1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27
28 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
29
30 enum {
31 OMAP_MCBSP_WORD_8 = 0,
32 OMAP_MCBSP_WORD_12,
33 OMAP_MCBSP_WORD_16,
34 OMAP_MCBSP_WORD_20,
35 OMAP_MCBSP_WORD_24,
36 OMAP_MCBSP_WORD_32,
37 };
38
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 dev_dbg(mcbsp->dev, "***********************\n");
56 }
57
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 struct clk *fck_src;
61 const char *src;
62 int r;
63
64 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 src = "pad_fck";
66 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 src = "prcm_fck";
68 else
69 return -EINVAL;
70
71 fck_src = clk_get(mcbsp->dev, src);
72 if (IS_ERR(fck_src)) {
73 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 return -EINVAL;
75 }
76
77 if (mcbsp->active)
78 pm_runtime_put_sync(mcbsp->dev);
79
80 r = clk_set_parent(mcbsp->fclk, fck_src);
81 if (r) {
82 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
83 src);
84 clk_put(fck_src);
85 return r;
86 }
87
88 if (mcbsp->active)
89 pm_runtime_get_sync(mcbsp->dev);
90
91 clk_put(fck_src);
92
93 return 0;
94 }
95
omap_mcbsp_irq_handler(int irq,void * data)96 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
97 {
98 struct omap_mcbsp *mcbsp = data;
99 u16 irqst;
100
101 irqst = MCBSP_READ(mcbsp, IRQST);
102 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
103
104 if (irqst & RSYNCERREN)
105 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
106 if (irqst & RFSREN)
107 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
108 if (irqst & REOFEN)
109 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
110 if (irqst & RRDYEN)
111 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
112 if (irqst & RUNDFLEN)
113 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
114 if (irqst & ROVFLEN)
115 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
116
117 if (irqst & XSYNCERREN)
118 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
119 if (irqst & XFSXEN)
120 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
121 if (irqst & XEOFEN)
122 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
123 if (irqst & XRDYEN)
124 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
125 if (irqst & XUNDFLEN)
126 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
127 if (irqst & XOVFLEN)
128 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
129 if (irqst & XEMPTYEOFEN)
130 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
131
132 MCBSP_WRITE(mcbsp, IRQST, irqst);
133
134 return IRQ_HANDLED;
135 }
136
omap_mcbsp_tx_irq_handler(int irq,void * data)137 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
138 {
139 struct omap_mcbsp *mcbsp = data;
140 u16 irqst_spcr2;
141
142 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
143 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
144
145 if (irqst_spcr2 & XSYNC_ERR) {
146 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
147 irqst_spcr2);
148 /* Writing zero to XSYNC_ERR clears the IRQ */
149 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
150 }
151
152 return IRQ_HANDLED;
153 }
154
omap_mcbsp_rx_irq_handler(int irq,void * data)155 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
156 {
157 struct omap_mcbsp *mcbsp = data;
158 u16 irqst_spcr1;
159
160 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
161 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
162
163 if (irqst_spcr1 & RSYNC_ERR) {
164 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
165 irqst_spcr1);
166 /* Writing zero to RSYNC_ERR clears the IRQ */
167 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
168 }
169
170 return IRQ_HANDLED;
171 }
172
173 /*
174 * omap_mcbsp_config simply write a config to the
175 * appropriate McBSP.
176 * You either call this function or set the McBSP registers
177 * by yourself before calling omap_mcbsp_start().
178 */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)179 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
180 const struct omap_mcbsp_reg_cfg *config)
181 {
182 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
183 mcbsp->id, mcbsp->phys_base);
184
185 /* We write the given config */
186 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
187 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
188 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
189 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
190 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
191 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
192 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
193 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
194 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
195 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
196 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
197 if (mcbsp->pdata->has_ccr) {
198 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
199 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
200 }
201 /* Enable wakeup behavior */
202 if (mcbsp->pdata->has_wakeup)
203 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
204
205 /* Enable TX/RX sync error interrupts by default */
206 if (mcbsp->irq)
207 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
208 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
209 }
210
211 /**
212 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
213 * @mcbsp: omap_mcbsp struct for the McBSP instance
214 * @stream: Stream direction (playback/capture)
215 *
216 * Returns the address of mcbsp data transmit register or data receive register
217 * to be used by DMA for transferring/receiving data
218 */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)219 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
220 unsigned int stream)
221 {
222 int data_reg;
223
224 if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
225 if (mcbsp->pdata->reg_size == 2)
226 data_reg = OMAP_MCBSP_REG_DXR1;
227 else
228 data_reg = OMAP_MCBSP_REG_DXR;
229 } else {
230 if (mcbsp->pdata->reg_size == 2)
231 data_reg = OMAP_MCBSP_REG_DRR1;
232 else
233 data_reg = OMAP_MCBSP_REG_DRR;
234 }
235
236 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
237 }
238
239 /*
240 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
241 * The threshold parameter is 1 based, and it is converted (threshold - 1)
242 * for the THRSH2 register.
243 */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)244 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
245 {
246 if (threshold && threshold <= mcbsp->max_tx_thres)
247 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
248 }
249
250 /*
251 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
252 * The threshold parameter is 1 based, and it is converted (threshold - 1)
253 * for the THRSH1 register.
