• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 
32 static const unsigned int tran_exp[] = {
33 	10000,		100000,		1000000,	10000000,
34 	0,		0,		0,		0
35 };
36 
37 static const unsigned char tran_mant[] = {
38 	0,	10,	12,	13,	15,	20,	25,	30,
39 	35,	40,	45,	50,	55,	60,	70,	80,
40 };
41 
42 static const unsigned int taac_exp[] = {
43 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
44 };
45 
46 static const unsigned int taac_mant[] = {
47 	0,	10,	12,	13,	15,	20,	25,	30,
48 	35,	40,	45,	50,	55,	60,	70,	80,
49 };
50 
51 #define UNSTUFF_BITS(resp,start,size)					\
52 	({								\
53 		const int __size = size;				\
54 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
55 		const int __off = 3 - ((start) / 32);			\
56 		const int __shft = (start) & 31;			\
57 		u32 __res;						\
58 									\
59 		__res = resp[__off] >> __shft;				\
60 		if (__size + __shft > 32)				\
61 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
62 		__res & __mask;						\
63 	})
64 
65 /*
66  * Given the decoded CSD structure, decode the raw CID to our CID structure.
67  */
mmc_decode_cid(struct mmc_card * card)68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 	u32 *resp = card->raw_cid;
71 
72 	/*
73 	 * The selection of the format here is based upon published
74 	 * specs from sandisk and from what people have reported.
75 	 */
76 	switch (card->csd.mmca_vsn) {
77 	case 0: /* MMC v1.0 - v1.2 */
78 	case 1: /* MMC v1.4 */
79 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
80 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
81 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
82 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
83 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
84 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
85 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
86 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
87 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
88 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
89 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
90 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
91 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
92 		break;
93 
94 	case 2: /* MMC v2.0 - v2.2 */
95 	case 3: /* MMC v3.1 - v3.3 */
96 	case 4: /* MMC v4 */
97 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
98 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
99 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
100 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
101 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
102 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
103 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
104 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
105 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
106 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
107 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
108 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
109 		break;
110 
111 	default:
112 		pr_err("%s: card has unknown MMCA version %d\n",
113 			mmc_hostname(card->host), card->csd.mmca_vsn);
114 		return -EINVAL;
115 	}
116 
117 	return 0;
118 }
119 
mmc_set_erase_size(struct mmc_card * card)120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 	if (card->ext_csd.erase_group_def & 1)
123 		card->erase_size = card->ext_csd.hc_erase_size;
124 	else
125 		card->erase_size = card->csd.erase_size;
126 
127 	mmc_init_erase(card);
128 }
129 
130 /*
131  * Given a 128-bit response, decode to our card CSD structure.
132  */
mmc_decode_csd(struct mmc_card * card)133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 	struct mmc_csd *csd = &card->csd;
136 	unsigned int e, m, a, b;
137 	u32 *resp = card->raw_csd;
138 
139 	/*
140 	 * We only understand CSD structure v1.1 and v1.2.
141 	 * v1.2 has extra information in bits 15, 11 and 10.
142 	 * We also support eMMC v4.4 & v4.41.
143 	 */
144 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 	if (csd->structure == 0) {
146 		pr_err("%s: unrecognised CSD structure version %d\n",
147 			mmc_hostname(card->host), csd->structure);
148 		return -EINVAL;
149 	}
150 
151 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
152 	m = UNSTUFF_BITS(resp, 115, 4);
153 	e = UNSTUFF_BITS(resp, 112, 3);
154 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
156 
157 	m = UNSTUFF_BITS(resp, 99, 4);
158 	e = UNSTUFF_BITS(resp, 96, 3);
159 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
160 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
161 
162 	e = UNSTUFF_BITS(resp, 47, 3);
163 	m = UNSTUFF_BITS(resp, 62, 12);
164 	csd->capacity	  = (1 + m) << (e + 2);
165 
166 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174 
175 	if (csd->write_blkbits >= 9) {
176 		a = UNSTUFF_BITS(resp, 42, 5);
177 		b = UNSTUFF_BITS(resp, 37, 5);
178 		csd->erase_size = (a + 1) * (b + 1);
179 		csd->erase_size <<= csd->write_blkbits - 9;
180 	}
181 
182 	return 0;
183 }
184 
mmc_select_card_type(struct mmc_card * card)185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 	struct mmc_host *host = card->host;
188 	u8 card_type = card->ext_csd.raw_card_type;
189 	u32 caps = host->caps, caps2 = host->caps2;
190 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 	unsigned int avail_type = 0;
192 
193 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 	}
198 
199 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 	}
204 
205 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 	}
210 
211 	if (caps & MMC_CAP_1_2V_DDR &&
212 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 	}
216 
217 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 		hs200_max_dtr = MMC_HS200_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 	}
222 
223 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 		hs200_max_dtr = MMC_HS200_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 	}
228 
229 	if (caps2 & MMC_CAP2_HS400_1_8V &&
230 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 		hs200_max_dtr = MMC_HS200_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS400_1_2V &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 	}
240 
241 	if ((caps2 & MMC_CAP2_HS400_ES) &&
242 	    card->ext_csd.strobe_support &&
243 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245 
246 	card->ext_csd.hs_max_dtr = hs_max_dtr;
247 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 	card->mmc_avail_type = avail_type;
249 }
250 
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
254 
255 	/*
256 	 * Disable these attributes by default
257 	 */
258 	card->ext_csd.enhanced_area_offset = -EINVAL;
259 	card->ext_csd.enhanced_area_size = -EINVAL;
260 
261 	/*
262 	 * Enhanced area feature support -- check whether the eMMC
263 	 * card has the Enhanced area enabled.  If so, export enhanced
264 	 * area offset and size to user by adding sysfs interface.
265 	 */
266 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 		if (card->ext_csd.partition_setting_completed) {
269 			hc_erase_grp_sz =
270 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 			hc_wp_grp_sz =
272 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273 
274 			/*
275 			 * calculate the enhanced data area offset, in bytes
276 			 */
277 			card->ext_csd.enhanced_area_offset =
278 				(((unsigned long long)ext_csd[139]) << 24) +
279 				(((unsigned long long)ext_csd[138]) << 16) +
280 				(((unsigned long long)ext_csd[137]) << 8) +
281 				(((unsigned long long)ext_csd[136]));
282 			if (mmc_card_blockaddr(card))
283 				card->ext_csd.enhanced_area_offset <<= 9;
284 			/*
285 			 * calculate the enhanced data area size, in kilobytes
286 			 */
287 			card->ext_csd.enhanced_area_size =
288 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 				ext_csd[140];
290 			card->ext_csd.enhanced_area_size *=
291 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 			card->ext_csd.enhanced_area_size <<= 9;
293 		} else {
294 			pr_warn("%s: defines enhanced area without partition setting complete\n",
295 				mmc_hostname(card->host));
296 		}
297 	}
298 }
299 
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 			 unsigned int part_cfg, char *name, int idx, bool ro,
302 			 int area_type)
303 {
304 	card->part[card->nr_parts].size = size;
305 	card->part[card->nr_parts].part_cfg = part_cfg;
306 	sprintf(card->part[card->nr_parts].name, name, idx);
307 	card->part[card->nr_parts].force_ro = ro;
308 	card->part[card->nr_parts].area_type = area_type;
309 	card->nr_parts++;
310 }
311 
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 	int idx;
315 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 	u64 part_size;
317 
318 	/*
319 	 * General purpose partition feature support --
320 	 * If ext_csd has the size of general purpose partitions,
321 	 * set size, part_cfg, partition name in mmc_part.
322 	 */
323 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 	    EXT_CSD_PART_SUPPORT_PART_EN) {
325 		hc_erase_grp_sz =
326 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 		hc_wp_grp_sz =
328 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329 
330 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 				continue;
335 			if (card->ext_csd.partition_setting_completed == 0) {
336 				pr_warn("%s: has partition size defined without partition complete\n",
337 					mmc_hostname(card->host));
338 				break;
339 			}
340 			part_size =
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 				<< 16) +
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 				<< 8) +
345 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 			mmc_part_add(card, part_size << 19,
348 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 				"gp%d", idx, false,
350 				MMC_BLK_DATA_AREA_GP);
351 		}
352 	}
353 }
354 
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME	300
357 
358 /*
359  * Decode extended CSD.
