1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28
29 #define DEFAULT_CMD6_TIMEOUT_MS 500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31
32 static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
35 };
36
37 static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
40 };
41
42 static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
44 };
45
46 static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
49 };
50
51 #define UNSTUFF_BITS(resp,start,size) \
52 ({ \
53 const int __size = size; \
54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
55 const int __off = 3 - ((start) / 32); \
56 const int __shft = (start) & 31; \
57 u32 __res; \
58 \
59 __res = resp[__off] >> __shft; \
60 if (__size + __shft > 32) \
61 __res |= resp[__off-1] << ((32 - __shft) % 32); \
62 __res & __mask; \
63 })
64
65 /*
66 * Given the decoded CSD structure, decode the raw CID to our CID structure.
67 */
mmc_decode_cid(struct mmc_card * card)68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 u32 *resp = card->raw_cid;
71
72 /*
73 * The selection of the format here is based upon published
74 * specs from sandisk and from what people have reported.
75 */
76 switch (card->csd.mmca_vsn) {
77 case 0: /* MMC v1.0 - v1.2 */
78 case 1: /* MMC v1.4 */
79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
90 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
92 break;
93
94 case 2: /* MMC v2.0 - v2.2 */
95 case 3: /* MMC v3.1 - v3.3 */
96 case 4: /* MMC v4 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
107 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
109 break;
110
111 default:
112 pr_err("%s: card has unknown MMCA version %d\n",
113 mmc_hostname(card->host), card->csd.mmca_vsn);
114 return -EINVAL;
115 }
116
117 return 0;
118 }
119
mmc_set_erase_size(struct mmc_card * card)120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 if (card->ext_csd.erase_group_def & 1)
123 card->erase_size = card->ext_csd.hc_erase_size;
124 else
125 card->erase_size = card->csd.erase_size;
126
127 mmc_init_erase(card);
128 }
129
130 /*
131 * Given a 128-bit response, decode to our card CSD structure.
132 */
mmc_decode_csd(struct mmc_card * card)133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 struct mmc_csd *csd = &card->csd;
136 unsigned int e, m, a, b;
137 u32 *resp = card->raw_csd;
138
139 /*
140 * We only understand CSD structure v1.1 and v1.2.
141 * v1.2 has extra information in bits 15, 11 and 10.
142 * We also support eMMC v4.4 & v4.41.
143 */
144 csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 if (csd->structure == 0) {
146 pr_err("%s: unrecognised CSD structure version %d\n",
147 mmc_hostname(card->host), csd->structure);
148 return -EINVAL;
149 }
150
151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
152 m = UNSTUFF_BITS(resp, 115, 4);
153 e = UNSTUFF_BITS(resp, 112, 3);
154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
156
157 m = UNSTUFF_BITS(resp, 99, 4);
158 e = UNSTUFF_BITS(resp, 96, 3);
159 csd->max_dtr = tran_exp[e] * tran_mant[m];
160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
161
162 e = UNSTUFF_BITS(resp, 47, 3);
163 m = UNSTUFF_BITS(resp, 62, 12);
164 csd->capacity = (1 + m) << (e + 2);
165
166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174
175 if (csd->write_blkbits >= 9) {
176 a = UNSTUFF_BITS(resp, 42, 5);
177 b = UNSTUFF_BITS(resp, 37, 5);
178 csd->erase_size = (a + 1) * (b + 1);
179 csd->erase_size <<= csd->write_blkbits - 9;
180 }
181
182 return 0;
183 }
184
mmc_select_card_type(struct mmc_card * card)185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 struct mmc_host *host = card->host;
188 u8 card_type = card->ext_csd.raw_card_type;
189 u32 caps = host->caps, caps2 = host->caps2;
190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 unsigned int avail_type = 0;
192
193 if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 }
198
199 if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 }
204
205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 }
210
211 if (caps & MMC_CAP_1_2V_DDR &&
212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 }
216
217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 hs200_max_dtr = MMC_HS200_MAX_DTR;
220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 }
222
223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 hs200_max_dtr = MMC_HS200_MAX_DTR;
226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 }
228
229 if (caps2 & MMC_CAP2_HS400_1_8V &&
230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 hs200_max_dtr = MMC_HS200_MAX_DTR;
232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 }
234
235 if (caps2 & MMC_CAP2_HS400_1_2V &&
236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 hs200_max_dtr = MMC_HS200_MAX_DTR;
238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 }
240
241 if ((caps2 & MMC_CAP2_HS400_ES) &&
242 card->ext_csd.strobe_support &&
243 (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245
246 card->ext_csd.hs_max_dtr = hs_max_dtr;
247 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 card->mmc_avail_type = avail_type;
249 }
250
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 u8 hc_erase_grp_sz, hc_wp_grp_sz;
254
255 /*
256 * Disable these attributes by default
257 */
258 card->ext_csd.enhanced_area_offset = -EINVAL;
259 card->ext_csd.enhanced_area_size = -EINVAL;
260
261 /*
262 * Enhanced area feature support -- check whether the eMMC
263 * card has the Enhanced area enabled. If so, export enhanced
264 * area offset and size to user by adding sysfs interface.
265 */
266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 if (card->ext_csd.partition_setting_completed) {
269 hc_erase_grp_sz =
270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 hc_wp_grp_sz =
272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273
274 /*
275 * calculate the enhanced data area offset, in bytes
276 */
277 card->ext_csd.enhanced_area_offset =
278 (((unsigned long long)ext_csd[139]) << 24) +
279 (((unsigned long long)ext_csd[138]) << 16) +
280 (((unsigned long long)ext_csd[137]) << 8) +
281 (((unsigned long long)ext_csd[136]));
282 if (mmc_card_blockaddr(card))
283 card->ext_csd.enhanced_area_offset <<= 9;
284 /*
285 * calculate the enhanced data area size, in kilobytes
286 */
287 card->ext_csd.enhanced_area_size =
288 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 ext_csd[140];
290 card->ext_csd.enhanced_area_size *=
291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 card->ext_csd.enhanced_area_size <<= 9;
293 } else {
294 pr_warn("%s: defines enhanced area without partition setting complete\n",
295 mmc_hostname(card->host));
296 }
297 }
298 }
299
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 unsigned int part_cfg, char *name, int idx, bool ro,
302 int area_type)
303 {
304 card->part[card->nr_parts].size = size;
305 card->part[card->nr_parts].part_cfg = part_cfg;
306 sprintf(card->part[card->nr_parts].name, name, idx);
307 card->part[card->nr_parts].force_ro = ro;
308 card->part[card->nr_parts].area_type = area_type;
309 card->nr_parts++;
310 }
311
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 int idx;
315 u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 u64 part_size;
317
318 /*
319 * General purpose partition feature support --
320 * If ext_csd has the size of general purpose partitions,
321 * set size, part_cfg, partition name in mmc_part.
322 */
323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 EXT_CSD_PART_SUPPORT_PART_EN) {
325 hc_erase_grp_sz =
326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 hc_wp_grp_sz =
328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329
330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 continue;
335 if (card->ext_csd.partition_setting_completed == 0) {
336 pr_warn("%s: has partition size defined without partition complete\n",
337 mmc_hostname(card->host));
338 break;
339 }
340 part_size =
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 << 16) +
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 << 8) +
345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 mmc_part_add(card, part_size << 19,
348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 "gp%d", idx, false,
350 MMC_BLK_DATA_AREA_GP);
351 }
352 }
353 }
354
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME 300
357
358 /*
359 * Decode extended CSD.
360 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362 {
363 int err = 0, idx;
364 u64 part_size;
365 struct device_node *np;
366 bool broken_hpi = false;
367
368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 if (card->csd.structure == 3) {
371 if (card->ext_csd.raw_ext_csd_structure > 2) {
372 pr_err("%s: unrecognised EXT_CSD structure "
373 "version %d\n", mmc_hostname(card->host),
374 card->ext_csd.raw_ext_csd_structure);
375 err = -EINVAL;
376 goto out;
377 }
378 }
379
380 np = mmc_of_find_child_device(card->host, 0);
381 if (np && of_device_is_compatible(np, "mmc-card"))
382 broken_hpi = of_property_read_bool(np, "broken-hpi");
383 of_node_put(np);
384
385 /*
386 * The EXT_CSD format is meant to be forward compatible. As long
387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 * are authorized, see JEDEC JESD84-B50 section B.8.