254 */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)255 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
256 {
257 if (threshold && threshold <= mcbsp->max_rx_thres)
258 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
259 }
260
261 /*
262 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
263 */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)264 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
265 {
266 u16 buffstat;
267
268 /* Returns the number of free locations in the buffer */
269 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
270
271 /* Number of slots are different in McBSP ports */
272 return mcbsp->pdata->buffer_size - buffstat;
273 }
274
275 /*
276 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
277 * to reach the threshold value (when the DMA will be triggered to read it)
278 */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)279 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
280 {
281 u16 buffstat, threshold;
282
283 /* Returns the number of used locations in the buffer */
284 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
285 /* RX threshold */
286 threshold = MCBSP_READ(mcbsp, THRSH1);
287
288 /* Return the number of location till we reach the threshold limit */
289 if (threshold <= buffstat)
290 return 0;
291 else
292 return threshold - buffstat;
293 }
294
omap_mcbsp_request(struct omap_mcbsp * mcbsp)295 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
296 {
297 void *reg_cache;
298 int err;
299
300 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
301 if (!reg_cache)
302 return -ENOMEM;
303
304 spin_lock(&mcbsp->lock);
305 if (!mcbsp->free) {
306 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
307 err = -EBUSY;
308 goto err_kfree;
309 }
310
311 mcbsp->free = false;
312 mcbsp->reg_cache = reg_cache;
313 spin_unlock(&mcbsp->lock);
314
315 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
316 mcbsp->pdata->ops->request(mcbsp->id - 1);
317
318 /*
319 * Make sure that transmitter, receiver and sample-rate generator are
320 * not running before activating IRQs.
321 */
322 MCBSP_WRITE(mcbsp, SPCR1, 0);
323 MCBSP_WRITE(mcbsp, SPCR2, 0);
324
325 if (mcbsp->irq) {
326 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
327 "McBSP", (void *)mcbsp);
328 if (err != 0) {
329 dev_err(mcbsp->dev, "Unable to request IRQ\n");
330 goto err_clk_disable;
331 }
332 } else {
333 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
334 "McBSP TX", (void *)mcbsp);
335 if (err != 0) {
336 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
337 goto err_clk_disable;
338 }
339
340 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
341 "McBSP RX", (void *)mcbsp);
342 if (err != 0) {
343 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
344 goto err_free_irq;
345 }
346 }
347
348 return 0;
349 err_free_irq:
350 free_irq(mcbsp->tx_irq, (void *)mcbsp);
351 err_clk_disable:
352 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
353 mcbsp->pdata->ops->free(mcbsp->id - 1);
354
355 /* Disable wakeup behavior */
356 if (mcbsp->pdata->has_wakeup)
357 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
358
359 spin_lock(&mcbsp->lock);
360 mcbsp->free = true;
361 mcbsp->reg_cache = NULL;
362 err_kfree:
363 spin_unlock(&mcbsp->lock);
364 kfree(reg_cache);
365
366 return err;
367 }
368
omap_mcbsp_free(struct omap_mcbsp * mcbsp)369 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
370 {
371 void *reg_cache;
372
373 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
374 mcbsp->pdata->ops->free(mcbsp->id - 1);
375
376 /* Disable wakeup behavior */
377 if (mcbsp->pdata->has_wakeup)
378 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
379
380 /* Disable interrupt requests */
381 if (mcbsp->irq)
382 MCBSP_WRITE(mcbsp, IRQEN, 0);
383
384 if (mcbsp->irq) {
385 free_irq(mcbsp->irq, (void *)mcbsp);
386 } else {
387 free_irq(mcbsp->rx_irq, (void *)mcbsp);
388 free_irq(mcbsp->tx_irq, (void *)mcbsp);
389 }
390
391 reg_cache = mcbsp->reg_cache;
392
393 /*
394 * Select CLKS source from internal source unconditionally before
395 * marking the McBSP port as free.
396 * If the external clock source via MCBSP_CLKS pin has been selected the
397 * system will refuse to enter idle if the CLKS pin source is not reset
398 * back to internal source.
399 */
400 if (!mcbsp_omap1())
401 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
402
403 spin_lock(&mcbsp->lock);
404 if (mcbsp->free)
405 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
406 else
407 mcbsp->free = true;
408 mcbsp->reg_cache = NULL;
409 spin_unlock(&mcbsp->lock);
410
411 kfree(reg_cache);
412 }
413
414 /*
415 * Here we start the McBSP, by enabling transmitter, receiver or both.
416 * If no transmitter or receiver is active prior calling, then sample-rate
417 * generator and frame sync are started.
418 */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)419 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
420 {
421 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
422 int rx = !tx;
423 int enable_srg = 0;
424 u16 w;
425
426 if (mcbsp->st_data)
427 omap_mcbsp_st_start(mcbsp);
428
429 /* Only enable SRG, if McBSP is master */
430 w = MCBSP_READ_CACHE(mcbsp, PCR0);
431 if (w & (FSXM | FSRM | CLKXM | CLKRM))
432 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
433 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
434
435 if (enable_srg) {
436 /* Start the sample generator */
437 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
438 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
439 }
440
441 /* Enable transmitter and receiver */
442 tx &= 1;
443 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
444 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
445
446 rx &= 1;
447 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
448 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
449
450 /*
451 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
452 * REVISIT: 100us may give enough time for two CLKSRG, however
453 * due to some unknown PM related, clock gating etc. reason it
454 * is now at 500us.