360  */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362 {
363 	int err = 0, idx;
364 	u64 part_size;
365 	struct device_node *np;
366 	bool broken_hpi = false;
367 
368 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 	if (card->csd.structure == 3) {
371 		if (card->ext_csd.raw_ext_csd_structure > 2) {
372 			pr_err("%s: unrecognised EXT_CSD structure "
373 				"version %d\n", mmc_hostname(card->host),
374 					card->ext_csd.raw_ext_csd_structure);
375 			err = -EINVAL;
376 			goto out;
377 		}
378 	}
379 
380 	np = mmc_of_find_child_device(card->host, 0);
381 	if (np && of_device_is_compatible(np, "mmc-card"))
382 		broken_hpi = of_property_read_bool(np, "broken-hpi");
383 	of_node_put(np);
384 
385 	/*
386 	 * The EXT_CSD format is meant to be forward compatible. As long
387 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 	 * are authorized, see JEDEC JESD84-B50 section B.8.
389 	 */
390 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391 
392 	/* fixup device after ext_csd revision field is updated */
393 	mmc_fixup_device(card, mmc_ext_csd_fixups);
394 
395 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 	if (card->ext_csd.rev >= 2) {
400 		card->ext_csd.sectors =
401 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405 
406 		/* Cards with density > 2GiB are sector addressed */
407 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 			mmc_card_set_blockaddr(card);
409 	}
410 
411 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 	mmc_select_card_type(card);
414 
415 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 	card->ext_csd.raw_erase_timeout_mult =
417 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 	card->ext_csd.raw_hc_erase_grp_size =
419 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 	if (card->ext_csd.rev >= 3) {
421 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423 
424 		/* EXT_CSD value is in units of 10ms, but we store in ms */
425 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 
427 		/* Sleep / awake timeout in 100ns units */
428 		if (sa_shift > 0 && sa_shift <= 0x17)
429 			card->ext_csd.sa_timeout =
430 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
431 		card->ext_csd.erase_group_def =
432 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
433 		card->ext_csd.hc_erase_timeout = 300 *
434 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
435 		card->ext_csd.hc_erase_size =
436 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
437 
438 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
439 
440 		/*
441 		 * There are two boot regions of equal size, defined in
442 		 * multiples of 128K.
443 		 */
444 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
445 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
446 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
447 				mmc_part_add(card, part_size,
448 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
449 					"boot%d", idx, true,
450 					MMC_BLK_DATA_AREA_BOOT);
451 			}
452 		}
453 	}
454 
455 	card->ext_csd.raw_hc_erase_gap_size =
456 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
457 	card->ext_csd.raw_sec_trim_mult =
458 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
459 	card->ext_csd.raw_sec_erase_mult =
460 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
461 	card->ext_csd.raw_sec_feature_support =
462 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
463 	card->ext_csd.raw_trim_mult =
464 		ext_csd[EXT_CSD_TRIM_MULT];
465 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
466 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
467 	if (card->ext_csd.rev >= 4) {
468 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
469 		    EXT_CSD_PART_SETTING_COMPLETED)
470 			card->ext_csd.partition_setting_completed = 1;
471 		else
472 			card->ext_csd.partition_setting_completed = 0;
473 
474 		mmc_manage_enhanced_area(card, ext_csd);
475 
476 		mmc_manage_gp_partitions(card, ext_csd);
477 
478 		card->ext_csd.sec_trim_mult =
479 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
480 		card->ext_csd.sec_erase_mult =
481 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
482 		card->ext_csd.sec_feature_support =
483 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
484 		card->ext_csd.trim_timeout = 300 *
485 			ext_csd[EXT_CSD_TRIM_MULT];
486 
487 		/*
488 		 * Note that the call to mmc_part_add above defaults to read
489 		 * only. If this default assumption is changed, the call must
490 		 * take into account the value of boot_locked below.
491 		 */
492 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
493 		card->ext_csd.boot_ro_lockable = true;
494 
495 		/* Save power class values */
496 		card->ext_csd.raw_pwr_cl_52_195 =
497 			ext_csd[EXT_CSD_PWR_CL_52_195];
498 		card->ext_csd.raw_pwr_cl_26_195 =
499 			ext_csd[EXT_CSD_PWR_CL_26_195];
500 		card->ext_csd.raw_pwr_cl_52_360 =
501 			ext_csd[EXT_CSD_PWR_CL_52_360];
502 		card->ext_csd.raw_pwr_cl_26_360 =
503 			ext_csd[EXT_CSD_PWR_CL_26_360];
504 		card->ext_csd.raw_pwr_cl_200_195 =
505 			ext_csd[EXT_CSD_PWR_CL_200_195];
506 		card->ext_csd.raw_pwr_cl_200_360 =
507 			ext_csd[EXT_CSD_PWR_CL_200_360];
508 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
509 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
510 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
511 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
512 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
514 	}
515 
516 	if (card->ext_csd.rev >= 5) {
517 		/* Adjust production date as per JEDEC JESD84-B451 */
518 		if (card->cid.year < 2010)
519 			card->cid.year += 16;
520 
521 		/* check whether the eMMC card supports BKOPS */
522 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
523 			card->ext_csd.bkops = 1;
524 			card->ext_csd.man_bkops_en =
525 					(ext_csd[EXT_CSD_BKOPS_EN] &
526 						EXT_CSD_MANUAL_BKOPS_MASK);
527 			card->ext_csd.raw_bkops_status =
528 				ext_csd[EXT_CSD_BKOPS_STATUS];
529 			if (card->ext_csd.man_bkops_en)
530 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
531 					mmc_hostname(card->host));
532 			card->ext_csd.auto_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_AUTO_BKOPS_MASK);
535 			if (card->ext_csd.auto_bkops_en)
536 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
537 					mmc_hostname(card->host));
538 		}
539 
540 		/* check whether the eMMC card supports HPI */
541 		if (!mmc_card_broken_hpi(card) &&
542 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
543 			card->ext_csd.hpi = 1;
544 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
545 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
546 			else
547 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
548 			/*
549 			 * Indicate the maximum timeout to close
550 			 * a command interrupted by HPI
551 			 */
552 			card->ext_csd.out_of_int_time =
553 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
554 		}
555 
556 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
557 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
558 
559 		/*
560 		 * RPMB regions are defined in multiples of 128K.
561 		 */
562 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
563 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
564 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
565 				EXT_CSD_PART_CONFIG_ACC_RPMB,
566 				"rpmb", 0, false,
567 				MMC_BLK_DATA_AREA_RPMB);
568 		}
569 	}
570 
571 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
572 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
573 		card->erased_byte = 0xFF;
574 	else
575 		card->erased_byte = 0x0;
576 
577 	/* eMMC v4.5 or later */
578 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
579 	if (card->ext_csd.rev >= 6) {
580 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
581 
582 		card->ext_csd.generic_cmd6_time = 10 *
583 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
584 		card->ext_csd.power_off_longtime = 10 *
585 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
586 
587 		card->ext_csd.cache_size =
588 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
589 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
590 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
591 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
592 
593 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
594 			card->ext_csd.data_sector_size = 4096;
595 		else
596 			card->ext_csd.data_sector_size = 512;
597 
598 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
599 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
600 			card->ext_csd.data_tag_unit_size =
601 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
602 			(card->ext_csd.data_sector_size);
603 		} else {
604 			card->ext_csd.data_tag_unit_size = 0;
605 		}
606 
607 		card->ext_csd.max_packed_writes =
608 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
609 		card->ext_csd.max_packed_reads =
610 			ext_csd[EXT_CSD_MAX_PACKED_READS];
611 	} else {
612 		card->ext_csd.data_sector_size = 512;
613 	}
614 
615 	/*
616 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
617 	 * when accessing a specific field", so use it here if there is no
618 	 * PARTITION_SWITCH_TIME.
619 	 */
620 	if (!card->ext_csd.part_time)
621 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
622 	/* Some eMMC set the value too low so set a minimum */
623 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
624 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
625 
626 	/* eMMC v5 or later */
627 	if (card->ext_csd.rev >= 7) {
628 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
629 		       MMC_FIRMWARE_LEN);
630 		card->ext_csd.ffu_capable =
631 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
632 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
633 
634 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
635 		card->ext_csd.device_life_time_est_typ_a =
636 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
637 		card->ext_csd.device_life_time_est_typ_b =
638 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
639 	}
640 
641 	/* eMMC v5.1 or later */
642 	if (card->ext_csd.rev >= 8) {
643 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
644 					     EXT_CSD_CMDQ_SUPPORTED;
645 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
646 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
647 		/* Exclude inefficiently small queue depths */
648 		if (card->ext_csd.cmdq_depth <= 2) {
649 			card->ext_csd.cmdq_support = false;
650 			card->ext_csd.cmdq_depth = 0;
651 		}
652 		if (card->ext_csd.cmdq_support) {
653 			pr_debug("%s: Command Queue supported depth %u\n",
654 				 mmc_hostname(card->host),
655 				 card->ext_csd.cmdq_depth);
656 		}
657 		card->ext_csd.enhanced_rpmb_supported =
658 					(card->ext_csd.rel_param &
659 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
660 	}
661 out:
662 	return err;
663 }
664 
mmc_read_ext_csd(struct mmc_card * card)665 static int mmc_read_ext_csd(struct mmc_card *card)
666 {
667 	u8 *ext_csd;
668 	int err;
669 
670 	if (!mmc_can_ext_csd(card))
671 		return 0;
672 
673 	err = mmc_get_ext_csd(card, &ext_csd);
674 	if (err) {
675 		/* If the host or the card can't do the switch,
676 		 * fail more gracefully. */
677 		if ((err != -EINVAL)
678 		 && (err != -ENOSYS)
679 		 && (err != -EFAULT))
680 			return err;
681 
682 		/*
683 		 * High capacity cards should have this "magic" size
684 		 * stored in their CSD.
