1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/regmap.h>
16
17 #include <sound/asoundef.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21
22 #include "stm32_sai.h"
23
24 #define SAI_FREE_PROTOCOL 0x0
25 #define SAI_SPDIF_PROTOCOL 0x1
26
27 #define SAI_SLOT_SIZE_AUTO 0x0
28 #define SAI_SLOT_SIZE_16 0x1
29 #define SAI_SLOT_SIZE_32 0x2
30
31 #define SAI_DATASIZE_8 0x2
32 #define SAI_DATASIZE_10 0x3
33 #define SAI_DATASIZE_16 0x4
34 #define SAI_DATASIZE_20 0x5
35 #define SAI_DATASIZE_24 0x6
36 #define SAI_DATASIZE_32 0x7
37
38 #define STM_SAI_DAI_NAME_SIZE 15
39
40 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
41 #define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
42
43 #define STM_SAI_A_ID 0x0
44 #define STM_SAI_B_ID 0x1
45
46 #define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
47 #define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID)
48 #define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B")
49
50 #define SAI_SYNC_NONE 0x0
51 #define SAI_SYNC_INTERNAL 0x1
52 #define SAI_SYNC_EXTERNAL 0x2
53
54 #define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif)
55 #define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_PDM(x) ((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
58
59 #define SAI_IEC60958_BLOCK_FRAMES 192
60 #define SAI_IEC60958_STATUS_BYTES 24
61
62 #define SAI_MCLK_NAME_LEN 32
63 #define SAI_RATE_11K 11025
64
65 /**
66 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
67 * @pdev: device data pointer
68 * @regmap: SAI register map pointer
69 * @regmap_config: SAI sub block register map configuration pointer
70 * @dma_params: dma configuration data for rx or tx channel
71 * @cpu_dai_drv: DAI driver data pointer
72 * @cpu_dai: DAI runtime data pointer
73 * @substream: PCM substream data pointer
74 * @pdata: SAI block parent data pointer
75 * @np_sync_provider: synchronization provider node
76 * @sai_ck: kernel clock feeding the SAI clock generator
77 * @sai_mclk: master clock from SAI mclk provider
78 * @phys_addr: SAI registers physical base address
79 * @mclk_rate: SAI block master clock frequency (Hz). set at init
80 * @id: SAI sub block id corresponding to sub-block A or B
81 * @dir: SAI block direction (playback or capture). set at init
82 * @master: SAI block mode flag. (true=master, false=slave) set at init
83 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
84 * @fmt: SAI block format. relevant only for custom protocols. set at init
85 * @sync: SAI block synchronization mode. (none, internal or external)
86 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
87 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
88 * @fs_length: frame synchronization length. depends on protocol settings
89 * @slots: rx or tx slot number
90 * @slot_width: rx or tx slot width in bits
91 * @slot_mask: rx or tx active slots mask. set at init or at runtime
92 * @data_size: PCM data width. corresponds to PCM substream width.
93 * @spdif_frm_cnt: S/PDIF playback frame counter
94 * @iec958: iec958 data
95 * @ctrl_lock: control lock
96 * @irq_lock: prevent race condition with IRQ
97 */
98 struct stm32_sai_sub_data {
99 struct platform_device *pdev;
100 struct regmap *regmap;
101 const struct regmap_config *regmap_config;
102 struct snd_dmaengine_dai_dma_data dma_params;
103 struct snd_soc_dai_driver cpu_dai_drv;
104 struct snd_soc_dai *cpu_dai;
105 struct snd_pcm_substream *substream;
106 struct stm32_sai_data *pdata;
107 struct device_node *np_sync_provider;
108 struct clk *sai_ck;
109 struct clk *sai_mclk;
110 dma_addr_t phys_addr;
111 unsigned int mclk_rate;
112 unsigned int id;
113 int dir;
114 bool master;
115 bool spdif;
116 int fmt;
117 int sync;
118 int synco;
119 int synci;
120 int fs_length;
121 int slots;
122 int slot_width;
123 int slot_mask;
124 int data_size;
125 unsigned int spdif_frm_cnt;
126 struct snd_aes_iec958 iec958;
127 struct mutex ctrl_lock; /* protect resources accessed by controls */
128 spinlock_t irq_lock; /* used to prevent race condition with IRQ */
129 };
130
131 enum stm32_sai_fifo_th {
132 STM_SAI_FIFO_TH_EMPTY,
133 STM_SAI_FIFO_TH_QUARTER,
134 STM_SAI_FIFO_TH_HALF,
135 STM_SAI_FIFO_TH_3_QUARTER,
136 STM_SAI_FIFO_TH_FULL,
137 };
138
stm32_sai_sub_readable_reg(struct device * dev,unsigned int reg)139 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
140 {
141 switch (reg) {
142 case STM_SAI_CR1_REGX:
143 case STM_SAI_CR2_REGX:
144 case STM_SAI_FRCR_REGX:
145 case STM_SAI_SLOTR_REGX:
146 case STM_SAI_IMR_REGX:
147 case STM_SAI_SR_REGX:
148 case STM_SAI_CLRFR_REGX:
149 case STM_SAI_DR_REGX:
150 case STM_SAI_PDMCR_REGX:
151 case STM_SAI_PDMLY_REGX:
152 return true;
153 default:
154 return false;
155 }
156 }
157
stm32_sai_sub_volatile_reg(struct device * dev,unsigned int reg)158 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
159 {
160 switch (reg) {
161 case STM_SAI_DR_REGX:
162 case STM_SAI_SR_REGX:
163 return true;
164 default:
165 return false;
166 }
167 }
168
stm32_sai_sub_writeable_reg(struct device * dev,unsigned int reg)169 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
170 {
171 switch (reg) {
172 case STM_SAI_CR1_REGX:
173 case STM_SAI_CR2_REGX:
174 case STM_SAI_FRCR_REGX:
175 case STM_SAI_SLOTR_REGX:
176 case STM_SAI_IMR_REGX:
177 case STM_SAI_CLRFR_REGX:
178 case STM_SAI_DR_REGX:
179 case STM_SAI_PDMCR_REGX:
180 case STM_SAI_PDMLY_REGX:
181 return true;
182 default:
183 return false;
184 }
185 }
186
