1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #undef CREATE_TRACE_POINTS
49 #ifndef __GENKSYMS__
50 #include <trace/hooks/mm.h>
51 #endif
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
58 /*
59 * Fragmentation score check interval for proactive compaction purposes.
60 */
61 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
62
63 /*
64 * Page order with-respect-to which proactive compaction
65 * calculates external fragmentation, which is used as
66 * the "fragmentation score" of a node/zone.
67 */
68 #if defined CONFIG_TRANSPARENT_HUGEPAGE
69 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
70 #elif defined CONFIG_HUGETLBFS
71 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
72 #else
73 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
74 #endif
75
release_freepages(struct list_head * freelist)76 static unsigned long release_freepages(struct list_head *freelist)
77 {
78 struct page *page, *next;
79 unsigned long high_pfn = 0;
80
81 list_for_each_entry_safe(page, next, freelist, lru) {
82 unsigned long pfn = page_to_pfn(page);
83 list_del(&page->lru);
84 __free_page(page);
85 if (pfn > high_pfn)
86 high_pfn = pfn;
87 }
88
89 return high_pfn;
90 }
91
split_map_pages(struct list_head * list)92 static void split_map_pages(struct list_head *list)
93 {
94 unsigned int i, order, nr_pages;
95 struct page *page, *next;
96 LIST_HEAD(tmp_list);
97
98 list_for_each_entry_safe(page, next, list, lru) {
99 list_del(&page->lru);
100
101 order = page_private(page);
102 nr_pages = 1 << order;
103
104 post_alloc_hook(page, order, __GFP_MOVABLE);
105 if (order)
106 split_page(page, order);
107
108 for (i = 0; i < nr_pages; i++) {
109 list_add(&page->lru, &tmp_list);
110 page++;
111 }
112 }
113
114 list_splice(&tmp_list, list);
115 }
116
117 #ifdef CONFIG_COMPACTION
118
PageMovable(struct page * page)119 int PageMovable(struct page *page)
120 {
121 struct address_space *mapping;
122
123 VM_BUG_ON_PAGE(!PageLocked(page), page);
124 if (!__PageMovable(page))
125 return 0;
126
127 mapping = page_mapping(page);
128 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
129 return 1;
130
131 return 0;
132 }
133 EXPORT_SYMBOL(PageMovable);
134
__SetPageMovable(struct page * page,struct address_space * mapping)135 void __SetPageMovable(struct page *page, struct address_space *mapping)
136 {
137 VM_BUG_ON_PAGE(!PageLocked(page), page);
138 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
139 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
140 }
141 EXPORT_SYMBOL(__SetPageMovable);
142
__ClearPageMovable(struct page * page)143 void __ClearPageMovable(struct page *page)
144 {
145 VM_BUG_ON_PAGE(!PageLocked(page), page);
146 VM_BUG_ON_PAGE(!PageMovable(page), page);
147 /*
148 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
149 * flag so that VM can catch up released page by driver after isolation.
150 * With it, VM migration doesn't try to put it back.
151 */
152 page->mapping = (void *)((unsigned long)page->mapping &
153 PAGE_MAPPING_MOVABLE);
154 }
155 EXPORT_SYMBOL(__ClearPageMovable);
156
157 /* Do not skip compaction more than 64 times */
158 #define COMPACT_MAX_DEFER_SHIFT 6
159
160 /*
161 * Compaction is deferred when compaction fails to result in a page
162 * allocation success. 1 << compact_defer_shift, compactions are skipped up
163 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
164 */
defer_compaction(struct zone * zone,int order)165 void defer_compaction(struct zone *zone, int order)
166 {
167 zone->compact_considered = 0;
168 zone->compact_defer_shift++;
169
170 if (order < zone->compact_order_failed)
171 zone->compact_order_failed = order;
172
173 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
174 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
175
176 trace_mm_compaction_defer_compaction(zone, order);
177 }
178
179 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)180 bool compaction_deferred(struct zone *zone, int order)
181 {
182 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
183
184 if (order < zone->compact_order_failed)
185 return false;
186
187 /* Avoid possible overflow */
188 if (++zone->compact_considered >= defer_limit) {
189 zone->compact_considered = defer_limit;
190 return false;
191 }
192
193 trace_mm_compaction_deferred(zone, order);
194
195 return true;
196 }
197
198 /*
199 * Update defer tracking counters after successful compaction of given order,
200 * which means an allocation either succeeded (alloc_success == true) or is
201 * expected to succeed.
202 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)203 void compaction_defer_reset(struct zone *zone, int order,
204 bool alloc_success)
205 {
206 if (alloc_success) {
207 zone->compact_considered = 0;
208 zone->compact_defer_shift = 0;
209 }
210 if (order >= zone->compact_order_failed)
211 zone->compact_order_failed = order + 1;
212
213 trace_mm_compaction_defer_reset(zone, order);
214 }
215
216 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)217 bool compaction_restarting(struct zone *zone, int order)
218 {
219 if (order < zone->compact_order_failed)
220 return false;
221
222 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
223 zone->compact_considered >= 1UL << zone->compact_defer_shift;
224 }
225
226 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)227 static inline bool isolation_suitable(struct compact_control *cc,
228 struct page *page)
229 {
230 if (cc->ignore_skip_hint)
231 return true;
232
233 return !get_pageblock_skip(page);
234 }
235
reset_cached_positions(struct zone * zone)236 static void reset_cached_positions(struct zone *zone)
237 {
238 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
239 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
240 zone->compact_cached_free_pfn =
241 pageblock_start_pfn(zone_end_pfn(zone) - 1);
242 }
243
244 /*
245 * Compound pages of >= pageblock_order should consistenly be skipped until
246 * released. It is always pointless to compact pages of such order (if they are
247 * migratable), and the pageblocks they occupy cannot contain any free pages.
248 */
pageblock_skip_persistent(struct page * page)249 static bool pageblock_skip_persistent(struct page *page)
250 {
251 if (!PageCompound(page))
252 return false;
253
254 page = compound_head(page);
255
256 if (compound_order(page) >= pageblock_order)
257 return true;
258
259 return false;
260 }
261
262 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)263 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
264 bool check_target)
265 {
266 struct page *page = pfn_to_online_page(pfn);
267 struct page *block_page;
268 struct page *end_page;
269 unsigned long block_pfn;
270
271 if (!page)
272 return false;
273 if (zone != page_zone(page))
274 return false;
275 if (pageblock_skip_persistent(page))
276 return false;
277
278 /*
279 * If skip is already cleared do no further checking once the
280 * restart points have been set.
281 */
282 if (check_source && check_target && !get_pageblock_skip(page))
283 return true;
284
285 /*
286 * If clearing skip for the target scanner, do not select a
287 * non-movable pageblock as the starting point.
288 */
289 if (!check_source && check_target &&
290 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
291 return false;
292
293 /* Ensure the start of the pageblock or zone is online and valid */
294 block_pfn = pageblock_start_pfn(pfn);
295 block_pfn = max(block_pfn, zone->zone_start_pfn);
296 block_page = pfn_to_online_page(block_pfn);
297 if (block_page) {
298 page = block_page;
299 pfn = block_pfn;
300 }
301
302 /* Ensure the end of the pageblock or zone is online and valid */
303 block_pfn = pageblock_end_pfn(pfn) - 1;
304 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
305 end_page = pfn_to_online_page(block_pfn);
306 if (!end_page)
307 return false;
308
309 /*
310 * Only clear the hint if a sample indicates there is either a
311 * free page or an LRU page in the block. One or other condition
312 * is necessary for the block to be a migration source/target.
313 */
314 do {
315 if (pfn_valid_within(pfn)) {
316 if (check_source && PageLRU(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320
321 if (check_target && PageBuddy(page)) {
322 clear_pageblock_skip(page);
323 return true;
324 }
325 }
326
327 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
328 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
329 } while (page <= end_page);
330
331 return false;
332 }
333
334 /*
335 * This function is called to clear all cached information on pageblocks that
336 * should be skipped for page isolation when the migrate and free page scanner
337 * meet.
338 */
__reset_isolation_suitable(struct zone * zone)339 static void __reset_isolation_suitable(struct zone *zone)
340 {
341 unsigned long migrate_pfn = zone->zone_start_pfn;
342 unsigned long free_pfn = zone_end_pfn(zone) - 1;
343 unsigned long reset_migrate = free_pfn;
344 unsigned long reset_free = migrate_pfn;
345 bool source_set = false;
346 bool free_set = false;
347
348 if (!zone->compact_blockskip_flush)
349 return;
350
351 zone->compact_blockskip_flush = false;
352
353 /*
354 * Walk the zone and update pageblock skip information. Source looks
355 * for PageLRU while target looks for PageBuddy. When the scanner
356 * is found, both PageBuddy and PageLRU are checked as the pageblock
357 * is suitable as both source and target.
358 */
359 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
360 free_pfn -= pageblock_nr_pages) {
361 cond_resched();
362
363 /* Update the migrate PFN */
364 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
365 migrate_pfn < reset_migrate) {
366 source_set = true;
367 reset_migrate = migrate_pfn;
368 zone->compact_init_migrate_pfn = reset_migrate;
369 zone->compact_cached_migrate_pfn[0] = reset_migrate;
370 zone->compact_cached_migrate_pfn[1] = reset_migrate;
371 }
372
373 /* Update the free PFN */
374 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
375 free_pfn > reset_free) {
376 free_set = true;
377 reset_free = free_pfn;
378 zone->compact_init_free_pfn = reset_free;
379 zone->compact_cached_free_pfn = reset_free;
380 }
381 }
382
383 /* Leave no distance if no suitable block was reset */
384 if (reset_migrate >= reset_free) {
385 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
386 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
387 zone->compact_cached_free_pfn = free_pfn;
388 }
389 }
390
reset_isolation_suitable(pg_data_t * pgdat)391 void reset_isolation_suitable(pg_data_t *pgdat)
392 {
393 int zoneid;
394
395 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
396 struct zone *zone = &pgdat->node_zones[zoneid];
397 if (!populated_zone(zone))
398 continue;
399
400 /* Only flush if a full compaction finished recently */
401 if (zone->compact_blockskip_flush)
402 __reset_isolation_suitable(zone);
403 }
404 }
405
406 /*
407 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
408 * locks are not required for read/writers. Returns true if it was already set.
409 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)410 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
411 unsigned long pfn)
412 {
413 bool skip;
414
415 /* Do no update if skip hint is being ignored */
416 if (cc->ignore_skip_hint)
417 return false;
418
419 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
420 return false;
421
422 skip = get_pageblock_skip(page);
423 if (!skip && !cc->no_set_skip_hint)
424 set_pageblock_skip(page);
425
426 return skip;
427 }
428
update_cached_migrate(struct compact_control * cc,unsigned long pfn)429 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
430 {
431 struct zone *zone = cc->zone;
432
433 pfn = pageblock_end_pfn(pfn);
434
435 /* Set for isolation rather than compaction */
436 if (cc->no_set_skip_hint)
437 return;
438
439 if (pfn > zone->compact_cached_migrate_pfn[0])
440 zone->compact_cached_migrate_pfn[0] = pfn;
441 if (cc->mode != MIGRATE_ASYNC &&
442 pfn > zone->compact_cached_migrate_pfn[1])
443 zone->compact_cached_migrate_pfn[1] = pfn;
444 }
445
446 /*
447 * If no pages were isolated then mark this pageblock to be skipped in the
448 * future. The information is later cleared by __reset_isolation_suitable().
