• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37 #include <trace/hooks/mm.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42 
43 #include "internal.h"
44 #include "pgalloc-track.h"
45 
is_vmalloc_addr(const void * x)46 bool is_vmalloc_addr(const void *x)
47 {
48 	unsigned long addr = (unsigned long)x;
49 
50 	return addr >= VMALLOC_START && addr < VMALLOC_END;
51 }
52 EXPORT_SYMBOL(is_vmalloc_addr);
53 
54 struct vfree_deferred {
55 	struct llist_head list;
56 	struct work_struct wq;
57 };
58 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
59 
60 static void __vunmap(const void *, int);
61 
free_work(struct work_struct * w)62 static void free_work(struct work_struct *w)
63 {
64 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 	struct llist_node *t, *llnode;
66 
67 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
68 		__vunmap((void *)llnode, 1);
69 }
70 
71 /*** Page table manipulation functions ***/
72 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)73 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
74 			     pgtbl_mod_mask *mask)
75 {
76 	pte_t *pte;
77 
78 	pte = pte_offset_kernel(pmd, addr);
79 	do {
80 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
81 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
82 	} while (pte++, addr += PAGE_SIZE, addr != end);
83 	*mask |= PGTBL_PTE_MODIFIED;
84 }
85 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)86 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
87 			     pgtbl_mod_mask *mask)
88 {
89 	pmd_t *pmd;
90 	unsigned long next;
91 	int cleared;
92 
93 	pmd = pmd_offset(pud, addr);
94 	do {
95 		next = pmd_addr_end(addr, end);
96 
97 		cleared = pmd_clear_huge(pmd);
98 		if (cleared || pmd_bad(*pmd))
99 			*mask |= PGTBL_PMD_MODIFIED;
100 
101 		if (cleared)
102 			continue;
103 		if (pmd_none_or_clear_bad(pmd))
104 			continue;
105 		vunmap_pte_range(pmd, addr, next, mask);
106 
107 		cond_resched();
108 	} while (pmd++, addr = next, addr != end);
109 }
110 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)111 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
112 			     pgtbl_mod_mask *mask)
113 {
114 	pud_t *pud;
115 	unsigned long next;
116 	int cleared;
117 
118 	pud = pud_offset(p4d, addr);
119 	do {
120 		next = pud_addr_end(addr, end);
121 
122 		cleared = pud_clear_huge(pud);
123 		if (cleared || pud_bad(*pud))
124 			*mask |= PGTBL_PUD_MODIFIED;
125 
126 		if (cleared)
127 			continue;
128 		if (pud_none_or_clear_bad(pud))
129 			continue;
130 		vunmap_pmd_range(pud, addr, next, mask);
131 	} while (pud++, addr = next, addr != end);
132 }
133 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)134 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
135 			     pgtbl_mod_mask *mask)
136 {
137 	p4d_t *p4d;
138 	unsigned long next;
139 	int cleared;
140 
141 	p4d = p4d_offset(pgd, addr);
142 	do {
143 		next = p4d_addr_end(addr, end);
144 
145 		cleared = p4d_clear_huge(p4d);
146 		if (cleared || p4d_bad(*p4d))
147 			*mask |= PGTBL_P4D_MODIFIED;
148 
149 		if (cleared)
150 			continue;
151 		if (p4d_none_or_clear_bad(p4d))
152 			continue;
153 		vunmap_pud_range(p4d, addr, next, mask);
154 	} while (p4d++, addr = next, addr != end);
155 }
156 
157 /**
158  * unmap_kernel_range_noflush - unmap kernel VM area
159  * @start: start of the VM area to unmap
160  * @size: size of the VM area to unmap
161  *
162  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
163  * should have been allocated using get_vm_area() and its friends.
164  *
165  * NOTE:
166  * This function does NOT do any cache flushing.  The caller is responsible
167  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
168  * function and flush_tlb_kernel_range() after.
169  */
unmap_kernel_range_noflush(unsigned long start,unsigned long size)170 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
171 {
172 	unsigned long end = start + size;
173 	unsigned long next;
174 	pgd_t *pgd;
175 	unsigned long addr = start;
176 	pgtbl_mod_mask mask = 0;
177 
178 	BUG_ON(addr >= end);
179 	pgd = pgd_offset_k(addr);
180 	do {
181 		next = pgd_addr_end(addr, end);
182 		if (pgd_bad(*pgd))
183 			mask |= PGTBL_PGD_MODIFIED;
184 		if (pgd_none_or_clear_bad(pgd))
185 			continue;
186 		vunmap_p4d_range(pgd, addr, next, &mask);
187 	} while (pgd++, addr = next, addr != end);
188 
189 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
190 		arch_sync_kernel_mappings(start, end);
191 }
192 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)193 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
194 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
195 		pgtbl_mod_mask *mask)
196 {
197 	pte_t *pte;
198 
199 	/*
200 	 * nr is a running index into the array which helps higher level
201 	 * callers keep track of where we're up to.
202 	 */
203 
204 	pte = pte_alloc_kernel_track(pmd, addr, mask);
205 	if (!pte)
206 		return -ENOMEM;
207 	do {
208 		struct page *page = pages[*nr];
209 
210 		if (WARN_ON(!pte_none(*pte)))
211 			return -EBUSY;
212 		if (WARN_ON(!page))
213 			return -ENOMEM;
214 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
215 		(*nr)++;
216 	} while (pte++, addr += PAGE_SIZE, addr != end);
217 	*mask |= PGTBL_PTE_MODIFIED;
218 	return 0;
219 }
220 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)221 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
222 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
223 		pgtbl_mod_mask *mask)
224 {
225 	pmd_t *pmd;
226 	unsigned long next;
227 
228 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
229 	if (!pmd)
230 		return -ENOMEM;
231 	do {
232 		next = pmd_addr_end(addr, end);
233 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
234 			return -ENOMEM;
235 	} while (pmd++, addr = next, addr != end);
236 	return 0;
237 }
238 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)239 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
240 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
241 		pgtbl_mod_mask *mask)
242 {
243 	pud_t *pud;
244 	unsigned long next;
245 
246 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
247 	if (!pud)
248 		return -ENOMEM;
249 	do {
250 		next = pud_addr_end(addr, end);
251 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
252 			return -ENOMEM;
253 	} while (pud++, addr = next, addr != end);
254 	return 0;
255 }
256 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)257 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
258 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
259 		pgtbl_mod_mask *mask)
260 {
261 	p4d_t *p4d;
262 	unsigned long next;
263 
264 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
265 	if (!p4d)
266 		return -ENOMEM;
267 	do {
268 		next = p4d_addr_end(addr, end);
269 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
270 			return -ENOMEM;
271 	} while (p4d++, addr = next, addr != end);
272 	return 0;
273 }
274 
275 /**
276  * map_kernel_range_noflush - map kernel VM area with the specified pages
277  * @addr: start of the VM area to map
278  * @size: size of the VM area to map
279  * @prot: page protection flags to use
280  * @pages: pages to map
281  *
282  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
283  * have been allocated using get_vm_area() and its friends.
284  *
285  * NOTE:
286  * This function does NOT do any cache flushing.  The caller is responsible for
287  * calling flush_cache_vmap() on to-be-mapped areas before calling this
288  * function.
289  *
290  * RETURNS:
291  * 0 on success, -errno on failure.
292  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)293 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
294 			     pgprot_t prot, struct page **pages)
295 {
296 	unsigned long start = addr;
297 	unsigned long end = addr + size;
298 	unsigned long next;
299 	pgd_t *pgd;
300 	int err = 0;
301 	int nr = 0;
302 	pgtbl_mod_mask mask = 0;
303 
304 	BUG_ON(addr >= end);
305 	pgd = pgd_offset_k(addr);
306 	do {
307 		next = pgd_addr_end(addr, end);
308 		if (pgd_bad(*pgd))
309 			mask |= PGTBL_PGD_MODIFIED;
310 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
311 		if (err)
312 			return err;
313 	} while (pgd++, addr = next, addr != end);
314 
315 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
316 		arch_sync_kernel_mappings(start, end);
317 
318 	return 0;
319 }
320 
map_kernel_range(unsigned long start,unsigned long size,pgprot_t prot,struct page ** pages)321 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
322 		struct page **pages)
323 {
324 	int ret;
325 
326 	ret = map_kernel_range_noflush(start, size, prot, pages);
327 	flush_cache_vmap(start, start + size);
328 	return ret;
329 }
330 EXPORT_SYMBOL_GPL(map_kernel_range);
331 
is_vmalloc_or_module_addr(const void * x)332 int is_vmalloc_or_module_addr(const void *x)
333 {
334 	/*
335 	 * ARM, x86-64 and sparc64 put modules in a special place,
336 	 * and fall back on vmalloc() if that fails. Others
337 	 * just put it in the vmalloc space.
338 	 */
339 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
340 	unsigned long addr = (unsigned long)x;
341 	if (addr >= MODULES_VADDR && addr < MODULES_END)
342 		return 1;
343 #endif
344 	return is_vmalloc_addr(x);
345 }
346 
347 /*
348  * Walk a vmap address to the struct page it maps.
349  */
vmalloc_to_page(const void * vmalloc_addr)350 struct page *vmalloc_to_page(const void *vmalloc_addr)
351 {
352 	unsigned long addr = (unsigned long) vmalloc_addr;
353 	struct page *page = NULL;
354 	pgd_t *pgd = pgd_offset_k(addr);
355 	p4d_t *p4d;
356 	pud_t *pud;
357 	pmd_t *pmd;
358 	pte_t *ptep, pte;
359 
360 	/*
361 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
362 	 * architectures that do not vmalloc module space
363 	 */
364 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
365 
366 	if (pgd_none(*pgd))
367 		return NULL;
368 	p4d = p4d_offset(pgd, addr);
369 	if (p4d_none(*p4d))
370 		return NULL;
371 	pud = pud_offset(p4d, addr);
372 
373 	/*
374 	 * Don't dereference bad PUD or PMD (below) entries. This will also
375 	 * identify huge mappings, which we may encounter on architectures
376 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
377 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
378 	 * not [unambiguously] associated with a struct page, so there is
379 	 * no correct value to return for them.
380 	 */
381 	WARN_ON_ONCE(pud_bad(*pud));
382 	if (pud_none(*pud) || pud_bad(*pud))
383 		return NULL;
384 	pmd = pmd_offset(pud, addr);
385 	WARN_ON_ONCE(pmd_bad(*pmd));
386 	if (pmd_none(*pmd) || pmd_bad(*pmd))
387 		return NULL;
388 
389 	ptep = pte_offset_map(pmd, addr);
390 	pte = *ptep;
391 	if (pte_present(pte))
392 		page = pte_page(pte);
393 	pte_unmap(ptep);
394 	return page;
395 }
396 EXPORT_SYMBOL(vmalloc_to_page);
397 
398 /*
399  * Map a vmalloc()-space virtual address to the physical page frame number.
400  */
vmalloc_to_pfn(const void * vmalloc_addr)401 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
402 {
403 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
404 }
405 EXPORT_SYMBOL(vmalloc_to_pfn);
406 
407 
408 /*** Global kva allocator ***/
409 
410 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
411 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
412 
413 
414 static DEFINE_SPINLOCK(vmap_area_lock);
415 static DEFINE_SPINLOCK(free_vmap_area_lock);
416 /* Export for kexec only */
417 LIST_HEAD(vmap_area_list);
418 static LLIST_HEAD(vmap_purge_list);
419 static struct rb_root vmap_area_root = RB_ROOT;
420 static bool vmap_initialized __read_mostly;
421 
422 /*
423  * This kmem_cache is used for vmap_area objects. Instead of
424  * allocating from slab we reuse an object from this cache to
425  * make things faster. Especially in "no edge" splitting of
426  * free block.
427  */
428 static struct kmem_cache *vmap_area_cachep;
429 
430 /*
431  * This linked list is used in pair with free_vmap_area_root.
432  * It gives O(1) access to prev/next to perform fast coalescing.
433  */
434 static LIST_HEAD(free_vmap_area_list);
435 
436 /*
437  * This augment red-black tree represents the free vmap space.
438  * All vmap_area objects in this tree are sorted by va->va_start
439  * address. It is used for allocation and merging when a vmap
440  * object is released.
441  *
442  * Each vmap_area node contains a maximum available free block
443  * of its sub-tree, right or left. Therefore it is possible to
444  * find a lowest match of free area.
445  */
446 static struct rb_root free_vmap_area_root = RB_ROOT;
447 
448 /*
449  * Preload a CPU with one object for "no edge" split case. The
450  * aim is to get rid of allocations from the atomic context, thus
451  * to use more permissive allocation masks.
452  */
453 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
454 
455 static __always_inline unsigned long
va_size(struct vmap_area * va)456 va_size(struct vmap_area *va)
457 {
458 	return (va->va_end - va->va_start);
459 }
460 
461 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)462 get_subtree_max_size(struct rb_node *node)
463 {
464 	struct vmap_area *va;
465 
466 	va = rb_entry_safe(node, struct vmap_area, rb_node);
467 	return va ? va->subtree_max_size : 0;
468 }
469 
470 /*
471  * Gets called when remove the node and rotate.
472  */
473 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)474 compute_subtree_max_size(struct vmap_area *va)
475 {
476 	return max3(va_size(va),
477 		get_subtree_max_size(va->rb_node.rb_left),
478 		get_subtree_max_size(va->rb_node.rb_right));
479 }
480 
481 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
482 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
483 
484 static void purge_vmap_area_lazy(void);
485 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
486 static unsigned long lazy_max_pages(void);
487 
488 static atomic_long_t nr_vmalloc_pages;
489 
vmalloc_nr_pages(void)490 unsigned long vmalloc_nr_pages(void)
491 {
492 	return atomic_long_read(&nr_vmalloc_pages);
493 }
494 EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
495 
__find_vmap_area(unsigned long addr)496 static struct vmap_area *__find_vmap_area(unsigned long addr)
497 {
498 	struct rb_node *n = vmap_area_root.rb_node;
499 
500 	while (n) {
501 		struct vmap_area *va;
502 
503 		va = rb_entry(n, struct vmap_area, rb_node);
504 		if (addr < va->va_start)
505 			n = n->rb_left;
506 		else if (addr >= va->va_end)
507 			n = n->rb_right;
508 		else
509 			return va;
510 	}
511 
512 	return NULL;
513 }
514 
515 /*
516  * This function returns back addresses of parent node
517  * and its left or right link for further processing.