455 */
456 udelay(500);
457
458 if (enable_srg) {
459 /* Start frame sync */
460 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
461 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
462 }
463
464 if (mcbsp->pdata->has_ccr) {
465 /* Release the transmitter and receiver */
466 w = MCBSP_READ_CACHE(mcbsp, XCCR);
467 w &= ~(tx ? XDISABLE : 0);
468 MCBSP_WRITE(mcbsp, XCCR, w);
469 w = MCBSP_READ_CACHE(mcbsp, RCCR);
470 w &= ~(rx ? RDISABLE : 0);
471 MCBSP_WRITE(mcbsp, RCCR, w);
472 }
473
474 /* Dump McBSP Regs */
475 omap_mcbsp_dump_reg(mcbsp);
476 }
477
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)478 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
479 {
480 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
481 int rx = !tx;
482 int idle;
483 u16 w;
484
485 /* Reset transmitter */
486 tx &= 1;
487 if (mcbsp->pdata->has_ccr) {
488 w = MCBSP_READ_CACHE(mcbsp, XCCR);
489 w |= (tx ? XDISABLE : 0);
490 MCBSP_WRITE(mcbsp, XCCR, w);
491 }
492 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
493 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
494
495 /* Reset receiver */
496 rx &= 1;
497 if (mcbsp->pdata->has_ccr) {
498 w = MCBSP_READ_CACHE(mcbsp, RCCR);
499 w |= (rx ? RDISABLE : 0);
500 MCBSP_WRITE(mcbsp, RCCR, w);
501 }
502 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
503 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
504
505 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
506 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
507
508 if (idle) {
509 /* Reset the sample rate generator */
510 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
511 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
512 }
513
514 if (mcbsp->st_data)
515 omap_mcbsp_st_stop(mcbsp);
516 }
517
518 #define max_thres(m) (mcbsp->pdata->buffer_size)
519 #define valid_threshold(m, val) ((val) <= max_thres(m))
520 #define THRESHOLD_PROP_BUILDER(prop) \
521 static ssize_t prop##_show(struct device *dev, \
522 struct device_attribute *attr, char *buf) \
523 { \
524 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
525 \
526 return sprintf(buf, "%u\n", mcbsp->prop); \
527 } \
528 \
529 static ssize_t prop##_store(struct device *dev, \
530 struct device_attribute *attr, \
531 const char *buf, size_t size) \
532 { \
533 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
534 unsigned long val; \
535 int status; \
536 \
537 status = kstrtoul(buf, 0, &val); \
538 if (status) \
539 return status; \
540 \
541 if (!valid_threshold(mcbsp, val)) \
542 return -EDOM; \
543 \
544 mcbsp->prop = val; \
545 return size; \
546 } \
547 \
548 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
549
550 THRESHOLD_PROP_BUILDER(max_tx_thres);
551 THRESHOLD_PROP_BUILDER(max_rx_thres);
552
553 static const char * const dma_op_modes[] = {
554 "element", "threshold",
555 };
556
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)557 static ssize_t dma_op_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
561 int dma_op_mode, i = 0;
562 ssize_t len = 0;
563 const char * const *s;
564
565 dma_op_mode = mcbsp->dma_op_mode;
566
567 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
568 if (dma_op_mode == i)
569 len += sprintf(buf + len, "[%s] ", *s);
570 else
571 len += sprintf(buf + len, "%s ", *s);
572 }
573 len += sprintf(buf + len, "\n");
574
575 return len;
576 }
577
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)578 static ssize_t dma_op_mode_store(struct device *dev,
579 struct device_attribute *attr, const char *buf,
580 size_t size)
581 {
582 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
583 int i;
584
585 i = sysfs_match_string(dma_op_modes, buf);
586 if (i < 0)
587 return i;
588
589 spin_lock_irq(&mcbsp->lock);
590 if (!mcbsp->free) {
591 size = -EBUSY;
592 goto unlock;
593 }
594 mcbsp->dma_op_mode = i;
595
596 unlock:
597 spin_unlock_irq(&mcbsp->lock);
598
599 return size;
600 }
601
602 static DEVICE_ATTR_RW(dma_op_mode);
603
604 static const struct attribute *additional_attrs[] = {
605 &dev_attr_max_tx_thres.attr,
606 &dev_attr_max_rx_thres.attr,
607 &dev_attr_dma_op_mode.attr,
608 NULL,
609 };
610
611 static const struct attribute_group additional_attr_group = {
612 .attrs = (struct attribute **)additional_attrs,
613 };
614
615 /*
616 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
617 * 730 has only 2 McBSP, and both of them are MPU peripherals.
