1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37 #include <trace/hooks/mm.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42
43 #include "internal.h"
44 #include "pgalloc-track.h"
45
is_vmalloc_addr(const void * x)46 bool is_vmalloc_addr(const void *x)
47 {
48 unsigned long addr = (unsigned long)x;
49
50 return addr >= VMALLOC_START && addr < VMALLOC_END;
51 }
52 EXPORT_SYMBOL(is_vmalloc_addr);
53
54 struct vfree_deferred {
55 struct llist_head list;
56 struct work_struct wq;
57 };
58 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
59
60 static void __vunmap(const void *, int);
61
free_work(struct work_struct * w)62 static void free_work(struct work_struct *w)
63 {
64 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 struct llist_node *t, *llnode;
66
67 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
68 __vunmap((void *)llnode, 1);
69 }
70
71 /*** Page table manipulation functions ***/
72
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)73 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
74 pgtbl_mod_mask *mask)
75 {
76 pte_t *pte;
77
78 pte = pte_offset_kernel(pmd, addr);
79 do {
80 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
81 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
82 } while (pte++, addr += PAGE_SIZE, addr != end);
83 *mask |= PGTBL_PTE_MODIFIED;
84 }
85
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)86 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
87 pgtbl_mod_mask *mask)
88 {
89 pmd_t *pmd;
90 unsigned long next;
91 int cleared;
92
93 pmd = pmd_offset(pud, addr);
94 do {
95 next = pmd_addr_end(addr, end);
96
97 cleared = pmd_clear_huge(pmd);
98 if (cleared || pmd_bad(*pmd))
99 *mask |= PGTBL_PMD_MODIFIED;
100
101 if (cleared)
102 continue;
103 if (pmd_none_or_clear_bad(pmd))
104 continue;
105 vunmap_pte_range(pmd, addr, next, mask);
106
107 cond_resched();
108 } while (pmd++, addr = next, addr != end);
109 }
110
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)111 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
112 pgtbl_mod_mask *mask)
113 {
114 pud_t *pud;
115 unsigned long next;
116 int cleared;
117
118 pud = pud_offset(p4d, addr);
119 do {
120 next = pud_addr_end(addr, end);
121
122 cleared = pud_clear_huge(pud);
123 if (cleared || pud_bad(*pud))
124 *mask |= PGTBL_PUD_MODIFIED;
125
126 if (cleared)
127 continue;
128 if (pud_none_or_clear_bad(pud))
129 continue;
130 vunmap_pmd_range(pud, addr, next, mask);
131 } while (pud++, addr = next, addr != end);
132 }
133
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)134 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
135 pgtbl_mod_mask *mask)
136 {
137 p4d_t *p4d;
138 unsigned long next;
139 int cleared;
140
141 p4d = p4d_offset(pgd, addr);
142 do {
143 next = p4d_addr_end(addr, end);
144
145 cleared = p4d_clear_huge(p4d);
146 if (cleared || p4d_bad(*p4d))
147 *mask |= PGTBL_P4D_MODIFIED;
148
149 if (cleared)
150 continue;
151 if (p4d_none_or_clear_bad(p4d))
152 continue;
153 vunmap_pud_range(p4d, addr, next, mask);
154 } while (p4d++, addr = next, addr != end);
155 }
156
157 /**
158 * unmap_kernel_range_noflush - unmap kernel VM area
159 * @start: start of the VM area to unmap
160 * @size: size of the VM area to unmap
161 *
162 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
163 * should have been allocated using get_vm_area() and its friends.
164 *
165 * NOTE:
166 * This function does NOT do any cache flushing. The caller is responsible
167 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
168 * function and flush_tlb_kernel_range() after.
169 */
unmap_kernel_range_noflush(unsigned long start,unsigned long size)170 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
171 {
172 unsigned long end = start + size;
173 unsigned long next;
174 pgd_t *pgd;
175 unsigned long addr = start;
176 pgtbl_mod_mask mask = 0;
177
178 BUG_ON(addr >= end);
179 pgd = pgd_offset_k(addr);
180 do {
181 next = pgd_addr_end(addr, end);
182 if (pgd_bad(*pgd))
183 mask |= PGTBL_PGD_MODIFIED;
184 if (pgd_none_or_clear_bad(pgd))
185 continue;
186 vunmap_p4d_range(pgd, addr, next, &mask);
187 } while (pgd++, addr = next, addr != end);
188
189 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
190 arch_sync_kernel_mappings(start, end);
191 }
192
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)193 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
194 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
195 pgtbl_mod_mask *mask)
196 {
197 pte_t *pte;
198
199 /*
200 * nr is a running index into the array which helps higher level
201 * callers keep track of where we're up to.
202 */
203
204 pte = pte_alloc_kernel_track(pmd, addr, mask);
205 if (!pte)
206 return -ENOMEM;
207 do {
208 struct page *page = pages[*nr];
209
210 if (WARN_ON(!pte_none(*pte)))
211 return -EBUSY;
212 if (WARN_ON(!page))
213 return -ENOMEM;
214 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
215 (*nr)++;
216 } while (pte++, addr += PAGE_SIZE, addr != end);
217 *mask |= PGTBL_PTE_MODIFIED;
218 return 0;
219 }
220
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)221 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
222 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
223 pgtbl_mod_mask *mask)
224 {
225 pmd_t *pmd;
226 unsigned long next;
227
228 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
229 if (!pmd)
230 return -ENOMEM;
231 do {
232 next = pmd_addr_end(addr, end);
233 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
234 return -ENOMEM;
235 } while (pmd++, addr = next, addr != end);
236 return 0;
237 }
238
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)239 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
240 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
241 pgtbl_mod_mask *mask)
242 {
243 pud_t *pud;
244 unsigned long next;
245
246 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
247 if (!pud)
248 return -ENOMEM;
249 do {
250 next = pud_addr_end(addr, end);
251 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
252 return -ENOMEM;
253 } while (pud++, addr = next, addr != end);
254 return 0;
255 }
256
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)257 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
258 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
259 pgtbl_mod_mask *mask)
260 {
261 p4d_t *p4d;
262 unsigned long next;
263
264 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
265 if (!p4d)
266 return -ENOMEM;
267 do {
268 next = p4d_addr_end(addr, end);
269 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
270 return -ENOMEM;
271 } while (p4d++, addr = next, addr != end);
272 return 0;
273 }
274
275 /**
276 * map_kernel_range_noflush - map kernel VM area with the specified pages
277 * @addr: start of the VM area to map
278 * @size: size of the VM area to map
279 * @prot: page protection flags to use
280 * @pages: pages to map
281 *
282 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
283 * have been allocated using get_vm_area() and its friends.
284 *
285 * NOTE:
286 * This function does NOT do any cache flushing. The caller is responsible for
287 * calling flush_cache_vmap() on to-be-mapped areas before calling this
288 * function.
289 *
290 * RETURNS:
291 * 0 on success, -errno on failure.
292 */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)293 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
294 pgprot_t prot, struct page **pages)
295 {
296 unsigned long start = addr;
297 unsigned long end = addr + size;
298 unsigned long next;
299 pgd_t *pgd;
300 int err = 0;
301 int nr = 0;
302 pgtbl_mod_mask mask = 0;
303
304 BUG_ON(addr >= end);
305 pgd = pgd_offset_k(addr);
306 do {
307 next = pgd_addr_end(addr, end);
308 if (pgd_bad(*pgd))
309 mask |= PGTBL_PGD_MODIFIED;
310 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
311 if (err)
312 return err;
313 } while (pgd++, addr = next, addr != end);
314
315 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
316 arch_sync_kernel_mappings(start, end);
317
318 return 0;
319 }
320
map_kernel_range(unsigned long start,unsigned long size,pgprot_t prot,struct page ** pages)321 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
322 struct page **pages)
323 {
324 int ret;
325
326 ret = map_kernel_range_noflush(start, size, prot, pages);
327 flush_cache_vmap(start, start + size);
328 return ret;
329 }
330 EXPORT_SYMBOL_GPL(map_kernel_range);
331
is_vmalloc_or_module_addr(const void * x)332 int is_vmalloc_or_module_addr(const void *x)
333 {
334 /*
335 * ARM, x86-64 and sparc64 put modules in a special place,
336 * and fall back on vmalloc() if that fails. Others
337 * just put it in the vmalloc space.
338 */
339 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
340 unsigned long addr = (unsigned long)x;
341 if (addr >= MODULES_VADDR && addr < MODULES_END)
342 return 1;
343 #endif
344 return is_vmalloc_addr(x);
345 }
346
347 /*
348 * Walk a vmap address to the struct page it maps.
349 */
vmalloc_to_page(const void * vmalloc_addr)350 struct page *vmalloc_to_page(const void *vmalloc_addr)
351 {
352 unsigned long addr = (unsigned long) vmalloc_addr;
353 struct page *page = NULL;
354 pgd_t *pgd = pgd_offset_k(addr);
355 p4d_t *p4d;
356 pud_t *pud;
357 pmd_t *pmd;
358 pte_t *ptep, pte;
359
360 /*
361 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
362 * architectures that do not vmalloc module space
363 */
364 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
365
366 if (pgd_none(*pgd))
367 return NULL;
368 p4d = p4d_offset(pgd, addr);
369 if (p4d_none(*p4d))
370 return NULL;
371 pud = pud_offset(p4d, addr);
372
373 /*
374 * Don't dereference bad PUD or PMD (below) entries. This will also
375 * identify huge mappings, which we may encounter on architectures
376 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
377 * identified as vmalloc addresses by is_vmalloc_addr(), but are
378 * not [unambiguously] associated with a struct page, so there is
379 * no correct value to return for them.
380 */
381 WARN_ON_ONCE(pud_bad(*pud));
382 if (pud_none(*pud) || pud_bad(*pud))
383 return NULL;
384 pmd = pmd_offset(pud, addr);
385 WARN_ON_ONCE(pmd_bad(*pmd));
386 if (pmd_none(*pmd) || pmd_bad(*pmd))
387 return NULL;
388
389 ptep = pte_offset_map(pmd, addr);
390 pte = *ptep;
391 if (pte_present(pte))
392 page = pte_page(pte);
393 pte_unmap(ptep);
394 return page;
395 }
396 EXPORT_SYMBOL(vmalloc_to_page);
397
398 /*
399 * Map a vmalloc()-space virtual address to the physical page frame number.
400 */
vmalloc_to_pfn(const void * vmalloc_addr)401 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
402 {
403 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
404 }
405 EXPORT_SYMBOL(vmalloc_to_pfn);
406
407
408 /*** Global kva allocator ***/
409
410 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
411 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
412
413
414 static DEFINE_SPINLOCK(vmap_area_lock);
415 static DEFINE_SPINLOCK(free_vmap_area_lock);
416 /* Export for kexec only */
417 LIST_HEAD(vmap_area_list);
418 static LLIST_HEAD(vmap_purge_list);
419 static struct rb_root vmap_area_root = RB_ROOT;
420 static bool vmap_initialized __read_mostly;
421
422 /*
423 * This kmem_cache is used for vmap_area objects. Instead of
424 * allocating from slab we reuse an object from this cache to
425 * make things faster. Especially in "no edge" splitting of
426 * free block.
427 */
428 static struct kmem_cache *vmap_area_cachep;
429
430 /*
431 * This linked list is used in pair with free_vmap_area_root.
432 * It gives O(1) access to prev/next to perform fast coalescing.
433 */
434 static LIST_HEAD(free_vmap_area_list);
435
436 /*
437 * This augment red-black tree represents the free vmap space.
438 * All vmap_area objects in this tree are sorted by va->va_start
439 * address. It is used for allocation and merging when a vmap
440 * object is released.
441 *
442 * Each vmap_area node contains a maximum available free block
443 * of its sub-tree, right or left. Therefore it is possible to
444 * find a lowest match of free area.
445 */
446 static struct rb_root free_vmap_area_root = RB_ROOT;
447
448 /*
449 * Preload a CPU with one object for "no edge" split case. The
450 * aim is to get rid of allocations from the atomic context, thus
451 * to use more permissive allocation masks.
452 */
453 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
454
455 static __always_inline unsigned long
va_size(struct vmap_area * va)456 va_size(struct vmap_area *va)
457 {
458 return (va->va_end - va->va_start);
459 }
460
461 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)462 get_subtree_max_size(struct rb_node *node)
463 {
464 struct vmap_area *va;
465
466 va = rb_entry_safe(node, struct vmap_area, rb_node);
467 return va ? va->subtree_max_size : 0;
468 }
469
470 /*
471 * Gets called when remove the node and rotate.
472 */
473 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)474 compute_subtree_max_size(struct vmap_area *va)
475 {
476 return max3(va_size(va),
477 get_subtree_max_size(va->rb_node.rb_left),
478 get_subtree_max_size(va->rb_node.rb_right));
479 }
480
481 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
482 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
483
484 static void purge_vmap_area_lazy(void);
485 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
486 static unsigned long lazy_max_pages(void);
487
488 static atomic_long_t nr_vmalloc_pages;
489
vmalloc_nr_pages(void)490 unsigned long vmalloc_nr_pages(void)
491 {
492 return atomic_long_read(&nr_vmalloc_pages);
493 }
494 EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
495
__find_vmap_area(unsigned long addr)496 static struct vmap_area *__find_vmap_area(unsigned long addr)
497 {
498 struct rb_node *n = vmap_area_root.rb_node;
499
500 while (n) {
501 struct vmap_area *va;
502
503 va = rb_entry(n, struct vmap_area, rb_node);
504 if (addr < va->va_start)
505 n = n->rb_left;
506 else if (addr >= va->va_end)
507 n = n->rb_right;
508 else
509 return va;
510 }
511
512 return NULL;
513 }
514
515 /*
516 * This function returns back addresses of parent node
517 * and its left or right link for further processing.