685 		 */
686 		if (card->csd.capacity == (4096 * 512)) {
687 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
688 				mmc_hostname(card->host));
689 		} else {
690 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
691 				mmc_hostname(card->host));
692 			err = 0;
693 		}
694 
695 		return err;
696 	}
697 
698 	err = mmc_decode_ext_csd(card, ext_csd);
699 	kfree(ext_csd);
700 	return err;
701 }
702 
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)703 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
704 {
705 	u8 *bw_ext_csd;
706 	int err;
707 
708 	if (bus_width == MMC_BUS_WIDTH_1)
709 		return 0;
710 
711 	err = mmc_get_ext_csd(card, &bw_ext_csd);
712 	if (err)
713 		return err;
714 
715 	/* only compare read only fields */
716 	err = !((card->ext_csd.raw_partition_support ==
717 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
718 		(card->ext_csd.raw_erased_mem_count ==
719 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
720 		(card->ext_csd.rev ==
721 			bw_ext_csd[EXT_CSD_REV]) &&
722 		(card->ext_csd.raw_ext_csd_structure ==
723 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
724 		(card->ext_csd.raw_card_type ==
725 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
726 		(card->ext_csd.raw_s_a_timeout ==
727 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
728 		(card->ext_csd.raw_hc_erase_gap_size ==
729 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
730 		(card->ext_csd.raw_erase_timeout_mult ==
731 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
732 		(card->ext_csd.raw_hc_erase_grp_size ==
733 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
734 		(card->ext_csd.raw_sec_trim_mult ==
735 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sec_erase_mult ==
737 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
738 		(card->ext_csd.raw_sec_feature_support ==
739 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
740 		(card->ext_csd.raw_trim_mult ==
741 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
742 		(card->ext_csd.raw_sectors[0] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
744 		(card->ext_csd.raw_sectors[1] ==
745 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
746 		(card->ext_csd.raw_sectors[2] ==
747 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
748 		(card->ext_csd.raw_sectors[3] ==
749 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
750 		(card->ext_csd.raw_pwr_cl_52_195 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
752 		(card->ext_csd.raw_pwr_cl_26_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
754 		(card->ext_csd.raw_pwr_cl_52_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
756 		(card->ext_csd.raw_pwr_cl_26_360 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
758 		(card->ext_csd.raw_pwr_cl_200_195 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
760 		(card->ext_csd.raw_pwr_cl_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
762 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
763 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
764 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
766 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
768 
769 	if (err)
770 		err = -EINVAL;
771 
772 	kfree(bw_ext_csd);
773 	return err;
774 }
775 
776 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
777 	card->raw_cid[2], card->raw_cid[3]);
778 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
779 	card->raw_csd[2], card->raw_csd[3]);
780 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
781 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
782 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
783 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
784 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
785 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
786 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
787 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
788 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
789 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
790 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
791 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
792 	card->ext_csd.device_life_time_est_typ_a,
793 	card->ext_csd.device_life_time_est_typ_b);
794 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
795 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
796 		card->ext_csd.enhanced_area_offset);
797 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
798 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
799 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
800 	card->ext_csd.enhanced_rpmb_supported);
801 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
802 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
803 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
804 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
805 
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)806 static ssize_t mmc_fwrev_show(struct device *dev,
807 			      struct device_attribute *attr,
808 			      char *buf)
809 {
810 	struct mmc_card *card = mmc_dev_to_card(dev);
811 
812 	if (card->ext_csd.rev < 7) {
813 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
814 	} else {
815 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
816 			       card->ext_csd.fwrev);
817 	}
818 }
819 
820 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
821 
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)822 static ssize_t mmc_dsr_show(struct device *dev,
823 			    struct device_attribute *attr,
824 			    char *buf)
825 {
826 	struct mmc_card *card = mmc_dev_to_card(dev);
827 	struct mmc_host *host = card->host;
828 
829 	if (card->csd.dsr_imp && host->dsr_req)
830 		return sprintf(buf, "0x%x\n", host->dsr);
831 	else
832 		/* return default DSR value */
833 		return sprintf(buf, "0x%x\n", 0x404);
834 }
835 
836 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
837 
838 static struct attribute *mmc_std_attrs[] = {
839 	&dev_attr_cid.attr,
840 	&dev_attr_csd.attr,
841 	&dev_attr_date.attr,
842 	&dev_attr_erase_size.attr,
843 	&dev_attr_preferred_erase_size.attr,
844 	&dev_attr_fwrev.attr,
845 	&dev_attr_ffu_capable.attr,
846 	&dev_attr_hwrev.attr,
847 	&dev_attr_manfid.attr,
848 	&dev_attr_name.attr,
849 	&dev_attr_oemid.attr,
850 	&dev_attr_prv.attr,
851 	&dev_attr_rev.attr,
852 	&dev_attr_pre_eol_info.attr,
853 	&dev_attr_life_time.attr,
854 	&dev_attr_serial.attr,
855 	&dev_attr_enhanced_area_offset.attr,
856 	&dev_attr_enhanced_area_size.attr,
857 	&dev_attr_raw_rpmb_size_mult.attr,
858 	&dev_attr_enhanced_rpmb_supported.attr,
859 	&dev_attr_rel_sectors.attr,
860 	&dev_attr_ocr.attr,
861 	&dev_attr_rca.attr,
862 	&dev_attr_dsr.attr,
863 	&dev_attr_cmdq_en.attr,
864 	NULL,
865 };
866 ATTRIBUTE_GROUPS(mmc_std);
867 
868 static struct device_type mmc_type = {
869 	.groups = mmc_std_groups,
870 };
871 
872 /*
873  * Select the PowerClass for the current bus width
874  * If power class is defined for 4/8 bit bus in the
875  * extended CSD register, select it by executing the
876  * mmc_switch command.
877  */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)878 static int __mmc_select_powerclass(struct mmc_card *card,
879 				   unsigned int bus_width)
880 {
881 	struct mmc_host *host = card->host;
882 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
883 	unsigned int pwrclass_val = 0;
884 	int err = 0;
885 
886 	switch (1 << host->ios.vdd) {
887 	case MMC_VDD_165_195:
888 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
889 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
890 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
891 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
892 				ext_csd->raw_pwr_cl_52_195 :
893 				ext_csd->raw_pwr_cl_ddr_52_195;
894 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
895 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
896 		break;
897 	case MMC_VDD_27_28:
898 	case MMC_VDD_28_29:
899 	case MMC_VDD_29_30:
900 	case MMC_VDD_30_31:
901 	case MMC_VDD_31_32:
902 	case MMC_VDD_32_33:
903 	case MMC_VDD_33_34:
904 	case MMC_VDD_34_35:
905 	case MMC_VDD_35_36:
906 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
907 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
908 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
909 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
910 				ext_csd->raw_pwr_cl_52_360 :
911 				ext_csd->raw_pwr_cl_ddr_52_360;
912 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
913 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
914 				ext_csd->raw_pwr_cl_ddr_200_360 :
915 				ext_csd->raw_pwr_cl_200_360;
916 		break;
917 	default:
918 		pr_warn("%s: Voltage range not supported for power class\n",
919 			mmc_hostname(host));
920 		return -EINVAL;
921 	}
922 
923 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
924 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
925 				EXT_CSD_PWR_CL_8BIT_SHIFT;
926 	else
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
928 				EXT_CSD_PWR_CL_4BIT_SHIFT;
929 
930 	/* If the power class is different from the default value */
931 	if (pwrclass_val > 0) {
932 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
933 				 EXT_CSD_POWER_CLASS,
934 				 pwrclass_val,
935 				 card->ext_csd.generic_cmd6_time);
936 	}
937 
938 	return err;
939 }
940 
mmc_select_powerclass(struct mmc_card * card)941 static int mmc_select_powerclass(struct mmc_card *card)
942 {
943 	struct mmc_host *host = card->host;
944 	u32 bus_width, ext_csd_bits;
945 	int err, ddr;
946 
947 	/* Power class selection is supported for versions >= 4.0 */
948 	if (!mmc_can_ext_csd(card))
949 		return 0;
950 
951 	bus_width = host->ios.bus_width;
952 	/* Power class values are defined only for 4/8 bit bus */
953 	if (bus_width == MMC_BUS_WIDTH_1)
954 		return 0;
955 
956 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
957 	if (ddr)
958 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
959 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
960 	else
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
963 
964 	err = __mmc_select_powerclass(card, ext_csd_bits);
965 	if (err)
966 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
967 			mmc_hostname(host), 1 << bus_width, ddr);
968 
969 	return err;
970 }
971 
972 /*
973  * Set the bus speed for the selected speed mode.