518  *
519  * Otherwise NULL is returned. In that case all further
520  * steps regarding inserting of conflicting overlap range
521  * have to be declined and actually considered as a bug.
522  */
523 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)524 find_va_links(struct vmap_area *va,
525 	struct rb_root *root, struct rb_node *from,
526 	struct rb_node **parent)
527 {
528 	struct vmap_area *tmp_va;
529 	struct rb_node **link;
530 
531 	if (root) {
532 		link = &root->rb_node;
533 		if (unlikely(!*link)) {
534 			*parent = NULL;
535 			return link;
536 		}
537 	} else {
538 		link = &from;
539 	}
540 
541 	/*
542 	 * Go to the bottom of the tree. When we hit the last point
543 	 * we end up with parent rb_node and correct direction, i name
544 	 * it link, where the new va->rb_node will be attached to.
545 	 */
546 	do {
547 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
548 
549 		/*
550 		 * During the traversal we also do some sanity check.
551 		 * Trigger the BUG() if there are sides(left/right)
552 		 * or full overlaps.
553 		 */
554 		if (va->va_start < tmp_va->va_end &&
555 				va->va_end <= tmp_va->va_start)
556 			link = &(*link)->rb_left;
557 		else if (va->va_end > tmp_va->va_start &&
558 				va->va_start >= tmp_va->va_end)
559 			link = &(*link)->rb_right;
560 		else {
561 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
563 
564 			return NULL;
565 		}
566 	} while (*link);
567 
568 	*parent = &tmp_va->rb_node;
569 	return link;
570 }
571 
572 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)573 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
574 {
575 	struct list_head *list;
576 
577 	if (unlikely(!parent))
578 		/*
579 		 * The red-black tree where we try to find VA neighbors
580 		 * before merging or inserting is empty, i.e. it means
581 		 * there is no free vmap space. Normally it does not
582 		 * happen but we handle this case anyway.
583 		 */
584 		return NULL;
585 
586 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
587 	return (&parent->rb_right == link ? list->next : list);
588 }
589 
590 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)591 link_va(struct vmap_area *va, struct rb_root *root,
592 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
593 {
594 	/*
595 	 * VA is still not in the list, but we can
596 	 * identify its future previous list_head node.
597 	 */
598 	if (likely(parent)) {
599 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
600 		if (&parent->rb_right != link)
601 			head = head->prev;
602 	}
603 
604 	/* Insert to the rb-tree */
605 	rb_link_node(&va->rb_node, parent, link);
606 	if (root == &free_vmap_area_root) {
607 		/*
608 		 * Some explanation here. Just perform simple insertion
609 		 * to the tree. We do not set va->subtree_max_size to
610 		 * its current size before calling rb_insert_augmented().
611 		 * It is because of we populate the tree from the bottom
612 		 * to parent levels when the node _is_ in the tree.
613 		 *
614 		 * Therefore we set subtree_max_size to zero after insertion,
615 		 * to let __augment_tree_propagate_from() puts everything to
616 		 * the correct order later on.
617 		 */
618 		rb_insert_augmented(&va->rb_node,
619 			root, &free_vmap_area_rb_augment_cb);
620 		va->subtree_max_size = 0;
621 	} else {
622 		rb_insert_color(&va->rb_node, root);
623 	}
624 
625 	/* Address-sort this list */
626 	list_add(&va->list, head);
627 }
628 
629 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)630 unlink_va(struct vmap_area *va, struct rb_root *root)
631 {
632 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
633 		return;
634 
635 	if (root == &free_vmap_area_root)
636 		rb_erase_augmented(&va->rb_node,
637 			root, &free_vmap_area_rb_augment_cb);
638 	else
639 		rb_erase(&va->rb_node, root);
640 
641 	list_del(&va->list);
642 	RB_CLEAR_NODE(&va->rb_node);
643 }
644 
645 #if DEBUG_AUGMENT_PROPAGATE_CHECK
646 static void
augment_tree_propagate_check(void)647 augment_tree_propagate_check(void)
648 {
649 	struct vmap_area *va;
650 	unsigned long computed_size;
651 
652 	list_for_each_entry(va, &free_vmap_area_list, list) {
653 		computed_size = compute_subtree_max_size(va);
654 		if (computed_size != va->subtree_max_size)
655 			pr_emerg("tree is corrupted: %lu, %lu\n",
656 				va_size(va), va->subtree_max_size);
657 	}
658 }
659 #endif
660 
661 /*
662  * This function populates subtree_max_size from bottom to upper
663  * levels starting from VA point. The propagation must be done
664  * when VA size is modified by changing its va_start/va_end. Or
665  * in case of newly inserting of VA to the tree.
666  *
667  * It means that __augment_tree_propagate_from() must be called:
668  * - After VA has been inserted to the tree(free path);
669  * - After VA has been shrunk(allocation path);
670  * - After VA has been increased(merging path).
671  *
672  * Please note that, it does not mean that upper parent nodes
673  * and their subtree_max_size are recalculated all the time up
674  * to the root node.
675  *
676  *       4--8
677  *        /\
678  *       /  \
679  *      /    \
680  *    2--2  8--8
681  *
682  * For example if we modify the node 4, shrinking it to 2, then
683  * no any modification is required. If we shrink the node 2 to 1
684  * its subtree_max_size is updated only, and set to 1. If we shrink
685  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
686  * node becomes 4--6.
687  */
688 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)689 augment_tree_propagate_from(struct vmap_area *va)
690 {
691 	/*
692 	 * Populate the tree from bottom towards the root until
693 	 * the calculated maximum available size of checked node
694 	 * is equal to its current one.
695 	 */
696 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
697 
698 #if DEBUG_AUGMENT_PROPAGATE_CHECK
699 	augment_tree_propagate_check();
700 #endif
701 }
702 
703 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)704 insert_vmap_area(struct vmap_area *va,
705 	struct rb_root *root, struct list_head *head)
706 {
707 	struct rb_node **link;
708 	struct rb_node *parent;
709 
710 	link = find_va_links(va, root, NULL, &parent);
711 	if (link)
712 		link_va(va, root, parent, link, head);
713 }
714 
715 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)716 insert_vmap_area_augment(struct vmap_area *va,
717 	struct rb_node *from, struct rb_root *root,
718 	struct list_head *head)
719 {
720 	struct rb_node **link;
721 	struct rb_node *parent;
722 
723 	if (from)
724 		link = find_va_links(va, NULL, from, &parent);
725 	else
726 		link = find_va_links(va, root, NULL, &parent);
727 
728 	if (link) {
729 		link_va(va, root, parent, link, head);
730 		augment_tree_propagate_from(va);
731 	}
732 }
733 
734 /*
735  * Merge de-allocated chunk of VA memory with previous
736  * and next free blocks. If coalesce is not done a new
737  * free area is inserted. If VA has been merged, it is
738  * freed.
739  *
740  * Please note, it can return NULL in case of overlap
741  * ranges, followed by WARN() report. Despite it is a
742  * buggy behaviour, a system can be alive and keep
743  * ongoing.
744  */
745 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)746 merge_or_add_vmap_area(struct vmap_area *va,
747 	struct rb_root *root, struct list_head *head)
748 {
749 	struct vmap_area *sibling;
750 	struct list_head *next;
751 	struct rb_node **link;
752 	struct rb_node *parent;
753 	bool merged = false;
754 
755 	/*
756 	 * Find a place in the tree where VA potentially will be
757 	 * inserted, unless it is merged with its sibling/siblings.
758 	 */
759 	link = find_va_links(va, root, NULL, &parent);
760 	if (!link)
761 		return NULL;
762 
763 	/*
764 	 * Get next node of VA to check if merging can be done.
765 	 */
766 	next = get_va_next_sibling(parent, link);
767 	if (unlikely(next == NULL))
768 		goto insert;
769 
770 	/*
771 	 * start            end
772 	 * |                |
773 	 * |<------VA------>|<-----Next----->|
774 	 *                  |                |
775 	 *                  start            end
776 	 */
777 	if (next != head) {
778 		sibling = list_entry(next, struct vmap_area, list);
779 		if (sibling->va_start == va->va_end) {
780 			sibling->va_start = va->va_start;
781 
782 			/* Free vmap_area object. */
783 			kmem_cache_free(vmap_area_cachep, va);
784 
785 			/* Point to the new merged area. */
786 			va = sibling;
787 			merged = true;
788 		}
789 	}
790 
791 	/*
792 	 * start            end
793 	 * |                |
794 	 * |<-----Prev----->|<------VA------>|
795 	 *                  |                |
796 	 *                  start            end
797 	 */
798 	if (next->prev != head) {
799 		sibling = list_entry(next->prev, struct vmap_area, list);
800 		if (sibling->va_end == va->va_start) {
801 			/*
802 			 * If both neighbors are coalesced, it is important
803 			 * to unlink the "next" node first, followed by merging
804 			 * with "previous" one. Otherwise the tree might not be
805 			 * fully populated if a sibling's augmented value is
806 			 * "normalized" because of rotation operations.
807 			 */
808 			if (merged)
809 				unlink_va(va, root);
810 
811 			sibling->va_end = va->va_end;
812 
813 			/* Free vmap_area object. */
814 			kmem_cache_free(vmap_area_cachep, va);
815 
816 			/* Point to the new merged area. */
817 			va = sibling;
818 			merged = true;
819 		}
820 	}
821 
822 insert:
823 	if (!merged)
824 		link_va(va, root, parent, link, head);
825 
826 	/*
827 	 * Last step is to check and update the tree.
828 	 */
829 	augment_tree_propagate_from(va);
830 	return va;
831 }
832 
833 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)834 is_within_this_va(struct vmap_area *va, unsigned long size,
835 	unsigned long align, unsigned long vstart)
836 {
837 	unsigned long nva_start_addr;
838 
839 	if (va->va_start > vstart)
840 		nva_start_addr = ALIGN(va->va_start, align);
841 	else
842 		nva_start_addr = ALIGN(vstart, align);
843 
844 	/* Can be overflowed due to big size or alignment. */
845 	if (nva_start_addr + size < nva_start_addr ||
846 			nva_start_addr < vstart)
847 		return false;
848 
849 	return (nva_start_addr + size <= va->va_end);
850 }
851 
852 /*
853  * Find the first free block(lowest start address) in the tree,
854  * that will accomplish the request corresponding to passing
855  * parameters.
856  */
857 static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,unsigned long align,unsigned long vstart)858 find_vmap_lowest_match(unsigned long size,
859 	unsigned long align, unsigned long vstart)
860 {
861 	struct vmap_area *va;
862 	struct rb_node *node;
863 	unsigned long length;
864 
865 	/* Start from the root. */
866 	node = free_vmap_area_root.rb_node;
867 
868 	/* Adjust the search size for alignment overhead. */
869 	length = size + align - 1;
870 
871 	while (node) {
872 		va = rb_entry(node, struct vmap_area, rb_node);
873 
874 		if (get_subtree_max_size(node->rb_left) >= length &&
875 				vstart < va->va_start) {
876 			node = node->rb_left;
877 		} else {
878 			if (is_within_this_va(va, size, align, vstart))
879 				return va;
880 
881 			/*
882 			 * Does not make sense to go deeper towards the right
883 			 * sub-tree if it does not have a free block that is
884 			 * equal or bigger to the requested search length.
885 			 */
886 			if (get_subtree_max_size(node->rb_right) >= length) {
887 				node = node->rb_right;
888 				continue;
889 			}
890 
891 			/*
892 			 * OK. We roll back and find the first right sub-tree,
893 			 * that will satisfy the search criteria. It can happen
894 			 * only once due to "vstart" restriction.
895 			 */
896 			while ((node = rb_parent(node))) {
897 				va = rb_entry(node, struct vmap_area, rb_node);
898 				if (is_within_this_va(va, size, align, vstart))
899 					return va;
900 
901 				if (get_subtree_max_size(node->rb_right) >= length &&
902 						vstart <= va->va_start) {
903 					node = node->rb_right;
904 					break;
905 				}
906 			}
907 		}
908 	}
909 
910 	return NULL;
911 }
912 
913 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
914 #include <linux/random.h>
915 
916 static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,unsigned long align,unsigned long vstart)917 find_vmap_lowest_linear_match(unsigned long size,
918 	unsigned long align, unsigned long vstart)
919 {
920 	struct vmap_area *va;
921 
922 	list_for_each_entry(va, &free_vmap_area_list, list) {
923 		if (!is_within_this_va(va, size, align, vstart))
924 			continue;
925 
926 		return va;
927 	}
928 
929 	return NULL;
930 }
931 
932 static void
find_vmap_lowest_match_check(unsigned long size)933 find_vmap_lowest_match_check(unsigned long size)
934 {
935 	struct vmap_area *va_1, *va_2;
936 	unsigned long vstart;
937 	unsigned int rnd;
938 
939 	get_random_bytes(&rnd, sizeof(rnd));
940 	vstart = VMALLOC_START + rnd;
941 
942 	va_1 = find_vmap_lowest_match(size, 1, vstart);
943 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
944 
945 	if (va_1 != va_2)
946 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
947 			va_1, va_2, vstart);
948 }
949 #endif
950 
951 enum fit_type {
952 	NOTHING_FIT = 0,
953 	FL_FIT_TYPE = 1,	/* full fit */
954 	LE_FIT_TYPE = 2,	/* left edge fit */
955 	RE_FIT_TYPE = 3,	/* right edge fit */
956 	NE_FIT_TYPE = 4		/* no edge fit */
957 };
958 
959 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)960 classify_va_fit_type(struct vmap_area *va,
961 	unsigned long nva_start_addr, unsigned long size)
962 {
963 	enum fit_type type;
964 
965 	/* Check if it is within VA. */
966 	if (nva_start_addr < va->va_start ||
967 			nva_start_addr + size > va->va_end)
968 		return NOTHING_FIT;
969 
970 	/* Now classify. */
971 	if (va->va_start == nva_start_addr) {
972 		if (va->va_end == nva_start_addr + size)
973 			type = FL_FIT_TYPE;
974 		else
975 			type = LE_FIT_TYPE;
976 	} else if (va->va_end == nva_start_addr + size) {
977 		type = RE_FIT_TYPE;
978 	} else {
979 		type = NE_FIT_TYPE;
980 	}
981 
982 	return type;
983 }
984 
985 static __always_inline int
adjust_va_to_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size,enum fit_type type)986 adjust_va_to_fit_type(struct vmap_area *va,
987 	unsigned long nva_start_addr, unsigned long size,
988 	enum fit_type type)
989 {
990 	struct vmap_area *lva = NULL;
991 
992 	if (type == FL_FIT_TYPE) {
993 		/*
994 		 * No need to split VA, it fully fits.