518 *
519 * Otherwise NULL is returned. In that case all further
520 * steps regarding inserting of conflicting overlap range
521 * have to be declined and actually considered as a bug.
522 */
523 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)524 find_va_links(struct vmap_area *va,
525 struct rb_root *root, struct rb_node *from,
526 struct rb_node **parent)
527 {
528 struct vmap_area *tmp_va;
529 struct rb_node **link;
530
531 if (root) {
532 link = &root->rb_node;
533 if (unlikely(!*link)) {
534 *parent = NULL;
535 return link;
536 }
537 } else {
538 link = &from;
539 }
540
541 /*
542 * Go to the bottom of the tree. When we hit the last point
543 * we end up with parent rb_node and correct direction, i name
544 * it link, where the new va->rb_node will be attached to.
545 */
546 do {
547 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
548
549 /*
550 * During the traversal we also do some sanity check.
551 * Trigger the BUG() if there are sides(left/right)
552 * or full overlaps.
553 */
554 if (va->va_start < tmp_va->va_end &&
555 va->va_end <= tmp_va->va_start)
556 link = &(*link)->rb_left;
557 else if (va->va_end > tmp_va->va_start &&
558 va->va_start >= tmp_va->va_end)
559 link = &(*link)->rb_right;
560 else {
561 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
563
564 return NULL;
565 }
566 } while (*link);
567
568 *parent = &tmp_va->rb_node;
569 return link;
570 }
571
572 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)573 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
574 {
575 struct list_head *list;
576
577 if (unlikely(!parent))
578 /*
579 * The red-black tree where we try to find VA neighbors
580 * before merging or inserting is empty, i.e. it means
581 * there is no free vmap space. Normally it does not
582 * happen but we handle this case anyway.
583 */
584 return NULL;
585
586 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
587 return (&parent->rb_right == link ? list->next : list);
588 }
589
590 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)591 link_va(struct vmap_area *va, struct rb_root *root,
592 struct rb_node *parent, struct rb_node **link, struct list_head *head)
593 {
594 /*
595 * VA is still not in the list, but we can
596 * identify its future previous list_head node.
597 */
598 if (likely(parent)) {
599 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
600 if (&parent->rb_right != link)
601 head = head->prev;
602 }
603
604 /* Insert to the rb-tree */
605 rb_link_node(&va->rb_node, parent, link);
606 if (root == &free_vmap_area_root) {
607 /*
608 * Some explanation here. Just perform simple insertion
609 * to the tree. We do not set va->subtree_max_size to
610 * its current size before calling rb_insert_augmented().
611 * It is because of we populate the tree from the bottom
612 * to parent levels when the node _is_ in the tree.
613 *
614 * Therefore we set subtree_max_size to zero after insertion,
615 * to let __augment_tree_propagate_from() puts everything to
616 * the correct order later on.
617 */
618 rb_insert_augmented(&va->rb_node,
619 root, &free_vmap_area_rb_augment_cb);
620 va->subtree_max_size = 0;
621 } else {
622 rb_insert_color(&va->rb_node, root);
623 }
624
625 /* Address-sort this list */
626 list_add(&va->list, head);
627 }
628
629 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)630 unlink_va(struct vmap_area *va, struct rb_root *root)
631 {
632 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
633 return;
634
635 if (root == &free_vmap_area_root)
636 rb_erase_augmented(&va->rb_node,
637 root, &free_vmap_area_rb_augment_cb);
638 else
639 rb_erase(&va->rb_node, root);
640
641 list_del(&va->list);
642 RB_CLEAR_NODE(&va->rb_node);
643 }
644
645 #if DEBUG_AUGMENT_PROPAGATE_CHECK
646 static void
augment_tree_propagate_check(void)647 augment_tree_propagate_check(void)
648 {
649 struct vmap_area *va;
650 unsigned long computed_size;
651
652 list_for_each_entry(va, &free_vmap_area_list, list) {
653 computed_size = compute_subtree_max_size(va);
654 if (computed_size != va->subtree_max_size)
655 pr_emerg("tree is corrupted: %lu, %lu\n",
656 va_size(va), va->subtree_max_size);
657 }
658 }
659 #endif
660
661 /*
662 * This function populates subtree_max_size from bottom to upper
663 * levels starting from VA point. The propagation must be done
664 * when VA size is modified by changing its va_start/va_end. Or
665 * in case of newly inserting of VA to the tree.
666 *
667 * It means that __augment_tree_propagate_from() must be called:
668 * - After VA has been inserted to the tree(free path);
669 * - After VA has been shrunk(allocation path);
670 * - After VA has been increased(merging path).
671 *
672 * Please note that, it does not mean that upper parent nodes
673 * and their subtree_max_size are recalculated all the time up
674 * to the root node.
675 *
676 * 4--8
677 * /\
678 * / \
679 * / \
680 * 2--2 8--8
681 *
682 * For example if we modify the node 4, shrinking it to 2, then
683 * no any modification is required. If we shrink the node 2 to 1
684 * its subtree_max_size is updated only, and set to 1. If we shrink
685 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
686 * node becomes 4--6.
687 */
688 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)689 augment_tree_propagate_from(struct vmap_area *va)
690 {
691 /*
692 * Populate the tree from bottom towards the root until
693 * the calculated maximum available size of checked node
694 * is equal to its current one.
695 */
696 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
697
698 #if DEBUG_AUGMENT_PROPAGATE_CHECK
699 augment_tree_propagate_check();
700 #endif
701 }
702
703 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)704 insert_vmap_area(struct vmap_area *va,
705 struct rb_root *root, struct list_head *head)
706 {
707 struct rb_node **link;
708 struct rb_node *parent;
709
710 link = find_va_links(va, root, NULL, &parent);
711 if (link)
712 link_va(va, root, parent, link, head);
713 }
714
715 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)716 insert_vmap_area_augment(struct vmap_area *va,
717 struct rb_node *from, struct rb_root *root,
718 struct list_head *head)
719 {
720 struct rb_node **link;
721 struct rb_node *parent;
722
723 if (from)
724 link = find_va_links(va, NULL, from, &parent);
725 else
726 link = find_va_links(va, root, NULL, &parent);
727
728 if (link) {
729 link_va(va, root, parent, link, head);
730 augment_tree_propagate_from(va);
731 }
732 }
733
734 /*
735 * Merge de-allocated chunk of VA memory with previous
736 * and next free blocks. If coalesce is not done a new
737 * free area is inserted. If VA has been merged, it is
738 * freed.
739 *
740 * Please note, it can return NULL in case of overlap
741 * ranges, followed by WARN() report. Despite it is a
742 * buggy behaviour, a system can be alive and keep
743 * ongoing.
744 */
745 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)746 merge_or_add_vmap_area(struct vmap_area *va,
747 struct rb_root *root, struct list_head *head)
748 {
749 struct vmap_area *sibling;
750 struct list_head *next;
751 struct rb_node **link;
752 struct rb_node *parent;
753 bool merged = false;
754
755 /*
756 * Find a place in the tree where VA potentially will be
757 * inserted, unless it is merged with its sibling/siblings.
758 */
759 link = find_va_links(va, root, NULL, &parent);
760 if (!link)
761 return NULL;
762
763 /*
764 * Get next node of VA to check if merging can be done.
765 */
766 next = get_va_next_sibling(parent, link);
767 if (unlikely(next == NULL))
768 goto insert;
769
770 /*
771 * start end
772 * | |
773 * |<------VA------>|<-----Next----->|
774 * | |
775 * start end
776 */
777 if (next != head) {
778 sibling = list_entry(next, struct vmap_area, list);
779 if (sibling->va_start == va->va_end) {
780 sibling->va_start = va->va_start;
781
782 /* Free vmap_area object. */
783 kmem_cache_free(vmap_area_cachep, va);
784
785 /* Point to the new merged area. */
786 va = sibling;
787 merged = true;
788 }
789 }
790
791 /*
792 * start end
793 * | |
794 * |<-----Prev----->|<------VA------>|
795 * | |
796 * start end
797 */
798 if (next->prev != head) {
799 sibling = list_entry(next->prev, struct vmap_area, list);
800 if (sibling->va_end == va->va_start) {
801 /*
802 * If both neighbors are coalesced, it is important
803 * to unlink the "next" node first, followed by merging
804 * with "previous" one. Otherwise the tree might not be
805 * fully populated if a sibling's augmented value is
806 * "normalized" because of rotation operations.
807 */
808 if (merged)
809 unlink_va(va, root);
810
811 sibling->va_end = va->va_end;
812
813 /* Free vmap_area object. */
814 kmem_cache_free(vmap_area_cachep, va);
815
816 /* Point to the new merged area. */
817 va = sibling;
818 merged = true;
819 }
820 }
821
822 insert:
823 if (!merged)
824 link_va(va, root, parent, link, head);
825
826 /*
827 * Last step is to check and update the tree.
828 */
829 augment_tree_propagate_from(va);
830 return va;
831 }
832
833 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)834 is_within_this_va(struct vmap_area *va, unsigned long size,
835 unsigned long align, unsigned long vstart)
836 {
837 unsigned long nva_start_addr;
838
839 if (va->va_start > vstart)
840 nva_start_addr = ALIGN(va->va_start, align);
841 else
842 nva_start_addr = ALIGN(vstart, align);
843
844 /* Can be overflowed due to big size or alignment. */
845 if (nva_start_addr + size < nva_start_addr ||
846 nva_start_addr < vstart)
847 return false;
848
849 return (nva_start_addr + size <= va->va_end);
850 }
851
852 /*
853 * Find the first free block(lowest start address) in the tree,
854 * that will accomplish the request corresponding to passing
855 * parameters.
856 */
857 static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,unsigned long align,unsigned long vstart)858 find_vmap_lowest_match(unsigned long size,
859 unsigned long align, unsigned long vstart)
860 {
861 struct vmap_area *va;
862 struct rb_node *node;
863 unsigned long length;
864
865 /* Start from the root. */
866 node = free_vmap_area_root.rb_node;
867
868 /* Adjust the search size for alignment overhead. */
869 length = size + align - 1;
870
871 while (node) {
872 va = rb_entry(node, struct vmap_area, rb_node);
873
874 if (get_subtree_max_size(node->rb_left) >= length &&
875 vstart < va->va_start) {
876 node = node->rb_left;
877 } else {
878 if (is_within_this_va(va, size, align, vstart))
879 return va;
880
881 /*
882 * Does not make sense to go deeper towards the right
883 * sub-tree if it does not have a free block that is
884 * equal or bigger to the requested search length.
885 */
886 if (get_subtree_max_size(node->rb_right) >= length) {
887 node = node->rb_right;
888 continue;
889 }
890
891 /*
892 * OK. We roll back and find the first right sub-tree,
893 * that will satisfy the search criteria. It can happen
894 * only once due to "vstart" restriction.
895 */
896 while ((node = rb_parent(node))) {
897 va = rb_entry(node, struct vmap_area, rb_node);
898 if (is_within_this_va(va, size, align, vstart))
899 return va;
900
901 if (get_subtree_max_size(node->rb_right) >= length &&
902 vstart <= va->va_start) {
903 node = node->rb_right;
904 break;
905 }
906 }
907 }
908 }
909
910 return NULL;
911 }
912
913 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
914 #include <linux/random.h>
915
916 static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,unsigned long align,unsigned long vstart)917 find_vmap_lowest_linear_match(unsigned long size,
918 unsigned long align, unsigned long vstart)
919 {
920 struct vmap_area *va;
921
922 list_for_each_entry(va, &free_vmap_area_list, list) {
923 if (!is_within_this_va(va, size, align, vstart))
924 continue;
925
926 return va;
927 }
928
929 return NULL;
930 }
931
932 static void
find_vmap_lowest_match_check(unsigned long size)933 find_vmap_lowest_match_check(unsigned long size)
934 {
935 struct vmap_area *va_1, *va_2;
936 unsigned long vstart;
937 unsigned int rnd;
938
939 get_random_bytes(&rnd, sizeof(rnd));
940 vstart = VMALLOC_START + rnd;
941
942 va_1 = find_vmap_lowest_match(size, 1, vstart);
943 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
944
945 if (va_1 != va_2)
946 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
947 va_1, va_2, vstart);
948 }
949 #endif
950
951 enum fit_type {
952 NOTHING_FIT = 0,
953 FL_FIT_TYPE = 1, /* full fit */
954 LE_FIT_TYPE = 2, /* left edge fit */
955 RE_FIT_TYPE = 3, /* right edge fit */
956 NE_FIT_TYPE = 4 /* no edge fit */
957 };
958
959 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)960 classify_va_fit_type(struct vmap_area *va,
961 unsigned long nva_start_addr, unsigned long size)
962 {
963 enum fit_type type;
964
965 /* Check if it is within VA. */
966 if (nva_start_addr < va->va_start ||
967 nva_start_addr + size > va->va_end)
968 return NOTHING_FIT;
969
970 /* Now classify. */
971 if (va->va_start == nva_start_addr) {
972 if (va->va_end == nva_start_addr + size)
973 type = FL_FIT_TYPE;
974 else
975 type = LE_FIT_TYPE;
976 } else if (va->va_end == nva_start_addr + size) {
977 type = RE_FIT_TYPE;
978 } else {
979 type = NE_FIT_TYPE;
980 }
981
982 return type;
983 }
984
985 static __always_inline int
adjust_va_to_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size,enum fit_type type)986 adjust_va_to_fit_type(struct vmap_area *va,
987 unsigned long nva_start_addr, unsigned long size,
988 enum fit_type type)
989 {
990 struct vmap_area *lva = NULL;
991
992 if (type == FL_FIT_TYPE) {
993 /*
994 * No need to split VA, it fully fits.