974  */
mmc_set_bus_speed(struct mmc_card * card)975 void mmc_set_bus_speed(struct mmc_card *card)
976 {
977 	unsigned int max_dtr = (unsigned int)-1;
978 
979 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
980 	     max_dtr > card->ext_csd.hs200_max_dtr)
981 		max_dtr = card->ext_csd.hs200_max_dtr;
982 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
983 		max_dtr = card->ext_csd.hs_max_dtr;
984 	else if (max_dtr > card->csd.max_dtr)
985 		max_dtr = card->csd.max_dtr;
986 
987 	mmc_set_clock(card->host, max_dtr);
988 }
989 
990 /*
991  * Select the bus width amoung 4-bit and 8-bit(SDR).
992  * If the bus width is changed successfully, return the selected width value.
993  * Zero is returned instead of error value if the wide width is not supported.
994  */
mmc_select_bus_width(struct mmc_card * card)995 int mmc_select_bus_width(struct mmc_card *card)
996 {
997 	static unsigned ext_csd_bits[] = {
998 		EXT_CSD_BUS_WIDTH_8,
999 		EXT_CSD_BUS_WIDTH_4,
1000 		EXT_CSD_BUS_WIDTH_1,
1001 	};
1002 	static unsigned bus_widths[] = {
1003 		MMC_BUS_WIDTH_8,
1004 		MMC_BUS_WIDTH_4,
1005 		MMC_BUS_WIDTH_1,
1006 	};
1007 	struct mmc_host *host = card->host;
1008 	unsigned idx, bus_width = 0;
1009 	int err = 0;
1010 
1011 	if (!mmc_can_ext_csd(card) ||
1012 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1013 		return 0;
1014 
1015 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1016 
1017 	/*
1018 	 * Unlike SD, MMC cards dont have a configuration register to notify
1019 	 * supported bus width. So bus test command should be run to identify
1020 	 * the supported bus width or compare the ext csd values of current
1021 	 * bus width and ext csd values of 1 bit mode read earlier.
1022 	 */
1023 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1024 		/*
1025 		 * Host is capable of 8bit transfer, then switch
1026 		 * the device to work in 8bit transfer mode. If the
1027 		 * mmc switch command returns error then switch to
1028 		 * 4bit transfer mode. On success set the corresponding
1029 		 * bus width on the host.
1030 		 */
1031 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1032 				 EXT_CSD_BUS_WIDTH,
1033 				 ext_csd_bits[idx],
1034 				 card->ext_csd.generic_cmd6_time);
1035 		if (err)
1036 			continue;
1037 
1038 		bus_width = bus_widths[idx];
1039 		mmc_set_bus_width(host, bus_width);
1040 
1041 		/*
1042 		 * If controller can't handle bus width test,
1043 		 * compare ext_csd previously read in 1 bit mode
1044 		 * against ext_csd at new bus width
1045 		 */
1046 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1047 			err = mmc_compare_ext_csds(card, bus_width);
1048 		else
1049 			err = mmc_bus_test(card, bus_width);
1050 
1051 		if (!err) {
1052 			err = bus_width;
1053 			break;
1054 		} else {
1055 			pr_warn("%s: switch to bus width %d failed\n",
1056 				mmc_hostname(host), 1 << bus_width);
1057 		}
1058 	}
1059 
1060 	return err;
1061 }
1062 EXPORT_SYMBOL_GPL(mmc_select_bus_width);
1063 
1064 /*
1065  * Switch to the high-speed mode
1066  */
mmc_select_hs(struct mmc_card * card)1067 int mmc_select_hs(struct mmc_card *card)
1068 {
1069 	int err;
1070 
1071 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 			   true, true);
1075 	if (err)
1076 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 			mmc_hostname(card->host), err);
1078 
1079 	return err;
1080 }
1081 EXPORT_SYMBOL_GPL(mmc_select_hs);
1082 
1083 /*
1084  * Activate wide bus and DDR if supported.
1085  */
mmc_select_hs_ddr(struct mmc_card * card)1086 int mmc_select_hs_ddr(struct mmc_card *card)
1087 {
1088 	struct mmc_host *host = card->host;
1089 	u32 bus_width, ext_csd_bits;
1090 	int err = 0;
1091 
1092 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1093 		return 0;
1094 
1095 	bus_width = host->ios.bus_width;
1096 	if (bus_width == MMC_BUS_WIDTH_1)
1097 		return 0;
1098 
1099 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1100 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1101 
1102 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1103 			   EXT_CSD_BUS_WIDTH,
1104 			   ext_csd_bits,
1105 			   card->ext_csd.generic_cmd6_time,
1106 			   MMC_TIMING_MMC_DDR52,
1107 			   true, true);
1108 	if (err) {
1109 		pr_err("%s: switch to bus width %d ddr failed\n",
1110 			mmc_hostname(host), 1 << bus_width);
1111 		return err;
1112 	}
1113 
1114 	/*
1115 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1116 	 * signaling.
1117 	 *
1118 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1119 	 *
1120 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1121 	 * in the JEDEC spec for DDR.
1122 	 *
1123 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1124 	 * host controller can support this, like some of the SDHCI
1125 	 * controller which connect to an eMMC device. Some of these
1126 	 * host controller still needs to use 1.8v vccq for supporting
1127 	 * DDR mode.
1128 	 *
1129 	 * So the sequence will be:
1130 	 * if (host and device can both support 1.2v IO)
1131 	 *	use 1.2v IO;
1132 	 * else if (host and device can both support 1.8v IO)
1133 	 *	use 1.8v IO;
1134 	 * so if host and device can only support 3.3v IO, this is the
1135 	 * last choice.
