The
613 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614 * (MR[BWC] can only represent even powers of two).
615 *
616 * To simplify the process, we set BWC to the largest value that is
617 * less than or equal to the FIFO watermark. For playback, this ensures
618 * that we transfer the maximum amount without overrunning the FIFO.
619 * For capture, this ensures that we transfer the maximum amount without
620 * underrunning the FIFO.
621 *
622 * f = SSI FIFO depth
623 * w = SSI watermark value (which equals f - 2)
624 * b = DMA bandwidth count (in bytes)
625 * s = sample size (in bytes, which equals frame_size * 2)
626 *
627 * For playback, we never transmit more than the transmit FIFO
628 * watermark, otherwise we might write more data than the FIFO can hold.
629 * The watermark is equal to the FIFO depth minus two.
630 *
631 * For capture, two equations must hold:
632 * w > f - (b / s)
633 * w >= b / s
634 *
635 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
636 * b = s * w, which is equal to
637 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
638 */
639 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
640
641 out_be32(&dma_channel->mr, mr);
642
643 for (i = 0; i < NUM_DMA_LINKS; i++) {
644 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
645
646 link->count = cpu_to_be32(period_size);
647
648 /* The snoop bit tells the DMA controller whether it should tell
649 * the ECM to snoop during a read or write to an address. For
650 * audio, we use DMA to transfer data between memory and an I/O
651 * device (the SSI's STX0 or SRX0 register). Snooping is only
652 * needed if there is a cache, so we need to snoop memory
653 * addresses only. For playback, that means we snoop the source
654 * but not the destination. For capture, we snoop the
655 * destination but not the source.
656 *
657 * Note that failing to snoop properly is unlikely to cause
658 * cache incoherency if the period size is larger than the
659 * size of L1 cache. This is because filling in one period will
660 * flush out the data for the previous period. So if you
661 * increased period_bytes_min to a large enough size, you might
662 * get more performance by not snooping, and you'll still be
663 * okay. You'll need to update fsl_dma_update_pointers() also.
664 */
665 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
666 link->source_addr = cpu_to_be32(temp_addr);
667 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
668 upper_32_bits(temp_addr));
669
670 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
671 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
672 upper_32_bits(ssi_sxx_phys));
673 } else {
674 link->source_addr = cpu_to_be32(ssi_sxx_phys);
675 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 upper_32_bits(ssi_sxx_phys));
677
678 link->dest_addr = cpu_to_be32(temp_addr);
679 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680 upper_32_bits(temp_addr));
681 }
682
683 temp_addr += period_size;
684 }
685
686 return 0;
687 }
688
689 /**
690 * fsl_dma_pointer: determine the current position of the DMA transfer
691 *
692 * This function is called by ALSA when ALSA wants to know where in the
693 * stream buffer the hardware currently is.
694 *
695 * For playback, the SAR register contains the physical address of the most
696 * recent DMA transfer. For capture, the value is in the DAR register.
697 *
698 * The base address of the buffer is stored in the source_addr field of the
699 * first link descriptor.
700 */
fsl_dma_pointer(struct snd_pcm_substream * substream)701 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
702 {
703 struct snd_pcm_runtime *runtime = substream->runtime;
704 struct fsl_dma_private *dma_private = runtime->private_data;
705 struct snd_soc_pcm_runtime *rtd = substream->private_data;
706 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
707 struct device *dev = component->dev;
708 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
709 dma_addr_t position;
710 snd_pcm_uframes_t frames;
711
712 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
713 * only have 32-bit DMA addresses. This function is typically called
714 * in interrupt context, so we need to optimize it.
715 */
716 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
717 position = in_be32(&dma_channel->sar);
718 #ifdef CONFIG_PHYS_64BIT
719 position |= (u64)(in_be32(&dma_channel->satr) &
720 CCSR_DMA_ATR_ESAD_MASK) << 32;
721 #endif
722 } else {
723 position = in_be32(&dma_channel->dar);
724 #ifdef CONFIG_PHYS_64BIT
725 position |= (u64)(in_be32(&dma_channel->datr) &
726 CCSR_DMA_ATR_ESAD_MASK) << 32;
727 #endif
728 }
729
730 /*
731 * When capture is started, the SSI immediately starts to fill its FIFO.