449 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)450 static void update_pageblock_skip(struct compact_control *cc,
451 struct page *page, unsigned long pfn)
452 {
453 struct zone *zone = cc->zone;
454
455 if (cc->no_set_skip_hint)
456 return;
457
458 if (!page)
459 return;
460
461 set_pageblock_skip(page);
462
463 /* Update where async and sync compaction should restart */
464 if (pfn < zone->compact_cached_free_pfn)
465 zone->compact_cached_free_pfn = pfn;
466 }
467 #else
isolation_suitable(struct compact_control * cc,struct page * page)468 static inline bool isolation_suitable(struct compact_control *cc,
469 struct page *page)
470 {
471 return true;
472 }
473
pageblock_skip_persistent(struct page * page)474 static inline bool pageblock_skip_persistent(struct page *page)
475 {
476 return false;
477 }
478
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)479 static inline void update_pageblock_skip(struct compact_control *cc,
480 struct page *page, unsigned long pfn)
481 {
482 }
483
update_cached_migrate(struct compact_control * cc,unsigned long pfn)484 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
485 {
486 }
487
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)488 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
489 unsigned long pfn)
490 {
491 return false;
492 }
493 #endif /* CONFIG_COMPACTION */
494
495 /*
496 * Compaction requires the taking of some coarse locks that are potentially
497 * very heavily contended. For async compaction, trylock and record if the
498 * lock is contended. The lock will still be acquired but compaction will
499 * abort when the current block is finished regardless of success rate.
500 * Sync compaction acquires the lock.
501 *
502 * Always returns true which makes it easier to track lock state in callers.
503 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)504 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
505 struct compact_control *cc)
506 __acquires(lock)
507 {
508 /* Track if the lock is contended in async mode */
509 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
510 if (spin_trylock_irqsave(lock, *flags))
511 return true;
512
513 cc->contended = true;
514 }
515
516 spin_lock_irqsave(lock, *flags);
517 return true;
518 }
519
520 /*
521 * Compaction requires the taking of some coarse locks that are potentially
522 * very heavily contended. The lock should be periodically unlocked to avoid
523 * having disabled IRQs for a long time, even when there is nobody waiting on
524 * the lock. It might also be that allowing the IRQs will result in
525 * need_resched() becoming true. If scheduling is needed, async compaction
526 * aborts. Sync compaction schedules.
527 * Either compaction type will also abort if a fatal signal is pending.
528 * In either case if the lock was locked, it is dropped and not regained.
529 *
530 * Returns true if compaction should abort due to fatal signal pending, or
531 * async compaction due to need_resched()
532 * Returns false when compaction can continue (sync compaction might have
533 * scheduled)
534 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)535 static bool compact_unlock_should_abort(spinlock_t *lock,
536 unsigned long flags, bool *locked, struct compact_control *cc)
537 {
538 if (*locked) {
539 spin_unlock_irqrestore(lock, flags);
540 *locked = false;
541 }
542
543 if (fatal_signal_pending(current)) {
544 cc->contended = true;
545 return true;
546 }
547
548 cond_resched();
549
550 return false;
551 }
552
553 /*
554 * Isolate free pages onto a private freelist. If @strict is true, will abort
555 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
556 * (even though it may still end up isolating some pages).
557 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)558 static unsigned long isolate_freepages_block(struct compact_control *cc,
559 unsigned long *start_pfn,
560 unsigned long end_pfn,
561 struct list_head *freelist,
562 unsigned int stride,
563 bool strict)
564 {
565 int nr_scanned = 0, total_isolated = 0;
566 struct page *cursor;
567 unsigned long flags = 0;
568 bool locked = false;
569 unsigned long blockpfn = *start_pfn;
570 unsigned int order;
571
572 /* Strict mode is for isolation, speed is secondary */
573 if (strict)
574 stride = 1;
575
576 cursor = pfn_to_page(blockpfn);
577
578 /* Isolate free pages. */
579 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
580 int isolated;
581 struct page *page = cursor;
582
583 /*
584 * Periodically drop the lock (if held) regardless of its
585 * contention, to give chance to IRQs. Abort if fatal signal
586 * pending or async compaction detects need_resched()
587 */
588 if (!(blockpfn % SWAP_CLUSTER_MAX)
589 && compact_unlock_should_abort(&cc->zone->lock, flags,
590 &locked, cc))
591 break;
592
593 nr_scanned++;
594 if (!pfn_valid_within(blockpfn))
595 goto isolate_fail;
596
597 /*
598 * For compound pages such as THP and hugetlbfs, we can save
599 * potentially a lot of iterations if we skip them at once.
600 * The check is racy, but we can consider only valid values
601 * and the only danger is skipping too much.
602 */
603 if (PageCompound(page)) {
604 const unsigned int order = compound_order(page);
605
606 if (likely(order < MAX_ORDER)) {
607 blockpfn += (1UL << order) - 1;
608 cursor += (1UL << order) - 1;
609 }
610 goto isolate_fail;
611 }
612
613 if (!PageBuddy(page))
614 goto isolate_fail;
615
616 /*
617 * If we already hold the lock, we can skip some rechecking.
618 * Note that if we hold the lock now, checked_pageblock was
619 * already set in some previous iteration (or strict is true),
620 * so it is correct to skip the suitable migration target
621 * recheck as well.
622 */
623 if (!locked) {
624 locked = compact_lock_irqsave(&cc->zone->lock,
625 &flags, cc);
626
627 /* Recheck this is a buddy page under lock */
628 if (!PageBuddy(page))
629 goto isolate_fail;
630 }
631
632 /* Found a free page, will break it into order-0 pages */
633 order = buddy_order(page);
634 isolated = __isolate_free_page(page, order);
635 if (!isolated)
636 break;
637 set_page_private(page, order);
638
639 total_isolated += isolated;
640 cc->nr_freepages += isolated;
641 list_add_tail(&page->lru, freelist);
642
643 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
644 blockpfn += isolated;
645 break;
646 }
647 /* Advance to the end of split page */
648 blockpfn += isolated - 1;
649 cursor += isolated - 1;
650 continue;
651
652 isolate_fail:
653 if (strict)
654 break;
655 else
656 continue;
657
658 }
659
660 if (locked)
661 spin_unlock_irqrestore(&cc->zone->lock, flags);
662
663 /*
664 * There is a tiny chance that we have read bogus compound_order(),
665 * so be careful to not go outside of the pageblock.
666 */
667 if (unlikely(blockpfn > end_pfn))
668 blockpfn = end_pfn;
669
670 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
671 nr_scanned, total_isolated);
672
673 /* Record how far we have got within the block */
674 *start_pfn = blockpfn;
675
676 /*
677 * If strict isolation is requested by CMA then check that all the
678 * pages requested were isolated. If there were any failures, 0 is
679 * returned and CMA will fail.
680 */
681 if (strict && blockpfn < end_pfn)
682 total_isolated = 0;
683
684 cc->total_free_scanned += nr_scanned;
685 if (total_isolated)
686 count_compact_events(COMPACTISOLATED, total_isolated);
687 return total_isolated;
688 }
689
690 /**
691 * isolate_freepages_range() - isolate free pages.
692 * @cc: Compaction control structure.
693 * @start_pfn: The first PFN to start isolating.
694 * @end_pfn: The one-past-last PFN.
695 *
696 * Non-free pages, invalid PFNs, or zone boundaries within the
697 * [start_pfn, end_pfn) range are considered errors, cause function to
698 * undo its actions and return zero.
699 *
700 * Otherwise, function returns one-past-the-last PFN of isolated page
701 * (which may be greater then end_pfn if end fell in a middle of
702 * a free page).
703 */
704 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)705 isolate_freepages_range(struct compact_control *cc,
706 unsigned long start_pfn, unsigned long end_pfn)
707 {
708 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
709 LIST_HEAD(freelist);
710
711 pfn = start_pfn;
712 block_start_pfn = pageblock_start_pfn(pfn);
713 if (block_start_pfn < cc->zone->zone_start_pfn)
714 block_start_pfn = cc->zone->zone_start_pfn;
715 block_end_pfn = pageblock_end_pfn(pfn);
716
717 for (; pfn < end_pfn; pfn += isolated,
718 block_start_pfn = block_end_pfn,
719 block_end_pfn += pageblock_nr_pages) {
720 /* Protect pfn from changing by isolate_freepages_block */
721 unsigned long isolate_start_pfn = pfn;
722
723 block_end_pfn = min(block_end_pfn, end_pfn);
724
725 /*
726 * pfn could pass the block_end_pfn if isolated freepage
727 * is more than pageblock order. In this case, we adjust
728 * scanning range to right one.
729 */
730 if (pfn >= block_end_pfn) {
731 block_start_pfn = pageblock_start_pfn(pfn);
732 block_end_pfn = pageblock_end_pfn(pfn);
733 block_end_pfn = min(block_end_pfn, end_pfn);
734 }
735
736 if (!pageblock_pfn_to_page(block_start_pfn,
737 block_end_pfn, cc->zone))
738 break;
739
740 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
741 block_end_pfn, &freelist, 0, true);
742
743 /*
744 * In strict mode, isolate_freepages_block() returns 0 if
745 * there are any holes in the block (ie. invalid PFNs or
746 * non-free pages).
747 */
748 if (!isolated)
749 break;
750
751 /*
752 * If we managed to isolate pages, it is always (1 << n) *
753 * pageblock_nr_pages for some non-negative n. (Max order
754 * page may span two pageblocks).
755 */
756 }
757
758 /* __isolate_free_page() does not map the pages */
759 split_map_pages(&freelist);
760
761 if (pfn < end_pfn) {
762 /* Loop terminated early, cleanup. */
763 release_freepages(&freelist);
764 return 0;
765 }
766
767 /* We don't use freelists for anything. */
768 return pfn;
769 }
770
771 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)772 unsigned long isolate_and_split_free_page(struct page *page,
773 struct list_head *list)
774 {
775 unsigned long isolated;
776 unsigned int order;
777
778 if (!PageBuddy(page))
779 return 0;
780
781 order = buddy_order(page);
782 isolated = __isolate_free_page(page, order);
783 if (!isolated)
784 return 0;
785
786 set_page_private(page, order);
787 list_add(&page->lru, list);
788
789 split_map_pages(list);
790
791 return isolated;
792 }
793 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
794 #endif
795
796 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)797 static bool too_many_isolated(pg_data_t *pgdat)
798 {
799 unsigned long active, inactive, isolated;
800
801 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
802 node_page_state(pgdat, NR_INACTIVE_ANON);
803 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
804 node_page_state(pgdat, NR_ACTIVE_ANON);
805 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
806 node_page_state(pgdat, NR_ISOLATED_ANON);
807
808 return isolated > (inactive + active) / 2;
809 }
810
811 /**
812 * isolate_migratepages_block() - isolate all migrate-able pages within
813 * a single pageblock
814 * @cc: Compaction control structure.
815 * @low_pfn: The first PFN to isolate
816 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
817 * @isolate_mode: Isolation mode to be used.
818 *
819 * Isolate all pages that can be migrated from the range specified by
820 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
821 * Returns zero if there is a fatal signal pending, otherwise PFN of the
822 * first page that was not scanned (which may be both less, equal to or more
823 * than end_pfn).
824 *
825 * The pages are isolated on cc->migratepages list (not required to be empty),
826 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
827 * is neither read nor updated.