389 */
390 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391
392 /* fixup device after ext_csd revision field is updated */
393 mmc_fixup_device(card, mmc_ext_csd_fixups);
394
395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 if (card->ext_csd.rev >= 2) {
400 card->ext_csd.sectors =
401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405
406 /* Cards with density > 2GiB are sector addressed */
407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 mmc_card_set_blockaddr(card);
409 }
410
411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 mmc_select_card_type(card);
414
415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 card->ext_csd.raw_erase_timeout_mult =
417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 card->ext_csd.raw_hc_erase_grp_size =
419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 if (card->ext_csd.rev >= 3) {
421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423
424 /* EXT_CSD value is in units of 10ms, but we store in ms */
425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426
427 /* Sleep / awake timeout in 100ns units */
428 if (sa_shift > 0 && sa_shift <= 0x17)
429 card->ext_csd.sa_timeout =
430 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
431 card->ext_csd.erase_group_def =
432 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
433 card->ext_csd.hc_erase_timeout = 300 *
434 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
435 card->ext_csd.hc_erase_size =
436 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
437
438 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
439
440 /*
441 * There are two boot regions of equal size, defined in
442 * multiples of 128K.
443 */
444 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
445 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
446 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
447 mmc_part_add(card, part_size,
448 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
449 "boot%d", idx, true,
450 MMC_BLK_DATA_AREA_BOOT);
451 }
452 }
453 }
454
455 card->ext_csd.raw_hc_erase_gap_size =
456 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
457 card->ext_csd.raw_sec_trim_mult =
458 ext_csd[EXT_CSD_SEC_TRIM_MULT];
459 card->ext_csd.raw_sec_erase_mult =
460 ext_csd[EXT_CSD_SEC_ERASE_MULT];
461 card->ext_csd.raw_sec_feature_support =
462 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
463 card->ext_csd.raw_trim_mult =
464 ext_csd[EXT_CSD_TRIM_MULT];
465 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
466 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
467 if (card->ext_csd.rev >= 4) {
468 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
469 EXT_CSD_PART_SETTING_COMPLETED)
470 card->ext_csd.partition_setting_completed = 1;
471 else
472 card->ext_csd.partition_setting_completed = 0;
473
474 mmc_manage_enhanced_area(card, ext_csd);
475
476 mmc_manage_gp_partitions(card, ext_csd);
477
478 card->ext_csd.sec_trim_mult =
479 ext_csd[EXT_CSD_SEC_TRIM_MULT];
480 card->ext_csd.sec_erase_mult =
481 ext_csd[EXT_CSD_SEC_ERASE_MULT];
482 card->ext_csd.sec_feature_support =
483 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
484 card->ext_csd.trim_timeout = 300 *
485 ext_csd[EXT_CSD_TRIM_MULT];
486
487 /*
488 * Note that the call to mmc_part_add above defaults to read
489 * only. If this default assumption is changed, the call must
490 * take into account the value of boot_locked below.
491 */
492 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
493 card->ext_csd.boot_ro_lockable = true;
494
495 /* Save power class values */
496 card->ext_csd.raw_pwr_cl_52_195 =
497 ext_csd[EXT_CSD_PWR_CL_52_195];
498 card->ext_csd.raw_pwr_cl_26_195 =
499 ext_csd[EXT_CSD_PWR_CL_26_195];
500 card->ext_csd.raw_pwr_cl_52_360 =
501 ext_csd[EXT_CSD_PWR_CL_52_360];
502 card->ext_csd.raw_pwr_cl_26_360 =
503 ext_csd[EXT_CSD_PWR_CL_26_360];
504 card->ext_csd.raw_pwr_cl_200_195 =
505 ext_csd[EXT_CSD_PWR_CL_200_195];
506 card->ext_csd.raw_pwr_cl_200_360 =
507 ext_csd[EXT_CSD_PWR_CL_200_360];
508 card->ext_csd.raw_pwr_cl_ddr_52_195 =
509 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
510 card->ext_csd.raw_pwr_cl_ddr_52_360 =
511 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
512 card->ext_csd.raw_pwr_cl_ddr_200_360 =
513 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
514 }
515
516 if (card->ext_csd.rev >= 5) {
517 /* Adjust production date as per JEDEC JESD84-B451 */
518 if (card->cid.year < 2010)
519 card->cid.year += 16;
520
521 /* check whether the eMMC card supports BKOPS */
522 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
523 card->ext_csd.bkops = 1;
524 card->ext_csd.man_bkops_en =
525 (ext_csd[EXT_CSD_BKOPS_EN] &
526 EXT_CSD_MANUAL_BKOPS_MASK);
527 card->ext_csd.raw_bkops_status =
528 ext_csd[EXT_CSD_BKOPS_STATUS];
529 if (card->ext_csd.man_bkops_en)
530 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
531 mmc_hostname(card->host));
532 card->ext_csd.auto_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_AUTO_BKOPS_MASK);
535 if (card->ext_csd.auto_bkops_en)
536 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
537 mmc_hostname(card->host));
538 }
539
540 /* check whether the eMMC card supports HPI */
541 if (!mmc_card_broken_hpi(card) &&
542 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
543 card->ext_csd.hpi = 1;
544 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
545 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
546 else
547 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
548 /*
549 * Indicate the maximum timeout to close
550 * a command interrupted by HPI
551 */
552 card->ext_csd.out_of_int_time =
553 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
554 }
555
556 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
557 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
558
559 /*
560 * RPMB regions are defined in multiples of 128K.
561 */
562 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
563 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
564 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
565 EXT_CSD_PART_CONFIG_ACC_RPMB,
566 "rpmb", 0, false,
567 MMC_BLK_DATA_AREA_RPMB);
568 }
569 }
570
571 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
572 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
573 card->erased_byte = 0xFF;
574 else
575 card->erased_byte = 0x0;
576
577 /* eMMC v4.5 or later */
578 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
579 if (card->ext_csd.rev >= 6) {
580 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
581
582 card->ext_csd.generic_cmd6_time = 10 *
583 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
584 card->ext_csd.power_off_longtime = 10 *
585 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
586
587 card->ext_csd.cache_size =
588 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
589 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
590 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
591 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
592
593 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
594 card->ext_csd.data_sector_size = 4096;
595 else
596 card->ext_csd.data_sector_size = 512;
597
598 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
599 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
600 card->ext_csd.data_tag_unit_size =
601 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
602 (card->ext_csd.data_sector_size);
603 } else {
604 card->ext_csd.data_tag_unit_size = 0;
605 }
606
607 card->ext_csd.max_packed_writes =
608 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
609 card->ext_csd.max_packed_reads =
610 ext_csd[EXT_CSD_MAX_PACKED_READS];
611 } else {
612 card->ext_csd.data_sector_size = 512;
613 }
614
615 /*
616 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
617 * when accessing a specific field", so use it here if there is no
618 * PARTITION_SWITCH_TIME.
619 */
620 if (!card->ext_csd.part_time)
621 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
622 /* Some eMMC set the value too low so set a minimum */
623 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
624 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
625
626 /* eMMC v5 or later */
627 if (card->ext_csd.rev >= 7) {
628 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
629 MMC_FIRMWARE_LEN);
630 card->ext_csd.ffu_capable =
631 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
632 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
633
634 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
635 card->ext_csd.device_life_time_est_typ_a =
636 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
637 card->ext_csd.device_life_time_est_typ_b =
638 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
639 }
640
641 /* eMMC v5.1 or later */
642 if (card->ext_csd.rev >= 8) {
643 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
644 EXT_CSD_CMDQ_SUPPORTED;
645 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
646 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
647 /* Exclude inefficiently small queue depths */
648 if (card->ext_csd.cmdq_depth <= 2) {
649 card->ext_csd.cmdq_support = false;
650 card->ext_csd.cmdq_depth = 0;
651 }
652 if (card->ext_csd.cmdq_support) {
653 pr_debug("%s: Command Queue supported depth %u\n",
654 mmc_hostname(card->host),
655 card->ext_csd.cmdq_depth);
656 }
657 card->ext_csd.enhanced_rpmb_supported =
658 (card->ext_csd.rel_param &
659 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
660 }
661 out:
662 return err;
663 }
664
mmc_read_ext_csd(struct mmc_card * card)665 static int mmc_read_ext_csd(struct mmc_card *card)
666 {
667 u8 *ext_csd;
668 int err;
669
670 if (!mmc_can_ext_csd(card))
671 return 0;
672
673 err = mmc_get_ext_csd(card, &ext_csd);
674 if (err) {
675 /* If the host or the card can't do the switch,
676 * fail more gracefully. */
677 if ((err != -EINVAL)
678 && (err != -ENOSYS)
679 && (err != -EFAULT))
680 return err;
681
682 /*
683 * High capacity cards should have this "magic" size
684 * stored in their CSD.