732 * This means that the DMA controller is not started until the FIFO is
733 * full. However, ALSA calls this function before that happens, when
734 * MR.DAR is still zero. In this case, just return zero to indicate
735 * that nothing has been received yet.
736 */
737 if (!position)
738 return 0;
739
740 if ((position < dma_private->dma_buf_phys) ||
741 (position > dma_private->dma_buf_end)) {
742 dev_err(dev, "dma pointer is out of range, halting stream\n");
743 return SNDRV_PCM_POS_XRUN;
744 }
745
746 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
747
748 /*
749 * If the current address is just past the end of the buffer, wrap it
750 * around.
751 */
752 if (frames == runtime->buffer_size)
753 frames = 0;
754
755 return frames;
756 }
757
758 /**
759 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
760 *
761 * Release the resources allocated in fsl_dma_hw_params() and de-program the
762 * registers.
763 *
764 * This function can be called multiple times.
765 */
fsl_dma_hw_free(struct snd_pcm_substream * substream)766 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
767 {
768 struct snd_pcm_runtime *runtime = substream->runtime;
769 struct fsl_dma_private *dma_private = runtime->private_data;
770
771 if (dma_private) {
772 struct ccsr_dma_channel __iomem *dma_channel;
773
774 dma_channel = dma_private->dma_channel;
775
776 /* Stop the DMA */
777 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
778 out_be32(&dma_channel->mr, 0);
779
780 /* Reset all the other registers */
781 out_be32(&dma_channel->sr, -1);
782 out_be32(&dma_channel->clndar, 0);
783 out_be32(&dma_channel->eclndar, 0);
784 out_be32(&dma_channel->satr, 0);
785 out_be32(&dma_channel->sar, 0);
786 out_be32(&dma_channel->datr, 0);
787 out_be32(&dma_channel->dar, 0);
788 out_be32(&dma_channel->bcr, 0);
789 out_be32(&dma_channel->nlndar, 0);
790 out_be32(&dma_channel->enlndar, 0);
791 }
792
793 return 0;
794 }
795
796 /**
797 * fsl_dma_close: close the stream.
798 */
fsl_dma_close(struct snd_pcm_substream * substream)799 static int fsl_dma_close(struct snd_pcm_substream *substream)
800 {
801 struct snd_pcm_runtime *runtime = substream->runtime;
802 struct fsl_dma_private *dma_private = runtime->private_data;
803 struct snd_soc_pcm_runtime *rtd = substream->private_data;
804 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
805 struct device *dev = component->dev;
806 struct dma_object *dma =
807 container_of(component->driver, struct dma_object, dai);
808
809 if (dma_private) {
810 if (dma_private->irq)
811 free_irq(dma_private->irq, dma_private);
812
813 /* Deallocate the fsl_dma_private structure */
814 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
815 dma_private, dma_private->ld_buf_phys);
816 substream->runtime->private_data = NULL;
817 }
818
819 dma->assigned = false;
820
821 return 0;
822 }
823
824 /*
825 * Remove this PCM driver.
826 */
fsl_dma_free_dma_buffers(struct snd_pcm * pcm)827 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
828 {
829 struct snd_pcm_substream *substream;
830 unsigned int i;
831
832 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
833 substream = pcm->streams[i].substream;
834 if (substream) {
835 snd_dma_free_pages(&substream->dma_buffer);
836 substream->dma_buffer.area = NULL;
837 substream->dma_buffer.addr = 0;
838 }
839 }
840 }
841
842 /**
843 * find_ssi_node -- returns the SSI node that points to its DMA channel node
844 *
845 * Although this DMA driver attempts to operate independently of the other
846 * devices, it still needs to determine some information about the SSI device
847 * that it's working with. Unfortunately, the device tree does not contain
848 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
849 * other way. So we need to scan the device tree for SSI nodes until we find
850 * the one that points to the given DMA channel node. It's ugly, but at least
851 * it's contained in this one function.