618 */
omap_mcbsp_init(struct platform_device * pdev)619 static int omap_mcbsp_init(struct platform_device *pdev)
620 {
621 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
622 struct resource *res;
623 int ret = 0;
624
625 spin_lock_init(&mcbsp->lock);
626 mcbsp->free = true;
627
628 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
629 if (!res)
630 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
631
632 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
633 if (IS_ERR(mcbsp->io_base))
634 return PTR_ERR(mcbsp->io_base);
635
636 mcbsp->phys_base = res->start;
637 mcbsp->reg_cache_size = resource_size(res);
638
639 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
640 if (!res)
641 mcbsp->phys_dma_base = mcbsp->phys_base;
642 else
643 mcbsp->phys_dma_base = res->start;
644
645 /*
646 * OMAP1, 2 uses two interrupt lines: TX, RX
647 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
648 * OMAP4 and newer SoC only have the combined IRQ line.
649 * Use the combined IRQ if available since it gives better debugging
650 * possibilities.
651 */
652 mcbsp->irq = platform_get_irq_byname(pdev, "common");
653 if (mcbsp->irq == -ENXIO) {
654 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
655
656 if (mcbsp->tx_irq == -ENXIO) {
657 mcbsp->irq = platform_get_irq(pdev, 0);
658 mcbsp->tx_irq = 0;
659 } else {
660 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
661 mcbsp->irq = 0;
662 }
663 }
664
665 if (!pdev->dev.of_node) {
666 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
667 if (!res) {
668 dev_err(&pdev->dev, "invalid tx DMA channel\n");
669 return -ENODEV;
670 }
671 mcbsp->dma_req[0] = res->start;
672 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
673
674 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
675 if (!res) {
676 dev_err(&pdev->dev, "invalid rx DMA channel\n");
677 return -ENODEV;
678 }
679 mcbsp->dma_req[1] = res->start;
680 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
681 } else {
682 mcbsp->dma_data[0].filter_data = "tx";
683 mcbsp->dma_data[1].filter_data = "rx";
684 }
685
686 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
687 SNDRV_PCM_STREAM_PLAYBACK);
688 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
689 SNDRV_PCM_STREAM_CAPTURE);
690
691 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
692 if (IS_ERR(mcbsp->fclk)) {
693 ret = PTR_ERR(mcbsp->fclk);
694 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
695 return ret;
696 }
697
698 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
699 if (mcbsp->pdata->buffer_size) {
700 /*
701 * Initially configure the maximum thresholds to a safe value.
702 * The McBSP FIFO usage with these values should not go under
703 * 16 locations.
704 * If the whole FIFO without safety buffer is used, than there
705 * is a possibility that the DMA will be not able to push the
706 * new data on time, causing channel shifts in runtime.
707 */
708 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
709 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
710
711 ret = sysfs_create_group(&mcbsp->dev->kobj,
712 &additional_attr_group);
713 if (ret) {
714 dev_err(mcbsp->dev,
715 "Unable to create additional controls\n");
716 return ret;
717 }
718 }
719
720 ret = omap_mcbsp_st_init(pdev);
721 if (ret)
722 goto err_st;
723
724 return 0;
725
726 err_st:
727 if (mcbsp->pdata->buffer_size)
728 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
729 return ret;
730 }
731
732 /*
733 * Stream DMA parameters. DMA request line and port address are set runtime
734 * since they are different between OMAP1 and later OMAPs
735 */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)736 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
737 unsigned int packet_size)
738 {
739 struct snd_soc_pcm_runtime *rtd = substream->private_data;
740 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
741 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
742 int words;
743
744 /* No need to proceed further if McBSP does not have FIFO */
745 if (mcbsp->pdata->buffer_size == 0)
746 return;
747
748 /*
749 * Configure McBSP threshold based on either:
750 * packet_size, when the sDMA is in packet mode, or based on the
751 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
752 * for mono streams.
753 */
754 if (packet_size)
755 words = packet_size;
756 else
757 words = 1;
758
759 /* Configure McBSP internal buffer usage */
760 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
761 omap_mcbsp_set_tx_threshold(mcbsp, words);
762 else
763 omap_mcbsp_set_rx_threshold(mcbsp, words);
764 }
765
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)766 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
767 struct snd_pcm_hw_rule *rule)
768 {
769 struct snd_interval *buffer_size = hw_param_interval(params,
770 SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
771 struct snd_interval *channels = hw_param_interval(params,
772 SNDRV_PCM_HW_PARAM_CHANNELS);
773 struct omap_mcbsp *mcbsp = rule->private;
774 struct snd_interval frames;
775 int size;
776
777 snd_interval_any(&frames);
778 size = mcbsp->pdata->buffer_size;
779
780 frames.min = size / channels->min;
781 frames.integer = 1;
782 return snd_interval_refine(buffer_size, &frames);
783 }
784
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)785 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
786 struct snd_soc_dai *cpu_dai)
787 {
788 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
789 int err = 0;
790
791 if (!cpu_dai->active)
792 err = omap_mcbsp_request(mcbsp);
793
794 /*
795 * OMAP3 McBSP FIFO is word structured.
796 * McBSP2 has 1024 + 256 = 1280 word long buffer,
797 * McBSP1,3,4,5 has 128 word long buffer
798 * This means that the size of the FIFO depends on the sample format.