995 *
996 * | |
997 * V NVA V
998 * |---------------|
999 */
1000 unlink_va(va, &free_vmap_area_root);
1001 kmem_cache_free(vmap_area_cachep, va);
1002 } else if (type == LE_FIT_TYPE) {
1003 /*
1004 * Split left edge of fit VA.
1005 *
1006 * | |
1007 * V NVA V R
1008 * |-------|-------|
1009 */
1010 va->va_start += size;
1011 } else if (type == RE_FIT_TYPE) {
1012 /*
1013 * Split right edge of fit VA.
1014 *
1015 * | |
1016 * L V NVA V
1017 * |-------|-------|
1018 */
1019 va->va_end = nva_start_addr;
1020 } else if (type == NE_FIT_TYPE) {
1021 /*
1022 * Split no edge of fit VA.
1023 *
1024 * | |
1025 * L V NVA V R
1026 * |---|-------|---|
1027 */
1028 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1029 if (unlikely(!lva)) {
1030 /*
1031 * For percpu allocator we do not do any pre-allocation
1032 * and leave it as it is. The reason is it most likely
1033 * never ends up with NE_FIT_TYPE splitting. In case of
1034 * percpu allocations offsets and sizes are aligned to
1035 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1036 * are its main fitting cases.
1037 *
1038 * There are a few exceptions though, as an example it is
1039 * a first allocation (early boot up) when we have "one"
1040 * big free space that has to be split.
1041 *
1042 * Also we can hit this path in case of regular "vmap"
1043 * allocations, if "this" current CPU was not preloaded.
1044 * See the comment in alloc_vmap_area() why. If so, then
1045 * GFP_NOWAIT is used instead to get an extra object for
1046 * split purpose. That is rare and most time does not
1047 * occur.
1048 *
1049 * What happens if an allocation gets failed. Basically,
1050 * an "overflow" path is triggered to purge lazily freed
1051 * areas to free some memory, then, the "retry" path is
1052 * triggered to repeat one more time. See more details
1053 * in alloc_vmap_area() function.
1054 */
1055 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1056 if (!lva)
1057 return -1;
1058 }
1059
1060 /*
1061 * Build the remainder.
1062 */
1063 lva->va_start = va->va_start;
1064 lva->va_end = nva_start_addr;
1065
1066 /*
1067 * Shrink this VA to remaining size.
1068 */
1069 va->va_start = nva_start_addr + size;
1070 } else {
1071 return -1;
1072 }
1073
1074 if (type != FL_FIT_TYPE) {
1075 augment_tree_propagate_from(va);
1076
1077 if (lva) /* type == NE_FIT_TYPE */
1078 insert_vmap_area_augment(lva, &va->rb_node,
1079 &free_vmap_area_root, &free_vmap_area_list);
1080 }
1081
1082 return 0;
1083 }
1084
1085 /*
1086 * Returns a start address of the newly allocated area, if success.
1087 * Otherwise a vend is returned that indicates failure.
1088 */
1089 static __always_inline unsigned long
__alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1090 __alloc_vmap_area(unsigned long size, unsigned long align,
1091 unsigned long vstart, unsigned long vend)
1092 {
1093 unsigned long nva_start_addr;
1094 struct vmap_area *va;
1095 enum fit_type type;
1096 int ret;
1097
1098 va = find_vmap_lowest_match(size, align, vstart);
1099 if (unlikely(!va))
1100 return vend;
1101
1102 if (va->va_start > vstart)
1103 nva_start_addr = ALIGN(va->va_start, align);
1104 else
1105 nva_start_addr = ALIGN(vstart, align);
1106
1107 /* Check the "vend" restriction. */
1108 if (nva_start_addr + size > vend)
1109 return vend;
1110
1111 /* Classify what we have found. */
1112 type = classify_va_fit_type(va, nva_start_addr, size);
1113 if (WARN_ON_ONCE(type == NOTHING_FIT))
1114 return vend;
1115
1116 /* Update the free vmap_area. */
1117 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1118 if (ret)
1119 return vend;
1120
1121 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1122 find_vmap_lowest_match_check(size);
1123 #endif
1124
1125 return nva_start_addr;
1126 }
1127
1128 /*
1129 * Free a region of KVA allocated by alloc_vmap_area
1130 */
free_vmap_area(struct vmap_area * va)1131 static void free_vmap_area(struct vmap_area *va)
1132 {
1133 /*
1134 * Remove from the busy tree/list.
1135 */
1136 spin_lock(&vmap_area_lock);
1137 unlink_va(va, &vmap_area_root);
1138 spin_unlock(&vmap_area_lock);
1139
1140 /*
1141 * Insert/Merge it back to the free tree/list.
1142 */
1143 spin_lock(&free_vmap_area_lock);
1144 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1145 spin_unlock(&free_vmap_area_lock);
1146 }
1147
1148 /*
1149 * Allocate a region of KVA of the specified size and alignment, within the
1150 * vstart and vend.
1151 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)1152 static struct vmap_area *alloc_vmap_area(unsigned long size,
1153 unsigned long align,
1154 unsigned long vstart, unsigned long vend,
1155 int node, gfp_t gfp_mask)
1156 {
1157 struct vmap_area *va, *pva;
1158 unsigned long addr;
1159 int purged = 0;
1160 int ret;
1161
1162 BUG_ON(!size);
1163 BUG_ON(offset_in_page(size));
1164 BUG_ON(!is_power_of_2(align));
1165
1166 if (unlikely(!vmap_initialized))
1167 return ERR_PTR(-EBUSY);
1168
1169 might_sleep();
1170 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1171
1172 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1173 if (unlikely(!va))
1174 return ERR_PTR(-ENOMEM);
1175
1176 /*
1177 * Only scan the relevant parts containing pointers to other objects
1178 * to avoid false negatives.
1179 */
1180 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1181
1182 retry:
1183 /*
1184 * Preload this CPU with one extra vmap_area object. It is used
1185 * when fit type of free area is NE_FIT_TYPE. Please note, it
1186 * does not guarantee that an allocation occurs on a CPU that
1187 * is preloaded, instead we minimize the case when it is not.
1188 * It can happen because of cpu migration, because there is a
1189 * race until the below spinlock is taken.
1190 *
1191 * The preload is done in non-atomic context, thus it allows us
1192 * to use more permissive allocation masks to be more stable under
1193 * low memory condition and high memory pressure. In rare case,
1194 * if not preloaded, GFP_NOWAIT is used.
1195 *
1196 * Set "pva" to NULL here, because of "retry" path.
1197 */
1198 pva = NULL;
1199
1200 if (!this_cpu_read(ne_fit_preload_node))
1201 /*
1202 * Even if it fails we do not really care about that.
1203 * Just proceed as it is. If needed "overflow" path
1204 * will refill the cache we allocate from.
1205 */
1206 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1207
1208 spin_lock(&free_vmap_area_lock);
1209
1210 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1211 kmem_cache_free(vmap_area_cachep, pva);
1212
1213 /*
1214 * If an allocation fails, the "vend" address is
1215 * returned. Therefore trigger the overflow path.
1216 */
1217 addr = __alloc_vmap_area(size, align, vstart, vend);
1218 spin_unlock(&free_vmap_area_lock);
1219
1220 if (unlikely(addr == vend))
1221 goto overflow;
1222
1223 va->va_start = addr;
1224 va->va_end = addr + size;
1225 va->vm = NULL;
1226
1227
1228 spin_lock(&vmap_area_lock);
1229 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1230 spin_unlock(&vmap_area_lock);
1231
1232 BUG_ON(!IS_ALIGNED(va->va_start, align));
1233 BUG_ON(va->va_start < vstart);
1234 BUG_ON(va->va_end > vend);
1235
1236 ret = kasan_populate_vmalloc(addr, size);
1237 if (ret) {
1238 free_vmap_area(va);
1239 return ERR_PTR(ret);
1240 }
1241
1242 return va;
1243
1244 overflow:
1245 if (!purged) {
1246 purge_vmap_area_lazy();
1247 purged = 1;
1248 goto retry;
1249 }
1250
1251 if (gfpflags_allow_blocking(gfp_mask)) {
1252 unsigned long freed = 0;
1253 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1254 if (freed > 0) {
1255 purged = 0;
1256 goto retry;
1257 }
1258 }
1259
1260 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1261 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1262 size);
1263
1264 kmem_cache_free(vmap_area_cachep, va);
1265 return ERR_PTR(-EBUSY);
1266 }
1267
register_vmap_purge_notifier(struct notifier_block * nb)1268 int register_vmap_purge_notifier(struct notifier_block *nb)
1269 {
1270 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1271 }
1272 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1273
unregister_vmap_purge_notifier(struct notifier_block * nb)1274 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1275 {
1276 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1277 }
1278 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1279
1280 bool lazy_vunmap_enable __read_mostly = true;
1281 /*
1282 * lazy_max_pages is the maximum amount of virtual address space we gather up
1283 * before attempting to purge with a TLB flush.
1284 *
1285 * There is a tradeoff here: a larger number will cover more kernel page tables
1286 * and take slightly longer to purge, but it will linearly reduce the number of
1287 * global TLB flushes that must be performed. It would seem natural to scale
1288 * this number up linearly with the number of CPUs (because vmapping activity
1289 * could also scale linearly with the number of CPUs), however it is likely
1290 * that in practice, workloads might be constrained in other ways that mean
1291 * vmap activity will not scale linearly with CPUs. Also, I want to be
1292 * conservative and not introduce a big latency on huge systems, so go with
1293 * a less aggressive log scale. It will still be an improvement over the old
1294 * code, and it will be simple to change the scale factor if we find that it
1295 * becomes a problem on bigger systems.
1296 */
lazy_max_pages(void)1297 static unsigned long lazy_max_pages(void)
1298 {
1299 unsigned int log;
1300
1301 if (!lazy_vunmap_enable)
1302 return 0;
1303
1304 log = fls(num_online_cpus());
1305
1306 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1307 }
1308
1309 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1310
1311 /*
1312 * Serialize vmap purging. There is no actual criticial section protected
1313 * by this look, but we want to avoid concurrent calls for performance
1314 * reasons and to make the pcpu_get_vm_areas more deterministic.
1315 */
1316 static DEFINE_MUTEX(vmap_purge_lock);
1317
1318 /* for per-CPU blocks */
1319 static void purge_fragmented_blocks_allcpus(void);
1320
1321 /*
1322 * called before a call to iounmap() if the caller wants vm_area_struct's
1323 * immediately freed.
1324 */
set_iounmap_nonlazy(void)1325 void set_iounmap_nonlazy(void)
1326 {
1327 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1328 }
1329
1330 /*
1331 * Purges all lazily-freed vmap areas.
1332 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1333 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1334 {
1335 unsigned long resched_threshold;
1336 struct llist_node *valist;
1337 struct vmap_area *va;
1338 struct vmap_area *n_va;
1339
1340 lockdep_assert_held(&vmap_purge_lock);
1341
1342 valist = llist_del_all(&vmap_purge_list);
1343 if (unlikely(valist == NULL))
1344 return false;
1345
1346 /*
1347 * TODO: to calculate a flush range without looping.
1348 * The list can be up to lazy_max_pages() elements.
1349 */
1350 llist_for_each_entry(va, valist, purge_list) {
1351 if (va->va_start < start)
1352 start = va->va_start;
1353 if (va->va_end > end)
1354 end = va->va_end;
1355 }
1356
1357 flush_tlb_kernel_range(start, end);
1358 resched_threshold = lazy_max_pages() << 1;
1359
1360 spin_lock(&free_vmap_area_lock);
1361 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1362 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1363 unsigned long orig_start = va->va_start;
1364 unsigned long orig_end = va->va_end;
1365
1366 /*
1367 * Finally insert or merge lazily-freed area. It is
1368 * detached and there is no need to "unlink" it from
1369 * anything.
1370 */
1371 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1372 &free_vmap_area_list);
1373
1374 if (!va)
1375 continue;
1376
1377 if (is_vmalloc_or_module_addr((void *)orig_start))
1378 kasan_release_vmalloc(orig_start, orig_end,
1379 va->va_start, va->va_end);
1380
1381 atomic_long_sub(nr, &vmap_lazy_nr);
1382
1383 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1384 cond_resched_lock(&free_vmap_area_lock);
1385 }
1386 spin_unlock(&free_vmap_area_lock);
1387 return true;
1388 }
1389
1390 /*
1391 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1392 * is already purging.
1393 */
try_purge_vmap_area_lazy(void)1394 static void try_purge_vmap_area_lazy(void)
1395 {
1396 if (mutex_trylock(&vmap_purge_lock)) {
1397 __purge_vmap_area_lazy(ULONG_MAX, 0);
1398 mutex_unlock(&vmap_purge_lock);
1399 }
1400 }
1401
1402 /*
1403 * Kick off a purge of the outstanding lazy areas.