685 */
686 if (card->csd.capacity == (4096 * 512)) {
687 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
688 mmc_hostname(card->host));
689 } else {
690 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
691 mmc_hostname(card->host));
692 err = 0;
693 }
694
695 return err;
696 }
697
698 err = mmc_decode_ext_csd(card, ext_csd);
699 kfree(ext_csd);
700 return err;
701 }
702
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)703 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
704 {
705 u8 *bw_ext_csd;
706 int err;
707
708 if (bus_width == MMC_BUS_WIDTH_1)
709 return 0;
710
711 err = mmc_get_ext_csd(card, &bw_ext_csd);
712 if (err)
713 return err;
714
715 /* only compare read only fields */
716 err = !((card->ext_csd.raw_partition_support ==
717 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
718 (card->ext_csd.raw_erased_mem_count ==
719 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
720 (card->ext_csd.rev ==
721 bw_ext_csd[EXT_CSD_REV]) &&
722 (card->ext_csd.raw_ext_csd_structure ==
723 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
724 (card->ext_csd.raw_card_type ==
725 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
726 (card->ext_csd.raw_s_a_timeout ==
727 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
728 (card->ext_csd.raw_hc_erase_gap_size ==
729 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
730 (card->ext_csd.raw_erase_timeout_mult ==
731 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
732 (card->ext_csd.raw_hc_erase_grp_size ==
733 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
734 (card->ext_csd.raw_sec_trim_mult ==
735 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
736 (card->ext_csd.raw_sec_erase_mult ==
737 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
738 (card->ext_csd.raw_sec_feature_support ==
739 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
740 (card->ext_csd.raw_trim_mult ==
741 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
742 (card->ext_csd.raw_sectors[0] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
744 (card->ext_csd.raw_sectors[1] ==
745 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
746 (card->ext_csd.raw_sectors[2] ==
747 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
748 (card->ext_csd.raw_sectors[3] ==
749 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
750 (card->ext_csd.raw_pwr_cl_52_195 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
752 (card->ext_csd.raw_pwr_cl_26_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
754 (card->ext_csd.raw_pwr_cl_52_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
756 (card->ext_csd.raw_pwr_cl_26_360 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
758 (card->ext_csd.raw_pwr_cl_200_195 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
760 (card->ext_csd.raw_pwr_cl_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
762 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
763 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
764 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
765 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
766 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
767 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
768
769 if (err)
770 err = -EINVAL;
771
772 kfree(bw_ext_csd);
773 return err;
774 }
775
776 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
777 card->raw_cid[2], card->raw_cid[3]);
778 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
779 card->raw_csd[2], card->raw_csd[3]);
780 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
781 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
782 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
783 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
784 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
785 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
786 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
787 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
788 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
789 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
790 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
791 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
792 card->ext_csd.device_life_time_est_typ_a,
793 card->ext_csd.device_life_time_est_typ_b);
794 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
795 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
796 card->ext_csd.enhanced_area_offset);
797 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
798 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
799 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
800 card->ext_csd.enhanced_rpmb_supported);
801 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
802 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
803 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
804 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
805
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)806 static ssize_t mmc_fwrev_show(struct device *dev,
807 struct device_attribute *attr,
808 char *buf)
809 {
810 struct mmc_card *card = mmc_dev_to_card(dev);
811
812 if (card->ext_csd.rev < 7) {
813 return sprintf(buf, "0x%x\n", card->cid.fwrev);
814 } else {
815 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
816 card->ext_csd.fwrev);
817 }
818 }
819
820 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
821
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)822 static ssize_t mmc_dsr_show(struct device *dev,
823 struct device_attribute *attr,
824 char *buf)
825 {
826 struct mmc_card *card = mmc_dev_to_card(dev);
827 struct mmc_host *host = card->host;
828
829 if (card->csd.dsr_imp && host->dsr_req)
830 return sprintf(buf, "0x%x\n", host->dsr);
831 else
832 /* return default DSR value */
833 return sprintf(buf, "0x%x\n", 0x404);
834 }
835
836 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
837
838 static struct attribute *mmc_std_attrs[] = {
839 &dev_attr_cid.attr,
840 &dev_attr_csd.attr,
841 &dev_attr_date.attr,
842 &dev_attr_erase_size.attr,
843 &dev_attr_preferred_erase_size.attr,
844 &dev_attr_fwrev.attr,
845 &dev_attr_ffu_capable.attr,
846 &dev_attr_hwrev.attr,
847 &dev_attr_manfid.attr,
848 &dev_attr_name.attr,
849 &dev_attr_oemid.attr,
850 &dev_attr_prv.attr,
851 &dev_attr_rev.attr,
852 &dev_attr_pre_eol_info.attr,
853 &dev_attr_life_time.attr,
854 &dev_attr_serial.attr,
855 &dev_attr_enhanced_area_offset.attr,
856 &dev_attr_enhanced_area_size.attr,
857 &dev_attr_raw_rpmb_size_mult.attr,
858 &dev_attr_enhanced_rpmb_supported.attr,
859 &dev_attr_rel_sectors.attr,
860 &dev_attr_ocr.attr,
861 &dev_attr_rca.attr,
862 &dev_attr_dsr.attr,
863 &dev_attr_cmdq_en.attr,
864 NULL,
865 };
866 ATTRIBUTE_GROUPS(mmc_std);
867
868 static struct device_type mmc_type = {
869 .groups = mmc_std_groups,
870 };
871
872 /*
873 * Select the PowerClass for the current bus width
874 * If power class is defined for 4/8 bit bus in the
875 * extended CSD register, select it by executing the
876 * mmc_switch command.
877 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)878 static int __mmc_select_powerclass(struct mmc_card *card,
879 unsigned int bus_width)
880 {
881 struct mmc_host *host = card->host;
882 struct mmc_ext_csd *ext_csd = &card->ext_csd;
883 unsigned int pwrclass_val = 0;
884 int err = 0;
885
886 switch (1 << host->ios.vdd) {
887 case MMC_VDD_165_195:
888 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
889 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
890 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
891 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
892 ext_csd->raw_pwr_cl_52_195 :
893 ext_csd->raw_pwr_cl_ddr_52_195;
894 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
895 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
896 break;
897 case MMC_VDD_27_28:
898 case MMC_VDD_28_29:
899 case MMC_VDD_29_30:
900 case MMC_VDD_30_31:
901 case MMC_VDD_31_32:
902 case MMC_VDD_32_33:
903 case MMC_VDD_33_34:
904 case MMC_VDD_34_35:
905 case MMC_VDD_35_36:
906 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
907 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
908 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
909 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
910 ext_csd->raw_pwr_cl_52_360 :
911 ext_csd->raw_pwr_cl_ddr_52_360;
912 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
913 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
914 ext_csd->raw_pwr_cl_ddr_200_360 :
915 ext_csd->raw_pwr_cl_200_360;
916 break;
917 default:
918 pr_warn("%s: Voltage range not supported for power class\n",
919 mmc_hostname(host));
920 return -EINVAL;
921 }
922
923 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
924 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
925 EXT_CSD_PWR_CL_8BIT_SHIFT;
926 else
927 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
928 EXT_CSD_PWR_CL_4BIT_SHIFT;
929
930 /* If the power class is different from the default value */
931 if (pwrclass_val > 0) {
932 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
933 EXT_CSD_POWER_CLASS,
934 pwrclass_val,
935 card->ext_csd.generic_cmd6_time);
936 }
937
938 return err;
939 }
940
mmc_select_powerclass(struct mmc_card * card)941 static int mmc_select_powerclass(struct mmc_card *card)
942 {
943 struct mmc_host *host = card->host;
944 u32 bus_width, ext_csd_bits;
945 int err, ddr;
946
947 /* Power class selection is supported for versions >= 4.0 */
948 if (!mmc_can_ext_csd(card))
949 return 0;
950
951 bus_width = host->ios.bus_width;
952 /* Power class values are defined only for 4/8 bit bus */
953 if (bus_width == MMC_BUS_WIDTH_1)
954 return 0;
955
956 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
957 if (ddr)
958 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
959 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
960 else
961 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
963
964 err = __mmc_select_powerclass(card, ext_csd_bits);
965 if (err)
966 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
967 mmc_hostname(host), 1 << bus_width, ddr);
968
969 return err;
970 }
971
972 /*
973 * Set the bus speed for the selected speed mode.
