1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25 #include <linux/android_kabi.h>
26
27 struct usb_device;
28 struct usb_driver;
29 struct wusb_dev;
30
31 /*-------------------------------------------------------------------------*/
32
33 /*
34 * Host-side wrappers for standard USB descriptors ... these are parsed
35 * from the data provided by devices. Parsing turns them from a flat
36 * sequence of descriptors into a hierarchy:
37 *
38 * - devices have one (usually) or more configs;
39 * - configs have one (often) or more interfaces;
40 * - interfaces have one (usually) or more settings;
41 * - each interface setting has zero or (usually) more endpoints.
42 * - a SuperSpeed endpoint has a companion descriptor
43 *
44 * And there might be other descriptors mixed in with those.
45 *
46 * Devices may also have class-specific or vendor-specific descriptors.
47 */
48
49 struct ep_device;
50
51 /**
52 * struct usb_host_endpoint - host-side endpoint descriptor and queue
53 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
54 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
55 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
56 * @urb_list: urbs queued to this endpoint; maintained by usbcore
57 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
58 * with one or more transfer descriptors (TDs) per urb
59 * @ep_dev: ep_device for sysfs info
60 * @extra: descriptors following this endpoint in the configuration
61 * @extralen: how many bytes of "extra" are valid
62 * @enabled: URBs may be submitted to this endpoint
63 * @streams: number of USB-3 streams allocated on the endpoint
64 *
65 * USB requests are always queued to a given endpoint, identified by a
66 * descriptor within an active interface in a given USB configuration.
67 */
68 struct usb_host_endpoint {
69 struct usb_endpoint_descriptor desc;
70 struct usb_ss_ep_comp_descriptor ss_ep_comp;
71 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
72 struct list_head urb_list;
73 void *hcpriv;
74 struct ep_device *ep_dev; /* For sysfs info */
75
76 unsigned char *extra; /* Extra descriptors */
77 int extralen;
78 int enabled;
79 int streams;
80 };
81
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 struct usb_interface_descriptor desc;
85
86 int extralen;
87 unsigned char *extra; /* Extra descriptors */
88
89 /* array of desc.bNumEndpoints endpoints associated with this
90 * interface setting. these will be in no particular order.
91 */
92 struct usb_host_endpoint *endpoint;
93
94 char *string; /* iInterface string, if present */
95 };
96
97 enum usb_interface_condition {
98 USB_INTERFACE_UNBOUND = 0,
99 USB_INTERFACE_BINDING,
100 USB_INTERFACE_BOUND,
101 USB_INTERFACE_UNBINDING,
102 };
103
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 struct usb_endpoint_descriptor **bulk_in,
107 struct usb_endpoint_descriptor **bulk_out,
108 struct usb_endpoint_descriptor **int_in,
109 struct usb_endpoint_descriptor **int_out);
110
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 struct usb_endpoint_descriptor **bulk_in,
114 struct usb_endpoint_descriptor **bulk_out,
115 struct usb_endpoint_descriptor **int_in,
116 struct usb_endpoint_descriptor **int_out);
117
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 struct usb_endpoint_descriptor **bulk_in)
121 {
122 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 struct usb_endpoint_descriptor **bulk_out)
128 {
129 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 struct usb_endpoint_descriptor **int_in)
135 {
136 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 struct usb_endpoint_descriptor **int_out)
142 {
143 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 struct usb_endpoint_descriptor **bulk_in)
149 {
150 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 struct usb_endpoint_descriptor **bulk_out)
156 {
157 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 struct usb_endpoint_descriptor **int_in)
163 {
164 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 struct usb_endpoint_descriptor **int_out)
170 {
171 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173
174 /**
175 * struct usb_interface - what usb device drivers talk to
176 * @altsetting: array of interface structures, one for each alternate
177 * setting that may be selected. Each one includes a set of
178 * endpoint configurations. They will be in no particular order.
179 * @cur_altsetting: the current altsetting.