799 * For example on McBSP3:
800 * 16bit samples: size is 128 * 2 = 256 bytes
801 * 32bit samples: size is 128 * 4 = 512 bytes
802 * It is simpler to place constraint for buffer and period based on
803 * channels.
804 * McBSP3 as example again (16 or 32 bit samples):
805 * 1 channel (mono): size is 128 frames (128 words)
806 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
807 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
808 */
809 if (mcbsp->pdata->buffer_size) {
810 /*
811 * Rule for the buffer size. We should not allow
812 * smaller buffer than the FIFO size to avoid underruns.
813 * This applies only for the playback stream.
814 */
815 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
816 snd_pcm_hw_rule_add(substream->runtime, 0,
817 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
818 omap_mcbsp_hwrule_min_buffersize,
819 mcbsp,
820 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
821
822 /* Make sure, that the period size is always even */
823 snd_pcm_hw_constraint_step(substream->runtime, 0,
824 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
825 }
826
827 return err;
828 }
829
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)830 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
831 struct snd_soc_dai *cpu_dai)
832 {
833 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
834 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
835 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
836 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
837
838 if (mcbsp->latency[stream2])
839 pm_qos_update_request(&mcbsp->pm_qos_req,
840 mcbsp->latency[stream2]);
841 else if (mcbsp->latency[stream1])
842 pm_qos_remove_request(&mcbsp->pm_qos_req);
843
844 mcbsp->latency[stream1] = 0;
845
846 if (!cpu_dai->active) {
847 omap_mcbsp_free(mcbsp);
848 mcbsp->configured = 0;
849 }
850 }
851
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)852 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
853 struct snd_soc_dai *cpu_dai)
854 {
855 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
856 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
857 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
858 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
859 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
860 int latency = mcbsp->latency[stream2];
861
862 /* Prevent omap hardware from hitting off between FIFO fills */
863 if (!latency || mcbsp->latency[stream1] < latency)
864 latency = mcbsp->latency[stream1];
865
866 if (pm_qos_request_active(pm_qos_req))
867 pm_qos_update_request(pm_qos_req, latency);
868 else if (latency)
869 pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
870
871 return 0;
872 }
873
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)874 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
875 struct snd_soc_dai *cpu_dai)
876 {
877 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
878
879 switch (cmd) {
880 case SNDRV_PCM_TRIGGER_START:
881 case SNDRV_PCM_TRIGGER_RESUME:
882 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
883 mcbsp->active++;
884 omap_mcbsp_start(mcbsp, substream->stream);
885 break;
886
887 case SNDRV_PCM_TRIGGER_STOP:
888 case SNDRV_PCM_TRIGGER_SUSPEND:
889 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
890 omap_mcbsp_stop(mcbsp, substream->stream);
891 mcbsp->active--;
892 break;
893 default:
894 return -EINVAL;
895 }
896
897 return 0;
898 }
899
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)900 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
901 struct snd_pcm_substream *substream,
902 struct snd_soc_dai *dai)
903 {
904 struct snd_soc_pcm_runtime *rtd = substream->private_data;
905 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
906 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
907 u16 fifo_use;
908 snd_pcm_sframes_t delay;
909
910 /* No need to proceed further if McBSP does not have FIFO */
911 if (mcbsp->pdata->buffer_size == 0)
912 return 0;
913
914 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
915 fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
916 else
917 fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
918
919 /*
920 * Divide the used locations with the channel count to get the
921 * FIFO usage in samples (don't care about partial samples in the
922 * buffer).
923 */
924 delay = fifo_use / substream->runtime->channels;
925
926 return delay;
927 }
928
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)929 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
930 struct snd_pcm_hw_params *params,
931 struct snd_soc_dai *cpu_dai)
932 {
933 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
934 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
935 struct snd_dmaengine_dai_dma_data *dma_data;
936 int wlen, channels, wpf;
937 int pkt_size = 0;
938 unsigned int format, div, framesize, master;
939 unsigned int buffer_size = mcbsp->pdata->buffer_size;
940
941 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
942 channels = params_channels(params);
943
944 switch (params_format(params)) {
945 case SNDRV_PCM_FORMAT_S16_LE:
946 wlen = 16;
947 break;
948 case SNDRV_PCM_FORMAT_S32_LE:
949 wlen = 32;
950 break;
951 default:
952 return -EINVAL;
953 }
954 if (buffer_size) {
955 int latency;
956
957 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
958 int period_words, max_thrsh;
959 int divider = 0;
960
961 period_words = params_period_bytes(params) / (wlen / 8);
962 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
963 max_thrsh = mcbsp->max_tx_thres;
964 else
965 max_thrsh = mcbsp->max_rx_thres;
966 /*
967 * Use sDMA packet mode if McBSP is in threshold mode:
968 * If period words less than the FIFO size the packet
969 * size is set to the number of period words, otherwise
970 * Look for the biggest threshold value which divides
971 * the period size evenly.