stm32_sai_sub_reg_up(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)187 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
188 unsigned int reg, unsigned int mask,
189 unsigned int val)
190 {
191 int ret;
192
193 ret = clk_enable(sai->pdata->pclk);
194 if (ret < 0)
195 return ret;
196
197 ret = regmap_update_bits(sai->regmap, reg, mask, val);
198
199 clk_disable(sai->pdata->pclk);
200
201 return ret;
202 }
203
stm32_sai_sub_reg_wr(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)204 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
205 unsigned int reg, unsigned int mask,
206 unsigned int val)
207 {
208 int ret;
209
210 ret = clk_enable(sai->pdata->pclk);
211 if (ret < 0)
212 return ret;
213
214 ret = regmap_write_bits(sai->regmap, reg, mask, val);
215
216 clk_disable(sai->pdata->pclk);
217
218 return ret;
219 }
220
stm32_sai_sub_reg_rd(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int * val)221 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
222 unsigned int reg, unsigned int *val)
223 {
224 int ret;
225
226 ret = clk_enable(sai->pdata->pclk);
227 if (ret < 0)
228 return ret;
229
230 ret = regmap_read(sai->regmap, reg, val);
231
232 clk_disable(sai->pdata->pclk);
233
234 return ret;
235 }
236
237 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
238 .reg_bits = 32,
239 .reg_stride = 4,
240 .val_bits = 32,
241 .max_register = STM_SAI_DR_REGX,
242 .readable_reg = stm32_sai_sub_readable_reg,
243 .volatile_reg = stm32_sai_sub_volatile_reg,
244 .writeable_reg = stm32_sai_sub_writeable_reg,
245 .fast_io = true,
246 .cache_type = REGCACHE_FLAT,
247 };
248
249 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
250 .reg_bits = 32,
251 .reg_stride = 4,
252 .val_bits = 32,
253 .max_register = STM_SAI_PDMLY_REGX,
254 .readable_reg = stm32_sai_sub_readable_reg,
255 .volatile_reg = stm32_sai_sub_volatile_reg,
256 .writeable_reg = stm32_sai_sub_writeable_reg,
257 .fast_io = true,
258 .cache_type = REGCACHE_FLAT,
259 };
260
snd_pcm_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)261 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
262 struct snd_ctl_elem_info *uinfo)
263 {
264 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
265 uinfo->count = 1;
266
267 return 0;
268 }
269
snd_pcm_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)270 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
271 struct snd_ctl_elem_value *uctl)
272 {
273 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
274
275 mutex_lock(&sai->ctrl_lock);
276 memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
277 mutex_unlock(&sai->ctrl_lock);
278
279 return 0;
280 }
281
snd_pcm_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)282 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
283 struct snd_ctl_elem_value *uctl)
284 {
285 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
286
287 mutex_lock(&sai->ctrl_lock);
288 memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
289 mutex_unlock(&sai->ctrl_lock);
290
291 return 0;
292 }
293
294 static const struct snd_kcontrol_new iec958_ctls = {
295 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
296 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
297 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
298 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
299 .info = snd_pcm_iec958_info,
300 .get = snd_pcm_iec958_get,
301 .put = snd_pcm_iec958_put,
302 };
303
304 struct stm32_sai_mclk_data {
305 struct clk_hw hw;
306 unsigned long freq;
307 struct stm32_sai_sub_data *sai_data;
308 };
309
310 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
311 #define STM32_SAI_MAX_CLKS 1
312
stm32_sai_get_clk_div(struct stm32_sai_sub_data * sai,unsigned long input_rate,unsigned long output_rate)313 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
314 unsigned long input_rate,
315 unsigned long output_rate)
316 {
317 int version = sai->pdata->conf.version;
318 int div;
319
320 div = DIV_ROUND_CLOSEST(input_rate, output_rate);
321 if (div > SAI_XCR1_MCKDIV_MAX(version)) {
322 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
323 return -EINVAL;
324 }
325 dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
326
327 if (input_rate % div)
328 dev_dbg(&sai->pdev->dev,
329 "Rate not accurate. requested (%ld), actual (%ld)\n",
330 output_rate, input_rate / div);
331
332 return div;
333 }
334
stm32_sai_set_clk_div(struct stm32_sai_sub_data * sai,unsigned int div)335 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
336 unsigned int div)
337 {
338 int version = sai->pdata->conf.version;
339 int ret, cr1, mask;
340
341 if (div > SAI_XCR1_MCKDIV_MAX(version)) {
342 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
343 return -EINVAL;
344 }
345
346 mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
347 cr1 = SAI_XCR1_MCKDIV_SET(div);
348 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
349 if (ret < 0)
350 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
351
352 return ret;
353 }
354
stm32_sai_set_parent_clock(struct stm32_sai_sub_data * sai,unsigned int rate)355 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
356 unsigned int rate)
357 {
358 struct platform_device *pdev = sai->pdev;
359 struct clk *parent_clk = sai->pdata->clk_x8k;
360 int ret;
361
362 if (!(rate % SAI_RATE_11K))
363 parent_clk = sai->pdata->clk_x11k;
364
365 ret = clk_set_parent(sai->sai_ck, parent_clk);
366 if (ret)
367 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
368 ret, ret == -EBUSY ?