180 * @num_altsetting: number of altsettings defined.
181 * @intf_assoc: interface association descriptor
182 * @minor: the minor number assigned to this interface, if this
183 * interface is bound to a driver that uses the USB major number.
184 * If this interface does not use the USB major, this field should
185 * be unused. The driver should set this value in the probe()
186 * function of the driver, after it has been assigned a minor
187 * number from the USB core by calling usb_register_dev().
188 * @condition: binding state of the interface: not bound, binding
189 * (in probe()), bound to a driver, or unbinding (in disconnect())
190 * @sysfs_files_created: sysfs attributes exist
191 * @ep_devs_created: endpoint child pseudo-devices exist
192 * @unregistering: flag set when the interface is being unregistered
193 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
194 * capability during autosuspend.
195 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
196 * has been deferred.
197 * @needs_binding: flag set when the driver should be re-probed or unbound
198 * following a reset or suspend operation it doesn't support.
199 * @authorized: This allows to (de)authorize individual interfaces instead
200 * a whole device in contrast to the device authorization.
201 * @dev: driver model's view of this device
202 * @usb_dev: if an interface is bound to the USB major, this will point
203 * to the sysfs representation for that device.
204 * @reset_ws: Used for scheduling resets from atomic context.
205 * @resetting_device: USB core reset the device, so use alt setting 0 as
206 * current; needs bandwidth alloc after reset.
207 *
208 * USB device drivers attach to interfaces on a physical device. Each
209 * interface encapsulates a single high level function, such as feeding
210 * an audio stream to a speaker or reporting a change in a volume control.
211 * Many USB devices only have one interface. The protocol used to talk to
212 * an interface's endpoints can be defined in a usb "class" specification,
213 * or by a product's vendor. The (default) control endpoint is part of
214 * every interface, but is never listed among the interface's descriptors.
215 *
216 * The driver that is bound to the interface can use standard driver model
217 * calls such as dev_get_drvdata() on the dev member of this structure.
218 *
219 * Each interface may have alternate settings. The initial configuration
220 * of a device sets altsetting 0, but the device driver can change
221 * that setting using usb_set_interface(). Alternate settings are often
222 * used to control the use of periodic endpoints, such as by having
223 * different endpoints use different amounts of reserved USB bandwidth.
224 * All standards-conformant USB devices that use isochronous endpoints
225 * will use them in non-default settings.
226 *
227 * The USB specification says that alternate setting numbers must run from
228 * 0 to one less than the total number of alternate settings. But some
229 * devices manage to mess this up, and the structures aren't necessarily
230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
231 * look up an alternate setting in the altsetting array based on its number.
232 */
233 struct usb_interface {
234 /* array of alternate settings for this interface,
235 * stored in no particular order */
236 struct usb_host_interface *altsetting;
237
238 struct usb_host_interface *cur_altsetting; /* the currently
239 * active alternate setting */
240 unsigned num_altsetting; /* number of alternate settings */
241
242 /* If there is an interface association descriptor then it will list
243 * the associated interfaces */
244 struct usb_interface_assoc_descriptor *intf_assoc;
245
246 int minor; /* minor number this interface is
247 * bound to */
248 enum usb_interface_condition condition; /* state of binding */
249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
250 unsigned ep_devs_created:1; /* endpoint "devices" exist */
251 unsigned unregistering:1; /* unregistration is in progress */
252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
254 unsigned needs_binding:1; /* needs delayed unbind/rebind */
255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
256 unsigned authorized:1; /* used for interface authorization */
257
258 struct device dev; /* interface specific device info */
259 struct device *usb_dev;
260 struct work_struct reset_ws; /* for resets in atomic context */
261
262 ANDROID_KABI_RESERVE(1);
263 ANDROID_KABI_RESERVE(2);
264 ANDROID_KABI_RESERVE(3);
265 ANDROID_KABI_RESERVE(4);
266 };
267 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
268
usb_get_intfdata(struct usb_interface * intf)269 static inline void *usb_get_intfdata(struct usb_interface *intf)
270 {
271 return dev_get_drvdata(&intf->dev);
272 }
273
usb_set_intfdata(struct usb_interface * intf,void * data)274 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
275 {
276 dev_set_drvdata(&intf->dev, data);
277 }
278
279 struct usb_interface *usb_get_intf(struct usb_interface *intf);
280 void usb_put_intf(struct usb_interface *intf);
281
282 /* Hard limit */
283 #define USB_MAXENDPOINTS 30
284 /* this maximum is arbitrary */
285 #define USB_MAXINTERFACES 32
286 #define USB_MAXIADS (USB_MAXINTERFACES/2)
287
288 bool usb_check_bulk_endpoints(
289 const struct usb_interface *intf, const u8 *ep_addrs);
290 bool usb_check_int_endpoints(
291 const struct usb_interface *intf, const u8 *ep_addrs);
292
293 /*
294 * USB Resume Timer: Every Host controller driver should drive the resume
295 * signalling on the bus for the amount of time defined by this macro.