972 */
973 divider = period_words / max_thrsh;
974 if (period_words % max_thrsh)
975 divider++;
976 while (period_words % divider &&
977 divider < period_words)
978 divider++;
979 if (divider == period_words)
980 return -EINVAL;
981
982 pkt_size = period_words / divider;
983 } else if (channels > 1) {
984 /* Use packet mode for non mono streams */
985 pkt_size = channels;
986 }
987
988 latency = (buffer_size - pkt_size) / channels;
989 latency = latency * USEC_PER_SEC /
990 (params->rate_num / params->rate_den);
991 mcbsp->latency[substream->stream] = latency;
992
993 omap_mcbsp_set_threshold(substream, pkt_size);
994 }
995
996 dma_data->maxburst = pkt_size;
997
998 if (mcbsp->configured) {
999 /* McBSP already configured by another stream */
1000 return 0;
1001 }
1002
1003 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
1004 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1005 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1006 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1007 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1008 wpf = channels;
1009 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1010 format == SND_SOC_DAIFMT_LEFT_J)) {
1011 /* Use dual-phase frames */
1012 regs->rcr2 |= RPHASE;
1013 regs->xcr2 |= XPHASE;
1014 /* Set 1 word per (McBSP) frame for phase1 and phase2 */
1015 wpf--;
1016 regs->rcr2 |= RFRLEN2(wpf - 1);
1017 regs->xcr2 |= XFRLEN2(wpf - 1);
1018 }
1019
1020 regs->rcr1 |= RFRLEN1(wpf - 1);
1021 regs->xcr1 |= XFRLEN1(wpf - 1);
1022
1023 switch (params_format(params)) {
1024 case SNDRV_PCM_FORMAT_S16_LE:
1025 /* Set word lengths */
1026 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
1027 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
1028 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
1029 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
1030 break;
1031 case SNDRV_PCM_FORMAT_S32_LE:
1032 /* Set word lengths */
1033 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
1034 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
1035 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
1036 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
1037 break;
1038 default:
1039 /* Unsupported PCM format */
1040 return -EINVAL;
1041 }
1042
1043 /* In McBSP master modes, FRAME (i.e. sample rate) is generated
1044 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1045 master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1046 if (master == SND_SOC_DAIFMT_CBS_CFS) {
1047 div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1048 framesize = (mcbsp->in_freq / div) / params_rate(params);
1049
1050 if (framesize < wlen * channels) {
1051 printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1052 "channels\n", __func__);
1053 return -EINVAL;
1054 }
1055 } else
1056 framesize = wlen * channels;
1057
1058 /* Set FS period and length in terms of bit clock periods */
1059 regs->srgr2 &= ~FPER(0xfff);
1060 regs->srgr1 &= ~FWID(0xff);
1061 switch (format) {
1062 case SND_SOC_DAIFMT_I2S:
1063 case SND_SOC_DAIFMT_LEFT_J:
1064 regs->srgr2 |= FPER(framesize - 1);
1065 regs->srgr1 |= FWID((framesize >> 1) - 1);
1066 break;
1067 case SND_SOC_DAIFMT_DSP_A:
1068 case SND_SOC_DAIFMT_DSP_B:
1069 regs->srgr2 |= FPER(framesize - 1);
1070 regs->srgr1 |= FWID(0);
1071 break;
1072 }
1073
1074 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1075 mcbsp->wlen = wlen;
1076 mcbsp->configured = 1;
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1083 * cache is initialized here
1084 */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1085 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1086 unsigned int fmt)
1087 {
1088 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1089 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1090 bool inv_fs = false;
1091
1092 if (mcbsp->configured)
1093 return 0;
1094
1095 mcbsp->fmt = fmt;
1096 memset(regs, 0, sizeof(*regs));
1097 /* Generic McBSP register settings */
1098 regs->spcr2 |= XINTM(3) | FREE;
1099 regs->spcr1 |= RINTM(3);
1100 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1101 if (!mcbsp->pdata->has_ccr) {
1102 regs->rcr2 |= RFIG;
1103 regs->xcr2 |= XFIG;
1104 }
1105
1106 /* Configure XCCR/RCCR only for revisions which have ccr registers */
1107 if (mcbsp->pdata->has_ccr) {
1108 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1109 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1110 }
1111
1112 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1113 case SND_SOC_DAIFMT_I2S:
1114 /* 1-bit data delay */
1115 regs->rcr2 |= RDATDLY(1);
1116 regs->xcr2 |= XDATDLY(1);
1117 break;
1118 case SND_SOC_DAIFMT_LEFT_J:
1119 /* 0-bit data delay */
1120 regs->rcr2 |= RDATDLY(0);
1121 regs->xcr2 |= XDATDLY(0);
1122 regs->spcr1 |= RJUST(2);
1123 /* Invert FS polarity configuration */
1124 inv_fs = true;
1125 break;
1126 case SND_SOC_DAIFMT_DSP_A:
1127 /* 1-bit data delay */
1128 regs->rcr2 |= RDATDLY(1);
1129 regs->xcr2 |= XDATDLY(1);
1130 /* Invert FS polarity configuration */
1131 inv_fs = true;
1132 break;
1133 case SND_SOC_DAIFMT_DSP_B:
1134 /* 0-bit data delay */
1135 regs->rcr2 |= RDATDLY(0);
1136 regs->xcr2 |= XDATDLY(0);
1137 /* Invert FS polarity configuration */
1138 inv_fs = true;
1139 break;
1140 default:
1141 /* Unsupported data format */
1142 return -EINVAL;
1143 }
1144
1145 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1146 case SND_SOC_DAIFMT_CBS_CFS:
1147 /* McBSP master. Set FS and bit clocks as outputs */
1148 regs->pcr0 |= FSXM | FSRM |
1149 CLKXM | CLKRM;
1150 /* Sample rate generator drives the FS */
1151 regs->srgr2 |= FSGM;
1152 break;
1153 case SND_SOC_DAIFMT_CBM_CFS:
1154 /* McBSP slave. FS clock as output */
1155 regs->srgr2 |= FSGM;
1156 regs->pcr0 |= FSXM | FSRM;
1157 break;
1158 case SND_SOC_DAIFMT_CBM_CFM:
1159 /* McBSP slave */
1160 break;
1161 default:
1162 /* Unsupported master/slave configuration */
1163 return -EINVAL;
1164 }
1165
1166 /* Set bit clock (CLKX/CLKR) and FS polarities */
1167 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1168 case SND_SOC_DAIFMT_NB_NF:
1169 /*
1170 * Normal BCLK + FS.