995 		 *
996 		 * |               |
997 		 * V      NVA      V
998 		 * |---------------|
999 		 */
1000 		unlink_va(va, &free_vmap_area_root);
1001 		kmem_cache_free(vmap_area_cachep, va);
1002 	} else if (type == LE_FIT_TYPE) {
1003 		/*
1004 		 * Split left edge of fit VA.
1005 		 *
1006 		 * |       |
1007 		 * V  NVA  V   R
1008 		 * |-------|-------|
1009 		 */
1010 		va->va_start += size;
1011 	} else if (type == RE_FIT_TYPE) {
1012 		/*
1013 		 * Split right edge of fit VA.
1014 		 *
1015 		 *         |       |
1016 		 *     L   V  NVA  V
1017 		 * |-------|-------|
1018 		 */
1019 		va->va_end = nva_start_addr;
1020 	} else if (type == NE_FIT_TYPE) {
1021 		/*
1022 		 * Split no edge of fit VA.
1023 		 *
1024 		 *     |       |
1025 		 *   L V  NVA  V R
1026 		 * |---|-------|---|
1027 		 */
1028 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1029 		if (unlikely(!lva)) {
1030 			/*
1031 			 * For percpu allocator we do not do any pre-allocation
1032 			 * and leave it as it is. The reason is it most likely
1033 			 * never ends up with NE_FIT_TYPE splitting. In case of
1034 			 * percpu allocations offsets and sizes are aligned to
1035 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1036 			 * are its main fitting cases.
1037 			 *
1038 			 * There are a few exceptions though, as an example it is
1039 			 * a first allocation (early boot up) when we have "one"
1040 			 * big free space that has to be split.
1041 			 *
1042 			 * Also we can hit this path in case of regular "vmap"
1043 			 * allocations, if "this" current CPU was not preloaded.
1044 			 * See the comment in alloc_vmap_area() why. If so, then
1045 			 * GFP_NOWAIT is used instead to get an extra object for
1046 			 * split purpose. That is rare and most time does not
1047 			 * occur.
1048 			 *
1049 			 * What happens if an allocation gets failed. Basically,
1050 			 * an "overflow" path is triggered to purge lazily freed
1051 			 * areas to free some memory, then, the "retry" path is
1052 			 * triggered to repeat one more time. See more details
1053 			 * in alloc_vmap_area() function.
1054 			 */
1055 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1056 			if (!lva)
1057 				return -1;
1058 		}
1059 
1060 		/*
1061 		 * Build the remainder.
1062 		 */
1063 		lva->va_start = va->va_start;
1064 		lva->va_end = nva_start_addr;
1065 
1066 		/*
1067 		 * Shrink this VA to remaining size.
1068 		 */
1069 		va->va_start = nva_start_addr + size;
1070 	} else {
1071 		return -1;
1072 	}
1073 
1074 	if (type != FL_FIT_TYPE) {
1075 		augment_tree_propagate_from(va);
1076 
1077 		if (lva)	/* type == NE_FIT_TYPE */
1078 			insert_vmap_area_augment(lva, &va->rb_node,
1079 				&free_vmap_area_root, &free_vmap_area_list);
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Returns a start address of the newly allocated area, if success.
1087  * Otherwise a vend is returned that indicates failure.
1088  */
1089 static __always_inline unsigned long
__alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1090 __alloc_vmap_area(unsigned long size, unsigned long align,
1091 	unsigned long vstart, unsigned long vend)
1092 {
1093 	unsigned long nva_start_addr;
1094 	struct vmap_area *va;
1095 	enum fit_type type;
1096 	int ret;
1097 
1098 	va = find_vmap_lowest_match(size, align, vstart);
1099 	if (unlikely(!va))
1100 		return vend;
1101 
1102 	if (va->va_start > vstart)
1103 		nva_start_addr = ALIGN(va->va_start, align);
1104 	else
1105 		nva_start_addr = ALIGN(vstart, align);
1106 
1107 	/* Check the "vend" restriction. */
1108 	if (nva_start_addr + size > vend)
1109 		return vend;
1110 
1111 	/* Classify what we have found. */
1112 	type = classify_va_fit_type(va, nva_start_addr, size);
1113 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1114 		return vend;
1115 
1116 	/* Update the free vmap_area. */
1117 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1118 	if (ret)
1119 		return vend;
1120 
1121 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1122 	find_vmap_lowest_match_check(size);
1123 #endif
1124 
1125 	return nva_start_addr;
1126 }
1127 
1128 /*
1129  * Free a region of KVA allocated by alloc_vmap_area
1130  */
free_vmap_area(struct vmap_area * va)1131 static void free_vmap_area(struct vmap_area *va)
1132 {
1133 	/*
1134 	 * Remove from the busy tree/list.
1135 	 */
1136 	spin_lock(&vmap_area_lock);
1137 	unlink_va(va, &vmap_area_root);
1138 	spin_unlock(&vmap_area_lock);
1139 
1140 	/*
1141 	 * Insert/Merge it back to the free tree/list.
1142 	 */
1143 	spin_lock(&free_vmap_area_lock);
1144 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1145 	spin_unlock(&free_vmap_area_lock);
1146 }
1147 
1148 /*
1149  * Allocate a region of KVA of the specified size and alignment, within the
1150  * vstart and vend.
1151  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)1152 static struct vmap_area *alloc_vmap_area(unsigned long size,
1153 				unsigned long align,
1154 				unsigned long vstart, unsigned long vend,
1155 				int node, gfp_t gfp_mask)
1156 {
1157 	struct vmap_area *va, *pva;
1158 	unsigned long addr;
1159 	int purged = 0;
1160 	int ret;
1161 
1162 	BUG_ON(!size);
1163 	BUG_ON(offset_in_page(size));
1164 	BUG_ON(!is_power_of_2(align));
1165 
1166 	if (unlikely(!vmap_initialized))
1167 		return ERR_PTR(-EBUSY);
1168 
1169 	might_sleep();
1170 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1171 
1172 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1173 	if (unlikely(!va))
1174 		return ERR_PTR(-ENOMEM);
1175 
1176 	/*
1177 	 * Only scan the relevant parts containing pointers to other objects
1178 	 * to avoid false negatives.
1179 	 */
1180 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1181 
1182 retry:
1183 	/*
1184 	 * Preload this CPU with one extra vmap_area object. It is used
1185 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1186 	 * does not guarantee that an allocation occurs on a CPU that
1187 	 * is preloaded, instead we minimize the case when it is not.
1188 	 * It can happen because of cpu migration, because there is a
1189 	 * race until the below spinlock is taken.
1190 	 *
1191 	 * The preload is done in non-atomic context, thus it allows us
1192 	 * to use more permissive allocation masks to be more stable under
1193 	 * low memory condition and high memory pressure. In rare case,
1194 	 * if not preloaded, GFP_NOWAIT is used.
1195 	 *
1196 	 * Set "pva" to NULL here, because of "retry" path.
1197 	 */
1198 	pva = NULL;
1199 
1200 	if (!this_cpu_read(ne_fit_preload_node))
1201 		/*
1202 		 * Even if it fails we do not really care about that.
1203 		 * Just proceed as it is. If needed "overflow" path
1204 		 * will refill the cache we allocate from.
1205 		 */
1206 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1207 
1208 	spin_lock(&free_vmap_area_lock);
1209 
1210 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1211 		kmem_cache_free(vmap_area_cachep, pva);
1212 
1213 	/*
1214 	 * If an allocation fails, the "vend" address is
1215 	 * returned. Therefore trigger the overflow path.
1216 	 */
1217 	addr = __alloc_vmap_area(size, align, vstart, vend);
1218 	spin_unlock(&free_vmap_area_lock);
1219 
1220 	if (unlikely(addr == vend))
1221 		goto overflow;
1222 
1223 	va->va_start = addr;
1224 	va->va_end = addr + size;
1225 	va->vm = NULL;
1226 
1227 
1228 	spin_lock(&vmap_area_lock);
1229 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1230 	spin_unlock(&vmap_area_lock);
1231 
1232 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1233 	BUG_ON(va->va_start < vstart);
1234 	BUG_ON(va->va_end > vend);
1235 
1236 	ret = kasan_populate_vmalloc(addr, size);
1237 	if (ret) {
1238 		free_vmap_area(va);
1239 		return ERR_PTR(ret);
1240 	}
1241 
1242 	return va;
1243 
1244 overflow:
1245 	if (!purged) {
1246 		purge_vmap_area_lazy();
1247 		purged = 1;
1248 		goto retry;
1249 	}
1250 
1251 	if (gfpflags_allow_blocking(gfp_mask)) {
1252 		unsigned long freed = 0;
1253 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1254 		if (freed > 0) {
1255 			purged = 0;
1256 			goto retry;
1257 		}
1258 	}
1259 
1260 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1261 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1262 			size);
1263 
1264 	kmem_cache_free(vmap_area_cachep, va);
1265 	return ERR_PTR(-EBUSY);
1266 }
1267 
register_vmap_purge_notifier(struct notifier_block * nb)1268 int register_vmap_purge_notifier(struct notifier_block *nb)
1269 {
1270 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1271 }
1272 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1273 
unregister_vmap_purge_notifier(struct notifier_block * nb)1274 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1275 {
1276 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1277 }
1278 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1279 
1280 bool lazy_vunmap_enable  __read_mostly = true;
1281 /*
1282  * lazy_max_pages is the maximum amount of virtual address space we gather up
1283  * before attempting to purge with a TLB flush.
1284  *
1285  * There is a tradeoff here: a larger number will cover more kernel page tables
1286  * and take slightly longer to purge, but it will linearly reduce the number of
1287  * global TLB flushes that must be performed. It would seem natural to scale
1288  * this number up linearly with the number of CPUs (because vmapping activity
1289  * could also scale linearly with the number of CPUs), however it is likely
1290  * that in practice, workloads might be constrained in other ways that mean
1291  * vmap activity will not scale linearly with CPUs. Also, I want to be
1292  * conservative and not introduce a big latency on huge systems, so go with
1293  * a less aggressive log scale. It will still be an improvement over the old
1294  * code, and it will be simple to change the scale factor if we find that it
1295  * becomes a problem on bigger systems.
1296  */
lazy_max_pages(void)1297 static unsigned long lazy_max_pages(void)
1298 {
1299 	unsigned int log;
1300 
1301 	if (!lazy_vunmap_enable)
1302 		return 0;
1303 
1304 	log = fls(num_online_cpus());
1305 
1306 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1307 }
1308 
1309 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1310 
1311 /*
1312  * Serialize vmap purging.  There is no actual criticial section protected
1313  * by this look, but we want to avoid concurrent calls for performance
1314  * reasons and to make the pcpu_get_vm_areas more deterministic.
1315  */
1316 static DEFINE_MUTEX(vmap_purge_lock);
1317 
1318 /* for per-CPU blocks */
1319 static void purge_fragmented_blocks_allcpus(void);
1320 
1321 /*
1322  * called before a call to iounmap() if the caller wants vm_area_struct's
1323  * immediately freed.
1324  */
set_iounmap_nonlazy(void)1325 void set_iounmap_nonlazy(void)
1326 {
1327 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1328 }
1329 
1330 /*
1331  * Purges all lazily-freed vmap areas.
1332  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1333 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1334 {
1335 	unsigned long resched_threshold;
1336 	struct llist_node *valist;
1337 	struct vmap_area *va;
1338 	struct vmap_area *n_va;
1339 
1340 	lockdep_assert_held(&vmap_purge_lock);
1341 
1342 	valist = llist_del_all(&vmap_purge_list);
1343 	if (unlikely(valist == NULL))
1344 		return false;
1345 
1346 	/*
1347 	 * TODO: to calculate a flush range without looping.
1348 	 * The list can be up to lazy_max_pages() elements.
1349 	 */
1350 	llist_for_each_entry(va, valist, purge_list) {
1351 		if (va->va_start < start)
1352 			start = va->va_start;
1353 		if (va->va_end > end)
1354 			end = va->va_end;
1355 	}
1356 
1357 	flush_tlb_kernel_range(start, end);
1358 	resched_threshold = lazy_max_pages() << 1;
1359 
1360 	spin_lock(&free_vmap_area_lock);
1361 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1362 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1363 		unsigned long orig_start = va->va_start;
1364 		unsigned long orig_end = va->va_end;
1365 
1366 		/*
1367 		 * Finally insert or merge lazily-freed area. It is
1368 		 * detached and there is no need to "unlink" it from
1369 		 * anything.
1370 		 */
1371 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1372 					    &free_vmap_area_list);
1373 
1374 		if (!va)
1375 			continue;
1376 
1377 		if (is_vmalloc_or_module_addr((void *)orig_start))
1378 			kasan_release_vmalloc(orig_start, orig_end,
1379 					      va->va_start, va->va_end);
1380 
1381 		atomic_long_sub(nr, &vmap_lazy_nr);
1382 
1383 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1384 			cond_resched_lock(&free_vmap_area_lock);
1385 	}
1386 	spin_unlock(&free_vmap_area_lock);
1387 	return true;
1388 }
1389 
1390 /*
1391  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1392  * is already purging.