1404 */
purge_vmap_area_lazy(void)1405 static void purge_vmap_area_lazy(void)
1406 {
1407 mutex_lock(&vmap_purge_lock);
1408 purge_fragmented_blocks_allcpus();
1409 __purge_vmap_area_lazy(ULONG_MAX, 0);
1410 mutex_unlock(&vmap_purge_lock);
1411 }
1412
1413 /*
1414 * Free a vmap area, caller ensuring that the area has been unmapped
1415 * and flush_cache_vunmap had been called for the correct range
1416 * previously.
1417 */
free_vmap_area_noflush(struct vmap_area * va)1418 static void free_vmap_area_noflush(struct vmap_area *va)
1419 {
1420 unsigned long nr_lazy;
1421
1422 spin_lock(&vmap_area_lock);
1423 unlink_va(va, &vmap_area_root);
1424 spin_unlock(&vmap_area_lock);
1425
1426 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1427 PAGE_SHIFT, &vmap_lazy_nr);
1428
1429 /* After this point, we may free va at any time */
1430 llist_add(&va->purge_list, &vmap_purge_list);
1431
1432 if (unlikely(nr_lazy > lazy_max_pages()))
1433 try_purge_vmap_area_lazy();
1434 }
1435
1436 /*
1437 * Free and unmap a vmap area
1438 */
free_unmap_vmap_area(struct vmap_area * va)1439 static void free_unmap_vmap_area(struct vmap_area *va)
1440 {
1441 flush_cache_vunmap(va->va_start, va->va_end);
1442 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1443 if (debug_pagealloc_enabled_static())
1444 flush_tlb_kernel_range(va->va_start, va->va_end);
1445
1446 free_vmap_area_noflush(va);
1447 }
1448
find_vmap_area(unsigned long addr)1449 static struct vmap_area *find_vmap_area(unsigned long addr)
1450 {
1451 struct vmap_area *va;
1452
1453 spin_lock(&vmap_area_lock);
1454 va = __find_vmap_area(addr);
1455 spin_unlock(&vmap_area_lock);
1456
1457 return va;
1458 }
1459
1460 /*** Per cpu kva allocator ***/
1461
1462 /*
1463 * vmap space is limited especially on 32 bit architectures. Ensure there is
1464 * room for at least 16 percpu vmap blocks per CPU.
1465 */
1466 /*
1467 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1468 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1469 * instead (we just need a rough idea)
1470 */
1471 #if BITS_PER_LONG == 32
1472 #define VMALLOC_SPACE (128UL*1024*1024)
1473 #else
1474 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1475 #endif
1476
1477 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1478 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1479 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1480 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1481 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1482 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1483 #define VMAP_BBMAP_BITS \
1484 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1485 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1486 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1487
1488 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1489
1490 struct vmap_block_queue {
1491 spinlock_t lock;
1492 struct list_head free;
1493 };
1494
1495 struct vmap_block {
1496 spinlock_t lock;
1497 struct vmap_area *va;
1498 unsigned long free, dirty;
1499 unsigned long dirty_min, dirty_max; /*< dirty range */
1500 struct list_head free_list;
1501 struct rcu_head rcu_head;
1502 struct list_head purge;
1503 };
1504
1505 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1506 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1507
1508 /*
1509 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1510 * in the free path. Could get rid of this if we change the API to return a
1511 * "cookie" from alloc, to be passed to free. But no big deal yet.
1512 */
1513 static DEFINE_XARRAY(vmap_blocks);
1514
1515 /*
1516 * We should probably have a fallback mechanism to allocate virtual memory
1517 * out of partially filled vmap blocks. However vmap block sizing should be
1518 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1519 * big problem.
1520 */
1521
addr_to_vb_idx(unsigned long addr)1522 static unsigned long addr_to_vb_idx(unsigned long addr)
1523 {
1524 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1525 addr /= VMAP_BLOCK_SIZE;
1526 return addr;
1527 }
1528
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)1529 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1530 {
1531 unsigned long addr;
1532
1533 addr = va_start + (pages_off << PAGE_SHIFT);
1534 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1535 return (void *)addr;
1536 }
1537
1538 /**
1539 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1540 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1541 * @order: how many 2^order pages should be occupied in newly allocated block
1542 * @gfp_mask: flags for the page level allocator
1543 *
1544 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1545 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)1546 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1547 {
1548 struct vmap_block_queue *vbq;
1549 struct vmap_block *vb;
1550 struct vmap_area *va;
1551 unsigned long vb_idx;
1552 int node, err;
1553 void *vaddr;
1554
1555 node = numa_node_id();
1556
1557 vb = kmalloc_node(sizeof(struct vmap_block),
1558 gfp_mask & GFP_RECLAIM_MASK, node);
1559 if (unlikely(!vb))
1560 return ERR_PTR(-ENOMEM);
1561
1562 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1563 VMALLOC_START, VMALLOC_END,
1564 node, gfp_mask);
1565 if (IS_ERR(va)) {
1566 kfree(vb);
1567 return ERR_CAST(va);
1568 }
1569
1570 vaddr = vmap_block_vaddr(va->va_start, 0);
1571 spin_lock_init(&vb->lock);
1572 vb->va = va;
1573 /* At least something should be left free */
1574 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1575 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1576 vb->dirty = 0;
1577 vb->dirty_min = VMAP_BBMAP_BITS;
1578 vb->dirty_max = 0;
1579 INIT_LIST_HEAD(&vb->free_list);
1580
1581 vb_idx = addr_to_vb_idx(va->va_start);
1582 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1583 if (err) {
1584 kfree(vb);
1585 free_vmap_area(va);
1586 return ERR_PTR(err);
1587 }
1588
1589 vbq = &get_cpu_var(vmap_block_queue);
1590 spin_lock(&vbq->lock);
1591 list_add_tail_rcu(&vb->free_list, &vbq->free);
1592 spin_unlock(&vbq->lock);
1593 put_cpu_var(vmap_block_queue);
1594
1595 return vaddr;
1596 }
1597
free_vmap_block(struct vmap_block * vb)1598 static void free_vmap_block(struct vmap_block *vb)
1599 {
1600 struct vmap_block *tmp;
1601
1602 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1603 BUG_ON(tmp != vb);
1604
1605 free_vmap_area_noflush(vb->va);
1606 kfree_rcu(vb, rcu_head);
1607 }
1608
purge_fragmented_blocks(int cpu)1609 static void purge_fragmented_blocks(int cpu)
1610 {
1611 LIST_HEAD(purge);
1612 struct vmap_block *vb;
1613 struct vmap_block *n_vb;
1614 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1615
1616 rcu_read_lock();
1617 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1618
1619 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1620 continue;
1621
1622 spin_lock(&vb->lock);
1623 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1624 vb->free = 0; /* prevent further allocs after releasing lock */
1625 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1626 vb->dirty_min = 0;
1627 vb->dirty_max = VMAP_BBMAP_BITS;
1628 spin_lock(&vbq->lock);
1629 list_del_rcu(&vb->free_list);
1630 spin_unlock(&vbq->lock);
1631 spin_unlock(&vb->lock);
1632 list_add_tail(&vb->purge, &purge);
1633 } else
1634 spin_unlock(&vb->lock);
1635 }
1636 rcu_read_unlock();
1637
1638 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1639 list_del(&vb->purge);
1640 free_vmap_block(vb);
1641 }
1642 }
1643
purge_fragmented_blocks_allcpus(void)1644 static void purge_fragmented_blocks_allcpus(void)
1645 {
1646 int cpu;
1647
1648 for_each_possible_cpu(cpu)
1649 purge_fragmented_blocks(cpu);
1650 }
1651
vb_alloc(unsigned long size,gfp_t gfp_mask)1652 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1653 {
1654 struct vmap_block_queue *vbq;
1655 struct vmap_block *vb;
1656 void *vaddr = NULL;
1657 unsigned int order;
1658
1659 BUG_ON(offset_in_page(size));
1660 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1661 if (WARN_ON(size == 0)) {
1662 /*
1663 * Allocating 0 bytes isn't what caller wants since
1664 * get_order(0) returns funny result. Just warn and terminate
1665 * early.
1666 */
1667 return NULL;
1668 }
1669 order = get_order(size);
1670
1671 rcu_read_lock();
1672 vbq = &get_cpu_var(vmap_block_queue);
1673 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1674 unsigned long pages_off;
1675
1676 spin_lock(&vb->lock);
1677 if (vb->free < (1UL << order)) {
1678 spin_unlock(&vb->lock);
1679 continue;
1680 }
1681
1682 pages_off = VMAP_BBMAP_BITS - vb->free;
1683 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1684 vb->free -= 1UL << order;
1685 if (vb->free == 0) {
1686 spin_lock(&vbq->lock);
1687 list_del_rcu(&vb->free_list);
1688 spin_unlock(&vbq->lock);
1689 }
1690
1691 spin_unlock(&vb->lock);
1692 break;
1693 }
1694
1695 put_cpu_var(vmap_block_queue);
1696 rcu_read_unlock();
1697
1698 /* Allocate new block if nothing was found */
1699 if (!vaddr)
1700 vaddr = new_vmap_block(order, gfp_mask);
1701
1702 return vaddr;
1703 }
1704
vb_free(unsigned long addr,unsigned long size)1705 static void vb_free(unsigned long addr, unsigned long size)
1706 {
1707 unsigned long offset;
1708 unsigned int order;
1709 struct vmap_block *vb;
1710
1711 BUG_ON(offset_in_page(size));
1712 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1713
1714 flush_cache_vunmap(addr, addr + size);
1715
1716 order = get_order(size);
1717 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1718 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1719
1720 unmap_kernel_range_noflush(addr, size);
1721
1722 if (debug_pagealloc_enabled_static())
1723 flush_tlb_kernel_range(addr, addr + size);
1724
1725 spin_lock(&vb->lock);
1726
1727 /* Expand dirty range */
1728 vb->dirty_min = min(vb->dirty_min, offset);
1729 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1730
1731 vb->dirty += 1UL << order;
1732 if (vb->dirty == VMAP_BBMAP_BITS) {
1733 BUG_ON(vb->free);
1734 spin_unlock(&vb->lock);
1735 free_vmap_block(vb);
1736 } else
1737 spin_unlock(&vb->lock);
1738 }
1739
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)1740 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1741 {
1742 int cpu;
1743
1744 if (unlikely(!vmap_initialized))
1745 return;
1746
1747 might_sleep();
1748
1749 for_each_possible_cpu(cpu) {
1750 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1751 struct vmap_block *vb;
1752
1753 rcu_read_lock();
1754 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1755 spin_lock(&vb->lock);
1756 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
1757 unsigned long va_start = vb->va->va_start;
1758 unsigned long s, e;
1759
1760 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1761 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1762
1763 start = min(s, start);
1764 end = max(e, end);
1765
1766 flush = 1;
1767 }
1768 spin_unlock(&vb->lock);
1769 }
1770 rcu_read_unlock();
1771 }
1772
1773 mutex_lock(&vmap_purge_lock);
1774 purge_fragmented_blocks_allcpus();
1775 if (!__purge_vmap_area_lazy(start, end) && flush)
1776 flush_tlb_kernel_range(start, end);
1777 mutex_unlock(&vmap_purge_lock);
1778 }
1779
1780 /**
1781 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1782 *
1783 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1784 * to amortize TLB flushing overheads. What this means is that any page you
1785 * have now, may, in a former life, have been mapped into kernel virtual
1786 * address by the vmap layer and so there might be some CPUs with TLB entries
1787 * still referencing that page (additional to the regular 1:1 kernel mapping).
1788 *
1789 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1790 * be sure that none of the pages we have control over will have any aliases
1791 * from the vmap layer.
1792 */
vm_unmap_aliases(void)1793 void vm_unmap_aliases(void)
1794 {
1795 unsigned long start = ULONG_MAX, end = 0;
1796 int flush = 0;
1797
1798 _vm_unmap_aliases(start, end, flush);
1799 }
1800 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1801
1802 /**
1803 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1804 * @mem: the pointer returned by vm_map_ram
1805 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1806 */
vm_unmap_ram(const void * mem,unsigned int count)1807 void vm_unmap_ram(const void *mem, unsigned int count)
1808 {
1809 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1810 unsigned long addr = (unsigned long)mem;
1811 struct vmap_area *va;
1812
1813 might_sleep();
1814 BUG_ON(!addr);
1815 BUG_ON(addr < VMALLOC_START);
1816 BUG_ON(addr > VMALLOC_END);
1817 BUG_ON(!PAGE_ALIGNED(addr));
1818
1819 kasan_poison_vmalloc(mem, size);
1820
1821 if (likely(count <= VMAP_MAX_ALLOC)) {
1822 debug_check_no_locks_freed(mem, size);
1823 vb_free(addr, size);
1824 return;
1825 }
1826
1827 va = find_vmap_area(addr);
1828 BUG_ON(!va);
1829 debug_check_no_locks_freed((void *)va->va_start,
1830 (va->va_end - va->va_start));
1831 free_unmap_vmap_area(va);
1832 }
1833 EXPORT_SYMBOL(vm_unmap_ram);
1834
1835 /**
1836 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1837 * @pages: an array of pointers to the pages to be mapped
1838 * @count: number of pages
1839 * @node: prefer to allocate data structures on this node
1840 *
1841 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1842 * faster than vmap so it's good. But if you mix long-life and short-life
1843 * objects with vm_map_ram(), it could consume lots of address space through
1844 * fragmentation (especially on a 32bit machine). You could see failures in
1845 * the end. Please use this function for short-lived objects.