1171 * FS active low. TX data driven on falling edge of bit clock
1172 * and RX data sampled on rising edge of bit clock.
1173 */
1174 regs->pcr0 |= FSXP | FSRP |
1175 CLKXP | CLKRP;
1176 break;
1177 case SND_SOC_DAIFMT_NB_IF:
1178 regs->pcr0 |= CLKXP | CLKRP;
1179 break;
1180 case SND_SOC_DAIFMT_IB_NF:
1181 regs->pcr0 |= FSXP | FSRP;
1182 break;
1183 case SND_SOC_DAIFMT_IB_IF:
1184 break;
1185 default:
1186 return -EINVAL;
1187 }
1188 if (inv_fs == true)
1189 regs->pcr0 ^= FSXP | FSRP;
1190
1191 return 0;
1192 }
1193
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1194 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1195 int div_id, int div)
1196 {
1197 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1198 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1199
1200 if (div_id != OMAP_MCBSP_CLKGDV)
1201 return -ENODEV;
1202
1203 mcbsp->clk_div = div;
1204 regs->srgr1 &= ~CLKGDV(0xff);
1205 regs->srgr1 |= CLKGDV(div - 1);
1206
1207 return 0;
1208 }
1209
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1210 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1211 int clk_id, unsigned int freq,
1212 int dir)
1213 {
1214 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1215 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1216 int err = 0;
1217
1218 if (mcbsp->active) {
1219 if (freq == mcbsp->in_freq)
1220 return 0;
1221 else
1222 return -EBUSY;
1223 }
1224
1225 mcbsp->in_freq = freq;
1226 regs->srgr2 &= ~CLKSM;
1227 regs->pcr0 &= ~SCLKME;
1228
1229 switch (clk_id) {
1230 case OMAP_MCBSP_SYSCLK_CLK:
1231 regs->srgr2 |= CLKSM;
1232 break;
1233 case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1234 if (mcbsp_omap1()) {
1235 err = -EINVAL;
1236 break;
1237 }
1238 err = omap2_mcbsp_set_clks_src(mcbsp,
1239 MCBSP_CLKS_PRCM_SRC);
1240 break;
1241 case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1242 if (mcbsp_omap1()) {
1243 err = 0;
1244 break;
1245 }
1246 err = omap2_mcbsp_set_clks_src(mcbsp,
1247 MCBSP_CLKS_PAD_SRC);
1248 break;
1249
1250 case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1251 regs->srgr2 |= CLKSM;
1252 regs->pcr0 |= SCLKME;
1253 /*
1254 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1255 * disable output on those pins. This enables to inject the
1256 * reference clock through CLKX/CLKR. For this to work
1257 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1258 */
1259 regs->pcr0 &= ~CLKXM;
1260 break;
1261 case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1262 regs->pcr0 |= SCLKME;
1263 /* Disable ouput on CLKR pin in master mode */
1264 regs->pcr0 &= ~CLKRM;
1265 break;
1266 default:
1267 err = -ENODEV;
1268 }
1269
1270 return err;
1271 }
1272
1273 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1274 .startup = omap_mcbsp_dai_startup,
1275 .shutdown = omap_mcbsp_dai_shutdown,
1276 .prepare = omap_mcbsp_dai_prepare,
1277 .trigger = omap_mcbsp_dai_trigger,
1278 .delay = omap_mcbsp_dai_delay,
1279 .hw_params = omap_mcbsp_dai_hw_params,
1280 .set_fmt = omap_mcbsp_dai_set_dai_fmt,
1281 .set_clkdiv = omap_mcbsp_dai_set_clkdiv,
1282 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
1283 };
1284
omap_mcbsp_probe(struct snd_soc_dai * dai)1285 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1286 {
1287 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1288
1289 pm_runtime_enable(mcbsp->dev);
1290
1291 snd_soc_dai_init_dma_data(dai,
1292 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1293 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1294
1295 return 0;
1296 }
1297
omap_mcbsp_remove(struct snd_soc_dai * dai)1298 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1299 {
1300 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1301
1302 pm_runtime_disable(mcbsp->dev);
1303
1304 return 0;
1305 }
1306
1307 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1308 .probe = omap_mcbsp_probe,
1309 .remove = omap_mcbsp_remove,
1310 .playback = {
1311 .channels_min = 1,
1312 .channels_max = 16,
1313 .rates = OMAP_MCBSP_RATES,
1314 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1315 },