1393  */
try_purge_vmap_area_lazy(void)1394 static void try_purge_vmap_area_lazy(void)
1395 {
1396 	if (mutex_trylock(&vmap_purge_lock)) {
1397 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1398 		mutex_unlock(&vmap_purge_lock);
1399 	}
1400 }
1401 
1402 /*
1403  * Kick off a purge of the outstanding lazy areas.
1404  */
purge_vmap_area_lazy(void)1405 static void purge_vmap_area_lazy(void)
1406 {
1407 	mutex_lock(&vmap_purge_lock);
1408 	purge_fragmented_blocks_allcpus();
1409 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1410 	mutex_unlock(&vmap_purge_lock);
1411 }
1412 
1413 /*
1414  * Free a vmap area, caller ensuring that the area has been unmapped
1415  * and flush_cache_vunmap had been called for the correct range
1416  * previously.
1417  */
free_vmap_area_noflush(struct vmap_area * va)1418 static void free_vmap_area_noflush(struct vmap_area *va)
1419 {
1420 	unsigned long nr_lazy;
1421 
1422 	spin_lock(&vmap_area_lock);
1423 	unlink_va(va, &vmap_area_root);
1424 	spin_unlock(&vmap_area_lock);
1425 
1426 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1427 				PAGE_SHIFT, &vmap_lazy_nr);
1428 
1429 	/* After this point, we may free va at any time */
1430 	llist_add(&va->purge_list, &vmap_purge_list);
1431 
1432 	if (unlikely(nr_lazy > lazy_max_pages()))
1433 		try_purge_vmap_area_lazy();
1434 }
1435 
1436 /*
1437  * Free and unmap a vmap area
1438  */
free_unmap_vmap_area(struct vmap_area * va)1439 static void free_unmap_vmap_area(struct vmap_area *va)
1440 {
1441 	flush_cache_vunmap(va->va_start, va->va_end);
1442 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1443 	if (debug_pagealloc_enabled_static())
1444 		flush_tlb_kernel_range(va->va_start, va->va_end);
1445 
1446 	free_vmap_area_noflush(va);
1447 }
1448 
find_vmap_area(unsigned long addr)1449 static struct vmap_area *find_vmap_area(unsigned long addr)
1450 {
1451 	struct vmap_area *va;
1452 
1453 	spin_lock(&vmap_area_lock);
1454 	va = __find_vmap_area(addr);
1455 	spin_unlock(&vmap_area_lock);
1456 
1457 	return va;
1458 }
1459 
1460 /*** Per cpu kva allocator ***/
1461 
1462 /*
1463  * vmap space is limited especially on 32 bit architectures. Ensure there is
1464  * room for at least 16 percpu vmap blocks per CPU.
1465  */
1466 /*
1467  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1468  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1469  * instead (we just need a rough idea)
1470  */
1471 #if BITS_PER_LONG == 32
1472 #define VMALLOC_SPACE		(128UL*1024*1024)
1473 #else
1474 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1475 #endif
1476 
1477 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1478 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1479 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1480 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1481 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1482 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1483 #define VMAP_BBMAP_BITS		\
1484 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1485 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1486 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1487 
1488 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1489 
1490 struct vmap_block_queue {
1491 	spinlock_t lock;
1492 	struct list_head free;
1493 };
1494 
1495 struct vmap_block {
1496 	spinlock_t lock;
1497 	struct vmap_area *va;
1498 	unsigned long free, dirty;
1499 	unsigned long dirty_min, dirty_max; /*< dirty range */
1500 	struct list_head free_list;
1501 	struct rcu_head rcu_head;
1502 	struct list_head purge;
1503 };
1504 
1505 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1506 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1507 
1508 /*
1509  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1510  * in the free path. Could get rid of this if we change the API to return a
1511  * "cookie" from alloc, to be passed to free. But no big deal yet.
1512  */
1513 static DEFINE_XARRAY(vmap_blocks);
1514 
1515 /*
1516  * We should probably have a fallback mechanism to allocate virtual memory
1517  * out of partially filled vmap blocks. However vmap block sizing should be
1518  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1519  * big problem.
1520  */
1521 
addr_to_vb_idx(unsigned long addr)1522 static unsigned long addr_to_vb_idx(unsigned long addr)
1523 {
1524 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1525 	addr /= VMAP_BLOCK_SIZE;
1526 	return addr;
1527 }
1528 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)1529 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1530 {
1531 	unsigned long addr;
1532 
1533 	addr = va_start + (pages_off << PAGE_SHIFT);
1534 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1535 	return (void *)addr;
1536 }
1537 
1538 /**
1539  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1540  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1541  * @order:    how many 2^order pages should be occupied in newly allocated block
1542  * @gfp_mask: flags for the page level allocator
1543  *
1544  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1545  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)1546 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1547 {
1548 	struct vmap_block_queue *vbq;
1549 	struct vmap_block *vb;
1550 	struct vmap_area *va;
1551 	unsigned long vb_idx;
1552 	int node, err;
1553 	void *vaddr;
1554 
1555 	node = numa_node_id();
1556 
1557 	vb = kmalloc_node(sizeof(struct vmap_block),
1558 			gfp_mask & GFP_RECLAIM_MASK, node);
1559 	if (unlikely(!vb))
1560 		return ERR_PTR(-ENOMEM);
1561 
1562 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1563 					VMALLOC_START, VMALLOC_END,
1564 					node, gfp_mask);
1565 	if (IS_ERR(va)) {
1566 		kfree(vb);
1567 		return ERR_CAST(va);
1568 	}
1569 
1570 	vaddr = vmap_block_vaddr(va->va_start, 0);
1571 	spin_lock_init(&vb->lock);
1572 	vb->va = va;
1573 	/* At least something should be left free */
1574 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1575 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1576 	vb->dirty = 0;
1577 	vb->dirty_min = VMAP_BBMAP_BITS;
1578 	vb->dirty_max = 0;
1579 	INIT_LIST_HEAD(&vb->free_list);
1580 
1581 	vb_idx = addr_to_vb_idx(va->va_start);
1582 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1583 	if (err) {
1584 		kfree(vb);
1585 		free_vmap_area(va);
1586 		return ERR_PTR(err);
1587 	}
1588 
1589 	vbq = &get_cpu_var(vmap_block_queue);
1590 	spin_lock(&vbq->lock);
1591 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1592 	spin_unlock(&vbq->lock);
1593 	put_cpu_var(vmap_block_queue);
1594 
1595 	return vaddr;
1596 }
1597 
free_vmap_block(struct vmap_block * vb)1598 static void free_vmap_block(struct vmap_block *vb)
1599 {
1600 	struct vmap_block *tmp;
1601 
1602 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1603 	BUG_ON(tmp != vb);
1604 
1605 	free_vmap_area_noflush(vb->va);
1606 	kfree_rcu(vb, rcu_head);
1607 }
1608 
purge_fragmented_blocks(int cpu)1609 static void purge_fragmented_blocks(int cpu)
1610 {
1611 	LIST_HEAD(purge);
1612 	struct vmap_block *vb;
1613 	struct vmap_block *n_vb;
1614 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1615 
1616 	rcu_read_lock();
1617 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1618 
1619 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1620 			continue;
1621 
1622 		spin_lock(&vb->lock);
1623 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1624 			vb->free = 0; /* prevent further allocs after releasing lock */
1625 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1626 			vb->dirty_min = 0;
1627 			vb->dirty_max = VMAP_BBMAP_BITS;
1628 			spin_lock(&vbq->lock);
1629 			list_del_rcu(&vb->free_list);
1630 			spin_unlock(&vbq->lock);
1631 			spin_unlock(&vb->lock);
1632 			list_add_tail(&vb->purge, &purge);
1633 		} else
1634 			spin_unlock(&vb->lock);
1635 	}
1636 	rcu_read_unlock();
1637 
1638 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1639 		list_del(&vb->purge);
1640 		free_vmap_block(vb);
1641 	}
1642 }
1643 
purge_fragmented_blocks_allcpus(void)1644 static void purge_fragmented_blocks_allcpus(void)
1645 {
1646 	int cpu;
1647 
1648 	for_each_possible_cpu(cpu)
1649 		purge_fragmented_blocks(cpu);
1650 }
1651 
vb_alloc(unsigned long size,gfp_t gfp_mask)1652 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1653 {
1654 	struct vmap_block_queue *vbq;
1655 	struct vmap_block *vb;
1656 	void *vaddr = NULL;
1657 	unsigned int order;
1658 
1659 	BUG_ON(offset_in_page(size));
1660 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1661 	if (WARN_ON(size == 0)) {
1662 		/*
1663 		 * Allocating 0 bytes isn't what caller wants since
1664 		 * get_order(0) returns funny result. Just warn and terminate
1665 		 * early.
1666 		 */
1667 		return NULL;
1668 	}
1669 	order = get_order(size);
1670 
1671 	rcu_read_lock();
1672 	vbq = &get_cpu_var(vmap_block_queue);
1673 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1674 		unsigned long pages_off;
1675 
1676 		spin_lock(&vb->lock);
1677 		if (vb->free < (1UL << order)) {
1678 			spin_unlock(&vb->lock);
1679 			continue;
1680 		}
1681 
1682 		pages_off = VMAP_BBMAP_BITS - vb->free;
1683 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1684 		vb->free -= 1UL << order;
1685 		if (vb->free == 0) {
1686 			spin_lock(&vbq->lock);
1687 			list_del_rcu(&vb->free_list);
1688 			spin_unlock(&vbq->lock);
1689 		}
1690 
1691 		spin_unlock(&vb->lock);
1692 		break;
1693 	}
1694 
1695 	put_cpu_var(vmap_block_queue);
1696 	rcu_read_unlock();
1697 
1698 	/* Allocate new block if nothing was found */
1699 	if (!vaddr)
1700 		vaddr = new_vmap_block(order, gfp_mask);
1701 
1702 	return vaddr;
1703 }
1704 
vb_free(unsigned long addr,unsigned long size)1705 static void vb_free(unsigned long addr, unsigned long size)
1706 {
1707 	unsigned long offset;
1708 	unsigned int order;
1709 	struct vmap_block *vb;
1710 
1711 	BUG_ON(offset_in_page(size));
1712 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1713 
1714 	flush_cache_vunmap(addr, addr + size);
1715 
1716 	order = get_order(size);
1717 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1718 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1719 
1720 	unmap_kernel_range_noflush(addr, size);
1721 
1722 	if (debug_pagealloc_enabled_static())
1723 		flush_tlb_kernel_range(addr, addr + size);
1724 
1725 	spin_lock(&vb->lock);
1726 
1727 	/* Expand dirty range */
1728 	vb->dirty_min = min(vb->dirty_min, offset);
1729 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1730 
1731 	vb->dirty += 1UL << order;
1732 	if (vb->dirty == VMAP_BBMAP_BITS) {
1733 		BUG_ON(vb->free);
1734 		spin_unlock(&vb->lock);
1735 		free_vmap_block(vb);
1736 	} else
1737 		spin_unlock(&vb->lock);
1738 }
1739 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)1740 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1741 {
1742 	int cpu;
1743 
1744 	if (unlikely(!vmap_initialized))
1745 		return;
1746 
1747 	might_sleep();
1748 
1749 	for_each_possible_cpu(cpu) {
1750 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1751 		struct vmap_block *vb;
1752 
1753 		rcu_read_lock();
1754 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1755 			spin_lock(&vb->lock);
1756 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
1757 				unsigned long va_start = vb->va->va_start;
1758 				unsigned long s, e;
1759 
1760 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1761 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1762 
1763 				start = min(s, start);
1764 				end   = max(e, end);
1765 
1766 				flush = 1;
1767 			}
1768 			spin_unlock(&vb->lock);
1769 		}
1770 		rcu_read_unlock();
1771 	}
1772 
1773 	mutex_lock(&vmap_purge_lock);
1774 	purge_fragmented_blocks_allcpus();
1775 	if (!__purge_vmap_area_lazy(start, end) && flush)
1776 		flush_tlb_kernel_range(start, end);
1777 	mutex_unlock(&vmap_purge_lock);
1778 }
1779 
1780 /**
1781  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1782  *
1783  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1784  * to amortize TLB flushing overheads. What this means is that any page you
1785  * have now, may, in a former life, have been mapped into kernel virtual
1786  * address by the vmap layer and so there might be some CPUs with TLB entries
1787  * still referencing that page (additional to the regular 1:1 kernel mapping).
1788  *
1789  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1790  * be sure that none of the pages we have control over will have any aliases
1791  * from the vmap layer.
1792  */
vm_unmap_aliases(void)1793 void vm_unmap_aliases(void)
1794 {
1795 	unsigned long start = ULONG_MAX, end = 0;
1796 	int flush = 0;
1797 
1798 	_vm_unmap_aliases(start, end, flush);
1799 }
1800 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1801 
1802 /**
1803  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1804  * @mem: the pointer returned by vm_map_ram
1805  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1806  */
vm_unmap_ram(const void * mem,unsigned int count)1807 void vm_unmap_ram(const void *mem, unsigned int count)
1808 {
1809 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1810 	unsigned long addr = (unsigned long)mem;
1811 	struct vmap_area *va;
1812 
1813 	might_sleep();
1814 	BUG_ON(!addr);
1815 	BUG_ON(addr < VMALLOC_START);
1816 	BUG_ON(addr > VMALLOC_END);
1817 	BUG_ON(!PAGE_ALIGNED(addr));
1818 
1819 	kasan_poison_vmalloc(mem, size);
1820 
1821 	if (likely(count <= VMAP_MAX_ALLOC)) {
1822 		debug_check_no_locks_freed(mem, size);
1823 		vb_free(addr, size);
1824 		return;
1825 	}
1826 
1827 	va = find_vmap_area(addr);
1828 	BUG_ON(!va);
1829 	debug_check_no_locks_freed((void *)va->va_start,
1830 				    (va->va_end - va->va_start));
1831 	free_unmap_vmap_area(va);
1832 }
1833 EXPORT_SYMBOL(vm_unmap_ram);
1834 
1835 /**
1836  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1837  * @pages: an array of pointers to the pages to be mapped
1838  * @count: number of pages
1839  * @node: prefer to allocate data structures on this node
1840  *
1841  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1842  * faster than vmap so it's good.  But if you mix long-life and short-life
1843  * objects with vm_map_ram(), it could consume lots of address space through
1844  * fragmentation (especially on a 32bit machine).  You could see failures in
1845  * the end.  Please use this function for short-lived objects.