369 "Active stream rates conflict\n" : "\n");
370
371 return ret;
372 }
373
stm32_sai_mclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)374 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
375 unsigned long *prate)
376 {
377 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
378 struct stm32_sai_sub_data *sai = mclk->sai_data;
379 int div;
380
381 div = stm32_sai_get_clk_div(sai, *prate, rate);
382 if (div < 0)
383 return div;
384
385 mclk->freq = *prate / div;
386
387 return mclk->freq;
388 }
389
stm32_sai_mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)390 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
391 unsigned long parent_rate)
392 {
393 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
394
395 return mclk->freq;
396 }
397
stm32_sai_mclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)398 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
399 unsigned long parent_rate)
400 {
401 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
402 struct stm32_sai_sub_data *sai = mclk->sai_data;
403 int div, ret;
404
405 div = stm32_sai_get_clk_div(sai, parent_rate, rate);
406 if (div < 0)
407 return div;
408
409 ret = stm32_sai_set_clk_div(sai, div);
410 if (ret)
411 return ret;
412
413 mclk->freq = rate;
414
415 return 0;
416 }
417
stm32_sai_mclk_enable(struct clk_hw * hw)418 static int stm32_sai_mclk_enable(struct clk_hw *hw)
419 {
420 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
421 struct stm32_sai_sub_data *sai = mclk->sai_data;
422
423 dev_dbg(&sai->pdev->dev, "Enable master clock\n");
424
425 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
426 SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
427 }
428
stm32_sai_mclk_disable(struct clk_hw * hw)429 static void stm32_sai_mclk_disable(struct clk_hw *hw)
430 {
431 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
432 struct stm32_sai_sub_data *sai = mclk->sai_data;
433
434 dev_dbg(&sai->pdev->dev, "Disable master clock\n");
435
436 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
437 }
438
439 static const struct clk_ops mclk_ops = {
440 .enable = stm32_sai_mclk_enable,
441 .disable = stm32_sai_mclk_disable,
442 .recalc_rate = stm32_sai_mclk_recalc_rate,
443 .round_rate = stm32_sai_mclk_round_rate,
444 .set_rate = stm32_sai_mclk_set_rate,
445 };
446
stm32_sai_add_mclk_provider(struct stm32_sai_sub_data * sai)447 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
448 {
449 struct clk_hw *hw;
450 struct stm32_sai_mclk_data *mclk;
451 struct device *dev = &sai->pdev->dev;
452 const char *pname = __clk_get_name(sai->sai_ck);
453 char *mclk_name, *p, *s = (char *)pname;
454 int ret, i = 0;
455
456 mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
457 if (!mclk)
458 return -ENOMEM;
459
460 mclk_name = devm_kcalloc(dev, sizeof(char),
461 SAI_MCLK_NAME_LEN, GFP_KERNEL);
462 if (!mclk_name)
463 return -ENOMEM;
464
465 /*
466 * Forge mclk clock name from parent clock name and suffix.
467 * String after "_" char is stripped in parent name.
468 */
469 p = mclk_name;
470 while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
471 *p++ = *s++;
472 i++;
473 }
474 STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
475
476 mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
477 mclk->sai_data = sai;
478 hw = &mclk->hw;
479
480 dev_dbg(dev, "Register master clock %s\n", mclk_name);
481 ret = devm_clk_hw_register(&sai->pdev->dev, hw);
482 if (ret) {
483 dev_err(dev, "mclk register returned %d\n", ret);
484 return ret;
485 }
486 sai->sai_mclk = hw->clk;
487
488 /* register mclk provider */
489 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
490 }
491
stm32_sai_isr(int irq,void * devid)492 static irqreturn_t stm32_sai_isr(int irq, void *devid)
493 {
494 struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
495 struct platform_device *pdev = sai->pdev;
496 unsigned int sr, imr, flags;
497 snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
498
499 stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
500 stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
501
502 flags = sr & imr;
503 if (!flags)
504 return IRQ_NONE;
505
506 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
507 SAI_XCLRFR_MASK);
508
509 if (!sai->substream) {
510 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
511 return IRQ_NONE;
512 }
513
514 if (flags & SAI_XIMR_OVRUDRIE) {
515 dev_err(&pdev->dev, "IRQ %s\n",
516 STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
517 status = SNDRV_PCM_STATE_XRUN;
518 }
519
520 if (flags & SAI_XIMR_MUTEDETIE)
521 dev_dbg(&pdev->dev, "IRQ mute detected\n");
522
523 if (flags & SAI_XIMR_WCKCFGIE) {
524 dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
525 status = SNDRV_PCM_STATE_DISCONNECTED;
526 }
527
528 if (flags & SAI_XIMR_CNRDYIE)
529 dev_err(&pdev->dev, "IRQ Codec not ready\n");
530
531 if (flags & SAI_XIMR_AFSDETIE) {
532 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
533 status = SNDRV_PCM_STATE_XRUN;
534 }
535
536 if (flags & SAI_XIMR_LFSDETIE) {
537 dev_err(&pdev->dev, "IRQ Late frame synchro\n");
538 status = SNDRV_PCM_STATE_XRUN;
539 }
540
541 spin_lock(&sai->irq_lock);
542 if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
543 snd_pcm_stop_xrun(sai->substream);
544 spin_unlock(&sai->irq_lock);
545
546 return IRQ_HANDLED;
547 }
548
stm32_sai_set_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)549 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
550 int clk_id, unsigned int freq, int dir)
551 {
552 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
553 int ret;
554
555 if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
556 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
557 SAI_XCR1_NODIV,
558 freq ? 0 : SAI_XCR1_NODIV);
559 if (ret < 0)
560 return ret;
561
562 /* Assume shutdown if requested frequency is 0Hz */
563 if (!freq) {
564 /* Release mclk rate only if rate was actually set */
565 if (sai->mclk_rate) {
566 clk_rate_exclusive_put(sai->sai_mclk);
567 sai->mclk_rate = 0;
568 }
569 return 0;
570 }
571
572 /* If master clock is used, set parent clock now */
573 ret = stm32_sai_set_parent_clock(sai, freq);
574 if (ret)
575 return ret;
576
577 ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
578 if (ret) {
579 dev_err(cpu_dai->dev,
580 ret == -EBUSY ?