974 */
mmc_set_bus_speed(struct mmc_card * card)975 void mmc_set_bus_speed(struct mmc_card *card)
976 {
977 unsigned int max_dtr = (unsigned int)-1;
978
979 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
980 max_dtr > card->ext_csd.hs200_max_dtr)
981 max_dtr = card->ext_csd.hs200_max_dtr;
982 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
983 max_dtr = card->ext_csd.hs_max_dtr;
984 else if (max_dtr > card->csd.max_dtr)
985 max_dtr = card->csd.max_dtr;
986
987 mmc_set_clock(card->host, max_dtr);
988 }
989
990 /*
991 * Select the bus width amoung 4-bit and 8-bit(SDR).
992 * If the bus width is changed successfully, return the selected width value.
993 * Zero is returned instead of error value if the wide width is not supported.
994 */
mmc_select_bus_width(struct mmc_card * card)995 int mmc_select_bus_width(struct mmc_card *card)
996 {
997 static unsigned ext_csd_bits[] = {
998 EXT_CSD_BUS_WIDTH_8,
999 EXT_CSD_BUS_WIDTH_4,
1000 EXT_CSD_BUS_WIDTH_1,
1001 };
1002 static unsigned bus_widths[] = {
1003 MMC_BUS_WIDTH_8,
1004 MMC_BUS_WIDTH_4,
1005 MMC_BUS_WIDTH_1,
1006 };
1007 struct mmc_host *host = card->host;
1008 unsigned idx, bus_width = 0;
1009 int err = 0;
1010
1011 if (!mmc_can_ext_csd(card) ||
1012 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1013 return 0;
1014
1015 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1016
1017 /*
1018 * Unlike SD, MMC cards dont have a configuration register to notify
1019 * supported bus width. So bus test command should be run to identify
1020 * the supported bus width or compare the ext csd values of current
1021 * bus width and ext csd values of 1 bit mode read earlier.
1022 */
1023 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1024 /*
1025 * Host is capable of 8bit transfer, then switch
1026 * the device to work in 8bit transfer mode. If the
1027 * mmc switch command returns error then switch to
1028 * 4bit transfer mode. On success set the corresponding
1029 * bus width on the host.
1030 */
1031 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1032 EXT_CSD_BUS_WIDTH,
1033 ext_csd_bits[idx],
1034 card->ext_csd.generic_cmd6_time);
1035 if (err)
1036 continue;
1037
1038 bus_width = bus_widths[idx];
1039 mmc_set_bus_width(host, bus_width);
1040
1041 /*
1042 * If controller can't handle bus width test,
1043 * compare ext_csd previously read in 1 bit mode
1044 * against ext_csd at new bus width
1045 */
1046 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1047 err = mmc_compare_ext_csds(card, bus_width);
1048 else
1049 err = mmc_bus_test(card, bus_width);
1050
1051 if (!err) {
1052 err = bus_width;
1053 break;
1054 } else {
1055 pr_warn("%s: switch to bus width %d failed\n",
1056 mmc_hostname(host), 1 << bus_width);
1057 }
1058 }
1059
1060 return err;
1061 }
1062 EXPORT_SYMBOL_GPL(mmc_select_bus_width);
1063
1064 /*
1065 * Switch to the high-speed mode
1066 */
mmc_select_hs(struct mmc_card * card)1067 int mmc_select_hs(struct mmc_card *card)
1068 {
1069 int err;
1070
1071 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 true, true);
1075 if (err)
1076 pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 mmc_hostname(card->host), err);
1078
1079 return err;
1080 }
1081 EXPORT_SYMBOL_GPL(mmc_select_hs);
1082
1083 /*
1084 * Activate wide bus and DDR if supported.
1085 */
mmc_select_hs_ddr(struct mmc_card * card)1086 int mmc_select_hs_ddr(struct mmc_card *card)
1087 {
1088 struct mmc_host *host = card->host;
1089 u32 bus_width, ext_csd_bits;
1090 int err = 0;
1091
1092 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1093 return 0;
1094
1095 bus_width = host->ios.bus_width;
1096 if (bus_width == MMC_BUS_WIDTH_1)
1097 return 0;
1098
1099 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1100 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1101
1102 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1103 EXT_CSD_BUS_WIDTH,
1104 ext_csd_bits,
1105 card->ext_csd.generic_cmd6_time,
1106 MMC_TIMING_MMC_DDR52,
1107 true, true);
1108 if (err) {
1109 pr_err("%s: switch to bus width %d ddr failed\n",
1110 mmc_hostname(host), 1 << bus_width);
1111 return err;
1112 }
1113
1114 /*
1115 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1116 * signaling.
1117 *
1118 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1119 *
1120 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1121 * in the JEDEC spec for DDR.
1122 *
1123 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1124 * host controller can support this, like some of the SDHCI
1125 * controller which connect to an eMMC device. Some of these
1126 * host controller still needs to use 1.8v vccq for supporting
1127 * DDR mode.
1128 *
1129 * So the sequence will be:
1130 * if (host and device can both support 1.2v IO)
1131 * use 1.2v IO;
1132 * else if (host and device can both support 1.8v IO)
1133 * use 1.8v IO;
1134 * so if host and device can only support 3.3v IO, this is the
1135 * last choice.