828 */
829 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)830 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
831 unsigned long end_pfn, isolate_mode_t isolate_mode)
832 {
833 pg_data_t *pgdat = cc->zone->zone_pgdat;
834 unsigned long nr_scanned = 0, nr_isolated = 0;
835 struct lruvec *lruvec;
836 unsigned long flags = 0;
837 bool locked = false;
838 struct page *page = NULL, *valid_page = NULL;
839 unsigned long start_pfn = low_pfn;
840 bool skip_on_failure = false;
841 unsigned long next_skip_pfn = 0;
842 bool skip_updated = false;
843
844 /*
845 * Ensure that there are not too many pages isolated from the LRU
846 * list by either parallel reclaimers or compaction. If there are,
847 * delay for some time until fewer pages are isolated
848 */
849 while (unlikely(too_many_isolated(pgdat))) {
850 /* stop isolation if there are still pages not migrated */
851 if (cc->nr_migratepages)
852 return 0;
853
854 /* async migration should just abort */
855 if (cc->mode == MIGRATE_ASYNC)
856 return 0;
857
858 congestion_wait(BLK_RW_ASYNC, HZ/10);
859
860 if (fatal_signal_pending(current))
861 return 0;
862 }
863
864 cond_resched();
865
866 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
867 skip_on_failure = true;
868 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
869 }
870
871 /* Time to isolate some pages for migration */
872 for (; low_pfn < end_pfn; low_pfn++) {
873
874 if (skip_on_failure && low_pfn >= next_skip_pfn) {
875 /*
876 * We have isolated all migration candidates in the
877 * previous order-aligned block, and did not skip it due
878 * to failure. We should migrate the pages now and
879 * hopefully succeed compaction.
880 */
881 if (nr_isolated)
882 break;
883
884 /*
885 * We failed to isolate in the previous order-aligned
886 * block. Set the new boundary to the end of the
887 * current block. Note we can't simply increase
888 * next_skip_pfn by 1 << order, as low_pfn might have
889 * been incremented by a higher number due to skipping
890 * a compound or a high-order buddy page in the
891 * previous loop iteration.
892 */
893 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
894 }
895
896 /*
897 * Periodically drop the lock (if held) regardless of its
898 * contention, to give chance to IRQs. Abort completely if
899 * a fatal signal is pending.
900 */
901 if (!(low_pfn % SWAP_CLUSTER_MAX)
902 && compact_unlock_should_abort(&pgdat->lru_lock,
903 flags, &locked, cc)) {
904 low_pfn = 0;
905 goto fatal_pending;
906 }
907
908 if (!pfn_valid_within(low_pfn))
909 goto isolate_fail;
910 nr_scanned++;
911
912 page = pfn_to_page(low_pfn);
913
914 /*
915 * Check if the pageblock has already been marked skipped.
916 * Only the aligned PFN is checked as the caller isolates
917 * COMPACT_CLUSTER_MAX at a time so the second call must
918 * not falsely conclude that the block should be skipped.
919 */
920 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
921 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
922 low_pfn = end_pfn;
923 goto isolate_abort;
924 }
925 valid_page = page;
926 }
927
928 /*
929 * Skip if free. We read page order here without zone lock
930 * which is generally unsafe, but the race window is small and
931 * the worst thing that can happen is that we skip some
932 * potential isolation targets.
933 */
934 if (PageBuddy(page)) {
935 unsigned long freepage_order = buddy_order_unsafe(page);
936
937 /*
938 * Without lock, we cannot be sure that what we got is
939 * a valid page order. Consider only values in the
940 * valid order range to prevent low_pfn overflow.
941 */
942 if (freepage_order > 0 && freepage_order < MAX_ORDER)
943 low_pfn += (1UL << freepage_order) - 1;
944 continue;
945 }
946
947 /*
948 * Regardless of being on LRU, compound pages such as THP and
949 * hugetlbfs are not to be compacted unless we are attempting
950 * an allocation much larger than the huge page size (eg CMA).
951 * We can potentially save a lot of iterations if we skip them
952 * at once. The check is racy, but we can consider only valid
953 * values and the only danger is skipping too much.
954 */
955 if (PageCompound(page) && !cc->alloc_contig) {
956 const unsigned int order = compound_order(page);
957
958 if (likely(order < MAX_ORDER))
959 low_pfn += (1UL << order) - 1;
960 goto isolate_fail;
961 }
962
963 /*
964 * Check may be lockless but that's ok as we recheck later.
965 * It's possible to migrate LRU and non-lru movable pages.
966 * Skip any other type of page
967 */
968 if (!PageLRU(page)) {
969 /*
970 * __PageMovable can return false positive so we need
971 * to verify it under page_lock.
972 */
973 if (unlikely(__PageMovable(page)) &&
974 !PageIsolated(page)) {
975 if (locked) {
976 spin_unlock_irqrestore(&pgdat->lru_lock,
977 flags);
978 locked = false;
979 }
980
981 if (!isolate_movable_page(page, isolate_mode))
982 goto isolate_success;
983 }
984
985 goto isolate_fail;
986 }
987
988 /*
989 * Migration will fail if an anonymous page is pinned in memory,
990 * so avoid taking lru_lock and isolating it unnecessarily in an
991 * admittedly racy check.
992 */
993 if (!page_mapping(page) &&
994 page_count(page) > page_mapcount(page))
995 goto isolate_fail;
996
997 /*
998 * Only allow to migrate anonymous pages in GFP_NOFS context
999 * because those do not depend on fs locks.
1000 */
1001 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1002 goto isolate_fail;
1003
1004 /* If we already hold the lock, we can skip some rechecking */
1005 if (!locked) {
1006 locked = compact_lock_irqsave(&pgdat->lru_lock,
1007 &flags, cc);
1008
1009 /* Try get exclusive access under lock */
1010 if (!skip_updated) {
1011 skip_updated = true;
1012 if (test_and_set_skip(cc, page, low_pfn))
1013 goto isolate_abort;
1014 }
1015
1016 /* Recheck PageLRU and PageCompound under lock */
1017 if (!PageLRU(page))
1018 goto isolate_fail;
1019
1020 /*
1021 * Page become compound since the non-locked check,
1022 * and it's on LRU. It can only be a THP so the order
1023 * is safe to read and it's 0 for tail pages.
1024 */
1025 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1026 low_pfn += compound_nr(page) - 1;
1027 goto isolate_fail;
1028 }
1029 }
1030
1031 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1032
1033 /* Try isolate the page */
1034 if (__isolate_lru_page(page, isolate_mode) != 0)
1035 goto isolate_fail;
1036
1037 /* The whole page is taken off the LRU; skip the tail pages. */
1038 if (PageCompound(page))
1039 low_pfn += compound_nr(page) - 1;
1040
1041 /* Successfully isolated */
1042 del_page_from_lru_list(page, lruvec, page_lru(page));
1043 mod_node_page_state(page_pgdat(page),
1044 NR_ISOLATED_ANON + page_is_file_lru(page),
1045 thp_nr_pages(page));
1046
1047 isolate_success:
1048 list_add(&page->lru, &cc->migratepages);
1049 cc->nr_migratepages += compound_nr(page);
1050 nr_isolated += compound_nr(page);
1051
1052 /*
1053 * Avoid isolating too much unless this block is being
1054 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1055 * or a lock is contended. For contention, isolate quickly to
1056 * potentially remove one source of contention.
1057 */
1058 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1059 !cc->rescan && !cc->contended) {
1060 ++low_pfn;
1061 break;
1062 }
1063
1064 continue;
1065 isolate_fail:
1066 if (!skip_on_failure)
1067 continue;
1068
1069 /*
1070 * We have isolated some pages, but then failed. Release them
1071 * instead of migrating, as we cannot form the cc->order buddy
1072 * page anyway.
1073 */
1074 if (nr_isolated) {
1075 if (locked) {
1076 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1077 locked = false;
1078 }
1079 putback_movable_pages(&cc->migratepages);
1080 cc->nr_migratepages = 0;
1081 nr_isolated = 0;
1082 }
1083
1084 if (low_pfn < next_skip_pfn) {
1085 low_pfn = next_skip_pfn - 1;
1086 /*
1087 * The check near the loop beginning would have updated
1088 * next_skip_pfn too, but this is a bit simpler.
1089 */
1090 next_skip_pfn += 1UL << cc->order;
1091 }
1092 }
1093
1094 /*
1095 * The PageBuddy() check could have potentially brought us outside
1096 * the range to be scanned.
1097 */
1098 if (unlikely(low_pfn > end_pfn))
1099 low_pfn = end_pfn;
1100
1101 isolate_abort:
1102 if (locked)
1103 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1104
1105 /*
1106 * Updated the cached scanner pfn once the pageblock has been scanned
1107 * Pages will either be migrated in which case there is no point
1108 * scanning in the near future or migration failed in which case the
1109 * failure reason may persist. The block is marked for skipping if
1110 * there were no pages isolated in the block or if the block is
1111 * rescanned twice in a row.
1112 */
1113 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1114 if (valid_page && !skip_updated)
1115 set_pageblock_skip(valid_page);
1116 update_cached_migrate(cc, low_pfn);
1117 }
1118
1119 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1120 nr_scanned, nr_isolated);
1121
1122 fatal_pending:
1123 cc->total_migrate_scanned += nr_scanned;
1124 if (nr_isolated)
1125 count_compact_events(COMPACTISOLATED, nr_isolated);
1126
1127 return low_pfn;
1128 }
1129
1130 /**
1131 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1132 * @cc: Compaction control structure.
1133 * @start_pfn: The first PFN to start isolating.
1134 * @end_pfn: The one-past-last PFN.
1135 *
1136 * Returns zero if isolation fails fatally due to e.g. pending signal.
1137 * Otherwise, function returns one-past-the-last PFN of isolated page
1138 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1139 */
1140 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1141 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1142 unsigned long end_pfn)
1143 {
1144 unsigned long pfn, block_start_pfn, block_end_pfn;
1145
1146 /* Scan block by block. First and last block may be incomplete */
1147 pfn = start_pfn;
1148 block_start_pfn = pageblock_start_pfn(pfn);
1149 if (block_start_pfn < cc->zone->zone_start_pfn)
1150 block_start_pfn = cc->zone->zone_start_pfn;
1151 block_end_pfn = pageblock_end_pfn(pfn);
1152
1153 for (; pfn < end_pfn; pfn = block_end_pfn,
1154 block_start_pfn = block_end_pfn,
1155 block_end_pfn += pageblock_nr_pages) {
1156
1157 block_end_pfn = min(block_end_pfn, end_pfn);
1158
1159 if (!pageblock_pfn_to_page(block_start_pfn,
1160 block_end_pfn, cc->zone))
1161 continue;
1162
1163 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1164 ISOLATE_UNEVICTABLE);
1165
1166 if (!pfn)
1167 break;
1168
1169 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1170 break;
1171 }
1172
1173 return pfn;
1174 }
1175
1176 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1177 #ifdef CONFIG_COMPACTION
1178
suitable_migration_source(struct compact_control * cc,struct page * page)1179 static bool suitable_migration_source(struct compact_control *cc,
1180 struct page *page)
1181 {
1182 int block_mt;
1183
1184 if (pageblock_skip_persistent(page))
1185 return false;
1186
1187 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1188 return true;
1189
1190 block_mt = get_pageblock_migratetype(page);
1191
1192 if (cc->migratetype == MIGRATE_MOVABLE)
1193 return is_migrate_movable(block_mt);
1194 else
1195 return block_mt == cc->migratetype;
1196 }
1197
1198 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1199 static bool suitable_migration_target(struct compact_control *cc,
1200 struct page *page)
1201 {
1202 /* If the page is a large free page, then disallow migration */
1203 if (PageBuddy(page)) {
1204 /*
1205 * We are checking page_order without zone->lock taken. But
1206 * the only small danger is that we skip a potentially suitable
1207 * pageblock, so it's not worth to check order for valid range.