852 */
find_ssi_node(struct device_node * dma_channel_np)853 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
854 {
855 struct device_node *ssi_np, *np;
856
857 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
858 /* Check each DMA phandle to see if it points to us. We
859 * assume that device_node pointers are a valid comparison.
860 */
861 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
862 of_node_put(np);
863 if (np == dma_channel_np)
864 return ssi_np;
865
866 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
867 of_node_put(np);
868 if (np == dma_channel_np)
869 return ssi_np;
870 }
871
872 return NULL;
873 }
874
875 static const struct snd_pcm_ops fsl_dma_ops = {
876 .open = fsl_dma_open,
877 .close = fsl_dma_close,
878 .ioctl = snd_pcm_lib_ioctl,
879 .hw_params = fsl_dma_hw_params,
880 .hw_free = fsl_dma_hw_free,
881 .pointer = fsl_dma_pointer,
882 };
883
fsl_soc_dma_probe(struct platform_device * pdev)884 static int fsl_soc_dma_probe(struct platform_device *pdev)
885 {
886 struct dma_object *dma;
887 struct device_node *np = pdev->dev.of_node;
888 struct device_node *ssi_np;
889 struct resource res;
890 const uint32_t *iprop;
891 int ret;
892
893 /* Find the SSI node that points to us. */
894 ssi_np = find_ssi_node(np);
895 if (!ssi_np) {
896 dev_err(&pdev->dev, "cannot find parent SSI node\n");
897 return -ENODEV;
898 }
899
900 ret = of_address_to_resource(ssi_np, 0, &res);
901 if (ret) {
902 dev_err(&pdev->dev, "could not determine resources for %pOF\n",
903 ssi_np);
904 of_node_put(ssi_np);
905 return ret;
906 }
907
908 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
909 if (!dma) {
910 of_node_put(ssi_np);
911 return -ENOMEM;
912 }
913
914 dma->dai.name = DRV_NAME;
915 dma->dai.ops = &fsl_dma_ops;
916 dma->dai.pcm_new = fsl_dma_new;
917 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
918
919 /* Store the SSI-specific information that we need */
920 dma->ssi_stx_phys = res.start + REG_SSI_STX0;
921 dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
922
923 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
924 if (iprop)
925 dma->ssi_fifo_depth = be32_to_cpup(iprop);
926 else
927 /* Older 8610 DTs didn't have the fifo-depth property */
928 dma->ssi_fifo_depth = 8;
929
930 of_node_put(ssi_np);
931
932 ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
933 if (ret) {
934 dev_err(&pdev->dev, "could not register platform\n");
935 kfree(dma);
936 return ret;
937 }
938
939 dma->channel = of_iomap(np, 0);
940 dma->irq = irq_of_parse_and_map(np, 0);
941
942 dev_set_drvdata(&pdev->dev, dma);
943
944 return 0;
945 }
946
fsl_soc_dma_remove(struct platform_device * pdev)947 static int fsl_soc_dma_remove(struct platform_device *pdev)
948 {
949 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
950
951 iounmap(dma->channel);
952 irq_dispose_mapping(dma->irq);
953 kfree(dma);
954
955 return 0;
956 }
957
958 static const struct of_device_id fsl_soc_dma_ids[] = {
959 { .compatible = "fsl,ssi-dma-channel", },
960 {}
961 };
962 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
963
964 static struct platform_driver fsl_soc_dma_driver = {
965 .driver = {
966 .name = "fsl-pcm-audio",
967 .of_match_table = fsl_soc_dma_ids,
968 },
969 .probe = fsl_soc_dma_probe,
970 .remove = fsl_soc_dma_remove,
971 };
972
973 module_platform_driver(fsl_soc_dma_driver);
974
975 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
976 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977 MODULE_LICENSE("GPL v2");
978