1316 .capture = {
1317 .channels_min = 1,
1318 .channels_max = 16,
1319 .rates = OMAP_MCBSP_RATES,
1320 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1321 },
1322 .ops = &mcbsp_dai_ops,
1323 };
1324
1325 static const struct snd_soc_component_driver omap_mcbsp_component = {
1326 .name = "omap-mcbsp",
1327 };
1328
1329 static struct omap_mcbsp_platform_data omap2420_pdata = {
1330 .reg_step = 4,
1331 .reg_size = 2,
1332 };
1333
1334 static struct omap_mcbsp_platform_data omap2430_pdata = {
1335 .reg_step = 4,
1336 .reg_size = 4,
1337 .has_ccr = true,
1338 };
1339
1340 static struct omap_mcbsp_platform_data omap3_pdata = {
1341 .reg_step = 4,
1342 .reg_size = 4,
1343 .has_ccr = true,
1344 .has_wakeup = true,
1345 };
1346
1347 static struct omap_mcbsp_platform_data omap4_pdata = {
1348 .reg_step = 4,
1349 .reg_size = 4,
1350 .has_ccr = true,
1351 .has_wakeup = true,
1352 };
1353
1354 static const struct of_device_id omap_mcbsp_of_match[] = {
1355 {
1356 .compatible = "ti,omap2420-mcbsp",
1357 .data = &omap2420_pdata,
1358 },
1359 {
1360 .compatible = "ti,omap2430-mcbsp",
1361 .data = &omap2430_pdata,
1362 },
1363 {
1364 .compatible = "ti,omap3-mcbsp",
1365 .data = &omap3_pdata,
1366 },
1367 {
1368 .compatible = "ti,omap4-mcbsp",
1369 .data = &omap4_pdata,
1370 },
1371 { },
1372 };
1373 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1374
asoc_mcbsp_probe(struct platform_device * pdev)1375 static int asoc_mcbsp_probe(struct platform_device *pdev)
1376 {
1377 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1378 struct omap_mcbsp *mcbsp;
1379 const struct of_device_id *match;
1380 int ret;
1381
1382 match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1383 if (match) {
1384 struct device_node *node = pdev->dev.of_node;
1385 struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1386 int buffer_size;
1387
1388 pdata = devm_kzalloc(&pdev->dev,
1389 sizeof(struct omap_mcbsp_platform_data),
1390 GFP_KERNEL);
1391 if (!pdata)
1392 return -ENOMEM;
1393
1394 memcpy(pdata, match->data, sizeof(*pdata));
1395 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1396 pdata->buffer_size = buffer_size;
1397 if (pdata_quirk)
1398 pdata->force_ick_on = pdata_quirk->force_ick_on;
1399 } else if (!pdata) {
1400 dev_err(&pdev->dev, "missing platform data.\n");
1401 return -EINVAL;
1402 }
1403 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1404 if (!mcbsp)
1405 return -ENOMEM;
1406
1407 mcbsp->id = pdev->id;
1408 mcbsp->pdata = pdata;
1409 mcbsp->dev = &pdev->dev;
1410 platform_set_drvdata(pdev, mcbsp);
1411
1412 ret = omap_mcbsp_init(pdev);
1413 if (ret)
1414 return ret;
1415
1416 if (mcbsp->pdata->reg_size == 2) {
1417 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1418 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1419 }
1420
1421 ret = devm_snd_soc_register_component(&pdev->dev,
1422 &omap_mcbsp_component,
1423 &omap_mcbsp_dai, 1);
1424 if (ret)
1425 return ret;
1426
1427 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1428 }
1429
asoc_mcbsp_remove(struct platform_device * pdev)1430 static int asoc_mcbsp_remove(struct platform_device *pdev)
1431 {
1432 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1433
1434 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1435 mcbsp->pdata->ops->free(mcbsp->id);
1436
1437 if (pm_qos_request_active(&mcbsp->pm_qos_req))
1438 pm_qos_remove_request(&mcbsp->pm_qos_req);
1439
1440 if (mcbsp->pdata->buffer_size)
1441 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1442
1443 omap_mcbsp_st_cleanup(pdev);
1444
1445 return 0;
1446 }
1447
1448 static struct platform_driver asoc_mcbsp_driver = {
1449 .driver = {
1450 .name = "omap-mcbsp",
1451 .of_match_table = omap_mcbsp_of_match,
1452 },
1453
1454 .probe = asoc_mcbsp_probe,
1455 .remove = asoc_mcbsp_remove,
1456 };
1457
1458 module_platform_driver(asoc_mcbsp_driver);
1459
1460 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1461 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1462 MODULE_LICENSE("GPL");
1463 MODULE_ALIAS("platform:omap-mcbsp");
1464