1846  *
1847  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1848  */
vm_map_ram(struct page ** pages,unsigned int count,int node)1849 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1850 {
1851 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1852 	unsigned long addr;
1853 	void *mem;
1854 
1855 	if (likely(count <= VMAP_MAX_ALLOC)) {
1856 		mem = vb_alloc(size, GFP_KERNEL);
1857 		if (IS_ERR(mem))
1858 			return NULL;
1859 		addr = (unsigned long)mem;
1860 	} else {
1861 		struct vmap_area *va;
1862 		va = alloc_vmap_area(size, PAGE_SIZE,
1863 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1864 		if (IS_ERR(va))
1865 			return NULL;
1866 
1867 		addr = va->va_start;
1868 		mem = (void *)addr;
1869 	}
1870 
1871 	kasan_unpoison_vmalloc(mem, size);
1872 
1873 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1874 		vm_unmap_ram(mem, count);
1875 		return NULL;
1876 	}
1877 	return mem;
1878 }
1879 EXPORT_SYMBOL(vm_map_ram);
1880 
1881 static struct vm_struct *vmlist __initdata;
1882 
1883 /**
1884  * vm_area_add_early - add vmap area early during boot
1885  * @vm: vm_struct to add
1886  *
1887  * This function is used to add fixed kernel vm area to vmlist before
1888  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1889  * should contain proper values and the other fields should be zero.
1890  *
1891  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1892  */
vm_area_add_early(struct vm_struct * vm)1893 void __init vm_area_add_early(struct vm_struct *vm)
1894 {
1895 	struct vm_struct *tmp, **p;
1896 
1897 	BUG_ON(vmap_initialized);
1898 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1899 		if (tmp->addr >= vm->addr) {
1900 			BUG_ON(tmp->addr < vm->addr + vm->size);
1901 			break;
1902 		} else
1903 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1904 	}
1905 	vm->next = *p;
1906 	*p = vm;
1907 }
1908 
1909 /**
1910  * vm_area_register_early - register vmap area early during boot
1911  * @vm: vm_struct to register
1912  * @align: requested alignment
1913  *
1914  * This function is used to register kernel vm area before
1915  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1916  * proper values on entry and other fields should be zero.  On return,
1917  * vm->addr contains the allocated address.
1918  *
1919  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1920  */
vm_area_register_early(struct vm_struct * vm,size_t align)1921 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1922 {
1923 	static size_t vm_init_off __initdata;
1924 	unsigned long addr;
1925 
1926 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1927 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1928 
1929 	vm->addr = (void *)addr;
1930 
1931 	vm_area_add_early(vm);
1932 }
1933 
vmap_init_free_space(void)1934 static void vmap_init_free_space(void)
1935 {
1936 	unsigned long vmap_start = 1;
1937 	const unsigned long vmap_end = ULONG_MAX;
1938 	struct vmap_area *busy, *free;
1939 
1940 	/*
1941 	 *     B     F     B     B     B     F
1942 	 * -|-----|.....|-----|-----|-----|.....|-
1943 	 *  |           The KVA space           |
1944 	 *  |<--------------------------------->|
1945 	 */
1946 	list_for_each_entry(busy, &vmap_area_list, list) {
1947 		if (busy->va_start - vmap_start > 0) {
1948 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1949 			if (!WARN_ON_ONCE(!free)) {
1950 				free->va_start = vmap_start;
1951 				free->va_end = busy->va_start;
1952 
1953 				insert_vmap_area_augment(free, NULL,
1954 					&free_vmap_area_root,
1955 						&free_vmap_area_list);
1956 			}
1957 		}
1958 
1959 		vmap_start = busy->va_end;
1960 	}
1961 
1962 	if (vmap_end - vmap_start > 0) {
1963 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1964 		if (!WARN_ON_ONCE(!free)) {
1965 			free->va_start = vmap_start;
1966 			free->va_end = vmap_end;
1967 
1968 			insert_vmap_area_augment(free, NULL,
1969 				&free_vmap_area_root,
1970 					&free_vmap_area_list);
1971 		}
1972 	}
1973 }
1974 
vmalloc_init(void)1975 void __init vmalloc_init(void)
1976 {
1977 	struct vmap_area *va;
1978 	struct vm_struct *tmp;
1979 	int i;
1980 
1981 	/*
1982 	 * Create the cache for vmap_area objects.
1983 	 */
1984 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1985 
1986 	for_each_possible_cpu(i) {
1987 		struct vmap_block_queue *vbq;
1988 		struct vfree_deferred *p;
1989 
1990 		vbq = &per_cpu(vmap_block_queue, i);
1991 		spin_lock_init(&vbq->lock);
1992 		INIT_LIST_HEAD(&vbq->free);
1993 		p = &per_cpu(vfree_deferred, i);
1994 		init_llist_head(&p->list);
1995 		INIT_WORK(&p->wq, free_work);
1996 	}
1997 
1998 	/* Import existing vmlist entries. */
1999 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2000 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2001 		if (WARN_ON_ONCE(!va))
2002 			continue;
2003 
2004 		va->va_start = (unsigned long)tmp->addr;
2005 		va->va_end = va->va_start + tmp->size;
2006 		va->vm = tmp;
2007 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2008 	}
2009 
2010 	/*
2011 	 * Now we can initialize a free vmap space.
2012 	 */
2013 	vmap_init_free_space();
2014 	vmap_initialized = true;
2015 }
2016 
2017 /**
2018  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2019  * @addr: start of the VM area to unmap
2020  * @size: size of the VM area to unmap
2021  *
2022  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2023  * the unmapping and tlb after.
2024  */
unmap_kernel_range(unsigned long addr,unsigned long size)2025 void unmap_kernel_range(unsigned long addr, unsigned long size)
2026 {
2027 	unsigned long end = addr + size;
2028 
2029 	flush_cache_vunmap(addr, end);
2030 	unmap_kernel_range_noflush(addr, size);
2031 	flush_tlb_kernel_range(addr, end);
2032 }
2033 
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2034 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2035 	struct vmap_area *va, unsigned long flags, const void *caller)
2036 {
2037 	vm->flags = flags;
2038 	vm->addr = (void *)va->va_start;
2039 	vm->size = va->va_end - va->va_start;
2040 	vm->caller = caller;
2041 	va->vm = vm;
2042 	trace_android_vh_save_vmalloc_stack(flags, vm);
2043 }
2044 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2045 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2046 			      unsigned long flags, const void *caller)
2047 {
2048 	spin_lock(&vmap_area_lock);
2049 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2050 	spin_unlock(&vmap_area_lock);
2051 }
2052 
clear_vm_uninitialized_flag(struct vm_struct * vm)2053 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2054 {
2055 	/*
2056 	 * Before removing VM_UNINITIALIZED,
2057 	 * we should make sure that vm has proper values.
2058 	 * Pair with smp_rmb() in show_numa_info().
2059 	 */
2060 	smp_wmb();
2061 	vm->flags &= ~VM_UNINITIALIZED;
2062 }
2063 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2064 static struct vm_struct *__get_vm_area_node(unsigned long size,
2065 		unsigned long align, unsigned long flags, unsigned long start,
2066 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2067 {
2068 	struct vmap_area *va;
2069 	struct vm_struct *area;
2070 	unsigned long requested_size = size;
2071 
2072 	BUG_ON(in_interrupt());
2073 	size = PAGE_ALIGN(size);
2074 	if (unlikely(!size))
2075 		return NULL;
2076 
2077 	if (flags & VM_IOREMAP)
2078 		align = 1ul << clamp_t(int, get_count_order_long(size),
2079 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2080 
2081 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2082 	if (unlikely(!area))
2083 		return NULL;
2084 
2085 	if (!(flags & VM_NO_GUARD))
2086 		size += PAGE_SIZE;
2087 
2088 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2089 	if (IS_ERR(va)) {
2090 		kfree(area);
2091 		return NULL;
2092 	}
2093 
2094 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2095 
2096 	setup_vmalloc_vm(area, va, flags, caller);
2097 
2098 	return area;
2099 }
2100 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2101 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2102 				       unsigned long start, unsigned long end,
2103 				       const void *caller)
2104 {
2105 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2106 				  GFP_KERNEL, caller);
2107 }
2108 EXPORT_SYMBOL_GPL(__get_vm_area_caller);
2109 
2110 /**
2111  * get_vm_area - reserve a contiguous kernel virtual area
2112  * @size:	 size of the area
2113  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2114  *
2115  * Search an area of @size in the kernel virtual mapping area,
2116  * and reserved it for out purposes.  Returns the area descriptor
2117  * on success or %NULL on failure.
2118  *
2119  * Return: the area descriptor on success or %NULL on failure.
2120  */
get_vm_area(unsigned long size,unsigned long flags)2121 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2122 {
2123 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2124 				  NUMA_NO_NODE, GFP_KERNEL,
2125 				  __builtin_return_address(0));
2126 }
2127 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2128 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2129 				const void *caller)
2130 {
2131 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2132 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2133 }
2134 
2135 /**
2136  * find_vm_area - find a continuous kernel virtual area
2137  * @addr:	  base address
2138  *
2139  * Search for the kernel VM area starting at @addr, and return it.
2140  * It is up to the caller to do all required locking to keep the returned
2141  * pointer valid.
2142  *
2143  * Return: the area descriptor on success or %NULL on failure.
2144  */
find_vm_area(const void * addr)2145 struct vm_struct *find_vm_area(const void *addr)
2146 {
2147 	struct vmap_area *va;
2148 
2149 	va = find_vmap_area((unsigned long)addr);
2150 	if (!va)
2151 		return NULL;
2152 
2153 	return va->vm;
2154 }
2155 
2156 /**
2157  * remove_vm_area - find and remove a continuous kernel virtual area
2158  * @addr:	    base address
2159  *
2160  * Search for the kernel VM area starting at @addr, and remove it.
2161  * This function returns the found VM area, but using it is NOT safe
2162  * on SMP machines, except for its size or flags.
2163  *
2164  * Return: the area descriptor on success or %NULL on failure.
2165  */
remove_vm_area(const void * addr)2166 struct vm_struct *remove_vm_area(const void *addr)
2167 {
2168 	struct vmap_area *va;
2169 
2170 	might_sleep();
2171 
2172 	spin_lock(&vmap_area_lock);
2173 	va = __find_vmap_area((unsigned long)addr);
2174 	if (va && va->vm) {
2175 		struct vm_struct *vm = va->vm;
2176 
2177 		trace_android_vh_remove_vmalloc_stack(vm);
2178 		va->vm = NULL;
2179 		spin_unlock(&vmap_area_lock);
2180 
2181 		kasan_free_shadow(vm);
2182 		free_unmap_vmap_area(va);
2183 
2184 		return vm;
2185 	}
2186 
2187 	spin_unlock(&vmap_area_lock);
2188 	return NULL;
2189 }
2190 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2191 static inline void set_area_direct_map(const struct vm_struct *area,
2192 				       int (*set_direct_map)(struct page *page))
2193 {
2194 	int i;
2195 
2196 	for (i = 0; i < area->nr_pages; i++)
2197 		if (page_address(area->pages[i]))
2198 			set_direct_map(area->pages[i]);
2199 }
2200 
2201 /* Handle removing and resetting vm mappings related to the vm_struct. */
vm_remove_mappings(struct vm_struct * area,int deallocate_pages)2202 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2203 {
2204 	unsigned long start = ULONG_MAX, end = 0;
2205 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2206 	int flush_dmap = 0;
2207 	int i;
2208 
2209 	remove_vm_area(area->addr);
2210 
2211 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2212 	if (!flush_reset)
2213 		return;
2214 
2215 	/*
2216 	 * If not deallocating pages, just do the flush of the VM area and
2217 	 * return.
2218 	 */
2219 	if (!deallocate_pages) {
2220 		vm_unmap_aliases();
2221 		return;
2222 	}
2223 
2224 	/*
2225 	 * If execution gets here, flush the vm mapping and reset the direct
2226 	 * map. Find the start and end range of the direct mappings to make sure
2227 	 * the vm_unmap_aliases() flush includes the direct map.
2228 	 */
2229 	for (i = 0; i < area->nr_pages; i++) {
2230 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2231 		if (addr) {
2232 			start = min(addr, start);
2233 			end = max(addr + PAGE_SIZE, end);
2234 			flush_dmap = 1;
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * Set direct map to something invalid so that it won't be cached if
2240 	 * there are any accesses after the TLB flush, then flush the TLB and
2241 	 * reset the direct map permissions to the default.
2242 	 */
2243 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2244 	_vm_unmap_aliases(start, end, flush_dmap);
2245 	set_area_direct_map(area, set_direct_map_default_noflush);
2246 }
2247 
__vunmap(const void * addr,int deallocate_pages)2248 static void __vunmap(const void *addr, int deallocate_pages)
2249 {
2250 	struct vm_struct *area;
2251 
2252 	if (!addr)
2253 		return;
2254 
2255 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2256 			addr))
2257 		return;
2258 
2259 	area = find_vm_area(addr);
2260 	if (unlikely(!area)) {
2261 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2262 				addr);
2263 		return;
2264 	}
2265 
2266 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2267 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2268 
2269 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2270 
2271 	vm_remove_mappings(area, deallocate_pages);
2272 
2273 	if (deallocate_pages) {
2274 		int i;
2275 
2276 		for (i = 0; i < area->nr_pages; i++) {
2277 			struct page *page = area->pages[i];
2278 
2279 			BUG_ON(!page);
2280 			__free_pages(page, 0);
2281 		}
2282 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2283 
2284 		kvfree(area->pages);
2285 	}
2286 
2287 	kfree(area);
2288 	return;
2289 }
2290 
__vfree_deferred(const void * addr)2291 static inline void __vfree_deferred(const void *addr)
2292 {
2293 	/*
2294 	 * Use raw_cpu_ptr() because this can be called from preemptible
2295 	 * context. Preemption is absolutely fine here, because the llist_add()
2296 	 * implementation is lockless, so it works even if we are adding to
2297 	 * another cpu's list. schedule_work() should be fine with this too.