296 *
297 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
298 *
299 * Note that the USB Specification states we should drive resume for *at least*
300 * 20 ms, but it doesn't give an upper bound. This creates two possible
301 * situations which we want to avoid:
302 *
303 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
304 * us to fail USB Electrical Tests, thus failing Certification
305 *
306 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
307 * and while we can argue that's against the USB Specification, we don't have
308 * control over which devices a certification laboratory will be using for
309 * certification. If CertLab uses a device which was tested against Windows and
310 * that happens to have relaxed resume signalling rules, we might fall into
311 * situations where we fail interoperability and electrical tests.
312 *
313 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
314 * should cope with both LPJ calibration errors and devices not following every
315 * detail of the USB Specification.
316 */
317 #define USB_RESUME_TIMEOUT 40 /* ms */
318
319 /**
320 * struct usb_interface_cache - long-term representation of a device interface
321 * @num_altsetting: number of altsettings defined.
322 * @ref: reference counter.
323 * @altsetting: variable-length array of interface structures, one for
324 * each alternate setting that may be selected. Each one includes a
325 * set of endpoint configurations. They will be in no particular order.
326 *
327 * These structures persist for the lifetime of a usb_device, unlike
328 * struct usb_interface (which persists only as long as its configuration
329 * is installed). The altsetting arrays can be accessed through these
330 * structures at any time, permitting comparison of configurations and
331 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
332 */
333 struct usb_interface_cache {
334 unsigned num_altsetting; /* number of alternate settings */
335 struct kref ref; /* reference counter */
336
337 /* variable-length array of alternate settings for this interface,
338 * stored in no particular order */
339 struct usb_host_interface altsetting[];
340 };
341 #define ref_to_usb_interface_cache(r) \
342 container_of(r, struct usb_interface_cache, ref)
343 #define altsetting_to_usb_interface_cache(a) \
344 container_of(a, struct usb_interface_cache, altsetting[0])
345
346 /**
347 * struct usb_host_config - representation of a device's configuration
348 * @desc: the device's configuration descriptor.
349 * @string: pointer to the cached version of the iConfiguration string, if
350 * present for this configuration.
351 * @intf_assoc: list of any interface association descriptors in this config
352 * @interface: array of pointers to usb_interface structures, one for each
353 * interface in the configuration. The number of interfaces is stored
354 * in desc.bNumInterfaces. These pointers are valid only while the
355 * configuration is active.
356 * @intf_cache: array of pointers to usb_interface_cache structures, one
357 * for each interface in the configuration. These structures exist
358 * for the entire life of the device.
359 * @extra: pointer to buffer containing all extra descriptors associated
360 * with this configuration (those preceding the first interface
361 * descriptor).
362 * @extralen: length of the extra descriptors buffer.