1208 */
1209 if (buddy_order_unsafe(page) >= pageblock_order)
1210 return false;
1211 }
1212
1213 if (cc->ignore_block_suitable)
1214 return true;
1215
1216 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1217 if (is_migrate_movable(get_pageblock_migratetype(page)))
1218 return true;
1219
1220 /* Otherwise skip the block */
1221 return false;
1222 }
1223
1224 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1225 freelist_scan_limit(struct compact_control *cc)
1226 {
1227 unsigned short shift = BITS_PER_LONG - 1;
1228
1229 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1230 }
1231
1232 /*
1233 * Test whether the free scanner has reached the same or lower pageblock than
1234 * the migration scanner, and compaction should thus terminate.
1235 */
compact_scanners_met(struct compact_control * cc)1236 static inline bool compact_scanners_met(struct compact_control *cc)
1237 {
1238 return (cc->free_pfn >> pageblock_order)
1239 <= (cc->migrate_pfn >> pageblock_order);
1240 }
1241
1242 /*
1243 * Used when scanning for a suitable migration target which scans freelists
1244 * in reverse. Reorders the list such as the unscanned pages are scanned
1245 * first on the next iteration of the free scanner
1246 */
1247 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1248 move_freelist_head(struct list_head *freelist, struct page *freepage)
1249 {
1250 LIST_HEAD(sublist);
1251
1252 if (!list_is_last(freelist, &freepage->lru)) {
1253 list_cut_before(&sublist, freelist, &freepage->lru);
1254 if (!list_empty(&sublist))
1255 list_splice_tail(&sublist, freelist);
1256 }
1257 }
1258
1259 /*
1260 * Similar to move_freelist_head except used by the migration scanner
1261 * when scanning forward. It's possible for these list operations to
1262 * move against each other if they search the free list exactly in
1263 * lockstep.
1264 */
1265 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1266 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1267 {
1268 LIST_HEAD(sublist);
1269
1270 if (!list_is_first(freelist, &freepage->lru)) {
1271 list_cut_position(&sublist, freelist, &freepage->lru);
1272 if (!list_empty(&sublist))
1273 list_splice_tail(&sublist, freelist);
1274 }
1275 }
1276
1277 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1278 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1279 {
1280 unsigned long start_pfn, end_pfn;
1281 struct page *page;
1282
1283 /* Do not search around if there are enough pages already */
1284 if (cc->nr_freepages >= cc->nr_migratepages)
1285 return;
1286
1287 /* Minimise scanning during async compaction */
1288 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1289 return;
1290
1291 /* Pageblock boundaries */
1292 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1293 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1294
1295 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1296 if (!page)
1297 return;
1298
1299 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1300
1301 /* Skip this pageblock in the future as it's full or nearly full */
1302 if (cc->nr_freepages < cc->nr_migratepages)
1303 set_pageblock_skip(page);
1304
1305 return;
1306 }
1307
1308 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1309 static int next_search_order(struct compact_control *cc, int order)
1310 {
1311 order--;
1312 if (order < 0)
1313 order = cc->order - 1;
1314
1315 /* Search wrapped around? */
1316 if (order == cc->search_order) {
1317 cc->search_order--;
1318 if (cc->search_order < 0)
1319 cc->search_order = cc->order - 1;
1320 return -1;
1321 }
1322
1323 return order;
1324 }
1325
1326 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1327 fast_isolate_freepages(struct compact_control *cc)
1328 {
1329 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1330 unsigned int nr_scanned = 0;
1331 unsigned long low_pfn, min_pfn, highest = 0;
1332 unsigned long nr_isolated = 0;
1333 unsigned long distance;
1334 struct page *page = NULL;
1335 bool scan_start = false;
1336 int order;
1337
1338 /* Full compaction passes in a negative order */
1339 if (cc->order <= 0)
1340 return cc->free_pfn;
1341
1342 /*
1343 * If starting the scan, use a deeper search and use the highest
1344 * PFN found if a suitable one is not found.
1345 */
1346 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1347 limit = pageblock_nr_pages >> 1;
1348 scan_start = true;
1349 }
1350
1351 /*
1352 * Preferred point is in the top quarter of the scan space but take
1353 * a pfn from the top half if the search is problematic.
1354 */
1355 distance = (cc->free_pfn - cc->migrate_pfn);
1356 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1357 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1358
1359 if (WARN_ON_ONCE(min_pfn > low_pfn))
1360 low_pfn = min_pfn;
1361
1362 /*
1363 * Search starts from the last successful isolation order or the next
1364 * order to search after a previous failure
1365 */
1366 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1367
1368 for (order = cc->search_order;
1369 !page && order >= 0;
1370 order = next_search_order(cc, order)) {
1371 struct free_area *area = &cc->zone->free_area[order];
1372 struct list_head *freelist;
1373 struct page *freepage;
1374 unsigned long flags;
1375 unsigned int order_scanned = 0;
1376 unsigned long high_pfn = 0;
1377
1378 if (!area->nr_free)
1379 continue;
1380
1381 spin_lock_irqsave(&cc->zone->lock, flags);
1382 freelist = &area->free_list[MIGRATE_MOVABLE];
1383 list_for_each_entry_reverse(freepage, freelist, lru) {
1384 unsigned long pfn;
1385
1386 order_scanned++;
1387 nr_scanned++;
1388 pfn = page_to_pfn(freepage);
1389
1390 if (pfn >= highest)
1391 highest = max(pageblock_start_pfn(pfn),
1392 cc->zone->zone_start_pfn);
1393
1394 if (pfn >= low_pfn) {
1395 cc->fast_search_fail = 0;
1396 cc->search_order = order;
1397 page = freepage;
1398 break;
1399 }
1400
1401 if (pfn >= min_pfn && pfn > high_pfn) {
1402 high_pfn = pfn;
1403
1404 /* Shorten the scan if a candidate is found */
1405 limit >>= 1;
1406 }
1407
1408 if (order_scanned >= limit)
1409 break;
1410 }
1411
1412 /* Use a minimum pfn if a preferred one was not found */
1413 if (!page && high_pfn) {
1414 page = pfn_to_page(high_pfn);
1415
1416 /* Update freepage for the list reorder below */
1417 freepage = page;
1418 }
1419
1420 /* Reorder to so a future search skips recent pages */
1421 move_freelist_head(freelist, freepage);
1422
1423 /* Isolate the page if available */
1424 if (page) {
1425 if (__isolate_free_page(page, order)) {
1426 set_page_private(page, order);
1427 nr_isolated = 1 << order;
1428 cc->nr_freepages += nr_isolated;
1429 list_add_tail(&page->lru, &cc->freepages);
1430 count_compact_events(COMPACTISOLATED, nr_isolated);
1431 } else {
1432 /* If isolation fails, abort the search */
1433 order = cc->search_order + 1;
1434 page = NULL;
1435 }
1436 }
1437
1438 spin_unlock_irqrestore(&cc->zone->lock, flags);
1439
1440 /*
1441 * Smaller scan on next order so the total scan ig related
1442 * to freelist_scan_limit.
1443 */
1444 if (order_scanned >= limit)
1445 limit = min(1U, limit >> 1);
1446 }
1447
1448 if (!page) {
1449 cc->fast_search_fail++;
1450 if (scan_start) {
1451 /*
1452 * Use the highest PFN found above min. If one was
1453 * not found, be pessimistic for direct compaction
1454 * and use the min mark.
1455 */
1456 if (highest) {
1457 page = pfn_to_page(highest);
1458 cc->free_pfn = highest;
1459 } else {
1460 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1461 page = pageblock_pfn_to_page(min_pfn,
1462 min(pageblock_end_pfn(min_pfn),
1463 zone_end_pfn(cc->zone)),
1464 cc->zone);
1465 cc->free_pfn = min_pfn;
1466 }
1467 }
1468 }
1469 }
1470
1471 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1472 highest -= pageblock_nr_pages;
1473 cc->zone->compact_cached_free_pfn = highest;
1474 }
1475
1476 cc->total_free_scanned += nr_scanned;
1477 if (!page)
1478 return cc->free_pfn;
1479
1480 low_pfn = page_to_pfn(page);
1481 fast_isolate_around(cc, low_pfn);
1482 return low_pfn;
1483 }
1484
1485 /*
1486 * Based on information in the current compact_control, find blocks
1487 * suitable for isolating free pages from and then isolate them.
1488 */
isolate_freepages(struct compact_control * cc)1489 static void isolate_freepages(struct compact_control *cc)
1490 {
1491 struct zone *zone = cc->zone;
1492 struct page *page;
1493 unsigned long block_start_pfn; /* start of current pageblock */
1494 unsigned long isolate_start_pfn; /* exact pfn we start at */
1495 unsigned long block_end_pfn; /* end of current pageblock */
1496 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1497 struct list_head *freelist = &cc->freepages;
1498 unsigned int stride;
1499
1500 /* Try a small search of the free lists for a candidate */
1501 isolate_start_pfn = fast_isolate_freepages(cc);
1502 if (cc->nr_freepages)
1503 goto splitmap;
1504
1505 /*
1506 * Initialise the free scanner. The starting point is where we last
1507 * successfully isolated from, zone-cached value, or the end of the
1508 * zone when isolating for the first time. For looping we also need
1509 * this pfn aligned down to the pageblock boundary, because we do
1510 * block_start_pfn -= pageblock_nr_pages in the for loop.
1511 * For ending point, take care when isolating in last pageblock of a
1512 * zone which ends in the middle of a pageblock.
1513 * The low boundary is the end of the pageblock the migration scanner
1514 * is using.
1515 */
1516 isolate_start_pfn = cc->free_pfn;
1517 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1518 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1519 zone_end_pfn(zone));
1520 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1521 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1522
1523 /*
1524 * Isolate free pages until enough are available to migrate the
1525 * pages on cc->migratepages. We stop searching if the migrate
1526 * and free page scanners meet or enough free pages are isolated.
1527 */
1528 for (; block_start_pfn >= low_pfn;
1529 block_end_pfn = block_start_pfn,
1530 block_start_pfn -= pageblock_nr_pages,
1531 isolate_start_pfn = block_start_pfn) {
1532 unsigned long nr_isolated;
1533
1534 /*
1535 * This can iterate a massively long zone without finding any
1536 * suitable migration targets, so periodically check resched.
1537 */
1538 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1539 cond_resched();
1540
1541 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1542 zone);
1543 if (!page)
1544 continue;
1545
1546 /* Check the block is suitable for migration */
1547 if (!suitable_migration_target(cc, page))
1548 continue;
1549
1550 /* If isolation recently failed, do not retry */
1551 if (!isolation_suitable(cc, page))
1552 continue;
1553
1554 /* Found a block suitable for isolating free pages from. */
1555 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1556 block_end_pfn, freelist, stride, false);
1557
1558 /* Update the skip hint if the full pageblock was scanned */
1559 if (isolate_start_pfn == block_end_pfn)
1560 update_pageblock_skip(cc, page, block_start_pfn);
1561
1562 /* Are enough freepages isolated? */
1563 if (cc->nr_freepages >= cc->nr_migratepages) {
1564 if (isolate_start_pfn >= block_end_pfn) {
1565 /*
1566 * Restart at previous pageblock if more
1567 * freepages can be isolated next time.