2298 	 */
2299 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2300 
2301 	if (llist_add((struct llist_node *)addr, &p->list))
2302 		schedule_work(&p->wq);
2303 }
2304 
2305 /**
2306  * vfree_atomic - release memory allocated by vmalloc()
2307  * @addr:	  memory base address
2308  *
2309  * This one is just like vfree() but can be called in any atomic context
2310  * except NMIs.
2311  */
vfree_atomic(const void * addr)2312 void vfree_atomic(const void *addr)
2313 {
2314 	BUG_ON(in_nmi());
2315 
2316 	kmemleak_free(addr);
2317 
2318 	if (!addr)
2319 		return;
2320 	__vfree_deferred(addr);
2321 }
2322 
__vfree(const void * addr)2323 static void __vfree(const void *addr)
2324 {
2325 	if (unlikely(in_interrupt()))
2326 		__vfree_deferred(addr);
2327 	else
2328 		__vunmap(addr, 1);
2329 }
2330 
2331 /**
2332  * vfree - Release memory allocated by vmalloc()
2333  * @addr:  Memory base address
2334  *
2335  * Free the virtually continuous memory area starting at @addr, as obtained
2336  * from one of the vmalloc() family of APIs.  This will usually also free the
2337  * physical memory underlying the virtual allocation, but that memory is
2338  * reference counted, so it will not be freed until the last user goes away.
2339  *
2340  * If @addr is NULL, no operation is performed.
2341  *
2342  * Context:
2343  * May sleep if called *not* from interrupt context.
2344  * Must not be called in NMI context (strictly speaking, it could be
2345  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2346  * conventions for vfree() arch-depenedent would be a really bad idea).
2347  */
vfree(const void * addr)2348 void vfree(const void *addr)
2349 {
2350 	BUG_ON(in_nmi());
2351 
2352 	kmemleak_free(addr);
2353 
2354 	might_sleep_if(!in_interrupt());
2355 
2356 	if (!addr)
2357 		return;
2358 
2359 	__vfree(addr);
2360 }
2361 EXPORT_SYMBOL(vfree);
2362 
2363 /**
2364  * vunmap - release virtual mapping obtained by vmap()
2365  * @addr:   memory base address
2366  *
2367  * Free the virtually contiguous memory area starting at @addr,
2368  * which was created from the page array passed to vmap().
2369  *
2370  * Must not be called in interrupt context.
2371  */
vunmap(const void * addr)2372 void vunmap(const void *addr)
2373 {
2374 	BUG_ON(in_interrupt());
2375 	might_sleep();
2376 	if (addr)
2377 		__vunmap(addr, 0);
2378 }
2379 EXPORT_SYMBOL(vunmap);
2380 
2381 /**
2382  * vmap - map an array of pages into virtually contiguous space
2383  * @pages: array of page pointers
2384  * @count: number of pages to map
2385  * @flags: vm_area->flags
2386  * @prot: page protection for the mapping
2387  *
2388  * Maps @count pages from @pages into contiguous kernel virtual space.
2389  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2390  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2391  * are transferred from the caller to vmap(), and will be freed / dropped when
2392  * vfree() is called on the return value.
2393  *
2394  * Return: the address of the area or %NULL on failure
2395  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2396 void *vmap(struct page **pages, unsigned int count,
2397 	   unsigned long flags, pgprot_t prot)
2398 {
2399 	struct vm_struct *area;
2400 	unsigned long size;		/* In bytes */
2401 
2402 	might_sleep();
2403 
2404 	if (count > totalram_pages())
2405 		return NULL;
2406 
2407 	size = (unsigned long)count << PAGE_SHIFT;
2408 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2409 	if (!area)
2410 		return NULL;
2411 
2412 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2413 			pages) < 0) {
2414 		vunmap(area->addr);
2415 		return NULL;
2416 	}
2417 
2418 	if (flags & VM_MAP_PUT_PAGES) {
2419 		area->pages = pages;
2420 		area->nr_pages = count;
2421 	}
2422 	return area->addr;
2423 }
2424 EXPORT_SYMBOL(vmap);
2425 
2426 #ifdef CONFIG_VMAP_PFN
2427 struct vmap_pfn_data {
2428 	unsigned long	*pfns;
2429 	pgprot_t	prot;
2430 	unsigned int	idx;
2431 };
2432 
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2433 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2434 {
2435 	struct vmap_pfn_data *data = private;
2436 
2437 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2438 		return -EINVAL;
2439 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2440 	return 0;
2441 }
2442 
2443 /**
2444  * vmap_pfn - map an array of PFNs into virtually contiguous space
2445  * @pfns: array of PFNs
2446  * @count: number of pages to map
2447  * @prot: page protection for the mapping
2448  *
2449  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2450  * the start address of the mapping.
2451  */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2452 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2453 {
2454 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2455 	struct vm_struct *area;
2456 
2457 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2458 			__builtin_return_address(0));
2459 	if (!area)
2460 		return NULL;
2461 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2462 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2463 		free_vm_area(area);
2464 		return NULL;
2465 	}
2466 
2467 	flush_cache_vmap((unsigned long)area->addr,
2468 			 (unsigned long)area->addr + count * PAGE_SIZE);
2469 
2470 	return area->addr;
2471 }
2472 EXPORT_SYMBOL_GPL(vmap_pfn);
2473 #endif /* CONFIG_VMAP_PFN */
2474 
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)2475 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2476 				 pgprot_t prot, int node)
2477 {
2478 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2479 	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2480 	unsigned int array_size = nr_pages * sizeof(struct page *), i;
2481 	struct page **pages;
2482 
2483 	gfp_mask |= __GFP_NOWARN;
2484 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2485 		gfp_mask |= __GFP_HIGHMEM;
2486 
2487 	/* Please note that the recursion is strictly bounded. */
2488 	if (array_size > PAGE_SIZE) {
2489 		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2490 					area->caller);
2491 	} else {
2492 		pages = kmalloc_node(array_size, nested_gfp, node);
2493 	}
2494 
2495 	if (!pages) {
2496 		remove_vm_area(area->addr);
2497 		kfree(area);
2498 		return NULL;
2499 	}
2500 
2501 	area->pages = pages;
2502 	area->nr_pages = nr_pages;
2503 
2504 	for (i = 0; i < area->nr_pages; i++) {
2505 		struct page *page;
2506 
2507 		if (node == NUMA_NO_NODE)
2508 			page = alloc_page(gfp_mask);
2509 		else
2510 			page = alloc_pages_node(node, gfp_mask, 0);
2511 
2512 		if (unlikely(!page)) {
2513 			/* Successfully allocated i pages, free them in __vfree() */
2514 			area->nr_pages = i;
2515 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2516 			goto fail;
2517 		}
2518 		area->pages[i] = page;
2519 		if (gfpflags_allow_blocking(gfp_mask))
2520 			cond_resched();
2521 	}
2522 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2523 
2524 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2525 			prot, pages) < 0)
2526 		goto fail;
2527 
2528 	return area->addr;
2529 
2530 fail:
2531 	warn_alloc(gfp_mask, NULL,
2532 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533 			  (area->nr_pages*PAGE_SIZE), area->size);
2534 	__vfree(area->addr);
2535 	return NULL;
2536 }
2537 
2538 /**
2539  * __vmalloc_node_range - allocate virtually contiguous memory
2540  * @size:		  allocation size
2541  * @align:		  desired alignment
2542  * @start:		  vm area range start
2543  * @end:		  vm area range end
2544  * @gfp_mask:		  flags for the page level allocator
2545  * @prot:		  protection mask for the allocated pages
2546  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2547  * @node:		  node to use for allocation or NUMA_NO_NODE
2548  * @caller:		  caller's return address
2549  *
2550  * Allocate enough pages to cover @size from the page level
2551  * allocator with @gfp_mask flags.  Map them into contiguous
2552  * kernel virtual space, using a pagetable protection of @prot.
2553  *
2554  * Return: the address of the area or %NULL on failure
2555  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)2556 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2557 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2558 			pgprot_t prot, unsigned long vm_flags, int node,
2559 			const void *caller)
2560 {
2561 	struct vm_struct *area;
2562 	void *addr;
2563 	unsigned long real_size = size;
2564 
2565 	size = PAGE_ALIGN(size);
2566 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2567 		goto fail;
2568 
2569 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2570 				vm_flags, start, end, node, gfp_mask, caller);
2571 	if (!area)
2572 		goto fail;
2573 
2574 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2575 	if (!addr)
2576 		return NULL;
2577 
2578 	/*
2579 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 	 * flag. It means that vm_struct is not fully initialized.
2581 	 * Now, it is fully initialized, so remove this flag here.
2582 	 */
2583 	clear_vm_uninitialized_flag(area);
2584 
2585 	kmemleak_vmalloc(area, size, gfp_mask);
2586 
2587 	return addr;
2588 
2589 fail:
2590 	warn_alloc(gfp_mask, NULL,
2591 			  "vmalloc: allocation failure: %lu bytes", real_size);
2592 	return NULL;
2593 }
2594 
2595 /**
2596  * __vmalloc_node - allocate virtually contiguous memory
2597  * @size:	    allocation size
2598  * @align:	    desired alignment
2599  * @gfp_mask:	    flags for the page level allocator
2600  * @node:	    node to use for allocation or NUMA_NO_NODE
2601  * @caller:	    caller's return address
2602  *
2603  * Allocate enough pages to cover @size from the page level allocator with
2604  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2605  *
2606  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607  * and __GFP_NOFAIL are not supported
2608  *
2609  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2610  * with mm people.
2611  *
2612  * Return: pointer to the allocated memory or %NULL on error
2613  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)2614 void *__vmalloc_node(unsigned long size, unsigned long align,
2615 			    gfp_t gfp_mask, int node, const void *caller)
2616 {
2617 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2618 				gfp_mask, PAGE_KERNEL, 0, node, caller);
2619 }
2620 /*
2621  * This is only for performance analysis of vmalloc and stress purpose.
2622  * It is required by vmalloc test module, therefore do not use it other
2623  * than that.
2624  */
2625 #ifdef CONFIG_TEST_VMALLOC_MODULE
2626 EXPORT_SYMBOL_GPL(__vmalloc_node);
2627 #endif
2628 
__vmalloc(unsigned long size,gfp_t gfp_mask)2629 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2630 {
2631 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2632 				__builtin_return_address(0));
2633 }
2634 EXPORT_SYMBOL(__vmalloc);
2635 
2636 /**
2637  * vmalloc - allocate virtually contiguous memory
2638  * @size:    allocation size
2639  *
2640  * Allocate enough pages to cover @size from the page level
2641  * allocator and map them into contiguous kernel virtual space.
2642  *
2643  * For tight control over page level allocator and protection flags
2644  * use __vmalloc() instead.
2645  *
2646  * Return: pointer to the allocated memory or %NULL on error
2647  */
vmalloc(unsigned long size)2648 void *vmalloc(unsigned long size)
2649 {
2650 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2651 				__builtin_return_address(0));
2652 }
2653 EXPORT_SYMBOL(vmalloc);
2654 
2655 /**
2656  * vzalloc - allocate virtually contiguous memory with zero fill
2657  * @size:    allocation size
2658  *
2659  * Allocate enough pages to cover @size from the page level
2660  * allocator and map them into contiguous kernel virtual space.
2661  * The memory allocated is set to zero.
2662  *
2663  * For tight control over page level allocator and protection flags
2664  * use __vmalloc() instead.
2665  *
2666  * Return: pointer to the allocated memory or %NULL on error
2667  */
vzalloc(unsigned long size)2668 void *vzalloc(unsigned long size)
2669 {
2670 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2671 				__builtin_return_address(0));
2672 }
2673 EXPORT_SYMBOL(vzalloc);
2674 
2675 /**
2676  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677  * @size: allocation size
2678  *
2679  * The resulting memory area is zeroed so it can be mapped to userspace
2680  * without leaking data.
2681  *
2682  * Return: pointer to the allocated memory or %NULL on error
2683  */
vmalloc_user(unsigned long size)2684 void *vmalloc_user(unsigned long size)
2685 {
2686 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2687 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2688 				    VM_USERMAP, NUMA_NO_NODE,
2689 				    __builtin_return_address(0));
2690 }
2691 EXPORT_SYMBOL(vmalloc_user);
2692 
2693 /**
2694  * vmalloc_node - allocate memory on a specific node
2695  * @size:	  allocation size
2696  * @node:	  numa node
2697  *
2698  * Allocate enough pages to cover @size from the page level
2699  * allocator and map them into contiguous kernel virtual space.
2700  *
2701  * For tight control over page level allocator and protection flags
2702  * use __vmalloc() instead.
2703  *
2704  * Return: pointer to the allocated memory or %NULL on error
2705  */
vmalloc_node(unsigned long size,int node)2706 void *vmalloc_node(unsigned long size, int node)
2707 {
2708 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2709 			__builtin_return_address(0));
2710 }
2711 EXPORT_SYMBOL(vmalloc_node);
2712 
2713 /**
2714  * vzalloc_node - allocate memory on a specific node with zero fill
2715  * @size:	allocation size
2716  * @node:	numa node
2717  *
2718  * Allocate enough pages to cover @size from the page level
2719  * allocator and map them into contiguous kernel virtual space.
2720  * The memory allocated is set to zero.
2721  *
2722  * Return: pointer to the allocated memory or %NULL on error
2723  */
vzalloc_node(unsigned long size,int node)2724 void *vzalloc_node(unsigned long size, int node)
2725 {
2726 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2727 				__builtin_return_address(0));
2728 }
2729 EXPORT_SYMBOL(vzalloc_node);
2730 
2731 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2735 #else
2736 /*
2737  * 64b systems should always have either DMA or DMA32 zones. For others
2738  * GFP_DMA32 should do the right thing and use the normal zone.