363 *
364 * USB devices may have multiple configurations, but only one can be active
365 * at any time. Each encapsulates a different operational environment;
366 * for example, a dual-speed device would have separate configurations for
367 * full-speed and high-speed operation. The number of configurations
368 * available is stored in the device descriptor as bNumConfigurations.
369 *
370 * A configuration can contain multiple interfaces. Each corresponds to
371 * a different function of the USB device, and all are available whenever
372 * the configuration is active. The USB standard says that interfaces
373 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
374 * of devices get this wrong. In addition, the interface array is not
375 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
376 * look up an interface entry based on its number.
377 *
378 * Device drivers should not attempt to activate configurations. The choice
379 * of which configuration to install is a policy decision based on such
380 * considerations as available power, functionality provided, and the user's
381 * desires (expressed through userspace tools). However, drivers can call
382 * usb_reset_configuration() to reinitialize the current configuration and
383 * all its interfaces.
384 */
385 struct usb_host_config {
386 struct usb_config_descriptor desc;
387
388 char *string; /* iConfiguration string, if present */
389
390 /* List of any Interface Association Descriptors in this
391 * configuration. */
392 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
393
394 /* the interfaces associated with this configuration,
395 * stored in no particular order */
396 struct usb_interface *interface[USB_MAXINTERFACES];
397
398 /* Interface information available even when this is not the
399 * active configuration */
400 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
401
402 unsigned char *extra; /* Extra descriptors */
403 int extralen;
404 };
405
406 /* USB2.0 and USB3.0 device BOS descriptor set */
407 struct usb_host_bos {
408 struct usb_bos_descriptor *desc;
409
410 /* wireless cap descriptor is handled by wusb */
411 struct usb_ext_cap_descriptor *ext_cap;
412 struct usb_ss_cap_descriptor *ss_cap;
413 struct usb_ssp_cap_descriptor *ssp_cap;
414 struct usb_ss_container_id_descriptor *ss_id;
415 struct usb_ptm_cap_descriptor *ptm_cap;
416
417 ANDROID_KABI_RESERVE(1);
418 ANDROID_KABI_RESERVE(2);
419 ANDROID_KABI_RESERVE(3);
420 ANDROID_KABI_RESERVE(4);
421 };
422
423 int __usb_get_extra_descriptor(char *buffer, unsigned size,
424 unsigned char type, void **ptr, size_t min);
425 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
426 __usb_get_extra_descriptor((ifpoint)->extra, \
427 (ifpoint)->extralen, \
428 type, (void **)ptr, sizeof(**(ptr)))
429
430 /* ----------------------------------------------------------------------- */
431
432 /* USB device number allocation bitmap */
433 struct usb_devmap {
434 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
435 };
436
437 /*
438 * Allocated per bus (tree of devices) we have:
439 */
440 struct usb_bus {
441 struct device *controller; /* host side hardware */
442 struct device *sysdev; /* as seen from firmware or bus */
443 int busnum; /* Bus number (in order of reg) */
444 const char *bus_name; /* stable id (PCI slot_name etc) */
445 u8 uses_pio_for_control; /*
446 * Does the host controller use PIO
447 * for control transfers?
448 */
449 u8 otg_port; /* 0, or number of OTG/HNP port */
450 unsigned is_b_host:1; /* true during some HNP roleswitches */
451 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
452 unsigned no_stop_on_short:1; /*
453 * Quirk: some controllers don't stop
454 * the ep queue on a short transfer
455 * with the URB_SHORT_NOT_OK flag set.
456 */
457 unsigned no_sg_constraint:1; /* no sg constraint */
458 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
459
460 int devnum_next; /* Next open device number in
461 * round-robin allocation */
462 struct mutex devnum_next_mutex; /* devnum_next mutex */
463
464 struct usb_devmap devmap; /* device address allocation map */
465 struct usb_device *root_hub; /* Root hub */
466 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
467
468 int bandwidth_allocated; /* on this bus: how much of the time
469 * reserved for periodic (intr/iso)
470 * requests is used, on average?
471 * Units: microseconds/frame.