1136 *
1137 * WARNING: eMMC rules are NOT the same as SD DDR
1138 */
1139 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1140 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1141 if (!err)
1142 return 0;
1143 }
1144
1145 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1146 host->caps & MMC_CAP_1_8V_DDR)
1147 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1148
1149 /* make sure vccq is 3.3v after switching disaster */
1150 if (err)
1151 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1152
1153 return err;
1154 }
1155 EXPORT_SYMBOL_GPL(mmc_select_hs_ddr);
1156
mmc_select_hs400(struct mmc_card * card)1157 int mmc_select_hs400(struct mmc_card *card)
1158 {
1159 struct mmc_host *host = card->host;
1160 unsigned int max_dtr;
1161 int err = 0;
1162 u8 val;
1163
1164 /*
1165 * HS400 mode requires 8-bit bus width
1166 */
1167 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1168 host->ios.bus_width == MMC_BUS_WIDTH_8))
1169 return 0;
1170
1171 /* Switch card to HS mode */
1172 val = EXT_CSD_TIMING_HS;
1173 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1174 EXT_CSD_HS_TIMING, val,
1175 card->ext_csd.generic_cmd6_time, 0,
1176 false, true);
1177 if (err) {
1178 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1179 mmc_hostname(host), err);
1180 return err;
1181 }
1182
1183 /* Prepare host to downgrade to HS timing */
1184 if (host->ops->hs400_downgrade)
1185 host->ops->hs400_downgrade(host);
1186
1187 /* Set host controller to HS timing */
1188 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1189
1190 /* Reduce frequency to HS frequency */
1191 max_dtr = card->ext_csd.hs_max_dtr;
1192 mmc_set_clock(host, max_dtr);
1193
1194 err = mmc_switch_status(card, true);
1195 if (err)
1196 goto out_err;
1197
1198 if (host->ops->hs400_prepare_ddr)
1199 host->ops->hs400_prepare_ddr(host);
1200
1201 /* Switch card to DDR */
1202 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1203 EXT_CSD_BUS_WIDTH,
1204 EXT_CSD_DDR_BUS_WIDTH_8,
1205 card->ext_csd.generic_cmd6_time);
1206 if (err) {
1207 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1208 mmc_hostname(host), err);
1209 return err;
1210 }
1211
1212 /* Switch card to HS400 */
1213 val = EXT_CSD_TIMING_HS400 |
1214 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1215 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1216 EXT_CSD_HS_TIMING, val,
1217 card->ext_csd.generic_cmd6_time, 0,
1218 false, true);
1219 if (err) {
1220 pr_err("%s: switch to hs400 failed, err:%d\n",
1221 mmc_hostname(host), err);
1222 return err;
1223 }
1224
1225 /* Set host controller to HS400 timing and frequency */
1226 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1227 mmc_set_bus_speed(card);
1228
1229 if (host->ops->hs400_complete)
1230 host->ops->hs400_complete(host);
1231
1232 err = mmc_switch_status(card, true);
1233 if (err)
1234 goto out_err;
1235
1236 return 0;
1237
1238 out_err:
1239 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1240 __func__, err);
1241 return err;
1242 }
1243 EXPORT_SYMBOL_GPL(mmc_select_hs400);
1244
mmc_hs200_to_hs400(struct mmc_card * card)1245 int mmc_hs200_to_hs400(struct mmc_card *card)
1246 {
1247 return mmc_select_hs400(card);
1248 }
1249
mmc_hs400_to_hs200(struct mmc_card * card)1250 int mmc_hs400_to_hs200(struct mmc_card *card)
1251 {
1252 struct mmc_host *host = card->host;
1253 unsigned int max_dtr;
1254 int err;
1255 u8 val;
1256
1257 /* Reduce frequency to HS */
1258 max_dtr = card->ext_csd.hs_max_dtr;
1259 mmc_set_clock(host, max_dtr);
1260
1261 /* Switch HS400 to HS DDR */
1262 val = EXT_CSD_TIMING_HS;
1263 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1264 val, card->ext_csd.generic_cmd6_time, 0,
1265 false, true);
1266 if (err)
1267 goto out_err;
1268
1269 if (host->ops->hs400_downgrade)
1270 host->ops->hs400_downgrade(host);
1271
1272 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1273
1274 err = mmc_switch_status(card, true);
1275 if (err)
1276 goto out_err;
1277
1278 /* Switch HS DDR to HS */
1279 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1280 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1281 0, false, true);
1282 if (err)
1283 goto out_err;
1284
1285 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1286
1287 err = mmc_switch_status(card, true);
1288 if (err)
1289 goto out_err;
1290
1291 /* Switch HS to HS200 */
1292 val = EXT_CSD_TIMING_HS200 |
1293 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1294 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1295 val, card->ext_csd.generic_cmd6_time, 0,
1296 false, true);
1297 if (err)
1298 goto out_err;
1299
1300 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1301
1302 /*
1303 * For HS200, CRC errors are not a reliable way to know the switch
1304 * failed. If there really is a problem, we would expect tuning will
1305 * fail and the result ends up the same.
1306 */
1307 err = mmc_switch_status(card, false);
1308 if (err)
1309 goto out_err;
1310
1311 mmc_set_bus_speed(card);
1312
1313 /* Prepare tuning for HS400 mode. */
1314 if (host->ops->prepare_hs400_tuning)
1315 host->ops->prepare_hs400_tuning(host, &host->ios);
1316
1317 return 0;
1318
1319 out_err:
1320 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1321 __func__, err);
1322 return err;
1323 }
1324
mmc_select_driver_type(struct mmc_card * card)1325 static void mmc_select_driver_type(struct mmc_card *card)
1326 {
1327 int card_drv_type, drive_strength, drv_type = 0;
1328 int fixed_drv_type = card->host->fixed_drv_type;
1329
1330 card_drv_type = card->ext_csd.raw_driver_strength |
1331 mmc_driver_type_mask(0);
1332
1333 if (fixed_drv_type >= 0)
1334 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1335 ? fixed_drv_type : 0;
1336 else
1337 drive_strength = mmc_select_drive_strength(card,
1338 card->ext_csd.hs200_max_dtr,
1339 card_drv_type, &drv_type);
1340
1341 card->drive_strength = drive_strength;
1342
1343 if (drv_type)
1344 mmc_set_driver_type(card->host, drv_type);
1345 }
1346
mmc_select_hs400es(struct mmc_card * card)1347 static int mmc_select_hs400es(struct mmc_card *card)
1348 {
1349 struct mmc_host *host = card->host;
1350 int err = -EINVAL;
1351 u8 val;
1352
1353 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1354 err = -ENOTSUPP;
1355 goto out_err;
1356 }
1357
1358 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1359 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1360
1361 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1362 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1363
1364 /* If fails try again during next card power cycle */
1365 if (err)
1366 goto out_err;
1367
1368 err = mmc_select_bus_width(card);
1369 if (err != MMC_BUS_WIDTH_8) {
1370 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1371 mmc_hostname(host), err);
1372 err = err < 0 ? err : -ENOTSUPP;
1373 goto out_err;
1374 }
1375
1376 /* Switch card to HS mode */
1377 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1379 card->ext_csd.generic_cmd6_time, 0,
1380 false, true);
1381 if (err) {
1382 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1383 mmc_hostname(host), err);
1384 goto out_err;
1385 }
1386
1387 /*
1388 * Bump to HS timing and frequency. Some cards don't handle
1389 * SEND_STATUS reliably at the initial frequency.
1390 */
1391 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1392 mmc_set_bus_speed(card);
1393
1394 err = mmc_switch_status(card, true);
1395 if (err)
1396 goto out_err;
1397
1398 /* Switch card to DDR with strobe bit */
1399 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1400 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1401 EXT_CSD_BUS_WIDTH,
1402 val,
1403 card->ext_csd.generic_cmd6_time);
1404 if (err) {
1405 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1406 mmc_hostname(host), err);
1407 goto out_err;
1408 }
1409
1410 mmc_select_driver_type(card);
1411
1412 /* Switch card to HS400 */
1413 val = EXT_CSD_TIMING_HS400 |
1414 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1415 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1416 EXT_CSD_HS_TIMING, val,
1417 card->ext_csd.generic_cmd6_time, 0,
1418 false, true);
1419 if (err) {
1420 pr_err("%s: switch to hs400es failed, err:%d\n",
1421 mmc_hostname(host), err);
1422 goto out_err;
1423 }
1424
1425 /* Set host controller to HS400 timing and frequency */
1426 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1427
1428 /* Controller enable enhanced strobe function */
1429 host->ios.enhanced_strobe = true;
1430 if (host->ops->hs400_enhanced_strobe)
1431 host->ops->hs400_enhanced_strobe(host, &host->ios);
1432
1433 err = mmc_switch_status(card, true);
1434 if (err)
1435 goto out_err;
1436
1437 return 0;
1438
1439 out_err:
1440 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1441 __func__, err);
1442 return err;
1443 }
1444
1445 /*
1446 * For device supporting HS200 mode, the following sequence
1447 * should be done before executing the tuning process.
1448 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1449 * 2. switch to HS200 mode
1450 * 3. set the clock to > 52Mhz and <=200MHz
1451 */
mmc_select_hs200(struct mmc_card * card)1452 static int mmc_select_hs200(struct mmc_card *card)
1453 {
1454 struct mmc_host *host = card->host;
1455 unsigned int old_timing, old_signal_voltage, old_clock;
1456 int err = -EINVAL;
1457 u8 val;
1458
1459 old_signal_voltage = host->ios.signal_voltage;
1460 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1461 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1462
1463 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1464 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1465
1466 /* If fails try again during next card power cycle */
1467 if (err)
1468 return err;
1469
1470 mmc_select_driver_type(card);
1471
1472 /*
1473 * Set the bus width(4 or 8) with host's support and
1474 * switch to HS200 mode if bus width is set successfully.
1475 */
1476 err = mmc_select_bus_width(card);
1477 if (err > 0) {
1478 val = EXT_CSD_TIMING_HS200 |
1479 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1480 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1481 EXT_CSD_HS_TIMING, val,
1482 card->ext_csd.generic_cmd6_time, 0,
1483 false, true);
1484 if (err)
1485 goto err;
1486
1487 /*
1488 * Bump to HS timing and frequency. Some cards don't handle
1489 * SEND_STATUS reliably at the initial frequency.