581 "Active streams have incompatible rates" :
582 "Could not set mclk rate\n");
583 return ret;
584 }
585
586 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
587 sai->mclk_rate = freq;
588 }
589
590 return 0;
591 }
592
stm32_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)593 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
594 u32 rx_mask, int slots, int slot_width)
595 {
596 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
597 int slotr, slotr_mask, slot_size;
598
599 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
600 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
601 return 0;
602 }
603
604 dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
605 tx_mask, rx_mask, slots, slot_width);
606
607 switch (slot_width) {
608 case 16:
609 slot_size = SAI_SLOT_SIZE_16;
610 break;
611 case 32:
612 slot_size = SAI_SLOT_SIZE_32;
613 break;
614 default:
615 slot_size = SAI_SLOT_SIZE_AUTO;
616 break;
617 }
618
619 slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
620 SAI_XSLOTR_NBSLOT_SET(slots - 1);
621 slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
622
623 /* tx/rx mask set in machine init, if slot number defined in DT */
624 if (STM_SAI_IS_PLAYBACK(sai)) {
625 sai->slot_mask = tx_mask;
626 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
627 }
628
629 if (STM_SAI_IS_CAPTURE(sai)) {
630 sai->slot_mask = rx_mask;
631 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
632 }
633
634 slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
635
636 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
637
638 sai->slot_width = slot_width;
639 sai->slots = slots;
640
641 return 0;
642 }
643
stm32_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)644 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
645 {
646 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
647 int cr1, frcr = 0;
648 int cr1_mask, frcr_mask = 0;
649 int ret;
650
651 dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
652
653 /* Do not generate master by default */
654 cr1 = SAI_XCR1_NODIV;
655 cr1_mask = SAI_XCR1_NODIV;
656
657 cr1_mask |= SAI_XCR1_PRTCFG_MASK;
658 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
659 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
660 goto conf_update;
661 }
662
663 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
664
665 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
666 /* SCK active high for all protocols */
667 case SND_SOC_DAIFMT_I2S:
668 cr1 |= SAI_XCR1_CKSTR;
669 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
670 break;
671 /* Left justified */
672 case SND_SOC_DAIFMT_MSB:
673 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
674 break;
675 /* Right justified */
676 case SND_SOC_DAIFMT_LSB:
677 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
678 break;
679 case SND_SOC_DAIFMT_DSP_A:
680 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
681 break;
682 case SND_SOC_DAIFMT_DSP_B:
683 frcr |= SAI_XFRCR_FSPOL;
684 break;
685 default:
686 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
687 fmt & SND_SOC_DAIFMT_FORMAT_MASK);
688 return -EINVAL;
689 }
690
691 cr1_mask |= SAI_XCR1_CKSTR;
692 frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
693 SAI_XFRCR_FSDEF;
694
695 /* DAI clock strobing. Invert setting previously set */
696 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
697 case SND_SOC_DAIFMT_NB_NF:
698 break;
699 case SND_SOC_DAIFMT_IB_NF:
700 cr1 ^= SAI_XCR1_CKSTR;
701 break;
702 case SND_SOC_DAIFMT_NB_IF:
703 frcr ^= SAI_XFRCR_FSPOL;
704 break;
705 case SND_SOC_DAIFMT_IB_IF:
706 /* Invert fs & sck */
707 cr1 ^= SAI_XCR1_CKSTR;
708 frcr ^= SAI_XFRCR_FSPOL;
709 break;
710 default:
711 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
712 fmt & SND_SOC_DAIFMT_INV_MASK);
713 return -EINVAL;
714 }
715 cr1_mask |= SAI_XCR1_CKSTR;
716 frcr_mask |= SAI_XFRCR_FSPOL;
717
718 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
719
720 /* DAI clock master masks */
721 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
722 case SND_SOC_DAIFMT_CBM_CFM:
723 /* codec is master */
724 cr1 |= SAI_XCR1_SLAVE;
725 sai->master = false;
726 break;
727 case SND_SOC_DAIFMT_CBS_CFS:
728 sai->master = true;
729 break;
730 default:
731 dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
732 fmt & SND_SOC_DAIFMT_MASTER_MASK);
733 return -EINVAL;
734 }
735
736 /* Set slave mode if sub-block is synchronized with another SAI */
737 if (sai->sync) {
738 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
739 cr1 |= SAI_XCR1_SLAVE;
740 sai->master = false;
741 }
742
743 cr1_mask |= SAI_XCR1_SLAVE;
744
745 conf_update:
746 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
747 if (ret < 0) {
748 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
749 return ret;
750 }
751
752 sai->fmt = fmt;
753
754 return 0;
755 }
756
stm32_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)757 static int stm32_sai_startup(struct snd_pcm_substream *substream,
758 struct snd_soc_dai *cpu_dai)
759 {
760 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
761 int imr, cr2, ret;
762 unsigned long flags;
763
764 spin_lock_irqsave(&sai->irq_lock, flags);
765 sai->substream = substream;
766 spin_unlock_irqrestore(&sai->irq_lock, flags);
767
768 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
769 snd_pcm_hw_constraint_mask64(substream->runtime,
770 SNDRV_PCM_HW_PARAM_FORMAT,
771 SNDRV_PCM_FMTBIT_S32_LE);
772 snd_pcm_hw_constraint_single(substream->runtime,
773 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
774 }
775
776 ret = clk_prepare_enable(sai->sai_ck);
777 if (ret < 0) {
778 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
779 return ret;
780 }
781
782 /* Enable ITs */
783 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
784 SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
785
786 imr = SAI_XIMR_OVRUDRIE;
787 if (STM_SAI_IS_CAPTURE(sai)) {
788 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
789 if (cr2 & SAI_XCR2_MUTECNT_MASK)
790 imr |= SAI_XIMR_MUTEDETIE;
791 }
792
793 if (sai->master)
794 imr |= SAI_XIMR_WCKCFGIE;
795 else
796 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
797
798 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
799 SAI_XIMR_MASK, imr);
800
801 return 0;
802 }
803
stm32_sai_set_config(struct snd_soc_dai * cpu_dai,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params)804 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
805 struct snd_pcm_substream *substream,
806 struct snd_pcm_hw_params *params)
807 {
808 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
809 int cr1, cr1_mask, ret;
810
811 /*
812 * DMA bursts increment is set to 4 words.
813 * SAI fifo threshold is set to half fifo, to keep enough space
814 * for DMA incoming bursts.