472 * Limits: Full/low speed reserve 90%,
473 * while high speed reserves 80%.
474 */
475 int bandwidth_int_reqs; /* number of Interrupt requests */
476 int bandwidth_isoc_reqs; /* number of Isoc. requests */
477
478 unsigned resuming_ports; /* bit array: resuming root-hub ports */
479
480 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
481 struct mon_bus *mon_bus; /* non-null when associated */
482 int monitored; /* non-zero when monitored */
483 #endif
484
485 ANDROID_KABI_RESERVE(1);
486 ANDROID_KABI_RESERVE(2);
487 ANDROID_KABI_RESERVE(3);
488 ANDROID_KABI_RESERVE(4);
489 };
490
491 struct usb_dev_state;
492
493 /* ----------------------------------------------------------------------- */
494
495 struct usb_tt;
496
497 enum usb_device_removable {
498 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
499 USB_DEVICE_REMOVABLE,
500 USB_DEVICE_FIXED,
501 };
502
503 enum usb_port_connect_type {
504 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 USB_PORT_NOT_USED,
508 };
509
510 /*
511 * USB port quirks.
512 */
513
514 /* For the given port, prefer the old (faster) enumeration scheme. */
515 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
516
517 /* Decrease TRSTRCY to 10ms during device enumeration. */
518 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
519
520 /*
521 * USB 2.0 Link Power Management (LPM) parameters.
522 */
523 struct usb2_lpm_parameters {
524 /* Best effort service latency indicate how long the host will drive
525 * resume on an exit from L1.
526 */
527 unsigned int besl;
528
529 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 * When the timer counts to zero, the parent hub will initiate a LPM
531 * transition to L1.
532 */
533 int timeout;
534 };
535
536 /*
537 * USB 3.0 Link Power Management (LPM) parameters.
538 *
539 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541 * All three are stored in nanoseconds.
542 */
543 struct usb3_lpm_parameters {
544 /*
545 * Maximum exit latency (MEL) for the host to send a packet to the
546 * device (either a Ping for isoc endpoints, or a data packet for
547 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 * in the path to transition the links to U0.
549 */
550 unsigned int mel;
551 /*
552 * Maximum exit latency for a device-initiated LPM transition to bring
553 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
554 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
555 */
556 unsigned int pel;
557
558 /*
559 * The System Exit Latency (SEL) includes PEL, and three other
560 * latencies. After a device initiates a U0 transition, it will take
561 * some time from when the device sends the ERDY to when it will finally
562 * receive the data packet. Basically, SEL should be the worse-case
563 * latency from when a device starts initiating a U0 transition to when
564 * it will get data.
565 */
566 unsigned int sel;
567 /*
568 * The idle timeout value that is currently programmed into the parent
569 * hub for this device. When the timer counts to zero, the parent hub
570 * will initiate an LPM transition to either U1 or U2.
571 */
572 int timeout;
573 };
574
575 /**
576 * struct usb_device - kernel's representation of a USB device
577 * @devnum: device number; address on a USB bus
578 * @devpath: device ID string for use in messages (e.g., /port/...)
579 * @route: tree topology hex string for use with xHCI
580 * @state: device state: configured, not attached, etc.
581 * @speed: device speed: high/full/low (or error)
582 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
585 * @ttport: device port on that tt hub
586 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
587 * @parent: our hub, unless we're the root
588 * @bus: bus we're part of
589 * @ep0: endpoint 0 data (default control pipe)
590 * @dev: generic device interface
591 * @descriptor: USB device descriptor
592 * @bos: USB device BOS descriptor set
593 * @config: all of the device's configs
594 * @actconfig: the active configuration
595 * @ep_in: array of IN endpoints
596 * @ep_out: array of OUT endpoints
597 * @rawdescriptors: raw descriptors for each config
598 * @bus_mA: Current available from the bus
599 * @portnum: parent port number (origin 1)
600 * @level: number of USB hub ancestors
601 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
602 * @can_submit: URBs may be submitted
603 * @persist_enabled: USB_PERSIST enabled for this device
604 * @have_langid: whether string_langid is valid
605 * @authorized: policy has said we can use it;
606 * (user space) policy determines if we authorize this device to be
607 * used or not. By default, wired USB devices are authorized.