1136 	 *
1137 	 * WARNING: eMMC rules are NOT the same as SD DDR
1138 	 */
1139 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1140 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1141 		if (!err)
1142 			return 0;
1143 	}
1144 
1145 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1146 	    host->caps & MMC_CAP_1_8V_DDR)
1147 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1148 
1149 	/* make sure vccq is 3.3v after switching disaster */
1150 	if (err)
1151 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1152 
1153 	return err;
1154 }
1155 EXPORT_SYMBOL_GPL(mmc_select_hs_ddr);
1156 
mmc_select_hs400(struct mmc_card * card)1157 int mmc_select_hs400(struct mmc_card *card)
1158 {
1159 	struct mmc_host *host = card->host;
1160 	unsigned int max_dtr;
1161 	int err = 0;
1162 	u8 val;
1163 
1164 	/*
1165 	 * HS400 mode requires 8-bit bus width
1166 	 */
1167 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1168 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1169 		return 0;
1170 
1171 	/* Switch card to HS mode */
1172 	val = EXT_CSD_TIMING_HS;
1173 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1174 			   EXT_CSD_HS_TIMING, val,
1175 			   card->ext_csd.generic_cmd6_time, 0,
1176 			   false, true);
1177 	if (err) {
1178 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1179 			mmc_hostname(host), err);
1180 		return err;
1181 	}
1182 
1183 	/* Prepare host to downgrade to HS timing */
1184 	if (host->ops->hs400_downgrade)
1185 		host->ops->hs400_downgrade(host);
1186 
1187 	/* Set host controller to HS timing */
1188 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1189 
1190 	/* Reduce frequency to HS frequency */
1191 	max_dtr = card->ext_csd.hs_max_dtr;
1192 	mmc_set_clock(host, max_dtr);
1193 
1194 	err = mmc_switch_status(card, true);
1195 	if (err)
1196 		goto out_err;
1197 
1198 	if (host->ops->hs400_prepare_ddr)
1199 		host->ops->hs400_prepare_ddr(host);
1200 
1201 	/* Switch card to DDR */
1202 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1203 			 EXT_CSD_BUS_WIDTH,
1204 			 EXT_CSD_DDR_BUS_WIDTH_8,
1205 			 card->ext_csd.generic_cmd6_time);
1206 	if (err) {
1207 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1208 			mmc_hostname(host), err);
1209 		return err;
1210 	}
1211 
1212 	/* Switch card to HS400 */
1213 	val = EXT_CSD_TIMING_HS400 |
1214 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1215 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1216 			   EXT_CSD_HS_TIMING, val,
1217 			   card->ext_csd.generic_cmd6_time, 0,
1218 			   false, true);
1219 	if (err) {
1220 		pr_err("%s: switch to hs400 failed, err:%d\n",
1221 			 mmc_hostname(host), err);
1222 		return err;
1223 	}
1224 
1225 	/* Set host controller to HS400 timing and frequency */
1226 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1227 	mmc_set_bus_speed(card);
1228 
1229 	if (host->ops->hs400_complete)
1230 		host->ops->hs400_complete(host);
1231 
1232 	err = mmc_switch_status(card, true);
1233 	if (err)
1234 		goto out_err;
1235 
1236 	return 0;
1237 
1238 out_err:
1239 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1240 	       __func__, err);
1241 	return err;
1242 }
1243 EXPORT_SYMBOL_GPL(mmc_select_hs400);
1244 
mmc_hs200_to_hs400(struct mmc_card * card)1245 int mmc_hs200_to_hs400(struct mmc_card *card)
1246 {
1247 	return mmc_select_hs400(card);
1248 }
1249 
mmc_hs400_to_hs200(struct mmc_card * card)1250 int mmc_hs400_to_hs200(struct mmc_card *card)
1251 {
1252 	struct mmc_host *host = card->host;
1253 	unsigned int max_dtr;
1254 	int err;
1255 	u8 val;
1256 
1257 	/* Reduce frequency to HS */
1258 	max_dtr = card->ext_csd.hs_max_dtr;
1259 	mmc_set_clock(host, max_dtr);
1260 
1261 	/* Switch HS400 to HS DDR */
1262 	val = EXT_CSD_TIMING_HS;
1263 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1264 			   val, card->ext_csd.generic_cmd6_time, 0,
1265 			   false, true);
1266 	if (err)
1267 		goto out_err;
1268 
1269 	if (host->ops->hs400_downgrade)
1270 		host->ops->hs400_downgrade(host);
1271 
1272 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1273 
1274 	err = mmc_switch_status(card, true);
1275 	if (err)
1276 		goto out_err;
1277 
1278 	/* Switch HS DDR to HS */
1279 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1280 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1281 			   0, false, true);
1282 	if (err)
1283 		goto out_err;
1284 
1285 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1286 
1287 	err = mmc_switch_status(card, true);
1288 	if (err)
1289 		goto out_err;
1290 
1291 	/* Switch HS to HS200 */
1292 	val = EXT_CSD_TIMING_HS200 |
1293 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1294 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1295 			   val, card->ext_csd.generic_cmd6_time, 0,
1296 			   false, true);
1297 	if (err)
1298 		goto out_err;
1299 
1300 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1301 
1302 	/*
1303 	 * For HS200, CRC errors are not a reliable way to know the switch
1304 	 * failed. If there really is a problem, we would expect tuning will
1305 	 * fail and the result ends up the same.
1306 	 */
1307 	err = mmc_switch_status(card, false);
1308 	if (err)
1309 		goto out_err;
1310 
1311 	mmc_set_bus_speed(card);
1312 
1313 	/* Prepare tuning for HS400 mode. */
1314 	if (host->ops->prepare_hs400_tuning)
1315 		host->ops->prepare_hs400_tuning(host, &host->ios);
1316 
1317 	return 0;
1318 
1319 out_err:
1320 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1321 	       __func__, err);
1322 	return err;
1323 }
1324 
mmc_select_driver_type(struct mmc_card * card)1325 static void mmc_select_driver_type(struct mmc_card *card)
1326 {
1327 	int card_drv_type, drive_strength, drv_type = 0;
1328 	int fixed_drv_type = card->host->fixed_drv_type;
1329 
1330 	card_drv_type = card->ext_csd.raw_driver_strength |
1331 			mmc_driver_type_mask(0);
1332 
1333 	if (fixed_drv_type >= 0)
1334 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1335 				 ? fixed_drv_type : 0;
1336 	else
1337 		drive_strength = mmc_select_drive_strength(card,
1338 							   card->ext_csd.hs200_max_dtr,
1339 							   card_drv_type, &drv_type);
1340 
1341 	card->drive_strength = drive_strength;
1342 
1343 	if (drv_type)
1344 		mmc_set_driver_type(card->host, drv_type);
1345 }
1346 
mmc_select_hs400es(struct mmc_card * card)1347 static int mmc_select_hs400es(struct mmc_card *card)
1348 {
1349 	struct mmc_host *host = card->host;
1350 	int err = -EINVAL;
1351 	u8 val;
1352 
1353 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1354 		err = -ENOTSUPP;
1355 		goto out_err;
1356 	}
1357 
1358 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1359 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1360 
1361 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1362 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1363 
1364 	/* If fails try again during next card power cycle */
1365 	if (err)
1366 		goto out_err;
1367 
1368 	err = mmc_select_bus_width(card);
1369 	if (err != MMC_BUS_WIDTH_8) {
1370 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1371 			mmc_hostname(host), err);
1372 		err = err < 0 ? err : -ENOTSUPP;
1373 		goto out_err;
1374 	}
1375 
1376 	/* Switch card to HS mode */
1377 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1379 			   card->ext_csd.generic_cmd6_time, 0,
1380 			   false, true);
1381 	if (err) {
1382 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1383 			mmc_hostname(host), err);
1384 		goto out_err;
1385 	}
1386 
1387 	/*
1388 	 * Bump to HS timing and frequency. Some cards don't handle
1389 	 * SEND_STATUS reliably at the initial frequency.
1390 	 */
1391 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1392 	mmc_set_bus_speed(card);
1393 
1394 	err = mmc_switch_status(card, true);
1395 	if (err)
1396 		goto out_err;
1397 
1398 	/* Switch card to DDR with strobe bit */
1399 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1400 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1401 			 EXT_CSD_BUS_WIDTH,
1402 			 val,
1403 			 card->ext_csd.generic_cmd6_time);
1404 	if (err) {
1405 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1406 			mmc_hostname(host), err);
1407 		goto out_err;
1408 	}
1409 
1410 	mmc_select_driver_type(card);
1411 
1412 	/* Switch card to HS400 */
1413 	val = EXT_CSD_TIMING_HS400 |
1414 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1415 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1416 			   EXT_CSD_HS_TIMING, val,
1417 			   card->ext_csd.generic_cmd6_time, 0,
1418 			   false, true);
1419 	if (err) {
1420 		pr_err("%s: switch to hs400es failed, err:%d\n",
1421 			mmc_hostname(host), err);
1422 		goto out_err;
1423 	}
1424 
1425 	/* Set host controller to HS400 timing and frequency */
1426 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1427 
1428 	/* Controller enable enhanced strobe function */
1429 	host->ios.enhanced_strobe = true;
1430 	if (host->ops->hs400_enhanced_strobe)
1431 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1432 
1433 	err = mmc_switch_status(card, true);
1434 	if (err)
1435 		goto out_err;
1436 
1437 	return 0;
1438 
1439 out_err:
1440 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1441 	       __func__, err);
1442 	return err;
1443 }
1444 
1445 /*
1446  * For device supporting HS200 mode, the following sequence
1447  * should be done before executing the tuning process.
1448  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1449  * 2. switch to HS200 mode
1450  * 3. set the clock to > 52Mhz and <=200MHz
1451  */
mmc_select_hs200(struct mmc_card * card)1452 static int mmc_select_hs200(struct mmc_card *card)
1453 {
1454 	struct mmc_host *host = card->host;
1455 	unsigned int old_timing, old_signal_voltage, old_clock;
1456 	int err = -EINVAL;
1457 	u8 val;
1458 
1459 	old_signal_voltage = host->ios.signal_voltage;
1460 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1461 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1462 
1463 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1464 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1465 
1466 	/* If fails try again during next card power cycle */
1467 	if (err)
1468 		return err;
1469 
1470 	mmc_select_driver_type(card);
1471 
1472 	/*
1473 	 * Set the bus width(4 or 8) with host's support and
1474 	 * switch to HS200 mode if bus width is set successfully.