815 */
816 stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
817 SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
818 SAI_XCR2_FFLUSH |
819 SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
820
821 /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
822 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
823 sai->spdif_frm_cnt = 0;
824 return 0;
825 }
826
827 /* Mode, data format and channel config */
828 cr1_mask = SAI_XCR1_DS_MASK;
829 switch (params_format(params)) {
830 case SNDRV_PCM_FORMAT_S8:
831 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
832 break;
833 case SNDRV_PCM_FORMAT_S16_LE:
834 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
835 break;
836 case SNDRV_PCM_FORMAT_S32_LE:
837 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
838 break;
839 default:
840 dev_err(cpu_dai->dev, "Data format not supported");
841 return -EINVAL;
842 }
843
844 cr1_mask |= SAI_XCR1_MONO;
845 if ((sai->slots == 2) && (params_channels(params) == 1))
846 cr1 |= SAI_XCR1_MONO;
847
848 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
849 if (ret < 0) {
850 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
851 return ret;
852 }
853
854 return 0;
855 }
856
stm32_sai_set_slots(struct snd_soc_dai * cpu_dai)857 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
858 {
859 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
860 int slotr, slot_sz;
861
862 stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
863
864 /*
865 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
866 * By default slot width = data size, if not forced from DT
867 */
868 slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
869 if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
870 sai->slot_width = sai->data_size;
871
872 if (sai->slot_width < sai->data_size) {
873 dev_err(cpu_dai->dev,
874 "Data size %d larger than slot width\n",
875 sai->data_size);
876 return -EINVAL;
877 }
878
879 /* Slot number is set to 2, if not specified in DT */
880 if (!sai->slots)
881 sai->slots = 2;
882
883 /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
884 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
885 SAI_XSLOTR_NBSLOT_MASK,
886 SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
887
888 /* Set default slots mask if not already set from DT */
889 if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
890 sai->slot_mask = (1 << sai->slots) - 1;
891 stm32_sai_sub_reg_up(sai,
892 STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
893 SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
894 }
895
896 dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
897 sai->slots, sai->slot_width);
898
899 return 0;
900 }
901
stm32_sai_set_frame(struct snd_soc_dai * cpu_dai)902 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
903 {
904 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
905 int fs_active, offset, format;
906 int frcr, frcr_mask;
907
908 format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
909 sai->fs_length = sai->slot_width * sai->slots;
910
911 fs_active = sai->fs_length / 2;
912 if ((format == SND_SOC_DAIFMT_DSP_A) ||
913 (format == SND_SOC_DAIFMT_DSP_B))
914 fs_active = 1;
915
916 frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
917 frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
918 frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
919
920 dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
921 sai->fs_length, fs_active);
922
923 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
924
925 if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
926 offset = sai->slot_width - sai->data_size;
927
928 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
929 SAI_XSLOTR_FBOFF_MASK,
930 SAI_XSLOTR_FBOFF_SET(offset));
931 }
932 }
933
stm32_sai_init_iec958_status(struct stm32_sai_sub_data * sai)934 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
935 {
936 unsigned char *cs = sai->iec958.status;
937
938 cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
939 cs[1] = IEC958_AES1_CON_GENERAL;
940 cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
941 cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
942 }
943
stm32_sai_set_iec958_status(struct stm32_sai_sub_data * sai,struct snd_pcm_runtime * runtime)944 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
945 struct snd_pcm_runtime *runtime)
946 {
947 if (!runtime)
948 return;
949
950 /* Force the sample rate according to runtime rate */
951 mutex_lock(&sai->ctrl_lock);
952 switch (runtime->rate) {
953 case 22050:
954 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
955 break;
956 case 44100:
957 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
958 break;
959 case 88200:
960 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
961 break;
962 case 176400:
963 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
964 break;
965 case 24000:
966 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
967 break;
968 case 48000:
969 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
970 break;
971 case 96000:
972 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
973 break;
974 case 192000:
975 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
976 break;
977 case 32000:
978 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
979 break;
980 default:
981 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
982 break;
983 }
984 mutex_unlock(&sai->ctrl_lock);
985 }
986
stm32_sai_configure_clock(struct snd_soc_dai * cpu_dai,struct snd_pcm_hw_params * params)987 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
988 struct snd_pcm_hw_params *params)
989 {
990 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
991 int div = 0, cr1 = 0;
992 int sai_clk_rate, mclk_ratio, den;
993 unsigned int rate = params_rate(params);
994 int ret;
995
996 if (!sai->sai_mclk) {
997 ret = stm32_sai_set_parent_clock(sai, rate);
998 if (ret)
999 return ret;
1000 }
1001 sai_clk_rate = clk_get_rate(sai->sai_ck);
1002
1003 if (STM_SAI_IS_F4(sai->pdata)) {
1004 /* mclk on (NODIV=0)
1005 * mclk_rate = 256 * fs
1006 * MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1007 * MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1008 * mclk off (NODIV=1)
1009 * MCKDIV ignored. sck = sai_ck
1010 */
1011 if (!sai->mclk_rate)
1012 return 0;
1013
1014 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1015 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1016 2 * sai->mclk_rate);
1017 if (div < 0)
1018 return div;
1019 }
1020 } else {
1021 /*
1022 * TDM mode :
1023 * mclk on
1024 * MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
1025 * MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
1026 * mclk off
1027 * MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
1028 * Note: NOMCK/NODIV correspond to same bit.