1846 *
1847 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1848 */
vm_map_ram(struct page ** pages,unsigned int count,int node)1849 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1850 {
1851 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1852 unsigned long addr;
1853 void *mem;
1854
1855 if (likely(count <= VMAP_MAX_ALLOC)) {
1856 mem = vb_alloc(size, GFP_KERNEL);
1857 if (IS_ERR(mem))
1858 return NULL;
1859 addr = (unsigned long)mem;
1860 } else {
1861 struct vmap_area *va;
1862 va = alloc_vmap_area(size, PAGE_SIZE,
1863 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1864 if (IS_ERR(va))
1865 return NULL;
1866
1867 addr = va->va_start;
1868 mem = (void *)addr;
1869 }
1870
1871 kasan_unpoison_vmalloc(mem, size);
1872
1873 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1874 vm_unmap_ram(mem, count);
1875 return NULL;
1876 }
1877 return mem;
1878 }
1879 EXPORT_SYMBOL(vm_map_ram);
1880
1881 static struct vm_struct *vmlist __initdata;
1882
1883 /**
1884 * vm_area_add_early - add vmap area early during boot
1885 * @vm: vm_struct to add
1886 *
1887 * This function is used to add fixed kernel vm area to vmlist before
1888 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1889 * should contain proper values and the other fields should be zero.
1890 *
1891 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1892 */
vm_area_add_early(struct vm_struct * vm)1893 void __init vm_area_add_early(struct vm_struct *vm)
1894 {
1895 struct vm_struct *tmp, **p;
1896
1897 BUG_ON(vmap_initialized);
1898 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1899 if (tmp->addr >= vm->addr) {
1900 BUG_ON(tmp->addr < vm->addr + vm->size);
1901 break;
1902 } else
1903 BUG_ON(tmp->addr + tmp->size > vm->addr);
1904 }
1905 vm->next = *p;
1906 *p = vm;
1907 }
1908
1909 /**
1910 * vm_area_register_early - register vmap area early during boot
1911 * @vm: vm_struct to register
1912 * @align: requested alignment
1913 *
1914 * This function is used to register kernel vm area before
1915 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1916 * proper values on entry and other fields should be zero. On return,
1917 * vm->addr contains the allocated address.
1918 *
1919 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1920 */
vm_area_register_early(struct vm_struct * vm,size_t align)1921 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1922 {
1923 static size_t vm_init_off __initdata;
1924 unsigned long addr;
1925
1926 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1927 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1928
1929 vm->addr = (void *)addr;
1930
1931 vm_area_add_early(vm);
1932 }
1933
vmap_init_free_space(void)1934 static void vmap_init_free_space(void)
1935 {
1936 unsigned long vmap_start = 1;
1937 const unsigned long vmap_end = ULONG_MAX;
1938 struct vmap_area *busy, *free;
1939
1940 /*
1941 * B F B B B F
1942 * -|-----|.....|-----|-----|-----|.....|-
1943 * | The KVA space |
1944 * |<--------------------------------->|
1945 */
1946 list_for_each_entry(busy, &vmap_area_list, list) {
1947 if (busy->va_start - vmap_start > 0) {
1948 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1949 if (!WARN_ON_ONCE(!free)) {
1950 free->va_start = vmap_start;
1951 free->va_end = busy->va_start;
1952
1953 insert_vmap_area_augment(free, NULL,
1954 &free_vmap_area_root,
1955 &free_vmap_area_list);
1956 }
1957 }
1958
1959 vmap_start = busy->va_end;
1960 }
1961
1962 if (vmap_end - vmap_start > 0) {
1963 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1964 if (!WARN_ON_ONCE(!free)) {
1965 free->va_start = vmap_start;
1966 free->va_end = vmap_end;
1967
1968 insert_vmap_area_augment(free, NULL,
1969 &free_vmap_area_root,
1970 &free_vmap_area_list);
1971 }
1972 }
1973 }
1974
vmalloc_init(void)1975 void __init vmalloc_init(void)
1976 {
1977 struct vmap_area *va;
1978 struct vm_struct *tmp;
1979 int i;
1980
1981 /*
1982 * Create the cache for vmap_area objects.
1983 */
1984 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1985
1986 for_each_possible_cpu(i) {
1987 struct vmap_block_queue *vbq;
1988 struct vfree_deferred *p;
1989
1990 vbq = &per_cpu(vmap_block_queue, i);
1991 spin_lock_init(&vbq->lock);
1992 INIT_LIST_HEAD(&vbq->free);
1993 p = &per_cpu(vfree_deferred, i);
1994 init_llist_head(&p->list);
1995 INIT_WORK(&p->wq, free_work);
1996 }
1997
1998 /* Import existing vmlist entries. */
1999 for (tmp = vmlist; tmp; tmp = tmp->next) {
2000 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2001 if (WARN_ON_ONCE(!va))
2002 continue;
2003
2004 va->va_start = (unsigned long)tmp->addr;
2005 va->va_end = va->va_start + tmp->size;
2006 va->vm = tmp;
2007 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2008 }
2009
2010 /*
2011 * Now we can initialize a free vmap space.
2012 */
2013 vmap_init_free_space();
2014 vmap_initialized = true;
2015 }
2016
2017 /**
2018 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2019 * @addr: start of the VM area to unmap
2020 * @size: size of the VM area to unmap
2021 *
2022 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2023 * the unmapping and tlb after.
2024 */
unmap_kernel_range(unsigned long addr,unsigned long size)2025 void unmap_kernel_range(unsigned long addr, unsigned long size)
2026 {
2027 unsigned long end = addr + size;
2028
2029 flush_cache_vunmap(addr, end);
2030 unmap_kernel_range_noflush(addr, size);
2031 flush_tlb_kernel_range(addr, end);
2032 }
2033
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2034 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2035 struct vmap_area *va, unsigned long flags, const void *caller)
2036 {
2037 vm->flags = flags;
2038 vm->addr = (void *)va->va_start;
2039 vm->size = va->va_end - va->va_start;
2040 vm->caller = caller;
2041 va->vm = vm;
2042 trace_android_vh_save_vmalloc_stack(flags, vm);
2043 }
2044
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2045 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2046 unsigned long flags, const void *caller)
2047 {
2048 spin_lock(&vmap_area_lock);
2049 setup_vmalloc_vm_locked(vm, va, flags, caller);
2050 spin_unlock(&vmap_area_lock);
2051 }
2052
clear_vm_uninitialized_flag(struct vm_struct * vm)2053 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2054 {
2055 /*
2056 * Before removing VM_UNINITIALIZED,
2057 * we should make sure that vm has proper values.
2058 * Pair with smp_rmb() in show_numa_info().
2059 */
2060 smp_wmb();
2061 vm->flags &= ~VM_UNINITIALIZED;
2062 }
2063
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2064 static struct vm_struct *__get_vm_area_node(unsigned long size,
2065 unsigned long align, unsigned long flags, unsigned long start,
2066 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2067 {
2068 struct vmap_area *va;
2069 struct vm_struct *area;
2070 unsigned long requested_size = size;
2071
2072 BUG_ON(in_interrupt());
2073 size = PAGE_ALIGN(size);
2074 if (unlikely(!size))
2075 return NULL;
2076
2077 if (flags & VM_IOREMAP)
2078 align = 1ul << clamp_t(int, get_count_order_long(size),
2079 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2080
2081 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2082 if (unlikely(!area))
2083 return NULL;
2084
2085 if (!(flags & VM_NO_GUARD))
2086 size += PAGE_SIZE;
2087
2088 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2089 if (IS_ERR(va)) {
2090 kfree(area);
2091 return NULL;
2092 }
2093
2094 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2095
2096 setup_vmalloc_vm(area, va, flags, caller);
2097
2098 return area;
2099 }
2100
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2101 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2102 unsigned long start, unsigned long end,
2103 const void *caller)
2104 {
2105 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2106 GFP_KERNEL, caller);
2107 }
2108 EXPORT_SYMBOL_GPL(__get_vm_area_caller);
2109
2110 /**
2111 * get_vm_area - reserve a contiguous kernel virtual area
2112 * @size: size of the area
2113 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2114 *
2115 * Search an area of @size in the kernel virtual mapping area,
2116 * and reserved it for out purposes. Returns the area descriptor
2117 * on success or %NULL on failure.
2118 *
2119 * Return: the area descriptor on success or %NULL on failure.
2120 */
get_vm_area(unsigned long size,unsigned long flags)2121 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2122 {
2123 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2124 NUMA_NO_NODE, GFP_KERNEL,
2125 __builtin_return_address(0));
2126 }
2127
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2128 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2129 const void *caller)
2130 {
2131 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2132 NUMA_NO_NODE, GFP_KERNEL, caller);
2133 }
2134
2135 /**
2136 * find_vm_area - find a continuous kernel virtual area
2137 * @addr: base address
2138 *
2139 * Search for the kernel VM area starting at @addr, and return it.
2140 * It is up to the caller to do all required locking to keep the returned
2141 * pointer valid.
2142 *
2143 * Return: the area descriptor on success or %NULL on failure.
2144 */
find_vm_area(const void * addr)2145 struct vm_struct *find_vm_area(const void *addr)
2146 {
2147 struct vmap_area *va;
2148
2149 va = find_vmap_area((unsigned long)addr);
2150 if (!va)
2151 return NULL;
2152
2153 return va->vm;
2154 }
2155
2156 /**
2157 * remove_vm_area - find and remove a continuous kernel virtual area
2158 * @addr: base address
2159 *
2160 * Search for the kernel VM area starting at @addr, and remove it.
2161 * This function returns the found VM area, but using it is NOT safe
2162 * on SMP machines, except for its size or flags.
2163 *
2164 * Return: the area descriptor on success or %NULL on failure.
2165 */
remove_vm_area(const void * addr)2166 struct vm_struct *remove_vm_area(const void *addr)
2167 {
2168 struct vmap_area *va;
2169
2170 might_sleep();
2171
2172 spin_lock(&vmap_area_lock);
2173 va = __find_vmap_area((unsigned long)addr);
2174 if (va && va->vm) {
2175 struct vm_struct *vm = va->vm;
2176
2177 trace_android_vh_remove_vmalloc_stack(vm);
2178 va->vm = NULL;
2179 spin_unlock(&vmap_area_lock);
2180
2181 kasan_free_shadow(vm);
2182 free_unmap_vmap_area(va);
2183
2184 return vm;
2185 }
2186
2187 spin_unlock(&vmap_area_lock);
2188 return NULL;
2189 }
2190
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2191 static inline void set_area_direct_map(const struct vm_struct *area,
2192 int (*set_direct_map)(struct page *page))
2193 {
2194 int i;
2195
2196 for (i = 0; i < area->nr_pages; i++)
2197 if (page_address(area->pages[i]))
2198 set_direct_map(area->pages[i]);
2199 }
2200
2201 /* Handle removing and resetting vm mappings related to the vm_struct. */
vm_remove_mappings(struct vm_struct * area,int deallocate_pages)2202 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2203 {
2204 unsigned long start = ULONG_MAX, end = 0;
2205 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2206 int flush_dmap = 0;
2207 int i;
2208
2209 remove_vm_area(area->addr);
2210
2211 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2212 if (!flush_reset)
2213 return;
2214
2215 /*
2216 * If not deallocating pages, just do the flush of the VM area and
2217 * return.
2218 */
2219 if (!deallocate_pages) {
2220 vm_unmap_aliases();
2221 return;
2222 }
2223
2224 /*
2225 * If execution gets here, flush the vm mapping and reset the direct
2226 * map. Find the start and end range of the direct mappings to make sure
2227 * the vm_unmap_aliases() flush includes the direct map.
2228 */
2229 for (i = 0; i < area->nr_pages; i++) {
2230 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2231 if (addr) {
2232 start = min(addr, start);
2233 end = max(addr + PAGE_SIZE, end);
2234 flush_dmap = 1;
2235 }
2236 }
2237
2238 /*
2239 * Set direct map to something invalid so that it won't be cached if
2240 * there are any accesses after the TLB flush, then flush the TLB and
2241 * reset the direct map permissions to the default.
2242 */
2243 set_area_direct_map(area, set_direct_map_invalid_noflush);
2244 _vm_unmap_aliases(start, end, flush_dmap);
2245 set_area_direct_map(area, set_direct_map_default_noflush);
2246 }
2247
__vunmap(const void * addr,int deallocate_pages)2248 static void __vunmap(const void *addr, int deallocate_pages)
2249 {
2250 struct vm_struct *area;
2251
2252 if (!addr)
2253 return;
2254
2255 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2256 addr))
2257 return;
2258
2259 area = find_vm_area(addr);
2260 if (unlikely(!area)) {
2261 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2262 addr);
2263 return;
2264 }
2265
2266 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2267 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2268
2269 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2270
2271 vm_remove_mappings(area, deallocate_pages);
2272
2273 if (deallocate_pages) {
2274 int i;
2275
2276 for (i = 0; i < area->nr_pages; i++) {
2277 struct page *page = area->pages[i];
2278
2279 BUG_ON(!page);
2280 __free_pages(page, 0);
2281 }
2282 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2283
2284 kvfree(area->pages);
2285 }
2286
2287 kfree(area);
2288 return;
2289 }
2290
__vfree_deferred(const void * addr)2291 static inline void __vfree_deferred(const void *addr)
2292 {
2293 /*
2294 * Use raw_cpu_ptr() because this can be called from preemptible
2295 * context. Preemption is absolutely fine here, because the llist_add()
2296 * implementation is lockless, so it works even if we are adding to
2297 * another cpu's list. schedule_work() should be fine with this too.