1490 * NB: We can't move to full (HS200) speeds until after we've
1491 * successfully switched over.
1492 */
1493 old_timing = host->ios.timing;
1494 old_clock = host->ios.clock;
1495 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1496 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1497
1498 /*
1499 * For HS200, CRC errors are not a reliable way to know the
1500 * switch failed. If there really is a problem, we would expect
1501 * tuning will fail and the result ends up the same.
1502 */
1503 err = mmc_switch_status(card, false);
1504
1505 /*
1506 * mmc_select_timing() assumes timing has not changed if
1507 * it is a switch error.
1508 */
1509 if (err == -EBADMSG) {
1510 mmc_set_clock(host, old_clock);
1511 mmc_set_timing(host, old_timing);
1512 }
1513 }
1514 err:
1515 if (err) {
1516 /* fall back to the old signal voltage, if fails report error */
1517 if (mmc_set_signal_voltage(host, old_signal_voltage))
1518 err = -EIO;
1519
1520 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1521 __func__, err);
1522 }
1523 return err;
1524 }
1525
1526 /*
1527 * Activate High Speed, HS200 or HS400ES mode if supported.
1528 */
mmc_select_timing(struct mmc_card * card)1529 int mmc_select_timing(struct mmc_card *card)
1530 {
1531 int err = 0;
1532
1533 if (!mmc_can_ext_csd(card))
1534 goto bus_speed;
1535
1536 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1537 err = mmc_select_hs400es(card);
1538 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1539 err = mmc_select_hs200(card);
1540 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1541 err = mmc_select_hs(card);
1542
1543 if (err && err != -EBADMSG)
1544 return err;
1545
1546 bus_speed:
1547 /*
1548 * Set the bus speed to the selected bus timing.
1549 * If timing is not selected, backward compatible is the default.
1550 */
1551 mmc_set_bus_speed(card);
1552 return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(mmc_select_timing);
1555
1556 /*
1557 * Execute tuning sequence to seek the proper bus operating
1558 * conditions for HS200 and HS400, which sends CMD21 to the device.
1559 */
mmc_hs200_tuning(struct mmc_card * card)1560 int mmc_hs200_tuning(struct mmc_card *card)
1561 {
1562 struct mmc_host *host = card->host;
1563
1564 /*
1565 * Timing should be adjusted to the HS400 target
1566 * operation frequency for tuning process
1567 */
1568 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1569 host->ios.bus_width == MMC_BUS_WIDTH_8)
1570 if (host->ops->prepare_hs400_tuning)
1571 host->ops->prepare_hs400_tuning(host, &host->ios);
1572
1573 return mmc_execute_tuning(card);
1574 }
1575 EXPORT_SYMBOL_GPL(mmc_hs200_tuning);
1576
1577 /*
1578 * Handle the detection and initialisation of a card.
1579 *
1580 * In the case of a resume, "oldcard" will contain the card
1581 * we're trying to reinitialise.
1582 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1583 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1584 struct mmc_card *oldcard)
1585 {
1586 struct mmc_card *card;
1587 int err;
1588 u32 cid[4];
1589 u32 rocr;
1590
1591 WARN_ON(!host->claimed);
1592
1593 /* Set correct bus mode for MMC before attempting init */
1594 if (!mmc_host_is_spi(host))
1595 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1596
1597 /*
1598 * Since we're changing the OCR value, we seem to
1599 * need to tell some cards to go back to the idle
1600 * state. We wait 1ms to give cards time to
1601 * respond.
1602 * mmc_go_idle is needed for eMMC that are asleep
1603 */
1604 mmc_go_idle(host);
1605
1606 /* The extra bit indicates that we support high capacity */
1607 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1608 if (err)
1609 goto err;
1610
1611 /*
1612 * For SPI, enable CRC as appropriate.
1613 */
1614 if (mmc_host_is_spi(host)) {
1615 err = mmc_spi_set_crc(host, use_spi_crc);
1616 if (err)
1617 goto err;
1618 }
1619
1620 /*
1621 * Fetch CID from card.
1622 */
1623 err = mmc_send_cid(host, cid);
1624 if (err)
1625 goto err;
1626
1627 if (oldcard) {
1628 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1629 pr_debug("%s: Perhaps the card was replaced\n",
1630 mmc_hostname(host));
1631 err = -ENOENT;
1632 goto err;
1633 }
1634
1635 card = oldcard;
1636 } else {
1637 /*
1638 * Allocate card structure.
1639 */
1640 card = mmc_alloc_card(host, &mmc_type);
1641 if (IS_ERR(card)) {
1642 err = PTR_ERR(card);
1643 goto err;
1644 }
1645
1646 card->ocr = ocr;
1647 card->type = MMC_TYPE_MMC;
1648 card->rca = 1;
1649 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1650 }
1651
1652 /*
1653 * Call the optional HC's init_card function to handle quirks.
1654 */
1655 if (host->ops->init_card)
1656 host->ops->init_card(host, card);
1657
1658 /*
1659 * For native busses: set card RCA and quit open drain mode.
1660 */
1661 if (!mmc_host_is_spi(host)) {
1662 err = mmc_set_relative_addr(card);
1663 if (err)
1664 goto free_card;
1665
1666 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1667 }
1668
1669 if (!oldcard) {
1670 /*
1671 * Fetch CSD from card.
1672 */
1673 err = mmc_send_csd(card, card->raw_csd);
1674 if (err)
1675 goto free_card;
1676
1677 err = mmc_decode_csd(card);
1678 if (err)
1679 goto free_card;
1680 err = mmc_decode_cid(card);
1681 if (err)
1682 goto free_card;
1683 }
1684
1685 /*
1686 * handling only for cards supporting DSR and hosts requesting
1687 * DSR configuration
1688 */
1689 if (card->csd.dsr_imp && host->dsr_req)
1690 mmc_set_dsr(host);
1691
1692 /*
1693 * Select card, as all following commands rely on that.
1694 */
1695 if (!mmc_host_is_spi(host)) {
1696 err = mmc_select_card(card);
1697 if (err)
1698 goto free_card;
1699 }
1700
1701 if (!oldcard) {
1702 /* Read extended CSD. */
1703 err = mmc_read_ext_csd(card);
1704 if (err)
1705 goto free_card;
1706
1707 /*
1708 * If doing byte addressing, check if required to do sector
1709 * addressing. Handle the case of <2GB cards needing sector
1710 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1711 * ocr register has bit 30 set for sector addressing.
1712 */
1713 if (rocr & BIT(30))
1714 mmc_card_set_blockaddr(card);
1715
1716 /* Erase size depends on CSD and Extended CSD */
1717 mmc_set_erase_size(card);
1718 }
1719
1720 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1721 if (card->ext_csd.rev >= 3) {
1722 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1723 EXT_CSD_ERASE_GROUP_DEF, 1,
1724 card->ext_csd.generic_cmd6_time);
1725
1726 if (err && err != -EBADMSG)
1727 goto free_card;
1728
1729 if (err) {
1730 err = 0;
1731 /*
1732 * Just disable enhanced area off & sz
1733 * will try to enable ERASE_GROUP_DEF
1734 * during next time reinit
1735 */
1736 card->ext_csd.enhanced_area_offset = -EINVAL;
1737 card->ext_csd.enhanced_area_size = -EINVAL;
1738 } else {
1739 card->ext_csd.erase_group_def = 1;
1740 /*
1741 * enable ERASE_GRP_DEF successfully.