1475 	 */
1476 	err = mmc_select_bus_width(card);
1477 	if (err > 0) {
1478 		val = EXT_CSD_TIMING_HS200 |
1479 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1480 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1481 				   EXT_CSD_HS_TIMING, val,
1482 				   card->ext_csd.generic_cmd6_time, 0,
1483 				   false, true);
1484 		if (err)
1485 			goto err;
1486 
1487 		/*
1488 		 * Bump to HS timing and frequency. Some cards don't handle
1489 		 * SEND_STATUS reliably at the initial frequency.
1490 		 * NB: We can't move to full (HS200) speeds until after we've
1491 		 * successfully switched over.
1492 		 */
1493 		old_timing = host->ios.timing;
1494 		old_clock = host->ios.clock;
1495 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1496 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1497 
1498 		/*
1499 		 * For HS200, CRC errors are not a reliable way to know the
1500 		 * switch failed. If there really is a problem, we would expect
1501 		 * tuning will fail and the result ends up the same.
1502 		 */
1503 		err = mmc_switch_status(card, false);
1504 
1505 		/*
1506 		 * mmc_select_timing() assumes timing has not changed if
1507 		 * it is a switch error.
1508 		 */
1509 		if (err == -EBADMSG) {
1510 			mmc_set_clock(host, old_clock);
1511 			mmc_set_timing(host, old_timing);
1512 		}
1513 	}
1514 err:
1515 	if (err) {
1516 		/* fall back to the old signal voltage, if fails report error */
1517 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1518 			err = -EIO;
1519 
1520 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1521 		       __func__, err);
1522 	}
1523 	return err;
1524 }
1525 
1526 /*
1527  * Activate High Speed, HS200 or HS400ES mode if supported.
1528  */
mmc_select_timing(struct mmc_card * card)1529 int mmc_select_timing(struct mmc_card *card)
1530 {
1531 	int err = 0;
1532 
1533 	if (!mmc_can_ext_csd(card))
1534 		goto bus_speed;
1535 
1536 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1537 		err = mmc_select_hs400es(card);
1538 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1539 		err = mmc_select_hs200(card);
1540 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1541 		err = mmc_select_hs(card);
1542 
1543 	if (err && err != -EBADMSG)
1544 		return err;
1545 
1546 bus_speed:
1547 	/*
1548 	 * Set the bus speed to the selected bus timing.
1549 	 * If timing is not selected, backward compatible is the default.
1550 	 */
1551 	mmc_set_bus_speed(card);
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(mmc_select_timing);
1555 
1556 /*
1557  * Execute tuning sequence to seek the proper bus operating
1558  * conditions for HS200 and HS400, which sends CMD21 to the device.
1559  */
mmc_hs200_tuning(struct mmc_card * card)1560 int mmc_hs200_tuning(struct mmc_card *card)
1561 {
1562 	struct mmc_host *host = card->host;
1563 
1564 	/*
1565 	 * Timing should be adjusted to the HS400 target
1566 	 * operation frequency for tuning process
1567 	 */
1568 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1569 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1570 		if (host->ops->prepare_hs400_tuning)
1571 			host->ops->prepare_hs400_tuning(host, &host->ios);
1572 
1573 	return mmc_execute_tuning(card);
1574 }
1575 EXPORT_SYMBOL_GPL(mmc_hs200_tuning);
1576 
1577 /*
1578  * Handle the detection and initialisation of a card.
1579  *
1580  * In the case of a resume, "oldcard" will contain the card
1581  * we're trying to reinitialise.
1582  */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1583 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1584 	struct mmc_card *oldcard)
1585 {
1586 	struct mmc_card *card;
1587 	int err;
1588 	u32 cid[4];
1589 	u32 rocr;
1590 
1591 	WARN_ON(!host->claimed);
1592 
1593 	/* Set correct bus mode for MMC before attempting init */
1594 	if (!mmc_host_is_spi(host))
1595 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1596 
1597 	/*
1598 	 * Since we're changing the OCR value, we seem to
1599 	 * need to tell some cards to go back to the idle
1600 	 * state.  We wait 1ms to give cards time to
1601 	 * respond.
1602 	 * mmc_go_idle is needed for eMMC that are asleep
1603 	 */
1604 	mmc_go_idle(host);
1605 
1606 	/* The extra bit indicates that we support high capacity */
1607 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1608 	if (err)
1609 		goto err;
1610 
1611 	/*
1612 	 * For SPI, enable CRC as appropriate.
1613 	 */
1614 	if (mmc_host_is_spi(host)) {
1615 		err = mmc_spi_set_crc(host, use_spi_crc);
1616 		if (err)
1617 			goto err;
1618 	}
1619 
1620 	/*
1621 	 * Fetch CID from card.
1622 	 */
1623 	err = mmc_send_cid(host, cid);
1624 	if (err)
1625 		goto err;
1626 
1627 	if (oldcard) {
1628 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1629 			pr_debug("%s: Perhaps the card was replaced\n",
1630 				mmc_hostname(host));
1631 			err = -ENOENT;
1632 			goto err;
1633 		}
1634 
1635 		card = oldcard;
1636 	} else {
1637 		/*
1638 		 * Allocate card structure.
1639 		 */
1640 		card = mmc_alloc_card(host, &mmc_type);
1641 		if (IS_ERR(card)) {
1642 			err = PTR_ERR(card);
1643 			goto err;
1644 		}
1645 
1646 		card->ocr = ocr;
1647 		card->type = MMC_TYPE_MMC;
1648 		card->rca = 1;
1649 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1650 	}
1651 
1652 	/*
1653 	 * Call the optional HC's init_card function to handle quirks.
1654 	 */
1655 	if (host->ops->init_card)
1656 		host->ops->init_card(host, card);
1657 
1658 	/*
1659 	 * For native busses:  set card RCA and quit open drain mode.
1660 	 */
1661 	if (!mmc_host_is_spi(host)) {
1662 		err = mmc_set_relative_addr(card);
1663 		if (err)
1664 			goto free_card;
1665 
1666 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1667 	}
1668 
1669 	if (!oldcard) {
1670 		/*
1671 		 * Fetch CSD from card.
1672 		 */
1673 		err = mmc_send_csd(card, card->raw_csd);
1674 		if (err)
1675 			goto free_card;
1676 
1677 		err = mmc_decode_csd(card);
1678 		if (err)
1679 			goto free_card;
1680 		err = mmc_decode_cid(card);
1681 		if (err)
1682 			goto free_card;
1683 	}
1684 
1685 	/*
1686 	 * handling only for cards supporting DSR and hosts requesting
1687 	 * DSR configuration
1688 	 */
1689 	if (card->csd.dsr_imp && host->dsr_req)
1690 		mmc_set_dsr(host);
1691 
1692 	/*
1693 	 * Select card, as all following commands rely on that.
1694 	 */
1695 	if (!mmc_host_is_spi(host)) {
1696 		err = mmc_select_card(card);
1697 		if (err)
1698 			goto free_card;
1699 	}
1700 
1701 	if (!oldcard) {
1702 		/* Read extended CSD. */
1703 		err = mmc_read_ext_csd(card);
1704 		if (err)
1705 			goto free_card;
1706 
1707 		/*
1708 		 * If doing byte addressing, check if required to do sector
1709 		 * addressing.  Handle the case of <2GB cards needing sector
1710 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1711 		 * ocr register has bit 30 set for sector addressing.
1712 		 */
1713 		if (rocr & BIT(30))
1714 			mmc_card_set_blockaddr(card);
1715 
1716 		/* Erase size depends on CSD and Extended CSD */
1717 		mmc_set_erase_size(card);
1718 	}
1719 
1720 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1721 	if (card->ext_csd.rev >= 3) {
1722 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1723 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1724 				 card->ext_csd.generic_cmd6_time);
1725 
1726 		if (err && err != -EBADMSG)
1727 			goto free_card;
1728 
1729 		if (err) {
1730 			err = 0;
1731 			/*
1732 			 * Just disable enhanced area off & sz
1733 			 * will try to enable ERASE_GROUP_DEF
1734 			 * during next time reinit
1735 			 */
1736 			card->ext_csd.enhanced_area_offset = -EINVAL;
1737 			card->ext_csd.enhanced_area_size = -EINVAL;
1738 		} else {
1739 			card->ext_csd.erase_group_def = 1;
1740 			/*
1741 			 * enable ERASE_GRP_DEF successfully.