2298 */
2299 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2300
2301 if (llist_add((struct llist_node *)addr, &p->list))
2302 schedule_work(&p->wq);
2303 }
2304
2305 /**
2306 * vfree_atomic - release memory allocated by vmalloc()
2307 * @addr: memory base address
2308 *
2309 * This one is just like vfree() but can be called in any atomic context
2310 * except NMIs.
2311 */
vfree_atomic(const void * addr)2312 void vfree_atomic(const void *addr)
2313 {
2314 BUG_ON(in_nmi());
2315
2316 kmemleak_free(addr);
2317
2318 if (!addr)
2319 return;
2320 __vfree_deferred(addr);
2321 }
2322
__vfree(const void * addr)2323 static void __vfree(const void *addr)
2324 {
2325 if (unlikely(in_interrupt()))
2326 __vfree_deferred(addr);
2327 else
2328 __vunmap(addr, 1);
2329 }
2330
2331 /**
2332 * vfree - Release memory allocated by vmalloc()
2333 * @addr: Memory base address
2334 *
2335 * Free the virtually continuous memory area starting at @addr, as obtained
2336 * from one of the vmalloc() family of APIs. This will usually also free the
2337 * physical memory underlying the virtual allocation, but that memory is
2338 * reference counted, so it will not be freed until the last user goes away.
2339 *
2340 * If @addr is NULL, no operation is performed.
2341 *
2342 * Context:
2343 * May sleep if called *not* from interrupt context.
2344 * Must not be called in NMI context (strictly speaking, it could be
2345 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2346 * conventions for vfree() arch-depenedent would be a really bad idea).
2347 */
vfree(const void * addr)2348 void vfree(const void *addr)
2349 {
2350 BUG_ON(in_nmi());
2351
2352 kmemleak_free(addr);
2353
2354 might_sleep_if(!in_interrupt());
2355
2356 if (!addr)
2357 return;
2358
2359 __vfree(addr);
2360 }
2361 EXPORT_SYMBOL(vfree);
2362
2363 /**
2364 * vunmap - release virtual mapping obtained by vmap()
2365 * @addr: memory base address
2366 *
2367 * Free the virtually contiguous memory area starting at @addr,
2368 * which was created from the page array passed to vmap().
2369 *
2370 * Must not be called in interrupt context.
2371 */
vunmap(const void * addr)2372 void vunmap(const void *addr)
2373 {
2374 BUG_ON(in_interrupt());
2375 might_sleep();
2376 if (addr)
2377 __vunmap(addr, 0);
2378 }
2379 EXPORT_SYMBOL(vunmap);
2380
2381 /**
2382 * vmap - map an array of pages into virtually contiguous space
2383 * @pages: array of page pointers
2384 * @count: number of pages to map
2385 * @flags: vm_area->flags
2386 * @prot: page protection for the mapping
2387 *
2388 * Maps @count pages from @pages into contiguous kernel virtual space.
2389 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2390 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2391 * are transferred from the caller to vmap(), and will be freed / dropped when
2392 * vfree() is called on the return value.
2393 *
2394 * Return: the address of the area or %NULL on failure
2395 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2396 void *vmap(struct page **pages, unsigned int count,
2397 unsigned long flags, pgprot_t prot)
2398 {
2399 struct vm_struct *area;
2400 unsigned long size; /* In bytes */
2401
2402 might_sleep();
2403
2404 if (count > totalram_pages())
2405 return NULL;
2406
2407 size = (unsigned long)count << PAGE_SHIFT;
2408 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2409 if (!area)
2410 return NULL;
2411
2412 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2413 pages) < 0) {
2414 vunmap(area->addr);
2415 return NULL;
2416 }
2417
2418 if (flags & VM_MAP_PUT_PAGES) {
2419 area->pages = pages;
2420 area->nr_pages = count;
2421 }
2422 return area->addr;
2423 }
2424 EXPORT_SYMBOL(vmap);
2425
2426 #ifdef CONFIG_VMAP_PFN
2427 struct vmap_pfn_data {
2428 unsigned long *pfns;
2429 pgprot_t prot;
2430 unsigned int idx;
2431 };
2432
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2433 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2434 {
2435 struct vmap_pfn_data *data = private;
2436
2437 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2438 return -EINVAL;
2439 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2440 return 0;
2441 }
2442
2443 /**
2444 * vmap_pfn - map an array of PFNs into virtually contiguous space
2445 * @pfns: array of PFNs
2446 * @count: number of pages to map
2447 * @prot: page protection for the mapping
2448 *
2449 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2450 * the start address of the mapping.
2451 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2452 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2453 {
2454 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2455 struct vm_struct *area;
2456
2457 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2458 __builtin_return_address(0));
2459 if (!area)
2460 return NULL;
2461 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2462 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2463 free_vm_area(area);
2464 return NULL;
2465 }
2466
2467 flush_cache_vmap((unsigned long)area->addr,
2468 (unsigned long)area->addr + count * PAGE_SIZE);
2469
2470 return area->addr;
2471 }
2472 EXPORT_SYMBOL_GPL(vmap_pfn);
2473 #endif /* CONFIG_VMAP_PFN */
2474
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)2475 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2476 pgprot_t prot, int node)
2477 {
2478 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2479 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2480 unsigned int array_size = nr_pages * sizeof(struct page *), i;
2481 struct page **pages;
2482
2483 gfp_mask |= __GFP_NOWARN;
2484 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2485 gfp_mask |= __GFP_HIGHMEM;
2486
2487 /* Please note that the recursion is strictly bounded. */
2488 if (array_size > PAGE_SIZE) {
2489 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2490 area->caller);
2491 } else {
2492 pages = kmalloc_node(array_size, nested_gfp, node);
2493 }
2494
2495 if (!pages) {
2496 remove_vm_area(area->addr);
2497 kfree(area);
2498 return NULL;
2499 }
2500
2501 area->pages = pages;
2502 area->nr_pages = nr_pages;
2503
2504 for (i = 0; i < area->nr_pages; i++) {
2505 struct page *page;
2506
2507 if (node == NUMA_NO_NODE)
2508 page = alloc_page(gfp_mask);
2509 else
2510 page = alloc_pages_node(node, gfp_mask, 0);
2511
2512 if (unlikely(!page)) {
2513 /* Successfully allocated i pages, free them in __vfree() */
2514 area->nr_pages = i;
2515 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2516 goto fail;
2517 }
2518 area->pages[i] = page;
2519 if (gfpflags_allow_blocking(gfp_mask))
2520 cond_resched();
2521 }
2522 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2523
2524 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2525 prot, pages) < 0)
2526 goto fail;
2527
2528 return area->addr;
2529
2530 fail:
2531 warn_alloc(gfp_mask, NULL,
2532 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533 (area->nr_pages*PAGE_SIZE), area->size);
2534 __vfree(area->addr);
2535 return NULL;
2536 }
2537
2538 /**
2539 * __vmalloc_node_range - allocate virtually contiguous memory
2540 * @size: allocation size
2541 * @align: desired alignment
2542 * @start: vm area range start
2543 * @end: vm area range end
2544 * @gfp_mask: flags for the page level allocator
2545 * @prot: protection mask for the allocated pages
2546 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2547 * @node: node to use for allocation or NUMA_NO_NODE
2548 * @caller: caller's return address
2549 *
2550 * Allocate enough pages to cover @size from the page level
2551 * allocator with @gfp_mask flags. Map them into contiguous
2552 * kernel virtual space, using a pagetable protection of @prot.
2553 *
2554 * Return: the address of the area or %NULL on failure
2555 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)2556 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2557 unsigned long start, unsigned long end, gfp_t gfp_mask,
2558 pgprot_t prot, unsigned long vm_flags, int node,
2559 const void *caller)
2560 {
2561 struct vm_struct *area;
2562 void *addr;
2563 unsigned long real_size = size;
2564
2565 size = PAGE_ALIGN(size);
2566 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2567 goto fail;
2568
2569 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2570 vm_flags, start, end, node, gfp_mask, caller);
2571 if (!area)
2572 goto fail;
2573
2574 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2575 if (!addr)
2576 return NULL;
2577
2578 /*
2579 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 * flag. It means that vm_struct is not fully initialized.
2581 * Now, it is fully initialized, so remove this flag here.
2582 */
2583 clear_vm_uninitialized_flag(area);
2584
2585 kmemleak_vmalloc(area, size, gfp_mask);
2586
2587 return addr;
2588
2589 fail:
2590 warn_alloc(gfp_mask, NULL,
2591 "vmalloc: allocation failure: %lu bytes", real_size);
2592 return NULL;
2593 }
2594
2595 /**
2596 * __vmalloc_node - allocate virtually contiguous memory
2597 * @size: allocation size
2598 * @align: desired alignment
2599 * @gfp_mask: flags for the page level allocator
2600 * @node: node to use for allocation or NUMA_NO_NODE
2601 * @caller: caller's return address
2602 *
2603 * Allocate enough pages to cover @size from the page level allocator with
2604 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2605 *
2606 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607 * and __GFP_NOFAIL are not supported
2608 *
2609 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2610 * with mm people.
2611 *
2612 * Return: pointer to the allocated memory or %NULL on error
2613 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)2614 void *__vmalloc_node(unsigned long size, unsigned long align,
2615 gfp_t gfp_mask, int node, const void *caller)
2616 {
2617 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2618 gfp_mask, PAGE_KERNEL, 0, node, caller);
2619 }
2620 /*
2621 * This is only for performance analysis of vmalloc and stress purpose.
2622 * It is required by vmalloc test module, therefore do not use it other
2623 * than that.
2624 */
2625 #ifdef CONFIG_TEST_VMALLOC_MODULE
2626 EXPORT_SYMBOL_GPL(__vmalloc_node);
2627 #endif
2628
__vmalloc(unsigned long size,gfp_t gfp_mask)2629 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2630 {
2631 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2632 __builtin_return_address(0));
2633 }
2634 EXPORT_SYMBOL(__vmalloc);
2635
2636 /**
2637 * vmalloc - allocate virtually contiguous memory
2638 * @size: allocation size
2639 *
2640 * Allocate enough pages to cover @size from the page level
2641 * allocator and map them into contiguous kernel virtual space.
2642 *
2643 * For tight control over page level allocator and protection flags
2644 * use __vmalloc() instead.
2645 *
2646 * Return: pointer to the allocated memory or %NULL on error
2647 */
vmalloc(unsigned long size)2648 void *vmalloc(unsigned long size)
2649 {
2650 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2651 __builtin_return_address(0));
2652 }
2653 EXPORT_SYMBOL(vmalloc);
2654
2655 /**
2656 * vzalloc - allocate virtually contiguous memory with zero fill
2657 * @size: allocation size
2658 *
2659 * Allocate enough pages to cover @size from the page level
2660 * allocator and map them into contiguous kernel virtual space.
2661 * The memory allocated is set to zero.
2662 *
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
2667 */
vzalloc(unsigned long size)2668 void *vzalloc(unsigned long size)
2669 {
2670 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2671 __builtin_return_address(0));
2672 }
2673 EXPORT_SYMBOL(vzalloc);
2674
2675 /**
2676 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677 * @size: allocation size
2678 *
2679 * The resulting memory area is zeroed so it can be mapped to userspace
2680 * without leaking data.
2681 *
2682 * Return: pointer to the allocated memory or %NULL on error
2683 */
vmalloc_user(unsigned long size)2684 void *vmalloc_user(unsigned long size)
2685 {
2686 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2687 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2688 VM_USERMAP, NUMA_NO_NODE,
2689 __builtin_return_address(0));
2690 }
2691 EXPORT_SYMBOL(vmalloc_user);
2692
2693 /**
2694 * vmalloc_node - allocate memory on a specific node
2695 * @size: allocation size
2696 * @node: numa node
2697 *
2698 * Allocate enough pages to cover @size from the page level
2699 * allocator and map them into contiguous kernel virtual space.
2700 *
2701 * For tight control over page level allocator and protection flags
2702 * use __vmalloc() instead.
2703 *
2704 * Return: pointer to the allocated memory or %NULL on error
2705 */
vmalloc_node(unsigned long size,int node)2706 void *vmalloc_node(unsigned long size, int node)
2707 {
2708 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2709 __builtin_return_address(0));
2710 }
2711 EXPORT_SYMBOL(vmalloc_node);
2712
2713 /**
2714 * vzalloc_node - allocate memory on a specific node with zero fill
2715 * @size: allocation size
2716 * @node: numa node
2717 *
2718 * Allocate enough pages to cover @size from the page level
2719 * allocator and map them into contiguous kernel virtual space.
2720 * The memory allocated is set to zero.
2721 *
2722 * Return: pointer to the allocated memory or %NULL on error
2723 */
vzalloc_node(unsigned long size,int node)2724 void *vzalloc_node(unsigned long size, int node)
2725 {
2726 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2727 __builtin_return_address(0));
2728 }
2729 EXPORT_SYMBOL(vzalloc_node);
2730
2731 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2735 #else
2736 /*
2737 * 64b systems should always have either DMA or DMA32 zones. For others
2738 * GFP_DMA32 should do the right thing and use the normal zone.