1568 */
1569 isolate_start_pfn =
1570 block_start_pfn - pageblock_nr_pages;
1571 }
1572 break;
1573 } else if (isolate_start_pfn < block_end_pfn) {
1574 /*
1575 * If isolation failed early, do not continue
1576 * needlessly.
1577 */
1578 break;
1579 }
1580
1581 /* Adjust stride depending on isolation */
1582 if (nr_isolated) {
1583 stride = 1;
1584 continue;
1585 }
1586 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1587 }
1588
1589 /*
1590 * Record where the free scanner will restart next time. Either we
1591 * broke from the loop and set isolate_start_pfn based on the last
1592 * call to isolate_freepages_block(), or we met the migration scanner
1593 * and the loop terminated due to isolate_start_pfn < low_pfn
1594 */
1595 cc->free_pfn = isolate_start_pfn;
1596
1597 splitmap:
1598 /* __isolate_free_page() does not map the pages */
1599 split_map_pages(freelist);
1600 }
1601
1602 /*
1603 * This is a migrate-callback that "allocates" freepages by taking pages
1604 * from the isolated freelists in the block we are migrating to.
1605 */
compaction_alloc(struct page * migratepage,unsigned long data)1606 static struct page *compaction_alloc(struct page *migratepage,
1607 unsigned long data)
1608 {
1609 struct compact_control *cc = (struct compact_control *)data;
1610 struct page *freepage;
1611
1612 if (list_empty(&cc->freepages)) {
1613 isolate_freepages(cc);
1614
1615 if (list_empty(&cc->freepages))
1616 return NULL;
1617 }
1618
1619 freepage = list_entry(cc->freepages.next, struct page, lru);
1620 list_del(&freepage->lru);
1621 cc->nr_freepages--;
1622
1623 return freepage;
1624 }
1625
1626 /*
1627 * This is a migrate-callback that "frees" freepages back to the isolated
1628 * freelist. All pages on the freelist are from the same zone, so there is no
1629 * special handling needed for NUMA.
1630 */
compaction_free(struct page * page,unsigned long data)1631 static void compaction_free(struct page *page, unsigned long data)
1632 {
1633 struct compact_control *cc = (struct compact_control *)data;
1634
1635 list_add(&page->lru, &cc->freepages);
1636 cc->nr_freepages++;
1637 }
1638
1639 /* possible outcome of isolate_migratepages */
1640 typedef enum {
1641 ISOLATE_ABORT, /* Abort compaction now */
1642 ISOLATE_NONE, /* No pages isolated, continue scanning */
1643 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1644 } isolate_migrate_t;
1645
1646 /*
1647 * Allow userspace to control policy on scanning the unevictable LRU for
1648 * compactable pages.
1649 */
1650 #ifdef CONFIG_PREEMPT_RT
1651 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1652 #else
1653 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1654 #endif
1655
1656 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1657 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1658 {
1659 if (cc->fast_start_pfn == ULONG_MAX)
1660 return;
1661
1662 if (!cc->fast_start_pfn)
1663 cc->fast_start_pfn = pfn;
1664
1665 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1666 }
1667
1668 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1669 reinit_migrate_pfn(struct compact_control *cc)
1670 {
1671 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1672 return cc->migrate_pfn;
1673
1674 cc->migrate_pfn = cc->fast_start_pfn;
1675 cc->fast_start_pfn = ULONG_MAX;
1676
1677 return cc->migrate_pfn;
1678 }
1679
1680 /*
1681 * Briefly search the free lists for a migration source that already has
1682 * some free pages to reduce the number of pages that need migration
1683 * before a pageblock is free.
1684 */
fast_find_migrateblock(struct compact_control * cc)1685 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1686 {
1687 unsigned int limit = freelist_scan_limit(cc);
1688 unsigned int nr_scanned = 0;
1689 unsigned long distance;
1690 unsigned long pfn = cc->migrate_pfn;
1691 unsigned long high_pfn;
1692 int order;
1693 bool found_block = false;
1694
1695 /* Skip hints are relied on to avoid repeats on the fast search */
1696 if (cc->ignore_skip_hint)
1697 return pfn;
1698
1699 /*
1700 * If the migrate_pfn is not at the start of a zone or the start
1701 * of a pageblock then assume this is a continuation of a previous
1702 * scan restarted due to COMPACT_CLUSTER_MAX.
1703 */
1704 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1705 return pfn;
1706
1707 /*
1708 * For smaller orders, just linearly scan as the number of pages
1709 * to migrate should be relatively small and does not necessarily
1710 * justify freeing up a large block for a small allocation.
1711 */
1712 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1713 return pfn;
1714
1715 /*
1716 * Only allow kcompactd and direct requests for movable pages to
1717 * quickly clear out a MOVABLE pageblock for allocation. This
1718 * reduces the risk that a large movable pageblock is freed for
1719 * an unmovable/reclaimable small allocation.
1720 */
1721 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1722 return pfn;
1723
1724 /*
1725 * When starting the migration scanner, pick any pageblock within the
1726 * first half of the search space. Otherwise try and pick a pageblock
1727 * within the first eighth to reduce the chances that a migration
1728 * target later becomes a source.
1729 */
1730 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1731 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1732 distance >>= 2;
1733 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1734
1735 for (order = cc->order - 1;
1736 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1737 order--) {
1738 struct free_area *area = &cc->zone->free_area[order];
1739 struct list_head *freelist;
1740 unsigned long flags;
1741 struct page *freepage;
1742
1743 if (!area->nr_free)
1744 continue;
1745
1746 spin_lock_irqsave(&cc->zone->lock, flags);
1747 freelist = &area->free_list[MIGRATE_MOVABLE];
1748 list_for_each_entry(freepage, freelist, lru) {
1749 unsigned long free_pfn;
1750
1751 if (nr_scanned++ >= limit) {
1752 move_freelist_tail(freelist, freepage);
1753 break;
1754 }
1755
1756 free_pfn = page_to_pfn(freepage);
1757 if (free_pfn < high_pfn) {
1758 /*
1759 * Avoid if skipped recently. Ideally it would
1760 * move to the tail but even safe iteration of
1761 * the list assumes an entry is deleted, not
1762 * reordered.
1763 */
1764 if (get_pageblock_skip(freepage))
1765 continue;
1766
1767 /* Reorder to so a future search skips recent pages */
1768 move_freelist_tail(freelist, freepage);
1769
1770 update_fast_start_pfn(cc, free_pfn);
1771 pfn = pageblock_start_pfn(free_pfn);
1772 if (pfn < cc->zone->zone_start_pfn)
1773 pfn = cc->zone->zone_start_pfn;
1774 cc->fast_search_fail = 0;
1775 found_block = true;
1776 set_pageblock_skip(freepage);
1777 break;
1778 }
1779 }
1780 spin_unlock_irqrestore(&cc->zone->lock, flags);
1781 }
1782
1783 cc->total_migrate_scanned += nr_scanned;
1784
1785 /*
1786 * If fast scanning failed then use a cached entry for a page block
1787 * that had free pages as the basis for starting a linear scan.
1788 */
1789 if (!found_block) {
1790 cc->fast_search_fail++;
1791 pfn = reinit_migrate_pfn(cc);
1792 }
1793 return pfn;
1794 }
1795
1796 /*
1797 * Isolate all pages that can be migrated from the first suitable block,
1798 * starting at the block pointed to by the migrate scanner pfn within
1799 * compact_control.
1800 */
isolate_migratepages(struct compact_control * cc)1801 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1802 {
1803 unsigned long block_start_pfn;
1804 unsigned long block_end_pfn;
1805 unsigned long low_pfn;
1806 struct page *page;
1807 const isolate_mode_t isolate_mode =
1808 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1809 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1810 bool fast_find_block;
1811
1812 /*
1813 * Start at where we last stopped, or beginning of the zone as
1814 * initialized by compact_zone(). The first failure will use
1815 * the lowest PFN as the starting point for linear scanning.
1816 */
1817 low_pfn = fast_find_migrateblock(cc);
1818 block_start_pfn = pageblock_start_pfn(low_pfn);
1819 if (block_start_pfn < cc->zone->zone_start_pfn)
1820 block_start_pfn = cc->zone->zone_start_pfn;
1821
1822 /*
1823 * fast_find_migrateblock marks a pageblock skipped so to avoid
1824 * the isolation_suitable check below, check whether the fast
1825 * search was successful.
1826 */
1827 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1828
1829 /* Only scan within a pageblock boundary */
1830 block_end_pfn = pageblock_end_pfn(low_pfn);
1831
1832 /*
1833 * Iterate over whole pageblocks until we find the first suitable.
1834 * Do not cross the free scanner.
1835 */
1836 for (; block_end_pfn <= cc->free_pfn;
1837 fast_find_block = false,
1838 low_pfn = block_end_pfn,
1839 block_start_pfn = block_end_pfn,
1840 block_end_pfn += pageblock_nr_pages) {
1841
1842 /*
1843 * This can potentially iterate a massively long zone with
1844 * many pageblocks unsuitable, so periodically check if we
1845 * need to schedule.
1846 */
1847 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1848 cond_resched();
1849
1850 page = pageblock_pfn_to_page(block_start_pfn,
1851 block_end_pfn, cc->zone);
1852 if (!page)
1853 continue;
1854
1855 /*
1856 * If isolation recently failed, do not retry. Only check the
1857 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1858 * to be visited multiple times. Assume skip was checked
1859 * before making it "skip" so other compaction instances do
1860 * not scan the same block.
1861 */
1862 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1863 !fast_find_block && !isolation_suitable(cc, page))
1864 continue;
1865
1866 /*
1867 * For async compaction, also only scan in MOVABLE blocks
1868 * without huge pages. Async compaction is optimistic to see
1869 * if the minimum amount of work satisfies the allocation.
1870 * The cached PFN is updated as it's possible that all
1871 * remaining blocks between source and target are unsuitable
1872 * and the compaction scanners fail to meet.
1873 */
1874 if (!suitable_migration_source(cc, page)) {
1875 update_cached_migrate(cc, block_end_pfn);
1876 continue;
1877 }
1878
1879 /* Perform the isolation */
1880 low_pfn = isolate_migratepages_block(cc, low_pfn,
1881 block_end_pfn, isolate_mode);
1882
1883 if (!low_pfn)
1884 return ISOLATE_ABORT;
1885
1886 /*
1887 * Either we isolated something and proceed with migration. Or
1888 * we failed and compact_zone should decide if we should
1889 * continue or not.
1890 */
1891 break;
1892 }
1893
1894 /* Record where migration scanner will be restarted. */
1895 cc->migrate_pfn = low_pfn;
1896
1897 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1898 }
1899
1900 /*
1901 * order == -1 is expected when compacting via
1902 * /proc/sys/vm/compact_memory
1903 */
is_via_compact_memory(int order)1904 static inline bool is_via_compact_memory(int order)
1905 {
1906 return order == -1;
1907 }
1908
kswapd_is_running(pg_data_t * pgdat)1909 static bool kswapd_is_running(pg_data_t *pgdat)
1910 {
1911 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1912 }
1913
1914 /*
1915 * A zone's fragmentation score is the external fragmentation wrt to the
1916 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1917 */
fragmentation_score_zone(struct zone * zone)1918 static unsigned int fragmentation_score_zone(struct zone *zone)
1919 {
1920 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1921 }
1922
1923 /*
1924 * A weighted zone's fragmentation score is the external fragmentation
1925 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1926 * returns a value in the range [0, 100].