1742 * This will affect the erase size, so
1743 * here need to reset erase size
1744 */
1745 mmc_set_erase_size(card);
1746 }
1747 }
1748
1749 /*
1750 * Ensure eMMC user default partition is enabled
1751 */
1752 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1753 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1754 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1755 card->ext_csd.part_config,
1756 card->ext_csd.part_time);
1757 if (err && err != -EBADMSG)
1758 goto free_card;
1759 }
1760
1761 /*
1762 * Enable power_off_notification byte in the ext_csd register
1763 */
1764 if (card->ext_csd.rev >= 6) {
1765 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1766 EXT_CSD_POWER_OFF_NOTIFICATION,
1767 EXT_CSD_POWER_ON,
1768 card->ext_csd.generic_cmd6_time);
1769 if (err && err != -EBADMSG)
1770 goto free_card;
1771
1772 /*
1773 * The err can be -EBADMSG or 0,
1774 * so check for success and update the flag
1775 */
1776 if (!err)
1777 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1778 }
1779
1780 /* set erase_arg */
1781 if (mmc_can_discard(card))
1782 card->erase_arg = MMC_DISCARD_ARG;
1783 else if (mmc_can_trim(card))
1784 card->erase_arg = MMC_TRIM_ARG;
1785 else
1786 card->erase_arg = MMC_ERASE_ARG;
1787
1788 /*
1789 * Select timing interface
1790 */
1791 err = mmc_select_timing(card);
1792 if (err)
1793 goto free_card;
1794
1795 if (mmc_card_hs200(card)) {
1796 host->doing_init_tune = 1;
1797
1798 err = mmc_hs200_tuning(card);
1799 if (!err)
1800 err = mmc_select_hs400(card);
1801
1802 host->doing_init_tune = 0;
1803
1804 if (err)
1805 goto free_card;
1806
1807 } else if (!mmc_card_hs400es(card)) {
1808 /* Select the desired bus width optionally */
1809 err = mmc_select_bus_width(card);
1810 if (err > 0 && mmc_card_hs(card)) {
1811 err = mmc_select_hs_ddr(card);
1812 if (err)
1813 goto free_card;
1814 }
1815 }
1816
1817 /*
1818 * Choose the power class with selected bus interface
1819 */
1820 mmc_select_powerclass(card);
1821
1822 /*
1823 * Enable HPI feature (if supported)
1824 */
1825 if (card->ext_csd.hpi) {
1826 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1827 EXT_CSD_HPI_MGMT, 1,
1828 card->ext_csd.generic_cmd6_time);
1829 if (err && err != -EBADMSG)
1830 goto free_card;
1831 if (err) {
1832 pr_warn("%s: Enabling HPI failed\n",
1833 mmc_hostname(card->host));
1834 card->ext_csd.hpi_en = 0;
1835 err = 0;
1836 } else {
1837 card->ext_csd.hpi_en = 1;
1838 }
1839 }
1840
1841 /*
1842 * If cache size is higher than 0, this indicates the existence of cache
1843 * and it can be turned on. Note that some eMMCs from Micron has been
1844 * reported to need ~800 ms timeout, while enabling the cache after
1845 * sudden power failure tests. Let's extend the timeout to a minimum of
1846 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1847 */
1848 if (card->ext_csd.cache_size > 0) {
1849 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1850
1851 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1852 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1853 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1854 if (err && err != -EBADMSG)
1855 goto free_card;
1856
1857 /*
1858 * Only if no error, cache is turned on successfully.
1859 */
1860 if (err) {
1861 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1862 mmc_hostname(card->host), err);
1863 card->ext_csd.cache_ctrl = 0;
1864 err = 0;
1865 } else {
1866 card->ext_csd.cache_ctrl = 1;
1867 }
1868 }
1869
1870 /*
1871 * Enable Command Queue if supported. Note that Packed Commands cannot
1872 * be used with Command Queue.
1873 */
1874 card->ext_csd.cmdq_en = false;
1875 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1876 err = mmc_cmdq_enable(card);
1877 if (err && err != -EBADMSG)
1878 goto free_card;
1879 if (err) {
1880 pr_warn("%s: Enabling CMDQ failed\n",
1881 mmc_hostname(card->host));
1882 card->ext_csd.cmdq_support = false;
1883 card->ext_csd.cmdq_depth = 0;
1884 err = 0;
1885 }
1886 }
1887 /*
1888 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1889 * disabled for a time, so a flag is needed to indicate to re-enable the
1890 * Command Queue.
1891 */
1892 card->reenable_cmdq = card->ext_csd.cmdq_en;
1893
1894 if (host->cqe_ops && !host->cqe_enabled) {
1895 err = host->cqe_ops->cqe_enable(host, card);
1896 if (!err) {
1897 host->cqe_enabled = true;
1898
1899 if (card->ext_csd.cmdq_en) {
1900 pr_info("%s: Command Queue Engine enabled\n",
1901 mmc_hostname(host));
1902 } else {
1903 host->hsq_enabled = true;
1904 pr_info("%s: Host Software Queue enabled\n",
1905 mmc_hostname(host));
1906 }
1907 }
1908 }
1909
1910 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1911 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1912 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1913 mmc_hostname(host));
1914 err = -EINVAL;
1915 goto free_card;
1916 }
1917
1918 if (!oldcard)
1919 host->card = card;
1920
1921 return 0;
1922
1923 free_card:
1924 if (!oldcard)
1925 mmc_remove_card(card);
1926 err:
1927 return err;
1928 }
1929
mmc_can_sleep(struct mmc_card * card)1930 static int mmc_can_sleep(struct mmc_card *card)
1931 {
1932 return (card && card->ext_csd.rev >= 3);
1933 }
1934
mmc_sleep(struct mmc_host * host)1935 static int mmc_sleep(struct mmc_host *host)
1936 {
1937 struct mmc_command cmd = {};
1938 struct mmc_card *card = host->card;
1939 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1940 int err;
1941
1942 /* Re-tuning can't be done once the card is deselected */
1943 mmc_retune_hold(host);
1944
1945 err = mmc_deselect_cards(host);
1946 if (err)
1947 goto out_release;
1948
1949 cmd.opcode = MMC_SLEEP_AWAKE;
1950 cmd.arg = card->rca << 16;
1951 cmd.arg |= 1 << 15;
1952
1953 /*
1954 * If the max_busy_timeout of the host is specified, validate it against
1955 * the sleep cmd timeout. A failure means we need to prevent the host
1956 * from doing hw busy detection, which is done by converting to a R1
1957 * response instead of a R1B. Note, some hosts requires R1B, which also
1958 * means they are on their own when it comes to deal with the busy
1959 * timeout.
1960 */
1961 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1962 (timeout_ms > host->max_busy_timeout)) {
1963 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1964 } else {
1965 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1966 cmd.busy_timeout = timeout_ms;
1967 }
1968
1969 err = mmc_wait_for_cmd(host, &cmd, 0);
1970 if (err)
1971 goto out_release;
1972
1973 /*
1974 * If the host does not wait while the card signals busy, then we will
1975 * will have to wait the sleep/awake timeout. Note, we cannot use the
1976 * SEND_STATUS command to poll the status because that command (and most
1977 * others) is invalid while the card sleeps.
1978 */
1979 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1980 mmc_delay(timeout_ms);
1981
1982 out_release:
1983 mmc_retune_release(host);
1984 return err;
1985 }
1986
mmc_can_poweroff_notify(const struct mmc_card * card)1987 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1988 {
1989 return card &&
1990 mmc_card_mmc(card) &&
1991 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1992 }
1993
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)1994 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1995 {
1996 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1997 int err;
1998
1999 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2000 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2001 timeout = card->ext_csd.power_off_longtime;
2002
2003 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2004 EXT_CSD_POWER_OFF_NOTIFICATION,
2005 notify_type, timeout, 0, false, false);
2006 if (err)
2007 pr_err("%s: Power Off Notification timed out, %u\n",
2008 mmc_hostname(card->host), timeout);
2009
2010 /* Disable the power off notification after the switch operation. */
2011 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2012
2013 return err;
2014 }
2015
2016 /*
2017 * Host is being removed. Free up the current card.
2018 */
mmc_remove(struct mmc_host * host)2019 static void mmc_remove(struct mmc_host *host)
2020 {
2021 mmc_remove_card(host->card);
2022 host->card = NULL;
2023 }
2024
2025 /*
2026 * Card detection - card is alive.
2027 */
mmc_alive(struct mmc_host * host)2028 static int mmc_alive(struct mmc_host *host)
2029 {
2030 return mmc_send_status(host->card, NULL);
2031 }
2032
2033 /*
2034 * Card detection callback from host.
2035 */
mmc_detect(struct mmc_host * host)2036 static void mmc_detect(struct mmc_host *host)
2037 {
2038 int err;
2039
2040 mmc_get_card(host->card, NULL);
2041
2042 /*
2043 * Just check if our card has been removed.