2739 */
2740 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2741 #endif
2742
2743 /**
2744 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745 * @size: allocation size
2746 *
2747 * Allocate enough 32bit PA addressable pages to cover @size from the
2748 * page level allocator and map them into contiguous kernel virtual space.
2749 *
2750 * Return: pointer to the allocated memory or %NULL on error
2751 */
vmalloc_32(unsigned long size)2752 void *vmalloc_32(unsigned long size)
2753 {
2754 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2755 __builtin_return_address(0));
2756 }
2757 EXPORT_SYMBOL(vmalloc_32);
2758
2759 /**
2760 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761 * @size: allocation size
2762 *
2763 * The resulting memory area is 32bit addressable and zeroed so it can be
2764 * mapped to userspace without leaking data.
2765 *
2766 * Return: pointer to the allocated memory or %NULL on error
2767 */
vmalloc_32_user(unsigned long size)2768 void *vmalloc_32_user(unsigned long size)
2769 {
2770 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2771 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2772 VM_USERMAP, NUMA_NO_NODE,
2773 __builtin_return_address(0));
2774 }
2775 EXPORT_SYMBOL(vmalloc_32_user);
2776
2777 /*
2778 * small helper routine , copy contents to buf from addr.
2779 * If the page is not present, fill zero.
2780 */
2781
aligned_vread(char * buf,char * addr,unsigned long count)2782 static int aligned_vread(char *buf, char *addr, unsigned long count)
2783 {
2784 struct page *p;
2785 int copied = 0;
2786
2787 while (count) {
2788 unsigned long offset, length;
2789
2790 offset = offset_in_page(addr);
2791 length = PAGE_SIZE - offset;
2792 if (length > count)
2793 length = count;
2794 p = vmalloc_to_page(addr);
2795 /*
2796 * To do safe access to this _mapped_ area, we need
2797 * lock. But adding lock here means that we need to add
2798 * overhead of vmalloc()/vfree() calles for this _debug_
2799 * interface, rarely used. Instead of that, we'll use
2800 * kmap() and get small overhead in this access function.
2801 */
2802 if (p) {
2803 /*
2804 * we can expect USER0 is not used (see vread/vwrite's
2805 * function description)
2806 */
2807 void *map = kmap_atomic(p);
2808 memcpy(buf, map + offset, length);
2809 kunmap_atomic(map);
2810 } else
2811 memset(buf, 0, length);
2812
2813 addr += length;
2814 buf += length;
2815 copied += length;
2816 count -= length;
2817 }
2818 return copied;
2819 }
2820
aligned_vwrite(char * buf,char * addr,unsigned long count)2821 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2822 {
2823 struct page *p;
2824 int copied = 0;
2825
2826 while (count) {
2827 unsigned long offset, length;
2828
2829 offset = offset_in_page(addr);
2830 length = PAGE_SIZE - offset;
2831 if (length > count)
2832 length = count;
2833 p = vmalloc_to_page(addr);
2834 /*
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2840 */
2841 if (p) {
2842 /*
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2845 */
2846 void *map = kmap_atomic(p);
2847 memcpy(map + offset, buf, length);
2848 kunmap_atomic(map);
2849 }
2850 addr += length;
2851 buf += length;
2852 copied += length;
2853 count -= length;
2854 }
2855 return copied;
2856 }
2857
2858 /**
2859 * vread() - read vmalloc area in a safe way.
2860 * @buf: buffer for reading data
2861 * @addr: vm address.
2862 * @count: number of bytes to be read.
2863 *
2864 * This function checks that addr is a valid vmalloc'ed area, and
2865 * copy data from that area to a given buffer. If the given memory range
2866 * of [addr...addr+count) includes some valid address, data is copied to
2867 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868 * IOREMAP area is treated as memory hole and no copy is done.
2869 *
2870 * If [addr...addr+count) doesn't includes any intersects with alive
2871 * vm_struct area, returns 0. @buf should be kernel's buffer.
2872 *
2873 * Note: In usual ops, vread() is never necessary because the caller
2874 * should know vmalloc() area is valid and can use memcpy().
2875 * This is for routines which have to access vmalloc area without
2876 * any information, as /dev/kmem.
2877 *
2878 * Return: number of bytes for which addr and buf should be increased
2879 * (same number as @count) or %0 if [addr...addr+count) doesn't
2880 * include any intersection with valid vmalloc area
2881 */
vread(char * buf,char * addr,unsigned long count)2882 long vread(char *buf, char *addr, unsigned long count)
2883 {
2884 struct vmap_area *va;
2885 struct vm_struct *vm;
2886 char *vaddr, *buf_start = buf;
2887 unsigned long buflen = count;
2888 unsigned long n;
2889
2890 /* Don't allow overflow */
2891 if ((unsigned long) addr + count < count)
2892 count = -(unsigned long) addr;
2893
2894 spin_lock(&vmap_area_lock);
2895 list_for_each_entry(va, &vmap_area_list, list) {
2896 if (!count)
2897 break;
2898
2899 if (!va->vm)
2900 continue;
2901
2902 vm = va->vm;
2903 vaddr = (char *) vm->addr;
2904 if (addr >= vaddr + get_vm_area_size(vm))
2905 continue;
2906 while (addr < vaddr) {
2907 if (count == 0)
2908 goto finished;
2909 *buf = '\0';
2910 buf++;
2911 addr++;
2912 count--;
2913 }
2914 n = vaddr + get_vm_area_size(vm) - addr;
2915 if (n > count)
2916 n = count;
2917 if (!(vm->flags & VM_IOREMAP))
2918 aligned_vread(buf, addr, n);
2919 else /* IOREMAP area is treated as memory hole */
2920 memset(buf, 0, n);
2921 buf += n;
2922 addr += n;
2923 count -= n;
2924 }
2925 finished:
2926 spin_unlock(&vmap_area_lock);
2927
2928 if (buf == buf_start)
2929 return 0;
2930 /* zero-fill memory holes */
2931 if (buf != buf_start + buflen)
2932 memset(buf, 0, buflen - (buf - buf_start));
2933
2934 return buflen;
2935 }
2936
2937 /**
2938 * vwrite() - write vmalloc area in a safe way.
2939 * @buf: buffer for source data
2940 * @addr: vm address.
2941 * @count: number of bytes to be read.
2942 *
2943 * This function checks that addr is a valid vmalloc'ed area, and
2944 * copy data from a buffer to the given addr. If specified range of
2945 * [addr...addr+count) includes some valid address, data is copied from
2946 * proper area of @buf. If there are memory holes, no copy to hole.
2947 * IOREMAP area is treated as memory hole and no copy is done.
2948 *
2949 * If [addr...addr+count) doesn't includes any intersects with alive
2950 * vm_struct area, returns 0. @buf should be kernel's buffer.
2951 *
2952 * Note: In usual ops, vwrite() is never necessary because the caller
2953 * should know vmalloc() area is valid and can use memcpy().
2954 * This is for routines which have to access vmalloc area without
2955 * any information, as /dev/kmem.
2956 *
2957 * Return: number of bytes for which addr and buf should be
2958 * increased (same number as @count) or %0 if [addr...addr+count)
2959 * doesn't include any intersection with valid vmalloc area
2960 */
vwrite(char * buf,char * addr,unsigned long count)2961 long vwrite(char *buf, char *addr, unsigned long count)
2962 {
2963 struct vmap_area *va;
2964 struct vm_struct *vm;
2965 char *vaddr;
2966 unsigned long n, buflen;
2967 int copied = 0;
2968
2969 /* Don't allow overflow */
2970 if ((unsigned long) addr + count < count)
2971 count = -(unsigned long) addr;
2972 buflen = count;
2973
2974 spin_lock(&vmap_area_lock);
2975 list_for_each_entry(va, &vmap_area_list, list) {
2976 if (!count)
2977 break;
2978
2979 if (!va->vm)
2980 continue;
2981
2982 vm = va->vm;
2983 vaddr = (char *) vm->addr;
2984 if (addr >= vaddr + get_vm_area_size(vm))
2985 continue;
2986 while (addr < vaddr) {
2987 if (count == 0)
2988 goto finished;
2989 buf++;
2990 addr++;
2991 count--;
2992 }
2993 n = vaddr + get_vm_area_size(vm) - addr;
2994 if (n > count)
2995 n = count;
2996 if (!(vm->flags & VM_IOREMAP)) {
2997 aligned_vwrite(buf, addr, n);
2998 copied++;
2999 }
3000 buf += n;
3001 addr += n;
3002 count -= n;
3003 }
3004 finished:
3005 spin_unlock(&vmap_area_lock);
3006 if (!copied)
3007 return 0;
3008 return buflen;
3009 }
3010
3011 /**
3012 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013 * @vma: vma to cover
3014 * @uaddr: target user address to start at
3015 * @kaddr: virtual address of vmalloc kernel memory
3016 * @pgoff: offset from @kaddr to start at
3017 * @size: size of map area
3018 *
3019 * Returns: 0 for success, -Exxx on failure
3020 *
3021 * This function checks that @kaddr is a valid vmalloc'ed area,
3022 * and that it is big enough to cover the range starting at
3023 * @uaddr in @vma. Will return failure if that criteria isn't
3024 * met.
3025 *
3026 * Similar to remap_pfn_range() (see mm/memory.c)
3027 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3028 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3029 void *kaddr, unsigned long pgoff,
3030 unsigned long size)
3031 {
3032 struct vm_struct *area;
3033 unsigned long off;
3034 unsigned long end_index;
3035
3036 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3037 return -EINVAL;
3038
3039 size = PAGE_ALIGN(size);
3040
3041 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3042 return -EINVAL;
3043
3044 area = find_vm_area(kaddr);
3045 if (!area)
3046 return -EINVAL;
3047
3048 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3049 return -EINVAL;
3050
3051 if (check_add_overflow(size, off, &end_index) ||
3052 end_index > get_vm_area_size(area))
3053 return -EINVAL;
3054 kaddr += off;
3055
3056 do {
3057 struct page *page = vmalloc_to_page(kaddr);
3058 int ret;
3059
3060 ret = vm_insert_page(vma, uaddr, page);
3061 if (ret)
3062 return ret;
3063
3064 uaddr += PAGE_SIZE;
3065 kaddr += PAGE_SIZE;
3066 size -= PAGE_SIZE;
3067 } while (size > 0);
3068
3069 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3070
3071 return 0;
3072 }
3073 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3074
3075 /**
3076 * remap_vmalloc_range - map vmalloc pages to userspace
3077 * @vma: vma to cover (map full range of vma)
3078 * @addr: vmalloc memory
3079 * @pgoff: number of pages into addr before first page to map
3080 *
3081 * Returns: 0 for success, -Exxx on failure
3082 *
3083 * This function checks that addr is a valid vmalloc'ed area, and
3084 * that it is big enough to cover the vma. Will return failure if
3085 * that criteria isn't met.
3086 *
3087 * Similar to remap_pfn_range() (see mm/memory.c)
3088 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3089 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3090 unsigned long pgoff)
3091 {
3092 return remap_vmalloc_range_partial(vma, vma->vm_start,
3093 addr, pgoff,
3094 vma->vm_end - vma->vm_start);
3095 }
3096 EXPORT_SYMBOL(remap_vmalloc_range);
3097
free_vm_area(struct vm_struct * area)3098 void free_vm_area(struct vm_struct *area)
3099 {
3100 struct vm_struct *ret;
3101 ret = remove_vm_area(area->addr);
3102 BUG_ON(ret != area);
3103 kfree(area);
3104 }
3105 EXPORT_SYMBOL_GPL(free_vm_area);
3106
3107 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3108 static struct vmap_area *node_to_va(struct rb_node *n)
3109 {
3110 return rb_entry_safe(n, struct vmap_area, rb_node);
3111 }
3112
3113 /**
3114 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115 * @addr: target address
3116 *
3117 * Returns: vmap_area if it is found. If there is no such area
3118 * the first highest(reverse order) vmap_area is returned
3119 * i.e. va->va_start < addr && va->va_end < addr or NULL
3120 * if there are no any areas before @addr.
3121 */
3122 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3123 pvm_find_va_enclose_addr(unsigned long addr)
3124 {
3125 struct vmap_area *va, *tmp;
3126 struct rb_node *n;
3127
3128 n = free_vmap_area_root.rb_node;
3129 va = NULL;
3130
3131 while (n) {
3132 tmp = rb_entry(n, struct vmap_area, rb_node);
3133 if (tmp->va_start <= addr) {
3134 va = tmp;
3135 if (tmp->va_end >= addr)
3136 break;
3137
3138 n = n->rb_right;
3139 } else {
3140 n = n->rb_left;
3141 }
3142 }
3143
3144 return va;
3145 }
3146
3147 /**
3148 * pvm_determine_end_from_reverse - find the highest aligned address
3149 * of free block below VMALLOC_END
3150 * @va:
3151 * in - the VA we start the search(reverse order);
3152 * out - the VA with the highest aligned end address.