1742 			 * This will affect the erase size, so
1743 			 * here need to reset erase size
1744 			 */
1745 			mmc_set_erase_size(card);
1746 		}
1747 	}
1748 
1749 	/*
1750 	 * Ensure eMMC user default partition is enabled
1751 	 */
1752 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1753 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1754 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1755 				 card->ext_csd.part_config,
1756 				 card->ext_csd.part_time);
1757 		if (err && err != -EBADMSG)
1758 			goto free_card;
1759 	}
1760 
1761 	/*
1762 	 * Enable power_off_notification byte in the ext_csd register
1763 	 */
1764 	if (card->ext_csd.rev >= 6) {
1765 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1766 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1767 				 EXT_CSD_POWER_ON,
1768 				 card->ext_csd.generic_cmd6_time);
1769 		if (err && err != -EBADMSG)
1770 			goto free_card;
1771 
1772 		/*
1773 		 * The err can be -EBADMSG or 0,
1774 		 * so check for success and update the flag
1775 		 */
1776 		if (!err)
1777 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1778 	}
1779 
1780 	/* set erase_arg */
1781 	if (mmc_can_discard(card))
1782 		card->erase_arg = MMC_DISCARD_ARG;
1783 	else if (mmc_can_trim(card))
1784 		card->erase_arg = MMC_TRIM_ARG;
1785 	else
1786 		card->erase_arg = MMC_ERASE_ARG;
1787 
1788 	/*
1789 	 * Select timing interface
1790 	 */
1791 	err = mmc_select_timing(card);
1792 	if (err)
1793 		goto free_card;
1794 
1795 	if (mmc_card_hs200(card)) {
1796 		host->doing_init_tune = 1;
1797 
1798 		err = mmc_hs200_tuning(card);
1799 		if (!err)
1800 			err = mmc_select_hs400(card);
1801 
1802 		host->doing_init_tune = 0;
1803 
1804 		if (err)
1805 			goto free_card;
1806 
1807 	} else if (!mmc_card_hs400es(card)) {
1808 		/* Select the desired bus width optionally */
1809 		err = mmc_select_bus_width(card);
1810 		if (err > 0 && mmc_card_hs(card)) {
1811 			err = mmc_select_hs_ddr(card);
1812 			if (err)
1813 				goto free_card;
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * Choose the power class with selected bus interface
1819 	 */
1820 	mmc_select_powerclass(card);
1821 
1822 	/*
1823 	 * Enable HPI feature (if supported)
1824 	 */
1825 	if (card->ext_csd.hpi) {
1826 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1827 				EXT_CSD_HPI_MGMT, 1,
1828 				card->ext_csd.generic_cmd6_time);
1829 		if (err && err != -EBADMSG)
1830 			goto free_card;
1831 		if (err) {
1832 			pr_warn("%s: Enabling HPI failed\n",
1833 				mmc_hostname(card->host));
1834 			card->ext_csd.hpi_en = 0;
1835 			err = 0;
1836 		} else {
1837 			card->ext_csd.hpi_en = 1;
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * If cache size is higher than 0, this indicates the existence of cache
1843 	 * and it can be turned on. Note that some eMMCs from Micron has been
1844 	 * reported to need ~800 ms timeout, while enabling the cache after
1845 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1846 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1847 	 */
1848 	if (card->ext_csd.cache_size > 0) {
1849 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1850 
1851 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1852 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1853 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1854 		if (err && err != -EBADMSG)
1855 			goto free_card;
1856 
1857 		/*
1858 		 * Only if no error, cache is turned on successfully.
1859 		 */
1860 		if (err) {
1861 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1862 				mmc_hostname(card->host), err);
1863 			card->ext_csd.cache_ctrl = 0;
1864 			err = 0;
1865 		} else {
1866 			card->ext_csd.cache_ctrl = 1;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1872 	 * be used with Command Queue.
1873 	 */
1874 	card->ext_csd.cmdq_en = false;
1875 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1876 		err = mmc_cmdq_enable(card);
1877 		if (err && err != -EBADMSG)
1878 			goto free_card;
1879 		if (err) {
1880 			pr_warn("%s: Enabling CMDQ failed\n",
1881 				mmc_hostname(card->host));
1882 			card->ext_csd.cmdq_support = false;
1883 			card->ext_csd.cmdq_depth = 0;
1884 			err = 0;
1885 		}
1886 	}
1887 	/*
1888 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1889 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1890 	 * Command Queue.
1891 	 */
1892 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1893 
1894 	if (host->cqe_ops && !host->cqe_enabled) {
1895 		err = host->cqe_ops->cqe_enable(host, card);
1896 		if (!err) {
1897 			host->cqe_enabled = true;
1898 
1899 			if (card->ext_csd.cmdq_en) {
1900 				pr_info("%s: Command Queue Engine enabled\n",
1901 					mmc_hostname(host));
1902 			} else {
1903 				host->hsq_enabled = true;
1904 				pr_info("%s: Host Software Queue enabled\n",
1905 					mmc_hostname(host));
1906 			}
1907 		}
1908 	}
1909 
1910 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1911 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1912 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1913 			mmc_hostname(host));
1914 		err = -EINVAL;
1915 		goto free_card;
1916 	}
1917 
1918 	if (!oldcard)
1919 		host->card = card;
1920 
1921 	return 0;
1922 
1923 free_card:
1924 	if (!oldcard)
1925 		mmc_remove_card(card);
1926 err:
1927 	return err;
1928 }
1929 
mmc_can_sleep(struct mmc_card * card)1930 static int mmc_can_sleep(struct mmc_card *card)
1931 {
1932 	return (card && card->ext_csd.rev >= 3);
1933 }
1934 
mmc_sleep(struct mmc_host * host)1935 static int mmc_sleep(struct mmc_host *host)
1936 {
1937 	struct mmc_command cmd = {};
1938 	struct mmc_card *card = host->card;
1939 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1940 	int err;
1941 
1942 	/* Re-tuning can't be done once the card is deselected */
1943 	mmc_retune_hold(host);
1944 
1945 	err = mmc_deselect_cards(host);
1946 	if (err)
1947 		goto out_release;
1948 
1949 	cmd.opcode = MMC_SLEEP_AWAKE;
1950 	cmd.arg = card->rca << 16;
1951 	cmd.arg |= 1 << 15;
1952 
1953 	/*
1954 	 * If the max_busy_timeout of the host is specified, validate it against
1955 	 * the sleep cmd timeout. A failure means we need to prevent the host
1956 	 * from doing hw busy detection, which is done by converting to a R1
1957 	 * response instead of a R1B. Note, some hosts requires R1B, which also
1958 	 * means they are on their own when it comes to deal with the busy
1959 	 * timeout.
1960 	 */
1961 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1962 	    (timeout_ms > host->max_busy_timeout)) {
1963 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1964 	} else {
1965 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1966 		cmd.busy_timeout = timeout_ms;
1967 	}
1968 
1969 	err = mmc_wait_for_cmd(host, &cmd, 0);
1970 	if (err)
1971 		goto out_release;
1972 
1973 	/*
1974 	 * If the host does not wait while the card signals busy, then we will
1975 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1976 	 * SEND_STATUS command to poll the status because that command (and most
1977 	 * others) is invalid while the card sleeps.
1978 	 */
1979 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1980 		mmc_delay(timeout_ms);
1981 
1982 out_release:
1983 	mmc_retune_release(host);
1984 	return err;
1985 }
1986 
mmc_can_poweroff_notify(const struct mmc_card * card)1987 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1988 {
1989 	return card &&
1990 		mmc_card_mmc(card) &&
1991 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1992 }
1993 
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)1994 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1995 {
1996 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1997 	int err;
1998 
1999 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2000 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2001 		timeout = card->ext_csd.power_off_longtime;
2002 
2003 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2004 			EXT_CSD_POWER_OFF_NOTIFICATION,
2005 			notify_type, timeout, 0, false, false);
2006 	if (err)
2007 		pr_err("%s: Power Off Notification timed out, %u\n",
2008 		       mmc_hostname(card->host), timeout);
2009 
2010 	/* Disable the power off notification after the switch operation. */
2011 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2012 
2013 	return err;
2014 }
2015 
2016 /*
2017  * Host is being removed. Free up the current card.
2018  */
mmc_remove(struct mmc_host * host)2019 static void mmc_remove(struct mmc_host *host)
2020 {
2021 	mmc_remove_card(host->card);
2022 	host->card = NULL;
2023 }
2024 
2025 /*
2026  * Card detection - card is alive.
2027  */
mmc_alive(struct mmc_host * host)2028 static int mmc_alive(struct mmc_host *host)
2029 {
2030 	return mmc_send_status(host->card, NULL);
2031 }
2032 
2033 /*
2034  * Card detection callback from host.
2035  */
mmc_detect(struct mmc_host * host)2036 static void mmc_detect(struct mmc_host *host)
2037 {
2038 	int err;
2039 
2040 	mmc_get_card(host->card, NULL);
2041 
2042 	/*
2043 	 * Just check if our card has been removed.