608 * WUSB devices are not, until we authorize them from user space.
609 * FIXME -- complete doc
610 * @authenticated: Crypto authentication passed
611 * @wusb: device is Wireless USB
612 * @lpm_capable: device supports LPM
613 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
614 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
615 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
616 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
617 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
618 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
619 * @string_langid: language ID for strings
620 * @product: iProduct string, if present (static)
621 * @manufacturer: iManufacturer string, if present (static)
622 * @serial: iSerialNumber string, if present (static)
623 * @filelist: usbfs files that are open to this device
624 * @maxchild: number of ports if hub
625 * @quirks: quirks of the whole device
626 * @urbnum: number of URBs submitted for the whole device
627 * @active_duration: total time device is not suspended
628 * @connect_time: time device was first connected
629 * @do_remote_wakeup: remote wakeup should be enabled
630 * @reset_resume: needs reset instead of resume
631 * @port_is_suspended: the upstream port is suspended (L2 or U3)
632 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
633 * specific data for the device.
634 * @slot_id: Slot ID assigned by xHCI
635 * @removable: Device can be physically removed from this port
636 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
637 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
638 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
639 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
640 * to keep track of the number of functions that require USB 3.0 Link Power
641 * Management to be disabled for this usb_device. This count should only
642 * be manipulated by those functions, with the bandwidth_mutex is held.
643 * @hub_delay: cached value consisting of:
644 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
645 * Will be used as wValue for SetIsochDelay requests.
646 * @use_generic_driver: ask driver core to reprobe using the generic driver.
647 *
648 * Notes:
649 * Usbcore drivers should not set usbdev->state directly. Instead use
650 * usb_set_device_state().
651 */
652 struct usb_device {
653 int devnum;
654 char devpath[16];
655 u32 route;
656 enum usb_device_state state;
657 enum usb_device_speed speed;
658 unsigned int rx_lanes;
659 unsigned int tx_lanes;
660
661 struct usb_tt *tt;
662 int ttport;
663
664 unsigned int toggle[2];
665
666 struct usb_device *parent;
667 struct usb_bus *bus;
668 struct usb_host_endpoint ep0;
669
670 struct device dev;
671
672 struct usb_device_descriptor descriptor;
673 struct usb_host_bos *bos;
674 struct usb_host_config *config;
675
676 struct usb_host_config *actconfig;
677 struct usb_host_endpoint *ep_in[16];
678 struct usb_host_endpoint *ep_out[16];
679
680 char **rawdescriptors;
681
682 unsigned short bus_mA;
683 u8 portnum;
684 u8 level;
685 u8 devaddr;
686
687 unsigned can_submit:1;
688 unsigned persist_enabled:1;
689 unsigned have_langid:1;
690 unsigned authorized:1;
691 unsigned authenticated:1;
692 unsigned wusb:1;
693 unsigned lpm_capable:1;
694 unsigned usb2_hw_lpm_capable:1;
695 unsigned usb2_hw_lpm_besl_capable:1;
696 unsigned usb2_hw_lpm_enabled:1;
697 unsigned usb2_hw_lpm_allowed:1;
698 unsigned usb3_lpm_u1_enabled:1;
699 unsigned usb3_lpm_u2_enabled:1;
700 int string_langid;
701
702 /* static strings from the device */
703 char *product;
704 char *manufacturer;
705 char *serial;
706
707 struct list_head filelist;
708
709 int maxchild;
710
711 u32 quirks;
712 atomic_t urbnum;
713
714 unsigned long active_duration;
715
716 #ifdef CONFIG_PM
717 unsigned long connect_time;
718
719 unsigned do_remote_wakeup:1;
720 unsigned reset_resume:1;
721 unsigned port_is_suspended:1;
722 #endif
723 struct wusb_dev *wusb_dev;
724 int slot_id;
725 enum usb_device_removable removable;
726 struct usb2_lpm_parameters l1_params;
727 struct usb3_lpm_parameters u1_params;
728 struct usb3_lpm_parameters u2_params;
729 unsigned lpm_disable_count;
730
731 u16 hub_delay;
732 unsigned use_generic_driver:1;
733
734 ANDROID_KABI_RESERVE(1);