1029 */
1030 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1031 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1032 rate * 128);
1033 if (div < 0)
1034 return div;
1035 } else {
1036 if (sai->mclk_rate) {
1037 mclk_ratio = sai->mclk_rate / rate;
1038 if (mclk_ratio == 512) {
1039 cr1 = SAI_XCR1_OSR;
1040 } else if (mclk_ratio != 256) {
1041 dev_err(cpu_dai->dev,
1042 "Wrong mclk ratio %d\n",
1043 mclk_ratio);
1044 return -EINVAL;
1045 }
1046
1047 stm32_sai_sub_reg_up(sai,
1048 STM_SAI_CR1_REGX,
1049 SAI_XCR1_OSR, cr1);
1050
1051 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1052 sai->mclk_rate);
1053 if (div < 0)
1054 return div;
1055 } else {
1056 /* mclk-fs not set, master clock not active */
1057 den = sai->fs_length * params_rate(params);
1058 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1059 den);
1060 if (div < 0)
1061 return div;
1062 }
1063 }
1064 }
1065
1066 return stm32_sai_set_clk_div(sai, div);
1067 }
1068
stm32_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)1069 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1070 struct snd_pcm_hw_params *params,
1071 struct snd_soc_dai *cpu_dai)
1072 {
1073 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1074 int ret;
1075
1076 sai->data_size = params_width(params);
1077
1078 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1079 /* Rate not already set in runtime structure */
1080 substream->runtime->rate = params_rate(params);
1081 stm32_sai_set_iec958_status(sai, substream->runtime);
1082 } else {
1083 ret = stm32_sai_set_slots(cpu_dai);
1084 if (ret < 0)
1085 return ret;
1086 stm32_sai_set_frame(cpu_dai);
1087 }
1088
1089 ret = stm32_sai_set_config(cpu_dai, substream, params);
1090 if (ret)
1091 return ret;
1092
1093 if (sai->master)
1094 ret = stm32_sai_configure_clock(cpu_dai, params);
1095
1096 return ret;
1097 }
1098
stm32_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)1099 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1100 struct snd_soc_dai *cpu_dai)
1101 {
1102 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1103 int ret;
1104
1105 switch (cmd) {
1106 case SNDRV_PCM_TRIGGER_START:
1107 case SNDRV_PCM_TRIGGER_RESUME:
1108 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1109 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1110
1111 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1112 SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1113
1114 /* Enable SAI */
1115 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1116 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1117 if (ret < 0)
1118 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1119 break;
1120 case SNDRV_PCM_TRIGGER_SUSPEND:
1121 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1122 case SNDRV_PCM_TRIGGER_STOP:
1123 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1124
1125 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1126 SAI_XIMR_MASK, 0);
1127
1128 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1129 SAI_XCR1_SAIEN,
1130 (unsigned int)~SAI_XCR1_SAIEN);
1131
1132 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1133 SAI_XCR1_DMAEN,
1134 (unsigned int)~SAI_XCR1_DMAEN);
1135 if (ret < 0)
1136 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1137
1138 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1139 sai->spdif_frm_cnt = 0;
1140 break;
1141 default:
1142 return -EINVAL;
1143 }
1144
1145 return ret;
1146 }
1147
stm32_sai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)1148 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1149 struct snd_soc_dai *cpu_dai)
1150 {
1151 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1152 unsigned long flags;
1153
1154 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1155
1156 clk_disable_unprepare(sai->sai_ck);
1157
1158 spin_lock_irqsave(&sai->irq_lock, flags);
1159 sai->substream = NULL;
1160 spin_unlock_irqrestore(&sai->irq_lock, flags);
1161 }
1162
stm32_sai_pcm_new(struct snd_soc_pcm_runtime * rtd,struct snd_soc_dai * cpu_dai)1163 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1164 struct snd_soc_dai *cpu_dai)
1165 {
1166 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1167 struct snd_kcontrol_new knew = iec958_ctls;
1168
1169 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1170 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1171 knew.device = rtd->pcm->device;
1172 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1173 }
1174
1175 return 0;
1176 }
1177
stm32_sai_dai_probe(struct snd_soc_dai * cpu_dai)1178 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1179 {
1180 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1181 int cr1 = 0, cr1_mask, ret;
1182
1183 sai->cpu_dai = cpu_dai;
1184
1185 sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1186 /*
1187 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1188 * as it allows bytes, half-word and words transfers. (See DMA fifos
1189 * constraints).
1190 */
1191 sai->dma_params.maxburst = 4;
1192 if (sai->pdata->conf.fifo_size < 8)
1193 sai->dma_params.maxburst = 1;
1194 /* Buswidth will be set by framework at runtime */
1195 sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1196
1197 if (STM_SAI_IS_PLAYBACK(sai))
1198 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1199 else
1200 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1201
1202 /* Next settings are not relevant for spdif mode */
1203 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1204 return 0;
1205
1206 cr1_mask = SAI_XCR1_RX_TX;
1207 if (STM_SAI_IS_CAPTURE(sai))
1208 cr1 |= SAI_XCR1_RX_TX;
1209
1210 /* Configure synchronization */
1211 if (sai->sync == SAI_SYNC_EXTERNAL) {
1212 /* Configure synchro client and provider */
1213 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1214 sai->synco, sai->synci);
1215 if (ret)
1216 return ret;
1217 }
1218
1219 cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1220 cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1221
1222 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1223 }
1224
1225 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1226 .set_sysclk = stm32_sai_set_sysclk,