2044 */
2045 err = _mmc_detect_card_removed(host);
2046
2047 mmc_put_card(host->card, NULL);
2048
2049 if (err) {
2050 mmc_remove(host);
2051
2052 mmc_claim_host(host);
2053 mmc_detach_bus(host);
2054 mmc_power_off(host);
2055 mmc_release_host(host);
2056 }
2057 }
2058
_mmc_cache_enabled(struct mmc_host * host)2059 static bool _mmc_cache_enabled(struct mmc_host *host)
2060 {
2061 return host->card->ext_csd.cache_size > 0 &&
2062 host->card->ext_csd.cache_ctrl & 1;
2063 }
2064
_mmc_suspend(struct mmc_host * host,bool is_suspend)2065 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2066 {
2067 int err = 0;
2068 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2069 EXT_CSD_POWER_OFF_LONG;
2070
2071 mmc_claim_host(host);
2072
2073 if (mmc_card_suspended(host->card))
2074 goto out;
2075
2076 err = mmc_flush_cache(host->card);
2077 if (err)
2078 goto out;
2079
2080 if (mmc_can_poweroff_notify(host->card) &&
2081 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2082 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2083 err = mmc_poweroff_notify(host->card, notify_type);
2084 else if (mmc_can_sleep(host->card))
2085 err = mmc_sleep(host);
2086 else if (!mmc_host_is_spi(host))
2087 err = mmc_deselect_cards(host);
2088
2089 if (!err) {
2090 mmc_power_off(host);
2091 mmc_card_set_suspended(host->card);
2092 }
2093 out:
2094 mmc_release_host(host);
2095 return err;
2096 }
2097
2098 /*
2099 * Suspend callback
2100 */
mmc_suspend(struct mmc_host * host)2101 static int mmc_suspend(struct mmc_host *host)
2102 {
2103 int err;
2104
2105 err = _mmc_suspend(host, true);
2106 if (!err) {
2107 pm_runtime_disable(&host->card->dev);
2108 pm_runtime_set_suspended(&host->card->dev);
2109 }
2110
2111 return err;
2112 }
2113
2114 /*
2115 * This function tries to determine if the same card is still present
2116 * and, if so, restore all state to it.
2117 */
_mmc_resume(struct mmc_host * host)2118 static int _mmc_resume(struct mmc_host *host)
2119 {
2120 int err = 0;
2121
2122 mmc_claim_host(host);
2123
2124 if (!mmc_card_suspended(host->card))
2125 goto out;
2126
2127 mmc_power_up(host, host->card->ocr);
2128 err = mmc_init_card(host, host->card->ocr, host->card);
2129 mmc_card_clr_suspended(host->card);
2130
2131 out:
2132 mmc_release_host(host);
2133 return err;
2134 }
2135
2136 /*
2137 * Shutdown callback
2138 */
mmc_shutdown(struct mmc_host * host)2139 static int mmc_shutdown(struct mmc_host *host)
2140 {
2141 int err = 0;
2142
2143 /*
2144 * In a specific case for poweroff notify, we need to resume the card
2145 * before we can shutdown it properly.
2146 */
2147 if (mmc_can_poweroff_notify(host->card) &&
2148 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2149 err = _mmc_resume(host);
2150
2151 if (!err)
2152 err = _mmc_suspend(host, false);
2153
2154 return err;
2155 }
2156
2157 /*
2158 * Callback for resume.
2159 */
mmc_resume(struct mmc_host * host)2160 static int mmc_resume(struct mmc_host *host)
2161 {
2162 pm_runtime_enable(&host->card->dev);
2163 return 0;
2164 }
2165
2166 /*
2167 * Callback for runtime_suspend.
2168 */
mmc_runtime_suspend(struct mmc_host * host)2169 static int mmc_runtime_suspend(struct mmc_host *host)
2170 {
2171 int err;
2172
2173 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2174 return 0;
2175
2176 err = _mmc_suspend(host, true);
2177 if (err)
2178 pr_err("%s: error %d doing aggressive suspend\n",
2179 mmc_hostname(host), err);
2180
2181 return err;
2182 }
2183
2184 /*
2185 * Callback for runtime_resume.
2186 */
mmc_runtime_resume(struct mmc_host * host)2187 static int mmc_runtime_resume(struct mmc_host *host)
2188 {
2189 int err;
2190
2191 err = _mmc_resume(host);
2192 if (err && err != -ENOMEDIUM)
2193 pr_err("%s: error %d doing runtime resume\n",
2194 mmc_hostname(host), err);
2195
2196 return 0;
2197 }
2198
mmc_can_reset(struct mmc_card * card)2199 static int mmc_can_reset(struct mmc_card *card)
2200 {
2201 u8 rst_n_function;
2202
2203 rst_n_function = card->ext_csd.rst_n_function;
2204 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2205 return 0;
2206 return 1;
2207 }
2208
_mmc_hw_reset(struct mmc_host * host)2209 static int _mmc_hw_reset(struct mmc_host *host)
2210 {
2211 struct mmc_card *card = host->card;
2212
2213 /*
2214 * In the case of recovery, we can't expect flushing the cache to work
2215 * always, but we have a go and ignore errors.
2216 */
2217 mmc_flush_cache(host->card);
2218
2219 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2220 mmc_can_reset(card)) {
2221 /* If the card accept RST_n signal, send it. */
2222 mmc_set_clock(host, host->f_init);
2223 host->ops->hw_reset(host);
2224 /* Set initial state and call mmc_set_ios */
2225 mmc_set_initial_state(host);
2226 } else {
2227 /* Do a brute force power cycle */
2228 mmc_power_cycle(host, card->ocr);
2229 mmc_pwrseq_reset(host);
2230 }
2231 return mmc_init_card(host, card->ocr, card);
2232 }
2233
2234 static const struct mmc_bus_ops mmc_ops = {
2235 .remove = mmc_remove,
2236 .detect = mmc_detect,
2237 .suspend = mmc_suspend,
2238 .resume = mmc_resume,
2239 .runtime_suspend = mmc_runtime_suspend,
2240 .runtime_resume = mmc_runtime_resume,
2241 .alive = mmc_alive,
2242 .shutdown = mmc_shutdown,
2243 .hw_reset = _mmc_hw_reset,
2244 .cache_enabled = _mmc_cache_enabled,
2245 };
2246
2247 /*
2248 * Starting point for MMC card init.
2249 */
mmc_attach_mmc(struct mmc_host * host)2250 int mmc_attach_mmc(struct mmc_host *host)
2251 {
2252 int err;
2253 u32 ocr, rocr;
2254
2255 WARN_ON(!host->claimed);
2256
2257 /* Set correct bus mode for MMC before attempting attach */
2258 if (!mmc_host_is_spi(host))
2259 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2260
2261 err = mmc_send_op_cond(host, 0, &ocr);
2262 if (err)
2263 return err;
2264
2265 mmc_attach_bus(host, &mmc_ops);
2266 if (host->ocr_avail_mmc)
2267 host->ocr_avail = host->ocr_avail_mmc;
2268
2269 /*
2270 * We need to get OCR a different way for SPI.
2271 */
2272 if (mmc_host_is_spi(host)) {
2273 err = mmc_spi_read_ocr(host, 1, &ocr);
2274 if (err)
2275 goto err;
2276 }
2277
2278 rocr = mmc_select_voltage(host, ocr);
2279
2280 /*
2281 * Can we support the voltage of the card?
2282 */
2283 if (!rocr) {
2284 err = -EINVAL;
2285 goto err;
2286 }
2287
2288 /*
2289 * Detect and init the card.
2290 */
2291 err = mmc_init_card(host, rocr, NULL);
2292 if (err)
2293 goto err;
2294
2295 mmc_release_host(host);
2296 err = mmc_add_card(host->card);
2297 if (err)
2298 goto remove_card;
2299
2300 mmc_claim_host(host);
2301 return 0;
2302
2303 remove_card:
2304 mmc_remove_card(host->card);
2305 mmc_claim_host(host);
2306 host->card = NULL;
2307 err:
2308 mmc_detach_bus(host);
2309
2310 pr_err("%s: error %d whilst initialising MMC card\n",
2311 mmc_hostname(host), err);
2312
2313 return err;
2314 }
2315