2739  */
2740 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2741 #endif
2742 
2743 /**
2744  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745  * @size:	allocation size
2746  *
2747  * Allocate enough 32bit PA addressable pages to cover @size from the
2748  * page level allocator and map them into contiguous kernel virtual space.
2749  *
2750  * Return: pointer to the allocated memory or %NULL on error
2751  */
vmalloc_32(unsigned long size)2752 void *vmalloc_32(unsigned long size)
2753 {
2754 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2755 			__builtin_return_address(0));
2756 }
2757 EXPORT_SYMBOL(vmalloc_32);
2758 
2759 /**
2760  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761  * @size:	     allocation size
2762  *
2763  * The resulting memory area is 32bit addressable and zeroed so it can be
2764  * mapped to userspace without leaking data.
2765  *
2766  * Return: pointer to the allocated memory or %NULL on error
2767  */
vmalloc_32_user(unsigned long size)2768 void *vmalloc_32_user(unsigned long size)
2769 {
2770 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2771 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2772 				    VM_USERMAP, NUMA_NO_NODE,
2773 				    __builtin_return_address(0));
2774 }
2775 EXPORT_SYMBOL(vmalloc_32_user);
2776 
2777 /*
2778  * small helper routine , copy contents to buf from addr.
2779  * If the page is not present, fill zero.
2780  */
2781 
aligned_vread(char * buf,char * addr,unsigned long count)2782 static int aligned_vread(char *buf, char *addr, unsigned long count)
2783 {
2784 	struct page *p;
2785 	int copied = 0;
2786 
2787 	while (count) {
2788 		unsigned long offset, length;
2789 
2790 		offset = offset_in_page(addr);
2791 		length = PAGE_SIZE - offset;
2792 		if (length > count)
2793 			length = count;
2794 		p = vmalloc_to_page(addr);
2795 		/*
2796 		 * To do safe access to this _mapped_ area, we need
2797 		 * lock. But adding lock here means that we need to add
2798 		 * overhead of vmalloc()/vfree() calles for this _debug_
2799 		 * interface, rarely used. Instead of that, we'll use
2800 		 * kmap() and get small overhead in this access function.
2801 		 */
2802 		if (p) {
2803 			/*
2804 			 * we can expect USER0 is not used (see vread/vwrite's
2805 			 * function description)
2806 			 */
2807 			void *map = kmap_atomic(p);
2808 			memcpy(buf, map + offset, length);
2809 			kunmap_atomic(map);
2810 		} else
2811 			memset(buf, 0, length);
2812 
2813 		addr += length;
2814 		buf += length;
2815 		copied += length;
2816 		count -= length;
2817 	}
2818 	return copied;
2819 }
2820 
aligned_vwrite(char * buf,char * addr,unsigned long count)2821 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2822 {
2823 	struct page *p;
2824 	int copied = 0;
2825 
2826 	while (count) {
2827 		unsigned long offset, length;
2828 
2829 		offset = offset_in_page(addr);
2830 		length = PAGE_SIZE - offset;
2831 		if (length > count)
2832 			length = count;
2833 		p = vmalloc_to_page(addr);
2834 		/*
2835 		 * To do safe access to this _mapped_ area, we need
2836 		 * lock. But adding lock here means that we need to add
2837 		 * overhead of vmalloc()/vfree() calles for this _debug_
2838 		 * interface, rarely used. Instead of that, we'll use
2839 		 * kmap() and get small overhead in this access function.
2840 		 */
2841 		if (p) {
2842 			/*
2843 			 * we can expect USER0 is not used (see vread/vwrite's
2844 			 * function description)
2845 			 */
2846 			void *map = kmap_atomic(p);
2847 			memcpy(map + offset, buf, length);
2848 			kunmap_atomic(map);
2849 		}
2850 		addr += length;
2851 		buf += length;
2852 		copied += length;
2853 		count -= length;
2854 	}
2855 	return copied;
2856 }
2857 
2858 /**
2859  * vread() - read vmalloc area in a safe way.
2860  * @buf:     buffer for reading data
2861  * @addr:    vm address.
2862  * @count:   number of bytes to be read.
2863  *
2864  * This function checks that addr is a valid vmalloc'ed area, and
2865  * copy data from that area to a given buffer. If the given memory range
2866  * of [addr...addr+count) includes some valid address, data is copied to
2867  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868  * IOREMAP area is treated as memory hole and no copy is done.
2869  *
2870  * If [addr...addr+count) doesn't includes any intersects with alive
2871  * vm_struct area, returns 0. @buf should be kernel's buffer.
2872  *
2873  * Note: In usual ops, vread() is never necessary because the caller
2874  * should know vmalloc() area is valid and can use memcpy().
2875  * This is for routines which have to access vmalloc area without
2876  * any information, as /dev/kmem.
2877  *
2878  * Return: number of bytes for which addr and buf should be increased
2879  * (same number as @count) or %0 if [addr...addr+count) doesn't
2880  * include any intersection with valid vmalloc area
2881  */
vread(char * buf,char * addr,unsigned long count)2882 long vread(char *buf, char *addr, unsigned long count)
2883 {
2884 	struct vmap_area *va;
2885 	struct vm_struct *vm;
2886 	char *vaddr, *buf_start = buf;
2887 	unsigned long buflen = count;
2888 	unsigned long n;
2889 
2890 	/* Don't allow overflow */
2891 	if ((unsigned long) addr + count < count)
2892 		count = -(unsigned long) addr;
2893 
2894 	spin_lock(&vmap_area_lock);
2895 	list_for_each_entry(va, &vmap_area_list, list) {
2896 		if (!count)
2897 			break;
2898 
2899 		if (!va->vm)
2900 			continue;
2901 
2902 		vm = va->vm;
2903 		vaddr = (char *) vm->addr;
2904 		if (addr >= vaddr + get_vm_area_size(vm))
2905 			continue;
2906 		while (addr < vaddr) {
2907 			if (count == 0)
2908 				goto finished;
2909 			*buf = '\0';
2910 			buf++;
2911 			addr++;
2912 			count--;
2913 		}
2914 		n = vaddr + get_vm_area_size(vm) - addr;
2915 		if (n > count)
2916 			n = count;
2917 		if (!(vm->flags & VM_IOREMAP))
2918 			aligned_vread(buf, addr, n);
2919 		else /* IOREMAP area is treated as memory hole */
2920 			memset(buf, 0, n);
2921 		buf += n;
2922 		addr += n;
2923 		count -= n;
2924 	}
2925 finished:
2926 	spin_unlock(&vmap_area_lock);
2927 
2928 	if (buf == buf_start)
2929 		return 0;
2930 	/* zero-fill memory holes */
2931 	if (buf != buf_start + buflen)
2932 		memset(buf, 0, buflen - (buf - buf_start));
2933 
2934 	return buflen;
2935 }
2936 
2937 /**
2938  * vwrite() - write vmalloc area in a safe way.
2939  * @buf:      buffer for source data
2940  * @addr:     vm address.
2941  * @count:    number of bytes to be read.
2942  *
2943  * This function checks that addr is a valid vmalloc'ed area, and
2944  * copy data from a buffer to the given addr. If specified range of
2945  * [addr...addr+count) includes some valid address, data is copied from
2946  * proper area of @buf. If there are memory holes, no copy to hole.
2947  * IOREMAP area is treated as memory hole and no copy is done.
2948  *
2949  * If [addr...addr+count) doesn't includes any intersects with alive
2950  * vm_struct area, returns 0. @buf should be kernel's buffer.
2951  *
2952  * Note: In usual ops, vwrite() is never necessary because the caller
2953  * should know vmalloc() area is valid and can use memcpy().
2954  * This is for routines which have to access vmalloc area without
2955  * any information, as /dev/kmem.
2956  *
2957  * Return: number of bytes for which addr and buf should be
2958  * increased (same number as @count) or %0 if [addr...addr+count)
2959  * doesn't include any intersection with valid vmalloc area
2960  */
vwrite(char * buf,char * addr,unsigned long count)2961 long vwrite(char *buf, char *addr, unsigned long count)
2962 {
2963 	struct vmap_area *va;
2964 	struct vm_struct *vm;
2965 	char *vaddr;
2966 	unsigned long n, buflen;
2967 	int copied = 0;
2968 
2969 	/* Don't allow overflow */
2970 	if ((unsigned long) addr + count < count)
2971 		count = -(unsigned long) addr;
2972 	buflen = count;
2973 
2974 	spin_lock(&vmap_area_lock);
2975 	list_for_each_entry(va, &vmap_area_list, list) {
2976 		if (!count)
2977 			break;
2978 
2979 		if (!va->vm)
2980 			continue;
2981 
2982 		vm = va->vm;
2983 		vaddr = (char *) vm->addr;
2984 		if (addr >= vaddr + get_vm_area_size(vm))
2985 			continue;
2986 		while (addr < vaddr) {
2987 			if (count == 0)
2988 				goto finished;
2989 			buf++;
2990 			addr++;
2991 			count--;
2992 		}
2993 		n = vaddr + get_vm_area_size(vm) - addr;
2994 		if (n > count)
2995 			n = count;
2996 		if (!(vm->flags & VM_IOREMAP)) {
2997 			aligned_vwrite(buf, addr, n);
2998 			copied++;
2999 		}
3000 		buf += n;
3001 		addr += n;
3002 		count -= n;
3003 	}
3004 finished:
3005 	spin_unlock(&vmap_area_lock);
3006 	if (!copied)
3007 		return 0;
3008 	return buflen;
3009 }
3010 
3011 /**
3012  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013  * @vma:		vma to cover
3014  * @uaddr:		target user address to start at
3015  * @kaddr:		virtual address of vmalloc kernel memory
3016  * @pgoff:		offset from @kaddr to start at
3017  * @size:		size of map area
3018  *
3019  * Returns:	0 for success, -Exxx on failure
3020  *
3021  * This function checks that @kaddr is a valid vmalloc'ed area,
3022  * and that it is big enough to cover the range starting at
3023  * @uaddr in @vma. Will return failure if that criteria isn't
3024  * met.
3025  *
3026  * Similar to remap_pfn_range() (see mm/memory.c)
3027  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3028 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3029 				void *kaddr, unsigned long pgoff,
3030 				unsigned long size)
3031 {
3032 	struct vm_struct *area;
3033 	unsigned long off;
3034 	unsigned long end_index;
3035 
3036 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3037 		return -EINVAL;
3038 
3039 	size = PAGE_ALIGN(size);
3040 
3041 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3042 		return -EINVAL;
3043 
3044 	area = find_vm_area(kaddr);
3045 	if (!area)
3046 		return -EINVAL;
3047 
3048 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3049 		return -EINVAL;
3050 
3051 	if (check_add_overflow(size, off, &end_index) ||
3052 	    end_index > get_vm_area_size(area))
3053 		return -EINVAL;
3054 	kaddr += off;
3055 
3056 	do {
3057 		struct page *page = vmalloc_to_page(kaddr);
3058 		int ret;
3059 
3060 		ret = vm_insert_page(vma, uaddr, page);
3061 		if (ret)
3062 			return ret;
3063 
3064 		uaddr += PAGE_SIZE;
3065 		kaddr += PAGE_SIZE;
3066 		size -= PAGE_SIZE;
3067 	} while (size > 0);
3068 
3069 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3070 
3071 	return 0;
3072 }
3073 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3074 
3075 /**
3076  * remap_vmalloc_range - map vmalloc pages to userspace
3077  * @vma:		vma to cover (map full range of vma)
3078  * @addr:		vmalloc memory
3079  * @pgoff:		number of pages into addr before first page to map
3080  *
3081  * Returns:	0 for success, -Exxx on failure
3082  *
3083  * This function checks that addr is a valid vmalloc'ed area, and
3084  * that it is big enough to cover the vma. Will return failure if
3085  * that criteria isn't met.
3086  *
3087  * Similar to remap_pfn_range() (see mm/memory.c)
3088  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3089 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3090 						unsigned long pgoff)
3091 {
3092 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3093 					   addr, pgoff,
3094 					   vma->vm_end - vma->vm_start);
3095 }
3096 EXPORT_SYMBOL(remap_vmalloc_range);
3097 
free_vm_area(struct vm_struct * area)3098 void free_vm_area(struct vm_struct *area)
3099 {
3100 	struct vm_struct *ret;
3101 	ret = remove_vm_area(area->addr);
3102 	BUG_ON(ret != area);
3103 	kfree(area);
3104 }
3105 EXPORT_SYMBOL_GPL(free_vm_area);
3106 
3107 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3108 static struct vmap_area *node_to_va(struct rb_node *n)
3109 {
3110 	return rb_entry_safe(n, struct vmap_area, rb_node);
3111 }
3112 
3113 /**
3114  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115  * @addr: target address
3116  *
3117  * Returns: vmap_area if it is found. If there is no such area
3118  *   the first highest(reverse order) vmap_area is returned
3119  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3120  *   if there are no any areas before @addr.
3121  */
3122 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3123 pvm_find_va_enclose_addr(unsigned long addr)
3124 {
3125 	struct vmap_area *va, *tmp;
3126 	struct rb_node *n;
3127 
3128 	n = free_vmap_area_root.rb_node;
3129 	va = NULL;
3130 
3131 	while (n) {
3132 		tmp = rb_entry(n, struct vmap_area, rb_node);
3133 		if (tmp->va_start <= addr) {
3134 			va = tmp;
3135 			if (tmp->va_end >= addr)
3136 				break;
3137 
3138 			n = n->rb_right;
3139 		} else {
3140 			n = n->rb_left;
3141 		}
3142 	}
3143 
3144 	return va;
3145 }
3146 
3147 /**
3148  * pvm_determine_end_from_reverse - find the highest aligned address
3149  * of free block below VMALLOC_END
3150  * @va:
3151  *   in - the VA we start the search(reverse order);
3152  *   out - the VA with the highest aligned end address.