1227 .set_fmt = stm32_sai_set_dai_fmt,
1228 .set_tdm_slot = stm32_sai_set_dai_tdm_slot,
1229 .startup = stm32_sai_startup,
1230 .hw_params = stm32_sai_hw_params,
1231 .trigger = stm32_sai_trigger,
1232 .shutdown = stm32_sai_shutdown,
1233 };
1234
stm32_sai_pcm_process_spdif(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1235 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1236 int channel, unsigned long hwoff,
1237 void *buf, unsigned long bytes)
1238 {
1239 struct snd_pcm_runtime *runtime = substream->runtime;
1240 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1241 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1242 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1243 int *ptr = (int *)(runtime->dma_area + hwoff +
1244 channel * (runtime->dma_bytes / runtime->channels));
1245 ssize_t cnt = bytes_to_samples(runtime, bytes);
1246 unsigned int frm_cnt = sai->spdif_frm_cnt;
1247 unsigned int byte;
1248 unsigned int mask;
1249
1250 do {
1251 *ptr = ((*ptr >> 8) & 0x00ffffff);
1252
1253 /* Set channel status bit */
1254 byte = frm_cnt >> 3;
1255 mask = 1 << (frm_cnt - (byte << 3));
1256 if (sai->iec958.status[byte] & mask)
1257 *ptr |= 0x04000000;
1258 ptr++;
1259
1260 if (!(cnt % 2))
1261 frm_cnt++;
1262
1263 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1264 frm_cnt = 0;
1265 } while (--cnt);
1266 sai->spdif_frm_cnt = frm_cnt;
1267
1268 return 0;
1269 }
1270
1271 /* No support of mmap in S/PDIF mode */
1272 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1273 .info = SNDRV_PCM_INFO_INTERLEAVED,
1274 .buffer_bytes_max = 8 * PAGE_SIZE,
1275 .period_bytes_min = 1024,
1276 .period_bytes_max = PAGE_SIZE,
1277 .periods_min = 2,
1278 .periods_max = 8,
1279 };
1280
1281 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1282 .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1283 .buffer_bytes_max = 8 * PAGE_SIZE,
1284 .period_bytes_min = 1024, /* 5ms at 48kHz */
1285 .period_bytes_max = PAGE_SIZE,
1286 .periods_min = 2,
1287 .periods_max = 8,
1288 };
1289
1290 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1291 .probe = stm32_sai_dai_probe,
1292 .pcm_new = stm32_sai_pcm_new,
1293 .id = 1, /* avoid call to fmt_single_name() */
1294 .playback = {
1295 .channels_min = 1,
1296 .channels_max = 2,
1297 .rate_min = 8000,
1298 .rate_max = 192000,
1299 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1300 /* DMA does not support 24 bits transfers */
1301 .formats =
1302 SNDRV_PCM_FMTBIT_S8 |
1303 SNDRV_PCM_FMTBIT_S16_LE |
1304 SNDRV_PCM_FMTBIT_S32_LE,
1305 },
1306 .ops = &stm32_sai_pcm_dai_ops,
1307 };
1308
1309 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1310 .probe = stm32_sai_dai_probe,
1311 .id = 1, /* avoid call to fmt_single_name() */
1312 .capture = {
1313 .channels_min = 1,
1314 .channels_max = 2,
1315 .rate_min = 8000,
1316 .rate_max = 192000,
1317 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1318 /* DMA does not support 24 bits transfers */
1319 .formats =
1320 SNDRV_PCM_FMTBIT_S8 |
1321 SNDRV_PCM_FMTBIT_S16_LE |
1322 SNDRV_PCM_FMTBIT_S32_LE,
1323 },
1324 .ops = &stm32_sai_pcm_dai_ops,
1325 };
1326
1327 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1328 .pcm_hardware = &stm32_sai_pcm_hw,
1329 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1330 };
1331
1332 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1333 .pcm_hardware = &stm32_sai_pcm_hw_spdif,
1334 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1335 .process = stm32_sai_pcm_process_spdif,
1336 };
1337
1338 static const struct snd_soc_component_driver stm32_component = {
1339 .name = "stm32-sai",
1340 };
1341
1342 static const struct of_device_id stm32_sai_sub_ids[] = {
1343 { .compatible = "st,stm32-sai-sub-a",
1344 .data = (void *)STM_SAI_A_ID},
1345 { .compatible = "st,stm32-sai-sub-b",
1346 .data = (void *)STM_SAI_B_ID},
1347 {}
1348 };
1349 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1350
stm32_sai_sub_parse_of(struct platform_device * pdev,struct stm32_sai_sub_data * sai)1351 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1352 struct stm32_sai_sub_data *sai)
1353 {
1354 struct device_node *np = pdev->dev.of_node;
1355 struct resource *res;
1356 void __iomem *base;
1357 struct of_phandle_args args;
1358 int ret;
1359
1360 if (!np)
1361 return -ENODEV;
1362
1363 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364 base = devm_ioremap_resource(&pdev->dev, res);
1365 if (IS_ERR(base))
1366 return PTR_ERR(base);
1367
1368 sai->phys_addr = res->start;
1369
1370 sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1371 /* Note: PDM registers not available for sub-block B */
1372 if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1373 sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1374
1375 /*
1376 * Do not manage peripheral clock through regmap framework as this
1377 * can lead to circular locking issue with sai master clock provider.
1378 * Manage peripheral clock directly in driver instead.
1379 */
1380 sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1381 sai->regmap_config);
1382 if (IS_ERR(sai->regmap)) {
1383 dev_err(&pdev->dev, "Failed to initialize MMIO\n");
1384 return PTR_ERR(sai->regmap);
1385 }
1386
1387 /* Get direction property */
1388 if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1389 sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1390 } else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1391 sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1392 } else {
1393 dev_err(&pdev->dev, "Unsupported direction\n");
1394 return -EINVAL;
1395 }
1396
1397 /* Get spdif iec60958 property */
1398 sai->spdif = false;
1399 if (of_get_property(np, "st,iec60958", NULL)) {
1400 if (!STM_SAI_HAS_SPDIF(sai) ||
1401 sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1402 dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1403 return -EINVAL;
1404 }
1405 stm32_sai_init_iec958_status(sai);
1406 sai->spdif = true;
1407 sai->master = true;
1408 }
1409
1410 /* Get synchronization property */
1411 args.np = NULL;
1412 ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1413 if (ret < 0 && ret != -ENOENT) {