3153 *
3154 * Returns: determined end address within vmap_area
3155 */
3156 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)3157 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3158 {
3159 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3160 unsigned long addr;
3161
3162 if (likely(*va)) {
3163 list_for_each_entry_from_reverse((*va),
3164 &free_vmap_area_list, list) {
3165 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3166 if ((*va)->va_start < addr)
3167 return addr;
3168 }
3169 }
3170
3171 return 0;
3172 }
3173
3174 /**
3175 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3176 * @offsets: array containing offset of each area
3177 * @sizes: array containing size of each area
3178 * @nr_vms: the number of areas to allocate
3179 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3180 *
3181 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3182 * vm_structs on success, %NULL on failure
3183 *
3184 * Percpu allocator wants to use congruent vm areas so that it can
3185 * maintain the offsets among percpu areas. This function allocates
3186 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3187 * be scattered pretty far, distance between two areas easily going up
3188 * to gigabytes. To avoid interacting with regular vmallocs, these
3189 * areas are allocated from top.
3190 *
3191 * Despite its complicated look, this allocator is rather simple. It
3192 * does everything top-down and scans free blocks from the end looking
3193 * for matching base. While scanning, if any of the areas do not fit the
3194 * base address is pulled down to fit the area. Scanning is repeated till
3195 * all the areas fit and then all necessary data structures are inserted
3196 * and the result is returned.
3197 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)3198 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3199 const size_t *sizes, int nr_vms,
3200 size_t align)
3201 {
3202 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3203 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3204 struct vmap_area **vas, *va;
3205 struct vm_struct **vms;
3206 int area, area2, last_area, term_area;
3207 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3208 bool purged = false;
3209 enum fit_type type;
3210
3211 /* verify parameters and allocate data structures */
3212 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3213 for (last_area = 0, area = 0; area < nr_vms; area++) {
3214 start = offsets[area];
3215 end = start + sizes[area];
3216
3217 /* is everything aligned properly? */
3218 BUG_ON(!IS_ALIGNED(offsets[area], align));
3219 BUG_ON(!IS_ALIGNED(sizes[area], align));
3220
3221 /* detect the area with the highest address */
3222 if (start > offsets[last_area])
3223 last_area = area;
3224
3225 for (area2 = area + 1; area2 < nr_vms; area2++) {
3226 unsigned long start2 = offsets[area2];
3227 unsigned long end2 = start2 + sizes[area2];
3228
3229 BUG_ON(start2 < end && start < end2);
3230 }
3231 }
3232 last_end = offsets[last_area] + sizes[last_area];
3233
3234 if (vmalloc_end - vmalloc_start < last_end) {
3235 WARN_ON(true);
3236 return NULL;
3237 }
3238
3239 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3240 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3241 if (!vas || !vms)
3242 goto err_free2;
3243
3244 for (area = 0; area < nr_vms; area++) {
3245 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3246 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3247 if (!vas[area] || !vms[area])
3248 goto err_free;
3249 }
3250 retry:
3251 spin_lock(&free_vmap_area_lock);
3252
3253 /* start scanning - we scan from the top, begin with the last area */
3254 area = term_area = last_area;
3255 start = offsets[area];
3256 end = start + sizes[area];
3257
3258 va = pvm_find_va_enclose_addr(vmalloc_end);
3259 base = pvm_determine_end_from_reverse(&va, align) - end;
3260
3261 while (true) {
3262 /*
3263 * base might have underflowed, add last_end before
3264 * comparing.
3265 */
3266 if (base + last_end < vmalloc_start + last_end)
3267 goto overflow;
3268
3269 /*
3270 * Fitting base has not been found.
3271 */
3272 if (va == NULL)
3273 goto overflow;
3274
3275 /*
3276 * If required width exceeds current VA block, move
3277 * base downwards and then recheck.
3278 */
3279 if (base + end > va->va_end) {
3280 base = pvm_determine_end_from_reverse(&va, align) - end;
3281 term_area = area;
3282 continue;
3283 }
3284
3285 /*
3286 * If this VA does not fit, move base downwards and recheck.
3287 */
3288 if (base + start < va->va_start) {
3289 va = node_to_va(rb_prev(&va->rb_node));
3290 base = pvm_determine_end_from_reverse(&va, align) - end;
3291 term_area = area;
3292 continue;
3293 }
3294
3295 /*
3296 * This area fits, move on to the previous one. If
3297 * the previous one is the terminal one, we're done.
3298 */
3299 area = (area + nr_vms - 1) % nr_vms;
3300 if (area == term_area)
3301 break;
3302
3303 start = offsets[area];
3304 end = start + sizes[area];
3305 va = pvm_find_va_enclose_addr(base + end);
3306 }
3307
3308 /* we've found a fitting base, insert all va's */
3309 for (area = 0; area < nr_vms; area++) {
3310 int ret;
3311
3312 start = base + offsets[area];
3313 size = sizes[area];
3314
3315 va = pvm_find_va_enclose_addr(start);
3316 if (WARN_ON_ONCE(va == NULL))
3317 /* It is a BUG(), but trigger recovery instead. */
3318 goto recovery;
3319
3320 type = classify_va_fit_type(va, start, size);
3321 if (WARN_ON_ONCE(type == NOTHING_FIT))
3322 /* It is a BUG(), but trigger recovery instead. */
3323 goto recovery;
3324
3325 ret = adjust_va_to_fit_type(va, start, size, type);
3326 if (unlikely(ret))
3327 goto recovery;
3328
3329 /* Allocated area. */
3330 va = vas[area];
3331 va->va_start = start;
3332 va->va_end = start + size;
3333 }
3334
3335 spin_unlock(&free_vmap_area_lock);
3336
3337 /* populate the kasan shadow space */
3338 for (area = 0; area < nr_vms; area++) {
3339 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3340 goto err_free_shadow;
3341
3342 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3343 sizes[area]);
3344 }
3345
3346 /* insert all vm's */
3347 spin_lock(&vmap_area_lock);
3348 for (area = 0; area < nr_vms; area++) {
3349 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3350
3351 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3352 pcpu_get_vm_areas);
3353 }
3354 spin_unlock(&vmap_area_lock);
3355
3356 kfree(vas);
3357 return vms;
3358
3359 recovery:
3360 /*
3361 * Remove previously allocated areas. There is no
3362 * need in removing these areas from the busy tree,
3363 * because they are inserted only on the final step
3364 * and when pcpu_get_vm_areas() is success.
3365 */
3366 while (area--) {
3367 orig_start = vas[area]->va_start;
3368 orig_end = vas[area]->va_end;
3369 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3370 &free_vmap_area_list);
3371 if (va)
3372 kasan_release_vmalloc(orig_start, orig_end,
3373 va->va_start, va->va_end);
3374 vas[area] = NULL;
3375 }
3376
3377 overflow:
3378 spin_unlock(&free_vmap_area_lock);
3379 if (!purged) {
3380 purge_vmap_area_lazy();
3381 purged = true;
3382
3383 /* Before "retry", check if we recover. */
3384 for (area = 0; area < nr_vms; area++) {
3385 if (vas[area])
3386 continue;
3387
3388 vas[area] = kmem_cache_zalloc(
3389 vmap_area_cachep, GFP_KERNEL);
3390 if (!vas[area])
3391 goto err_free;
3392 }
3393
3394 goto retry;
3395 }
3396
3397 err_free:
3398 for (area = 0; area < nr_vms; area++) {
3399 if (vas[area])
3400 kmem_cache_free(vmap_area_cachep, vas[area]);
3401
3402 kfree(vms[area]);
3403 }
3404 err_free2:
3405 kfree(vas);
3406 kfree(vms);
3407 return NULL;
3408
3409 err_free_shadow:
3410 spin_lock(&free_vmap_area_lock);
3411 /*
3412 * We release all the vmalloc shadows, even the ones for regions that
3413 * hadn't been successfully added. This relies on kasan_release_vmalloc
3414 * being able to tolerate this case.
3415 */
3416 for (area = 0; area < nr_vms; area++) {
3417 orig_start = vas[area]->va_start;
3418 orig_end = vas[area]->va_end;
3419 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3420 &free_vmap_area_list);
3421 if (va)
3422 kasan_release_vmalloc(orig_start, orig_end,
3423 va->va_start, va->va_end);
3424 vas[area] = NULL;
3425 kfree(vms[area]);
3426 }
3427 spin_unlock(&free_vmap_area_lock);
3428 kfree(vas);
3429 kfree(vms);
3430 return NULL;
3431 }
3432
3433 /**
3434 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3435 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3436 * @nr_vms: the number of allocated areas
3437 *
3438 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3439 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)3440 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3441 {
3442 int i;
3443
3444 for (i = 0; i < nr_vms; i++)
3445 free_vm_area(vms[i]);
3446 kfree(vms);
3447 }
3448 #endif /* CONFIG_SMP */
3449
3450 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)3451 static void *s_start(struct seq_file *m, loff_t *pos)
3452 __acquires(&vmap_purge_lock)
3453 __acquires(&vmap_area_lock)
3454 {
3455 mutex_lock(&vmap_purge_lock);
3456 spin_lock(&vmap_area_lock);
3457
3458 return seq_list_start(&vmap_area_list, *pos);
3459 }
3460
s_next(struct seq_file * m,void * p,loff_t * pos)3461 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3462 {
3463 return seq_list_next(p, &vmap_area_list, pos);
3464 }
3465
s_stop(struct seq_file * m,void * p)3466 static void s_stop(struct seq_file *m, void *p)
3467 __releases(&vmap_area_lock)
3468 __releases(&vmap_purge_lock)
3469 {
3470 spin_unlock(&vmap_area_lock);
3471 mutex_unlock(&vmap_purge_lock);
3472 }
3473
show_numa_info(struct seq_file * m,struct vm_struct * v)3474 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3475 {
3476 if (IS_ENABLED(CONFIG_NUMA)) {
3477 unsigned int nr, *counters = m->private;
3478
3479 if (!counters)
3480 return;
3481
3482 if (v->flags & VM_UNINITIALIZED)
3483 return;
3484 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3485 smp_rmb();
3486
3487 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3488
3489 for (nr = 0; nr < v->nr_pages; nr++)
3490 counters[page_to_nid(v->pages[nr])]++;
3491
3492 for_each_node_state(nr, N_HIGH_MEMORY)
3493 if (counters[nr])
3494 seq_printf(m, " N%u=%u", nr, counters[nr]);
3495 }
3496 }
3497
show_purge_info(struct seq_file * m)3498 static void show_purge_info(struct seq_file *m)
3499 {
3500 struct llist_node *head;
3501 struct vmap_area *va;
3502
3503 head = READ_ONCE(vmap_purge_list.first);
3504 if (head == NULL)
3505 return;
3506
3507 llist_for_each_entry(va, head, purge_list) {
3508 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3509 (void *)va->va_start, (void *)va->va_end,
3510 va->va_end - va->va_start);
3511 }
3512 }
3513
s_show(struct seq_file * m,void * p)3514 static int s_show(struct seq_file *m, void *p)
3515 {
3516 struct vmap_area *va;
3517 struct vm_struct *v;
3518
3519 va = list_entry(p, struct vmap_area, list);
3520
3521 /*
3522 * s_show can encounter race with remove_vm_area, !vm on behalf
3523 * of vmap area is being tear down or vm_map_ram allocation.
3524 */
3525 if (!va->vm) {
3526 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3527 (void *)va->va_start, (void *)va->va_end,
3528 va->va_end - va->va_start);
3529
3530 return 0;
3531 }
3532
3533 v = va->vm;
3534
3535 seq_printf(m, "0x%pK-0x%pK %7ld",
3536 v->addr, v->addr + v->size, v->size);
3537
3538 if (v->caller)
3539 seq_printf(m, " %pS", v->caller);
3540
3541 if (v->nr_pages)
3542 seq_printf(m, " pages=%d", v->nr_pages);
3543
3544 if (v->phys_addr)
3545 seq_printf(m, " phys=%pa", &v->phys_addr);
3546
3547 if (v->flags & VM_IOREMAP)
3548 seq_puts(m, " ioremap");
3549
3550 if (v->flags & VM_ALLOC)
3551 seq_puts(m, " vmalloc");
3552
3553 if (v->flags & VM_MAP)
3554 seq_puts(m, " vmap");
3555
3556 if (v->flags & VM_USERMAP)
3557 seq_puts(m, " user");
3558
3559 if (v->flags & VM_DMA_COHERENT)
3560 seq_puts(m, " dma-coherent");
3561
3562 if (is_vmalloc_addr(v->pages))
3563 seq_puts(m, " vpages");
3564
3565 show_numa_info(m, v);
3566 trace_android_vh_show_stack_hash(m, v);
3567 seq_putc(m, '\n');
3568
3569 /*
3570 * As a final step, dump "unpurged" areas. Note,
3571 * that entire "/proc/vmallocinfo" output will not
3572 * be address sorted, because the purge list is not
3573 * sorted.
3574 */
3575 if (list_is_last(&va->list, &vmap_area_list))
3576 show_purge_info(m);
3577
3578 return 0;
3579 }
3580
3581 static const struct seq_operations vmalloc_op = {
3582 .start = s_start,
3583 .next = s_next,
3584 .stop = s_stop,
3585 .show = s_show,
3586 };
3587
proc_vmalloc_init(void)3588 static int __init proc_vmalloc_init(void)
3589 {
3590 if (IS_ENABLED(CONFIG_NUMA))
3591 proc_create_seq_private("vmallocinfo", 0400, NULL,
3592 &vmalloc_op,
3593 nr_node_ids * sizeof(unsigned int), NULL);
3594 else
3595 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3596 return 0;
3597 }
3598 module_init(proc_vmalloc_init);
3599
3600 #endif
3601