3153  *
3154  * Returns: determined end address within vmap_area
3155  */
3156 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)3157 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3158 {
3159 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3160 	unsigned long addr;
3161 
3162 	if (likely(*va)) {
3163 		list_for_each_entry_from_reverse((*va),
3164 				&free_vmap_area_list, list) {
3165 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3166 			if ((*va)->va_start < addr)
3167 				return addr;
3168 		}
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 /**
3175  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3176  * @offsets: array containing offset of each area
3177  * @sizes: array containing size of each area
3178  * @nr_vms: the number of areas to allocate
3179  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3180  *
3181  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3182  *	    vm_structs on success, %NULL on failure
3183  *
3184  * Percpu allocator wants to use congruent vm areas so that it can
3185  * maintain the offsets among percpu areas.  This function allocates
3186  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3187  * be scattered pretty far, distance between two areas easily going up
3188  * to gigabytes.  To avoid interacting with regular vmallocs, these
3189  * areas are allocated from top.
3190  *
3191  * Despite its complicated look, this allocator is rather simple. It
3192  * does everything top-down and scans free blocks from the end looking
3193  * for matching base. While scanning, if any of the areas do not fit the
3194  * base address is pulled down to fit the area. Scanning is repeated till
3195  * all the areas fit and then all necessary data structures are inserted
3196  * and the result is returned.
3197  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)3198 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3199 				     const size_t *sizes, int nr_vms,
3200 				     size_t align)
3201 {
3202 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3203 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3204 	struct vmap_area **vas, *va;
3205 	struct vm_struct **vms;
3206 	int area, area2, last_area, term_area;
3207 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3208 	bool purged = false;
3209 	enum fit_type type;
3210 
3211 	/* verify parameters and allocate data structures */
3212 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3213 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3214 		start = offsets[area];
3215 		end = start + sizes[area];
3216 
3217 		/* is everything aligned properly? */
3218 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3219 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3220 
3221 		/* detect the area with the highest address */
3222 		if (start > offsets[last_area])
3223 			last_area = area;
3224 
3225 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3226 			unsigned long start2 = offsets[area2];
3227 			unsigned long end2 = start2 + sizes[area2];
3228 
3229 			BUG_ON(start2 < end && start < end2);
3230 		}
3231 	}
3232 	last_end = offsets[last_area] + sizes[last_area];
3233 
3234 	if (vmalloc_end - vmalloc_start < last_end) {
3235 		WARN_ON(true);
3236 		return NULL;
3237 	}
3238 
3239 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3240 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3241 	if (!vas || !vms)
3242 		goto err_free2;
3243 
3244 	for (area = 0; area < nr_vms; area++) {
3245 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3246 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3247 		if (!vas[area] || !vms[area])
3248 			goto err_free;
3249 	}
3250 retry:
3251 	spin_lock(&free_vmap_area_lock);
3252 
3253 	/* start scanning - we scan from the top, begin with the last area */
3254 	area = term_area = last_area;
3255 	start = offsets[area];
3256 	end = start + sizes[area];
3257 
3258 	va = pvm_find_va_enclose_addr(vmalloc_end);
3259 	base = pvm_determine_end_from_reverse(&va, align) - end;
3260 
3261 	while (true) {
3262 		/*
3263 		 * base might have underflowed, add last_end before
3264 		 * comparing.
3265 		 */
3266 		if (base + last_end < vmalloc_start + last_end)
3267 			goto overflow;
3268 
3269 		/*
3270 		 * Fitting base has not been found.
3271 		 */
3272 		if (va == NULL)
3273 			goto overflow;
3274 
3275 		/*
3276 		 * If required width exceeds current VA block, move
3277 		 * base downwards and then recheck.
3278 		 */
3279 		if (base + end > va->va_end) {
3280 			base = pvm_determine_end_from_reverse(&va, align) - end;
3281 			term_area = area;
3282 			continue;
3283 		}
3284 
3285 		/*
3286 		 * If this VA does not fit, move base downwards and recheck.
3287 		 */
3288 		if (base + start < va->va_start) {
3289 			va = node_to_va(rb_prev(&va->rb_node));
3290 			base = pvm_determine_end_from_reverse(&va, align) - end;
3291 			term_area = area;
3292 			continue;
3293 		}
3294 
3295 		/*
3296 		 * This area fits, move on to the previous one.  If
3297 		 * the previous one is the terminal one, we're done.
3298 		 */
3299 		area = (area + nr_vms - 1) % nr_vms;
3300 		if (area == term_area)
3301 			break;
3302 
3303 		start = offsets[area];
3304 		end = start + sizes[area];
3305 		va = pvm_find_va_enclose_addr(base + end);
3306 	}
3307 
3308 	/* we've found a fitting base, insert all va's */
3309 	for (area = 0; area < nr_vms; area++) {
3310 		int ret;
3311 
3312 		start = base + offsets[area];
3313 		size = sizes[area];
3314 
3315 		va = pvm_find_va_enclose_addr(start);
3316 		if (WARN_ON_ONCE(va == NULL))
3317 			/* It is a BUG(), but trigger recovery instead. */
3318 			goto recovery;
3319 
3320 		type = classify_va_fit_type(va, start, size);
3321 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3322 			/* It is a BUG(), but trigger recovery instead. */
3323 			goto recovery;
3324 
3325 		ret = adjust_va_to_fit_type(va, start, size, type);
3326 		if (unlikely(ret))
3327 			goto recovery;
3328 
3329 		/* Allocated area. */
3330 		va = vas[area];
3331 		va->va_start = start;
3332 		va->va_end = start + size;
3333 	}
3334 
3335 	spin_unlock(&free_vmap_area_lock);
3336 
3337 	/* populate the kasan shadow space */
3338 	for (area = 0; area < nr_vms; area++) {
3339 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3340 			goto err_free_shadow;
3341 
3342 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3343 				       sizes[area]);
3344 	}
3345 
3346 	/* insert all vm's */
3347 	spin_lock(&vmap_area_lock);
3348 	for (area = 0; area < nr_vms; area++) {
3349 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3350 
3351 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3352 				 pcpu_get_vm_areas);
3353 	}
3354 	spin_unlock(&vmap_area_lock);
3355 
3356 	kfree(vas);
3357 	return vms;
3358 
3359 recovery:
3360 	/*
3361 	 * Remove previously allocated areas. There is no
3362 	 * need in removing these areas from the busy tree,
3363 	 * because they are inserted only on the final step
3364 	 * and when pcpu_get_vm_areas() is success.
3365 	 */
3366 	while (area--) {
3367 		orig_start = vas[area]->va_start;
3368 		orig_end = vas[area]->va_end;
3369 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3370 					    &free_vmap_area_list);
3371 		if (va)
3372 			kasan_release_vmalloc(orig_start, orig_end,
3373 				va->va_start, va->va_end);
3374 		vas[area] = NULL;
3375 	}
3376 
3377 overflow:
3378 	spin_unlock(&free_vmap_area_lock);
3379 	if (!purged) {
3380 		purge_vmap_area_lazy();
3381 		purged = true;
3382 
3383 		/* Before "retry", check if we recover. */
3384 		for (area = 0; area < nr_vms; area++) {
3385 			if (vas[area])
3386 				continue;
3387 
3388 			vas[area] = kmem_cache_zalloc(
3389 				vmap_area_cachep, GFP_KERNEL);
3390 			if (!vas[area])
3391 				goto err_free;
3392 		}
3393 
3394 		goto retry;
3395 	}
3396 
3397 err_free:
3398 	for (area = 0; area < nr_vms; area++) {
3399 		if (vas[area])
3400 			kmem_cache_free(vmap_area_cachep, vas[area]);
3401 
3402 		kfree(vms[area]);
3403 	}
3404 err_free2:
3405 	kfree(vas);
3406 	kfree(vms);
3407 	return NULL;
3408 
3409 err_free_shadow:
3410 	spin_lock(&free_vmap_area_lock);
3411 	/*
3412 	 * We release all the vmalloc shadows, even the ones for regions that
3413 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3414 	 * being able to tolerate this case.
3415 	 */
3416 	for (area = 0; area < nr_vms; area++) {
3417 		orig_start = vas[area]->va_start;
3418 		orig_end = vas[area]->va_end;
3419 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3420 					    &free_vmap_area_list);
3421 		if (va)
3422 			kasan_release_vmalloc(orig_start, orig_end,
3423 				va->va_start, va->va_end);
3424 		vas[area] = NULL;
3425 		kfree(vms[area]);
3426 	}
3427 	spin_unlock(&free_vmap_area_lock);
3428 	kfree(vas);
3429 	kfree(vms);
3430 	return NULL;
3431 }
3432 
3433 /**
3434  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3435  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3436  * @nr_vms: the number of allocated areas
3437  *
3438  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3439  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)3440 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3441 {
3442 	int i;
3443 
3444 	for (i = 0; i < nr_vms; i++)
3445 		free_vm_area(vms[i]);
3446 	kfree(vms);
3447 }
3448 #endif	/* CONFIG_SMP */
3449 
3450 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)3451 static void *s_start(struct seq_file *m, loff_t *pos)
3452 	__acquires(&vmap_purge_lock)
3453 	__acquires(&vmap_area_lock)
3454 {
3455 	mutex_lock(&vmap_purge_lock);
3456 	spin_lock(&vmap_area_lock);
3457 
3458 	return seq_list_start(&vmap_area_list, *pos);
3459 }
3460 
s_next(struct seq_file * m,void * p,loff_t * pos)3461 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3462 {
3463 	return seq_list_next(p, &vmap_area_list, pos);
3464 }
3465 
s_stop(struct seq_file * m,void * p)3466 static void s_stop(struct seq_file *m, void *p)
3467 	__releases(&vmap_area_lock)
3468 	__releases(&vmap_purge_lock)
3469 {
3470 	spin_unlock(&vmap_area_lock);
3471 	mutex_unlock(&vmap_purge_lock);
3472 }
3473 
show_numa_info(struct seq_file * m,struct vm_struct * v)3474 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3475 {
3476 	if (IS_ENABLED(CONFIG_NUMA)) {
3477 		unsigned int nr, *counters = m->private;
3478 
3479 		if (!counters)
3480 			return;
3481 
3482 		if (v->flags & VM_UNINITIALIZED)
3483 			return;
3484 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3485 		smp_rmb();
3486 
3487 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3488 
3489 		for (nr = 0; nr < v->nr_pages; nr++)
3490 			counters[page_to_nid(v->pages[nr])]++;
3491 
3492 		for_each_node_state(nr, N_HIGH_MEMORY)
3493 			if (counters[nr])
3494 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3495 	}
3496 }
3497 
show_purge_info(struct seq_file * m)3498 static void show_purge_info(struct seq_file *m)
3499 {
3500 	struct llist_node *head;
3501 	struct vmap_area *va;
3502 
3503 	head = READ_ONCE(vmap_purge_list.first);
3504 	if (head == NULL)
3505 		return;
3506 
3507 	llist_for_each_entry(va, head, purge_list) {
3508 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3509 			(void *)va->va_start, (void *)va->va_end,
3510 			va->va_end - va->va_start);
3511 	}
3512 }
3513 
s_show(struct seq_file * m,void * p)3514 static int s_show(struct seq_file *m, void *p)
3515 {
3516 	struct vmap_area *va;
3517 	struct vm_struct *v;
3518 
3519 	va = list_entry(p, struct vmap_area, list);
3520 
3521 	/*
3522 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3523 	 * of vmap area is being tear down or vm_map_ram allocation.
3524 	 */
3525 	if (!va->vm) {
3526 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3527 			(void *)va->va_start, (void *)va->va_end,
3528 			va->va_end - va->va_start);
3529 
3530 		return 0;
3531 	}
3532 
3533 	v = va->vm;
3534 
3535 	seq_printf(m, "0x%pK-0x%pK %7ld",
3536 		v->addr, v->addr + v->size, v->size);
3537 
3538 	if (v->caller)
3539 		seq_printf(m, " %pS", v->caller);
3540 
3541 	if (v->nr_pages)
3542 		seq_printf(m, " pages=%d", v->nr_pages);
3543 
3544 	if (v->phys_addr)
3545 		seq_printf(m, " phys=%pa", &v->phys_addr);
3546 
3547 	if (v->flags & VM_IOREMAP)
3548 		seq_puts(m, " ioremap");
3549 
3550 	if (v->flags & VM_ALLOC)
3551 		seq_puts(m, " vmalloc");
3552 
3553 	if (v->flags & VM_MAP)
3554 		seq_puts(m, " vmap");
3555 
3556 	if (v->flags & VM_USERMAP)
3557 		seq_puts(m, " user");
3558 
3559 	if (v->flags & VM_DMA_COHERENT)
3560 		seq_puts(m, " dma-coherent");
3561 
3562 	if (is_vmalloc_addr(v->pages))
3563 		seq_puts(m, " vpages");
3564 
3565 	show_numa_info(m, v);
3566 	trace_android_vh_show_stack_hash(m, v);
3567 	seq_putc(m, '\n');
3568 
3569 	/*
3570 	 * As a final step, dump "unpurged" areas. Note,
3571 	 * that entire "/proc/vmallocinfo" output will not
3572 	 * be address sorted, because the purge list is not
3573 	 * sorted.
3574 	 */
3575 	if (list_is_last(&va->list, &vmap_area_list))
3576 		show_purge_info(m);
3577 
3578 	return 0;
3579 }
3580 
3581 static const struct seq_operations vmalloc_op = {
3582 	.start = s_start,
3583 	.next = s_next,
3584 	.stop = s_stop,
3585 	.show = s_show,
3586 };
3587 
proc_vmalloc_init(void)3588 static int __init proc_vmalloc_init(void)
3589 {
3590 	if (IS_ENABLED(CONFIG_NUMA))
3591 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3592 				&vmalloc_op,
3593 				nr_node_ids * sizeof(unsigned int), NULL);
3594 	else
3595 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3596 	return 0;
3597 }
3598 module_init(proc_vmalloc_init);
3599 
3600 #endif
3601