2044 	 */
2045 	err = _mmc_detect_card_removed(host);
2046 
2047 	mmc_put_card(host->card, NULL);
2048 
2049 	if (err) {
2050 		mmc_remove(host);
2051 
2052 		mmc_claim_host(host);
2053 		mmc_detach_bus(host);
2054 		mmc_power_off(host);
2055 		mmc_release_host(host);
2056 	}
2057 }
2058 
_mmc_cache_enabled(struct mmc_host * host)2059 static bool _mmc_cache_enabled(struct mmc_host *host)
2060 {
2061 	return host->card->ext_csd.cache_size > 0 &&
2062 	       host->card->ext_csd.cache_ctrl & 1;
2063 }
2064 
_mmc_suspend(struct mmc_host * host,bool is_suspend)2065 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2066 {
2067 	int err = 0;
2068 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2069 					EXT_CSD_POWER_OFF_LONG;
2070 
2071 	mmc_claim_host(host);
2072 
2073 	if (mmc_card_suspended(host->card))
2074 		goto out;
2075 
2076 	err = mmc_flush_cache(host->card);
2077 	if (err)
2078 		goto out;
2079 
2080 	if (mmc_can_poweroff_notify(host->card) &&
2081 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2082 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2083 		err = mmc_poweroff_notify(host->card, notify_type);
2084 	else if (mmc_can_sleep(host->card))
2085 		err = mmc_sleep(host);
2086 	else if (!mmc_host_is_spi(host))
2087 		err = mmc_deselect_cards(host);
2088 
2089 	if (!err) {
2090 		mmc_power_off(host);
2091 		mmc_card_set_suspended(host->card);
2092 	}
2093 out:
2094 	mmc_release_host(host);
2095 	return err;
2096 }
2097 
2098 /*
2099  * Suspend callback
2100  */
mmc_suspend(struct mmc_host * host)2101 static int mmc_suspend(struct mmc_host *host)
2102 {
2103 	int err;
2104 
2105 	err = _mmc_suspend(host, true);
2106 	if (!err) {
2107 		pm_runtime_disable(&host->card->dev);
2108 		pm_runtime_set_suspended(&host->card->dev);
2109 	}
2110 
2111 	return err;
2112 }
2113 
2114 /*
2115  * This function tries to determine if the same card is still present
2116  * and, if so, restore all state to it.
2117  */
_mmc_resume(struct mmc_host * host)2118 static int _mmc_resume(struct mmc_host *host)
2119 {
2120 	int err = 0;
2121 
2122 	mmc_claim_host(host);
2123 
2124 	if (!mmc_card_suspended(host->card))
2125 		goto out;
2126 
2127 	mmc_power_up(host, host->card->ocr);
2128 	err = mmc_init_card(host, host->card->ocr, host->card);
2129 	mmc_card_clr_suspended(host->card);
2130 
2131 out:
2132 	mmc_release_host(host);
2133 	return err;
2134 }
2135 
2136 /*
2137  * Shutdown callback
2138  */
mmc_shutdown(struct mmc_host * host)2139 static int mmc_shutdown(struct mmc_host *host)
2140 {
2141 	int err = 0;
2142 
2143 	/*
2144 	 * In a specific case for poweroff notify, we need to resume the card
2145 	 * before we can shutdown it properly.
2146 	 */
2147 	if (mmc_can_poweroff_notify(host->card) &&
2148 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2149 		err = _mmc_resume(host);
2150 
2151 	if (!err)
2152 		err = _mmc_suspend(host, false);
2153 
2154 	return err;
2155 }
2156 
2157 /*
2158  * Callback for resume.
2159  */
mmc_resume(struct mmc_host * host)2160 static int mmc_resume(struct mmc_host *host)
2161 {
2162 	pm_runtime_enable(&host->card->dev);
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Callback for runtime_suspend.
2168  */
mmc_runtime_suspend(struct mmc_host * host)2169 static int mmc_runtime_suspend(struct mmc_host *host)
2170 {
2171 	int err;
2172 
2173 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2174 		return 0;
2175 
2176 	err = _mmc_suspend(host, true);
2177 	if (err)
2178 		pr_err("%s: error %d doing aggressive suspend\n",
2179 			mmc_hostname(host), err);
2180 
2181 	return err;
2182 }
2183 
2184 /*
2185  * Callback for runtime_resume.
2186  */
mmc_runtime_resume(struct mmc_host * host)2187 static int mmc_runtime_resume(struct mmc_host *host)
2188 {
2189 	int err;
2190 
2191 	err = _mmc_resume(host);
2192 	if (err && err != -ENOMEDIUM)
2193 		pr_err("%s: error %d doing runtime resume\n",
2194 			mmc_hostname(host), err);
2195 
2196 	return 0;
2197 }
2198 
mmc_can_reset(struct mmc_card * card)2199 static int mmc_can_reset(struct mmc_card *card)
2200 {
2201 	u8 rst_n_function;
2202 
2203 	rst_n_function = card->ext_csd.rst_n_function;
2204 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2205 		return 0;
2206 	return 1;
2207 }
2208 
_mmc_hw_reset(struct mmc_host * host)2209 static int _mmc_hw_reset(struct mmc_host *host)
2210 {
2211 	struct mmc_card *card = host->card;
2212 
2213 	/*
2214 	 * In the case of recovery, we can't expect flushing the cache to work
2215 	 * always, but we have a go and ignore errors.
2216 	 */
2217 	mmc_flush_cache(host->card);
2218 
2219 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2220 	     mmc_can_reset(card)) {
2221 		/* If the card accept RST_n signal, send it. */
2222 		mmc_set_clock(host, host->f_init);
2223 		host->ops->hw_reset(host);
2224 		/* Set initial state and call mmc_set_ios */
2225 		mmc_set_initial_state(host);
2226 	} else {
2227 		/* Do a brute force power cycle */
2228 		mmc_power_cycle(host, card->ocr);
2229 		mmc_pwrseq_reset(host);
2230 	}
2231 	return mmc_init_card(host, card->ocr, card);
2232 }
2233 
2234 static const struct mmc_bus_ops mmc_ops = {
2235 	.remove = mmc_remove,
2236 	.detect = mmc_detect,
2237 	.suspend = mmc_suspend,
2238 	.resume = mmc_resume,
2239 	.runtime_suspend = mmc_runtime_suspend,
2240 	.runtime_resume = mmc_runtime_resume,
2241 	.alive = mmc_alive,
2242 	.shutdown = mmc_shutdown,
2243 	.hw_reset = _mmc_hw_reset,
2244 	.cache_enabled = _mmc_cache_enabled,
2245 };
2246 
2247 /*
2248  * Starting point for MMC card init.
2249  */
mmc_attach_mmc(struct mmc_host * host)2250 int mmc_attach_mmc(struct mmc_host *host)
2251 {
2252 	int err;
2253 	u32 ocr, rocr;
2254 
2255 	WARN_ON(!host->claimed);
2256 
2257 	/* Set correct bus mode for MMC before attempting attach */
2258 	if (!mmc_host_is_spi(host))
2259 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2260 
2261 	err = mmc_send_op_cond(host, 0, &ocr);
2262 	if (err)
2263 		return err;
2264 
2265 	mmc_attach_bus(host, &mmc_ops);
2266 	if (host->ocr_avail_mmc)
2267 		host->ocr_avail = host->ocr_avail_mmc;
2268 
2269 	/*
2270 	 * We need to get OCR a different way for SPI.
2271 	 */
2272 	if (mmc_host_is_spi(host)) {
2273 		err = mmc_spi_read_ocr(host, 1, &ocr);
2274 		if (err)
2275 			goto err;
2276 	}
2277 
2278 	rocr = mmc_select_voltage(host, ocr);
2279 
2280 	/*
2281 	 * Can we support the voltage of the card?
2282 	 */
2283 	if (!rocr) {
2284 		err = -EINVAL;
2285 		goto err;
2286 	}
2287 
2288 	/*
2289 	 * Detect and init the card.
2290 	 */
2291 	err = mmc_init_card(host, rocr, NULL);
2292 	if (err)
2293 		goto err;
2294 
2295 	mmc_release_host(host);
2296 	err = mmc_add_card(host->card);
2297 	if (err)
2298 		goto remove_card;
2299 
2300 	mmc_claim_host(host);
2301 	return 0;
2302 
2303 remove_card:
2304 	mmc_remove_card(host->card);
2305 	mmc_claim_host(host);
2306 	host->card = NULL;
2307 err:
2308 	mmc_detach_bus(host);
2309 
2310 	pr_err("%s: error %d whilst initialising MMC card\n",
2311 		mmc_hostname(host), err);
2312 
2313 	return err;
2314 }
2315