1927 *
1928 * The scaling factor ensures that proactive compaction focuses on larger
1929 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1930 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1931 * and thus never exceeds the high threshold for proactive compaction.
1932 */
fragmentation_score_zone_weighted(struct zone * zone)1933 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1934 {
1935 unsigned long score;
1936
1937 score = zone->present_pages * fragmentation_score_zone(zone);
1938 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1939 }
1940
1941 /*
1942 * The per-node proactive (background) compaction process is started by its
1943 * corresponding kcompactd thread when the node's fragmentation score
1944 * exceeds the high threshold. The compaction process remains active till
1945 * the node's score falls below the low threshold, or one of the back-off
1946 * conditions is met.
1947 */
fragmentation_score_node(pg_data_t * pgdat)1948 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1949 {
1950 unsigned int score = 0;
1951 int zoneid;
1952
1953 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1954 struct zone *zone;
1955
1956 zone = &pgdat->node_zones[zoneid];
1957 score += fragmentation_score_zone_weighted(zone);
1958 }
1959
1960 return score;
1961 }
1962
fragmentation_score_wmark(pg_data_t * pgdat,bool low)1963 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1964 {
1965 unsigned int wmark_low;
1966
1967 /*
1968 * Cap the low watermak to avoid excessive compaction
1969 * activity in case a user sets the proactivess tunable
1970 * close to 100 (maximum).
1971 */
1972 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1973 return low ? wmark_low : min(wmark_low + 10, 100U);
1974 }
1975
should_proactive_compact_node(pg_data_t * pgdat)1976 static bool should_proactive_compact_node(pg_data_t *pgdat)
1977 {
1978 int wmark_high;
1979
1980 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1981 return false;
1982
1983 wmark_high = fragmentation_score_wmark(pgdat, false);
1984 return fragmentation_score_node(pgdat) > wmark_high;
1985 }
1986
__compact_finished(struct compact_control * cc)1987 static enum compact_result __compact_finished(struct compact_control *cc)
1988 {
1989 unsigned int order;
1990 const int migratetype = cc->migratetype;
1991 int ret;
1992 bool abort_compact = false;
1993
1994 /* Compaction run completes if the migrate and free scanner meet */
1995 if (compact_scanners_met(cc)) {
1996 /* Let the next compaction start anew. */
1997 reset_cached_positions(cc->zone);
1998
1999 /*
2000 * Mark that the PG_migrate_skip information should be cleared
2001 * by kswapd when it goes to sleep. kcompactd does not set the
2002 * flag itself as the decision to be clear should be directly
2003 * based on an allocation request.
2004 */
2005 if (cc->direct_compaction)
2006 cc->zone->compact_blockskip_flush = true;
2007
2008 if (cc->whole_zone)
2009 return COMPACT_COMPLETE;
2010 else
2011 return COMPACT_PARTIAL_SKIPPED;
2012 }
2013
2014 if (cc->proactive_compaction) {
2015 int score, wmark_low;
2016 pg_data_t *pgdat;
2017
2018 pgdat = cc->zone->zone_pgdat;
2019 if (kswapd_is_running(pgdat))
2020 return COMPACT_PARTIAL_SKIPPED;
2021
2022 score = fragmentation_score_zone(cc->zone);
2023 wmark_low = fragmentation_score_wmark(pgdat, true);
2024
2025 if (score > wmark_low)
2026 ret = COMPACT_CONTINUE;
2027 else
2028 ret = COMPACT_SUCCESS;
2029
2030 goto out;
2031 }
2032
2033 if (is_via_compact_memory(cc->order))
2034 return COMPACT_CONTINUE;
2035
2036 /*
2037 * Always finish scanning a pageblock to reduce the possibility of
2038 * fallbacks in the future. This is particularly important when
2039 * migration source is unmovable/reclaimable but it's not worth
2040 * special casing.
2041 */
2042 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2043 return COMPACT_CONTINUE;
2044
2045 /* Direct compactor: Is a suitable page free? */
2046 ret = COMPACT_NO_SUITABLE_PAGE;
2047 for (order = cc->order; order < MAX_ORDER; order++) {
2048 struct free_area *area = &cc->zone->free_area[order];
2049 bool can_steal;
2050
2051 /* Job done if page is free of the right migratetype */
2052 if (!free_area_empty(area, migratetype))
2053 return COMPACT_SUCCESS;
2054
2055 #ifdef CONFIG_CMA
2056 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2057 if (migratetype == MIGRATE_MOVABLE &&
2058 !free_area_empty(area, MIGRATE_CMA))
2059 return COMPACT_SUCCESS;
2060 #endif
2061 /*
2062 * Job done if allocation would steal freepages from
2063 * other migratetype buddy lists.
2064 */
2065 if (find_suitable_fallback(area, order, migratetype,
2066 true, &can_steal) != -1) {
2067
2068 /* movable pages are OK in any pageblock */
2069 if (migratetype == MIGRATE_MOVABLE)
2070 return COMPACT_SUCCESS;
2071
2072 /*
2073 * We are stealing for a non-movable allocation. Make
2074 * sure we finish compacting the current pageblock
2075 * first so it is as free as possible and we won't
2076 * have to steal another one soon. This only applies
2077 * to sync compaction, as async compaction operates
2078 * on pageblocks of the same migratetype.
2079 */
2080 if (cc->mode == MIGRATE_ASYNC ||
2081 IS_ALIGNED(cc->migrate_pfn,
2082 pageblock_nr_pages)) {
2083 return COMPACT_SUCCESS;
2084 }
2085
2086 ret = COMPACT_CONTINUE;
2087 break;
2088 }
2089 }
2090
2091 out:
2092 trace_android_vh_compact_finished(&abort_compact);
2093 if (cc->contended || fatal_signal_pending(current) || abort_compact)
2094 ret = COMPACT_CONTENDED;
2095
2096 return ret;
2097 }
2098
compact_finished(struct compact_control * cc)2099 static enum compact_result compact_finished(struct compact_control *cc)
2100 {
2101 int ret;
2102
2103 ret = __compact_finished(cc);
2104 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2105 if (ret == COMPACT_NO_SUITABLE_PAGE)
2106 ret = COMPACT_CONTINUE;
2107
2108 return ret;
2109 }
2110
2111 /*
2112 * compaction_suitable: Is this suitable to run compaction on this zone now?
2113 * Returns
2114 * COMPACT_SKIPPED - If there are too few free pages for compaction
2115 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2116 * COMPACT_CONTINUE - If compaction should run now
2117 */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2118 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2119 unsigned int alloc_flags,
2120 int highest_zoneidx,
2121 unsigned long wmark_target)
2122 {
2123 unsigned long watermark;
2124
2125 if (is_via_compact_memory(order))
2126 return COMPACT_CONTINUE;
2127
2128 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2129 /*
2130 * If watermarks for high-order allocation are already met, there
2131 * should be no need for compaction at all.
2132 */
2133 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2134 alloc_flags))
2135 return COMPACT_SUCCESS;
2136
2137 /*
2138 * Watermarks for order-0 must be met for compaction to be able to
2139 * isolate free pages for migration targets. This means that the
2140 * watermark and alloc_flags have to match, or be more pessimistic than
2141 * the check in __isolate_free_page(). We don't use the direct
2142 * compactor's alloc_flags, as they are not relevant for freepage
2143 * isolation. We however do use the direct compactor's highest_zoneidx
2144 * to skip over zones where lowmem reserves would prevent allocation
2145 * even if compaction succeeds.
2146 * For costly orders, we require low watermark instead of min for
2147 * compaction to proceed to increase its chances.
2148 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2149 * suitable migration targets
2150 */
2151 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2152 low_wmark_pages(zone) : min_wmark_pages(zone);
2153 watermark += compact_gap(order);
2154 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2155 ALLOC_CMA, wmark_target))
2156 return COMPACT_SKIPPED;
2157
2158 return COMPACT_CONTINUE;
2159 }
2160
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2161 enum compact_result compaction_suitable(struct zone *zone, int order,
2162 unsigned int alloc_flags,
2163 int highest_zoneidx)
2164 {
2165 enum compact_result ret;
2166 int fragindex;
2167
2168 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2169 zone_page_state(zone, NR_FREE_PAGES));
2170 /*
2171 * fragmentation index determines if allocation failures are due to
2172 * low memory or external fragmentation
2173 *
2174 * index of -1000 would imply allocations might succeed depending on
2175 * watermarks, but we already failed the high-order watermark check
2176 * index towards 0 implies failure is due to lack of memory
2177 * index towards 1000 implies failure is due to fragmentation
2178 *
2179 * Only compact if a failure would be due to fragmentation. Also
2180 * ignore fragindex for non-costly orders where the alternative to
2181 * a successful reclaim/compaction is OOM. Fragindex and the
2182 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2183 * excessive compaction for costly orders, but it should not be at the
2184 * expense of system stability.
2185 */
2186 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2187 fragindex = fragmentation_index(zone, order);
2188 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2189 ret = COMPACT_NOT_SUITABLE_ZONE;
2190 }
2191
2192 trace_mm_compaction_suitable(zone, order, ret);
2193 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2194 ret = COMPACT_SKIPPED;
2195
2196 return ret;
2197 }
2198
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2199 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2200 int alloc_flags)
2201 {
2202 struct zone *zone;
2203 struct zoneref *z;
2204
2205 /*
2206 * Make sure at least one zone would pass __compaction_suitable if we continue
2207 * retrying the reclaim.
2208 */
2209 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2210 ac->highest_zoneidx, ac->nodemask) {
2211 unsigned long available;
2212 enum compact_result compact_result;
2213
2214 /*
2215 * Do not consider all the reclaimable memory because we do not
2216 * want to trash just for a single high order allocation which
2217 * is even not guaranteed to appear even if __compaction_suitable
2218 * is happy about the watermark check.
2219 */
2220 available = zone_reclaimable_pages(zone) / order;
2221 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2222 compact_result = __compaction_suitable(zone, order, alloc_flags,
2223 ac->highest_zoneidx, available);
2224 if (compact_result != COMPACT_SKIPPED)
2225 return true;
2226 }
2227
2228 return false;
2229 }
2230
2231 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2232 compact_zone(struct compact_control *cc, struct capture_control *capc)
2233 {
2234 enum compact_result ret;
2235 unsigned long start_pfn = cc->zone->zone_start_pfn;
2236 unsigned long end_pfn = zone_end_pfn(cc->zone);
2237 unsigned long last_migrated_pfn;
2238 const bool sync = cc->mode != MIGRATE_ASYNC;
2239 bool update_cached;
2240
2241 /*
2242 * These counters track activities during zone compaction. Initialize
2243 * them before compacting a new zone.
2244 */
2245 cc->total_migrate_scanned = 0;
2246 cc->total_free_scanned = 0;
2247 cc->nr_migratepages = 0;
2248 cc->nr_freepages = 0;
2249 INIT_LIST_HEAD(&cc->freepages);
2250 INIT_LIST_HEAD(&cc->migratepages);
2251
2252 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2253 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2254 cc->highest_zoneidx);
2255 /* Compaction is likely to fail */
2256 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2257 return ret;
2258
2259 /* huh, compaction_suitable is returning something unexpected */
2260 VM_BUG_ON(ret != COMPACT_CONTINUE);
2261
2262 /*
2263 * Clear pageblock skip if there were failures recently and compaction
2264 * is about to be retried after being deferred.