1414 dev_err(&pdev->dev, "Failed to get st,sync property\n");
1415 return ret;
1416 }
1417
1418 sai->sync = SAI_SYNC_NONE;
1419 if (args.np) {
1420 if (args.np == np) {
1421 dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1422 of_node_put(args.np);
1423 return -EINVAL;
1424 }
1425
1426 sai->np_sync_provider = of_get_parent(args.np);
1427 if (!sai->np_sync_provider) {
1428 dev_err(&pdev->dev, "%pOFn parent node not found\n",
1429 np);
1430 of_node_put(args.np);
1431 return -ENODEV;
1432 }
1433
1434 sai->sync = SAI_SYNC_INTERNAL;
1435 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1436 if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1437 dev_err(&pdev->dev,
1438 "External synchro not supported\n");
1439 of_node_put(args.np);
1440 return -EINVAL;
1441 }
1442 sai->sync = SAI_SYNC_EXTERNAL;
1443
1444 sai->synci = args.args[0];
1445 if (sai->synci < 1 ||
1446 (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1447 dev_err(&pdev->dev, "Wrong SAI index\n");
1448 of_node_put(args.np);
1449 return -EINVAL;
1450 }
1451
1452 if (of_property_match_string(args.np, "compatible",
1453 "st,stm32-sai-sub-a") >= 0)
1454 sai->synco = STM_SAI_SYNC_OUT_A;
1455
1456 if (of_property_match_string(args.np, "compatible",
1457 "st,stm32-sai-sub-b") >= 0)
1458 sai->synco = STM_SAI_SYNC_OUT_B;
1459
1460 if (!sai->synco) {
1461 dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1462 of_node_put(args.np);
1463 return -EINVAL;
1464 }
1465 }
1466
1467 dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1468 pdev->name, args.np->full_name);
1469 }
1470
1471 of_node_put(args.np);
1472 sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1473 if (IS_ERR(sai->sai_ck)) {
1474 dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
1475 return PTR_ERR(sai->sai_ck);
1476 }
1477
1478 ret = clk_prepare(sai->pdata->pclk);
1479 if (ret < 0)
1480 return ret;
1481
1482 if (STM_SAI_IS_F4(sai->pdata))
1483 return 0;
1484
1485 /* Register mclk provider if requested */
1486 if (of_find_property(np, "#clock-cells", NULL)) {
1487 ret = stm32_sai_add_mclk_provider(sai);
1488 if (ret < 0)
1489 return ret;
1490 } else {
1491 sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1492 if (IS_ERR(sai->sai_mclk)) {
1493 if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1494 return PTR_ERR(sai->sai_mclk);
1495 sai->sai_mclk = NULL;
1496 }
1497 }
1498
1499 return 0;
1500 }
1501
stm32_sai_sub_probe(struct platform_device * pdev)1502 static int stm32_sai_sub_probe(struct platform_device *pdev)
1503 {
1504 struct stm32_sai_sub_data *sai;
1505 const struct of_device_id *of_id;
1506 const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1507 int ret;
1508
1509 sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1510 if (!sai)
1511 return -ENOMEM;
1512
1513 of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1514 if (!of_id)
1515 return -EINVAL;
1516 sai->id = (uintptr_t)of_id->data;
1517
1518 sai->pdev = pdev;
1519 mutex_init(&sai->ctrl_lock);
1520 spin_lock_init(&sai->irq_lock);
1521 platform_set_drvdata(pdev, sai);
1522
1523 sai->pdata = dev_get_drvdata(pdev->dev.parent);
1524 if (!sai->pdata) {
1525 dev_err(&pdev->dev, "Parent device data not available\n");
1526 return -EINVAL;
1527 }
1528
1529 ret = stm32_sai_sub_parse_of(pdev, sai);
1530 if (ret)
1531 return ret;
1532
1533 if (STM_SAI_IS_PLAYBACK(sai))
1534 sai->cpu_dai_drv = stm32_sai_playback_dai;
1535 else
1536 sai->cpu_dai_drv = stm32_sai_capture_dai;
1537 sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1538
1539 ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1540 IRQF_SHARED, dev_name(&pdev->dev), sai);
1541 if (ret) {
1542 dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1543 return ret;
1544 }
1545
1546 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1547 conf = &stm32_sai_pcm_config_spdif;
1548
1549 ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1550 if (ret) {
1551 dev_err(&pdev->dev, "Could not register pcm dma\n");
1552 return ret;
1553 }
1554
1555 ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1556 &sai->cpu_dai_drv, 1);
1557 if (ret)
1558 snd_dmaengine_pcm_unregister(&pdev->dev);
1559
1560 return ret;
1561 }
1562
stm32_sai_sub_remove(struct platform_device * pdev)1563 static int stm32_sai_sub_remove(struct platform_device *pdev)
1564 {
1565 struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1566
1567 clk_unprepare(sai->pdata->pclk);
1568 snd_dmaengine_pcm_unregister(&pdev->dev);
1569 snd_soc_unregister_component(&pdev->dev);
1570
1571 return 0;
1572 }
1573
1574 #ifdef CONFIG_PM_SLEEP
stm32_sai_sub_suspend(struct device * dev)1575 static int stm32_sai_sub_suspend(struct device *dev)
1576 {
1577 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1578 int ret;
1579
1580 ret = clk_enable(sai->pdata->pclk);
1581 if (ret < 0)
1582 return ret;
1583
1584 regcache_cache_only(sai->regmap, true);
1585 regcache_mark_dirty(sai->regmap);
1586
1587 clk_disable(sai->pdata->pclk);
1588
1589 return 0;
1590 }
1591
stm32_sai_sub_resume(struct device * dev)1592 static int stm32_sai_sub_resume(struct device *dev)
1593 {
1594 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1595 int ret;
1596
1597 ret = clk_enable(sai->pdata->pclk);
1598 if (ret < 0)
1599 return ret;
1600
1601 regcache_cache_only(sai->regmap, false);
1602 ret = regcache_sync(sai->regmap);
1603
1604 clk_disable(sai->pdata->pclk);
1605
1606 return ret;
1607 }
1608 #endif /* CONFIG_PM_SLEEP */
1609
1610 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1611 SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1612 };
1613
1614 static struct platform_driver stm32_sai_sub_driver = {
1615 .driver = {
1616 .name = "st,stm32-sai-sub",
1617 .of_match_table = stm32_sai_sub_ids,
1618 .pm = &stm32_sai_sub_pm_ops,
1619 },
1620 .probe = stm32_sai_sub_probe,
1621 .remove = stm32_sai_sub_remove,
1622 };
1623
1624 module_platform_driver(stm32_sai_sub_driver);
1625
1626 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1627 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1628 MODULE_ALIAS("platform:st,stm32-sai-sub");
1629 MODULE_LICENSE("GPL v2");
1630