2265 */
2266 if (compaction_restarting(cc->zone, cc->order))
2267 __reset_isolation_suitable(cc->zone);
2268
2269 /*
2270 * Setup to move all movable pages to the end of the zone. Used cached
2271 * information on where the scanners should start (unless we explicitly
2272 * want to compact the whole zone), but check that it is initialised
2273 * by ensuring the values are within zone boundaries.
2274 */
2275 cc->fast_start_pfn = 0;
2276 if (cc->whole_zone) {
2277 cc->migrate_pfn = start_pfn;
2278 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2279 } else {
2280 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2281 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2282 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2283 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2284 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2285 }
2286 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2287 cc->migrate_pfn = start_pfn;
2288 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2289 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2290 }
2291
2292 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2293 cc->whole_zone = true;
2294 }
2295
2296 last_migrated_pfn = 0;
2297
2298 /*
2299 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2300 * the basis that some migrations will fail in ASYNC mode. However,
2301 * if the cached PFNs match and pageblocks are skipped due to having
2302 * no isolation candidates, then the sync state does not matter.
2303 * Until a pageblock with isolation candidates is found, keep the
2304 * cached PFNs in sync to avoid revisiting the same blocks.
2305 */
2306 update_cached = !sync &&
2307 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2308
2309 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2310 cc->free_pfn, end_pfn, sync);
2311
2312 /* lru_add_drain_all could be expensive with involving other CPUs */
2313 lru_add_drain();
2314
2315 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2316 int err;
2317 unsigned long start_pfn = cc->migrate_pfn;
2318
2319 /*
2320 * Avoid multiple rescans which can happen if a page cannot be
2321 * isolated (dirty/writeback in async mode) or if the migrated
2322 * pages are being allocated before the pageblock is cleared.
2323 * The first rescan will capture the entire pageblock for
2324 * migration. If it fails, it'll be marked skip and scanning
2325 * will proceed as normal.
2326 */
2327 cc->rescan = false;
2328 if (pageblock_start_pfn(last_migrated_pfn) ==
2329 pageblock_start_pfn(start_pfn)) {
2330 cc->rescan = true;
2331 }
2332
2333 switch (isolate_migratepages(cc)) {
2334 case ISOLATE_ABORT:
2335 ret = COMPACT_CONTENDED;
2336 putback_movable_pages(&cc->migratepages);
2337 cc->nr_migratepages = 0;
2338 goto out;
2339 case ISOLATE_NONE:
2340 if (update_cached) {
2341 cc->zone->compact_cached_migrate_pfn[1] =
2342 cc->zone->compact_cached_migrate_pfn[0];
2343 }
2344
2345 /*
2346 * We haven't isolated and migrated anything, but
2347 * there might still be unflushed migrations from
2348 * previous cc->order aligned block.
2349 */
2350 goto check_drain;
2351 case ISOLATE_SUCCESS:
2352 update_cached = false;
2353 last_migrated_pfn = start_pfn;
2354 ;
2355 }
2356
2357 err = migrate_pages(&cc->migratepages, compaction_alloc,
2358 compaction_free, (unsigned long)cc, cc->mode,
2359 MR_COMPACTION);
2360
2361 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2362 &cc->migratepages);
2363
2364 /* All pages were either migrated or will be released */
2365 cc->nr_migratepages = 0;
2366 if (err) {
2367 putback_movable_pages(&cc->migratepages);
2368 /*
2369 * migrate_pages() may return -ENOMEM when scanners meet
2370 * and we want compact_finished() to detect it
2371 */
2372 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2373 ret = COMPACT_CONTENDED;
2374 goto out;
2375 }
2376 /*
2377 * We failed to migrate at least one page in the current
2378 * order-aligned block, so skip the rest of it.
2379 */
2380 if (cc->direct_compaction &&
2381 (cc->mode == MIGRATE_ASYNC)) {
2382 cc->migrate_pfn = block_end_pfn(
2383 cc->migrate_pfn - 1, cc->order);
2384 /* Draining pcplists is useless in this case */
2385 last_migrated_pfn = 0;
2386 }
2387 }
2388
2389 check_drain:
2390 /*
2391 * Has the migration scanner moved away from the previous
2392 * cc->order aligned block where we migrated from? If yes,
2393 * flush the pages that were freed, so that they can merge and
2394 * compact_finished() can detect immediately if allocation
2395 * would succeed.
2396 */
2397 if (cc->order > 0 && last_migrated_pfn) {
2398 unsigned long current_block_start =
2399 block_start_pfn(cc->migrate_pfn, cc->order);
2400
2401 if (last_migrated_pfn < current_block_start) {
2402 lru_add_drain_cpu_zone(cc->zone);
2403 /* No more flushing until we migrate again */
2404 last_migrated_pfn = 0;
2405 }
2406 }
2407
2408 /* Stop if a page has been captured */
2409 if (capc && capc->page) {
2410 ret = COMPACT_SUCCESS;
2411 break;
2412 }
2413 }
2414
2415 out:
2416 /*
2417 * Release free pages and update where the free scanner should restart,
2418 * so we don't leave any returned pages behind in the next attempt.
2419 */
2420 if (cc->nr_freepages > 0) {
2421 unsigned long free_pfn = release_freepages(&cc->freepages);
2422
2423 cc->nr_freepages = 0;
2424 VM_BUG_ON(free_pfn == 0);
2425 /* The cached pfn is always the first in a pageblock */
2426 free_pfn = pageblock_start_pfn(free_pfn);
2427 /*
2428 * Only go back, not forward. The cached pfn might have been
2429 * already reset to zone end in compact_finished()
2430 */
2431 if (free_pfn > cc->zone->compact_cached_free_pfn)
2432 cc->zone->compact_cached_free_pfn = free_pfn;
2433 }
2434
2435 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2436 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2437
2438 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2439 cc->free_pfn, end_pfn, sync, ret);
2440
2441 return ret;
2442 }
2443
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2444 static enum compact_result compact_zone_order(struct zone *zone, int order,
2445 gfp_t gfp_mask, enum compact_priority prio,
2446 unsigned int alloc_flags, int highest_zoneidx,
2447 struct page **capture)
2448 {
2449 enum compact_result ret;
2450 struct compact_control cc = {
2451 .order = order,
2452 .search_order = order,
2453 .gfp_mask = gfp_mask,
2454 .zone = zone,
2455 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2456 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2457 .alloc_flags = alloc_flags,
2458 .highest_zoneidx = highest_zoneidx,
2459 .direct_compaction = true,
2460 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2461 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2462 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2463 };
2464 struct capture_control capc = {
2465 .cc = &cc,
2466 .page = NULL,
2467 };
2468
2469 /*
2470 * Make sure the structs are really initialized before we expose the
2471 * capture control, in case we are interrupted and the interrupt handler
2472 * frees a page.
2473 */
2474 barrier();
2475 WRITE_ONCE(current->capture_control, &capc);
2476
2477 ret = compact_zone(&cc, &capc);
2478
2479 VM_BUG_ON(!list_empty(&cc.freepages));
2480 VM_BUG_ON(!list_empty(&cc.migratepages));
2481
2482 /*
2483 * Make sure we hide capture control first before we read the captured
2484 * page pointer, otherwise an interrupt could free and capture a page
2485 * and we would leak it.
2486 */
2487 WRITE_ONCE(current->capture_control, NULL);
2488 *capture = READ_ONCE(capc.page);
2489
2490 return ret;
2491 }
2492
2493 int sysctl_extfrag_threshold = 500;
2494
2495 /**
2496 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2497 * @gfp_mask: The GFP mask of the current allocation
2498 * @order: The order of the current allocation
2499 * @alloc_flags: The allocation flags of the current allocation
2500 * @ac: The context of current allocation
2501 * @prio: Determines how hard direct compaction should try to succeed
2502 * @capture: Pointer to free page created by compaction will be stored here
2503 *
2504 * This is the main entry point for direct page compaction.
2505 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2507 unsigned int alloc_flags, const struct alloc_context *ac,
2508 enum compact_priority prio, struct page **capture)
2509 {
2510 int may_perform_io = gfp_mask & __GFP_IO;
2511 struct zoneref *z;
2512 struct zone *zone;
2513 enum compact_result rc = COMPACT_SKIPPED;
2514
2515 /*
2516 * Check if the GFP flags allow compaction - GFP_NOIO is really
2517 * tricky context because the migration might require IO
2518 */
2519 if (!may_perform_io)
2520 return COMPACT_SKIPPED;
2521
2522 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2523
2524 /* Compact each zone in the list */
2525 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526 ac->highest_zoneidx, ac->nodemask) {
2527 enum compact_result status;
2528
2529 if (prio > MIN_COMPACT_PRIORITY
2530 && compaction_deferred(zone, order)) {
2531 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2532 continue;
2533 }
2534
2535 status = compact_zone_order(zone, order, gfp_mask, prio,
2536 alloc_flags, ac->highest_zoneidx, capture);
2537 rc = max(status, rc);
2538
2539 /* The allocation should succeed, stop compacting */
2540 if (status == COMPACT_SUCCESS) {
2541 /*
2542 * We think the allocation will succeed in this zone,
2543 * but it is not certain, hence the false. The caller
2544 * will repeat this with true if allocation indeed
2545 * succeeds in this zone.
2546 */
2547 compaction_defer_reset(zone, order, false);
2548
2549 break;
2550 }
2551
2552 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2553 status == COMPACT_PARTIAL_SKIPPED))
2554 /*
2555 * We think that allocation won't succeed in this zone
2556 * so we defer compaction there. If it ends up
2557 * succeeding after all, it will be reset.
2558 */
2559 defer_compaction(zone, order);
2560
2561 /*
2562 * We might have stopped compacting due to need_resched() in
2563 * async compaction, or due to a fatal signal detected. In that
2564 * case do not try further zones
2565 */
2566 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2567 || fatal_signal_pending(current))
2568 break;
2569 }
2570
2571 return rc;
2572 }
2573
2574 /*
2575 * Compact all zones within a node till each zone's fragmentation score
2576 * reaches within proactive compaction thresholds (as determined by the
2577 * proactiveness tunable).
2578 *
2579 * It is possible that the function returns before reaching score targets
2580 * due to various back-off conditions, such as, contention on per-node or
2581 * per-zone locks.
2582 */
proactive_compact_node(pg_data_t * pgdat)2583 static void proactive_compact_node(pg_data_t *pgdat)
2584 {
2585 int zoneid;
2586 struct zone *zone;
2587 struct compact_control cc = {
2588 .order = -1,
2589 .mode = MIGRATE_SYNC_LIGHT,
2590 .ignore_skip_hint = true,
2591 .whole_zone = true,
2592 .gfp_mask = GFP_KERNEL,
2593 .proactive_compaction = true,
2594 };
2595
2596 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2597 zone = &pgdat->node_zones[zoneid];
2598 if (!populated_zone(zone))
2599 continue;
2600
2601 cc.zone = zone;
2602
2603 compact_zone(&cc, NULL);
2604
2605 VM_BUG_ON(!list_empty(&cc.freepages));
2606 VM_BUG_ON(!list_empty(&cc.migratepages));
2607 }
2608 }
2609
2610 /* Compact all zones within a node */
compact_node(int nid)2611 static void compact_node(int nid)
2612 {
2613 pg_data_t *pgdat = NODE_DATA(nid);
2614 int zoneid;
2615 struct zone *zone;
2616 struct compact_control cc = {
2617 .order = -1,
2618 .mode = MIGRATE_SYNC,
2619 .ignore_skip_hint = true,
2620 .whole_zone = true,
2621 .gfp_mask = GFP_KERNEL,
2622 };
2623
2624
2625 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2626
2627 zone = &pgdat->node_zones[zoneid];
2628 if (!populated_zone(zone))
2629 continue;
2630
2631 cc.zone = zone;
2632
2633 compact_zone(&cc, NULL);
2634
2635 VM_BUG_ON(!list_empty(&cc.freepages));
2636 VM_BUG_ON(!list_empty(&cc.migratepages));
2637 }
2638 }
2639
2640 /* Compact all nodes in the system */
compact_nodes(void)2641 static void compact_nodes(void)
2642 {
2643 int nid;
2644
2645 /* Flush pending updates to the LRU lists */
2646 lru_add_drain_all();
2647
2648 for_each_online_node(nid)
2649 compact_node(nid);
2650 }
2651
2652 /* The written value is actually unused, all memory is compacted */
2653 int sysctl_compact_memory;
2654
2655 /*
2656 * Tunable for proactive compaction. It determines how
2657 * aggressively the kernel should compact memory in the
2658 * background. It takes values in the range [0, 100].
2659 */
2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2661
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2662 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2663 void *buffer, size_t *length, loff_t *ppos)
2664 {
2665 int rc, nid;
2666
2667 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2668 if (rc)
2669 return rc;
2670
2671 if (write && sysctl_compaction_proactiveness) {
2672 for_each_online_node(nid) {
2673 pg_data_t *pgdat = NODE_DATA(nid);
2674
2675 if (pgdat->proactive_compact_trigger)
2676 continue;
2677
2678 pgdat->proactive_compact_trigger = true;
2679 wake_up_interruptible(&pgdat->kcompactd_wait);
2680 }
2681 }
2682
2683 return 0;
2684 }
2685
2686 /*
2687 * This is the entry point for compacting all nodes via
2688 * /proc/sys/vm/compact_memory
2689 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2690 int sysctl_compaction_handler(struct ctl_table *table, int write,
2691 void *buffer, size_t *length, loff_t *ppos)
2692 {
2693 if (write)
2694 compact_nodes();
2695
2696 return 0;
2697 }
2698
2699 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2700 static ssize_t sysfs_compact_node(struct device *dev,
2701 struct device_attribute *attr,
2702 const char *buf, size_t count)
2703 {
2704 int nid = dev->id;
2705
2706 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2707 /* Flush pending updates to the LRU lists */
2708 lru_add_drain_all();
2709
2710 compact_node(nid);
2711 }
2712
2713 return count;
2714 }
2715 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2716
compaction_register_node(struct node * node)2717 int compaction_register_node(struct node *node)
2718 {
2719 return device_create_file(&node->dev, &dev_attr_compact);
2720 }
2721
compaction_unregister_node(struct node * node)2722 void compaction_unregister_node(struct node *node)
2723 {
2724 return device_remove_file(&node->dev, &dev_attr_compact);
2725 }
2726 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2727
kcompactd_work_requested(pg_data_t * pgdat)2728 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2729 {
2730 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2731 pgdat->proactive_compact_trigger;
2732 }
2733
kcompactd_node_suitable(pg_data_t * pgdat)2734 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2735 {
2736 int zoneid;
2737 struct zone *zone;
2738 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2739
2740 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2741 zone = &pgdat->node_zones[zoneid];
2742
2743 if (!populated_zone(zone))
2744 continue;
2745
2746 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2747 highest_zoneidx) == COMPACT_CONTINUE)
2748 return true;
2749 }
2750
2751 return false;
2752 }
2753
kcompactd_do_work(pg_data_t * pgdat)2754 static void kcompactd_do_work(pg_data_t *pgdat)
2755 {
2756 /*
2757 * With no special task, compact all zones so that a page of requested
2758 * order is allocatable.
2759 */
2760 int zoneid;
2761 struct zone *zone;
2762 struct compact_control cc = {
2763 .order = pgdat->kcompactd_max_order,
2764 .search_order = pgdat->kcompactd_max_order,
2765 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2766 .mode = MIGRATE_SYNC_LIGHT,
2767 .ignore_skip_hint = false,
2768 .gfp_mask = GFP_KERNEL,
2769 };
2770 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2771 cc.highest_zoneidx);
2772 count_compact_event(KCOMPACTD_WAKE);
2773
2774 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2775 int status;
2776
2777 zone = &pgdat->node_zones[zoneid];
2778 if (!populated_zone(zone))
2779 continue;
2780
2781 if (compaction_deferred(zone, cc.order))
2782 continue;
2783
2784 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2785 COMPACT_CONTINUE)
2786 continue;
2787
2788 if (kthread_should_stop())
2789 return;
2790
2791 cc.zone = zone;
2792 status = compact_zone(&cc, NULL);
2793
2794 if (status == COMPACT_SUCCESS) {
2795 compaction_defer_reset(zone, cc.order, false);
2796 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2797 /*
2798 * Buddy pages may become stranded on pcps that could
2799 * otherwise coalesce on the zone's free area for
2800 * order >= cc.order. This is ratelimited by the
2801 * upcoming deferral.
2802 */
2803 drain_all_pages(zone);
2804
2805 /*
2806 * We use sync migration mode here, so we defer like
2807 * sync direct compaction does.
2808 */
2809 defer_compaction(zone, cc.order);
2810 }
2811
2812 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2813 cc.total_migrate_scanned);
2814 count_compact_events(KCOMPACTD_FREE_SCANNED,
2815 cc.total_free_scanned);
2816
2817 VM_BUG_ON(!list_empty(&cc.freepages));
2818 VM_BUG_ON(!list_empty(&cc.migratepages));
2819 }
2820
2821 /*
2822 * Regardless of success, we are done until woken up next. But remember
2823 * the requested order/highest_zoneidx in case it was higher/tighter
2824 * than our current ones
2825 */
2826 if (pgdat->kcompactd_max_order <= cc.order)
2827 pgdat->kcompactd_max_order = 0;
2828 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2829 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2830 }
2831
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2832 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2833 {
2834 if (!order)
2835 return;
2836
2837 if (pgdat->kcompactd_max_order < order)
2838 pgdat->kcompactd_max_order = order;
2839
2840 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2841 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2842
2843 /*
2844 * Pairs with implicit barrier in wait_event_freezable()
2845 * such that wakeups are not missed.
2846 */
2847 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2848 return;
2849
2850 if (!kcompactd_node_suitable(pgdat))
2851 return;
2852
2853 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2854 highest_zoneidx);
2855 wake_up_interruptible(&pgdat->kcompactd_wait);
2856 }
2857
2858 /*
2859 * The background compaction daemon, started as a kernel thread
2860 * from the init process.
2861 */
kcompactd(void * p)2862 static int kcompactd(void *p)
2863 {
2864 pg_data_t *pgdat = (pg_data_t*)p;
2865 struct task_struct *tsk = current;
2866 unsigned int proactive_defer = 0;
2867
2868 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2869
2870 if (!cpumask_empty(cpumask))
2871 set_cpus_allowed_ptr(tsk, cpumask);
2872
2873 set_freezable();
2874
2875 pgdat->kcompactd_max_order = 0;
2876 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2877
2878 while (!kthread_should_stop()) {
2879 unsigned long pflags;
2880 long timeout;
2881
2882 timeout = sysctl_compaction_proactiveness ?
2883 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC) :
2884 MAX_SCHEDULE_TIMEOUT;
2885 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2886 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2887 kcompactd_work_requested(pgdat), timeout) &&
2888 !pgdat->proactive_compact_trigger) {
2889
2890 psi_memstall_enter(&pflags);
2891 kcompactd_do_work(pgdat);
2892 psi_memstall_leave(&pflags);
2893 continue;
2894 }
2895
2896 /* kcompactd wait timeout */
2897 if (should_proactive_compact_node(pgdat)) {
2898 unsigned int prev_score, score;
2899
2900 /*
2901 * On wakeup of proactive compaction by sysctl
2902 * write, ignore the accumulated defer score.
2903 * Anyway, if the proactive compaction didn't
2904 * make any progress for the new value, it will
2905 * be further deferred by 2^COMPACT_MAX_DEFER_SHIFT
2906 * times.
2907 */
2908 if (proactive_defer &&
2909 !pgdat->proactive_compact_trigger) {
2910 proactive_defer--;
2911 continue;
2912 }
2913
2914 prev_score = fragmentation_score_node(pgdat);
2915 proactive_compact_node(pgdat);
2916 score = fragmentation_score_node(pgdat);
2917 /*
2918 * Defer proactive compaction if the fragmentation
2919 * score did not go down i.e. no progress made.
2920 */
2921 proactive_defer = score < prev_score ?
2922 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2923 }
2924 if (pgdat->proactive_compact_trigger)
2925 pgdat->proactive_compact_trigger = false;
2926 }
2927
2928 return 0;
2929 }
2930
2931 /*
2932 * This kcompactd start function will be called by init and node-hot-add.
2933 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2934 */
kcompactd_run(int nid)2935 int kcompactd_run(int nid)
2936 {
2937 pg_data_t *pgdat = NODE_DATA(nid);
2938 int ret = 0;
2939
2940 if (pgdat->kcompactd)
2941 return 0;
2942
2943 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2944 if (IS_ERR(pgdat->kcompactd)) {
2945 pr_err("Failed to start kcompactd on node %d\n", nid);
2946 ret = PTR_ERR(pgdat->kcompactd);
2947 pgdat->kcompactd = NULL;
2948 }
2949 return ret;
2950 }
2951
2952 /*
2953 * Called by memory hotplug when all memory in a node is offlined. Caller must
2954 * hold mem_hotplug_begin/end().
2955 */
kcompactd_stop(int nid)2956 void kcompactd_stop(int nid)
2957 {
2958 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2959
2960 if (kcompactd) {
2961 kthread_stop(kcompactd);
2962 NODE_DATA(nid)->kcompactd = NULL;
2963 }
2964 }
2965
2966 /*
2967 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2968 * not required for correctness. So if the last cpu in a node goes
2969 * away, we get changed to run anywhere: as the first one comes back,
2970 * restore their cpu bindings.
2971 */
kcompactd_cpu_online(unsigned int cpu)2972 static int kcompactd_cpu_online(unsigned int cpu)
2973 {
2974 int nid;
2975
2976 for_each_node_state(nid, N_MEMORY) {
2977 pg_data_t *pgdat = NODE_DATA(nid);
2978 const struct cpumask *mask;
2979
2980 mask = cpumask_of_node(pgdat->node_id);
2981
2982 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2983 /* One of our CPUs online: restore mask */
2984 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2985 }
2986 return 0;
2987 }
2988
kcompactd_init(void)2989 static int __init kcompactd_init(void)
2990 {
2991 int nid;
2992 int ret;
2993
2994 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2995 "mm/compaction:online",
2996 kcompactd_cpu_online, NULL);
2997 if (ret < 0) {
2998 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2999 return ret;
3000 }
3001
3002 for_each_node_state(nid, N_MEMORY)
3003 kcompactd_run(nid);
3004 return 0;
3005 }
3006 subsys_initcall(kcompactd_init)
3007
3008 #endif /* CONFIG_COMPACTION */
3009