735 ANDROID_KABI_RESERVE(2);
736 ANDROID_KABI_RESERVE(3);
737 ANDROID_KABI_RESERVE(4);
738 };
739 #define to_usb_device(d) container_of(d, struct usb_device, dev)
740
interface_to_usbdev(struct usb_interface * intf)741 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
742 {
743 return to_usb_device(intf->dev.parent);
744 }
745
746 extern struct usb_device *usb_get_dev(struct usb_device *dev);
747 extern void usb_put_dev(struct usb_device *dev);
748 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
749 int port1);
750
751 /**
752 * usb_hub_for_each_child - iterate over all child devices on the hub
753 * @hdev: USB device belonging to the usb hub
754 * @port1: portnum associated with child device
755 * @child: child device pointer
756 */
757 #define usb_hub_for_each_child(hdev, port1, child) \
758 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
759 port1 <= hdev->maxchild; \
760 child = usb_hub_find_child(hdev, ++port1)) \
761 if (!child) continue; else
762
763 /* USB device locking */
764 #define usb_lock_device(udev) device_lock(&(udev)->dev)
765 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
766 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
767 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
768 extern int usb_lock_device_for_reset(struct usb_device *udev,
769 const struct usb_interface *iface);
770
771 /* USB port reset for device reinitialization */
772 extern int usb_reset_device(struct usb_device *dev);
773 extern void usb_queue_reset_device(struct usb_interface *dev);
774
775 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
776
777 #ifdef CONFIG_ACPI
778 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
779 bool enable);
780 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
781 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
782 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)783 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
784 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)785 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
786 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)787 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
788 { return 0; }
789 #endif
790
791 /* USB autosuspend and autoresume */
792 #ifdef CONFIG_PM
793 extern void usb_enable_autosuspend(struct usb_device *udev);
794 extern void usb_disable_autosuspend(struct usb_device *udev);
795
796 extern int usb_autopm_get_interface(struct usb_interface *intf);
797 extern void usb_autopm_put_interface(struct usb_interface *intf);
798 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
799 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
800 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
801 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
802
usb_mark_last_busy(struct usb_device * udev)803 static inline void usb_mark_last_busy(struct usb_device *udev)
804 {
805 pm_runtime_mark_last_busy(&udev->dev);
806 }
807
808 #else
809
usb_enable_autosuspend(struct usb_device * udev)810 static inline int usb_enable_autosuspend(struct usb_device *udev)
811 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)812 static inline int usb_disable_autosuspend(struct usb_device *udev)
813 { return 0; }
814
usb_autopm_get_interface(struct usb_interface * intf)815 static inline int usb_autopm_get_interface(struct usb_interface *intf)
816 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)817 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
818 { return 0; }
819
usb_autopm_put_interface(struct usb_interface * intf)820 static inline void usb_autopm_put_interface(struct usb_interface *intf)
821 { }
usb_autopm_put_interface_async(struct usb_interface * intf)822 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
823 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)824 static inline void usb_autopm_get_interface_no_resume(
825 struct usb_interface *intf)
826 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)827 static inline void usb_autopm_put_interface_no_suspend(
828 struct usb_interface *intf)
829 { }
usb_mark_last_busy(struct usb_device * udev)830 static inline void usb_mark_last_busy(struct usb_device *udev)
831 { }
832 #endif
833
834 extern int usb_disable_lpm(struct usb_device *udev);
835 extern void usb_enable_lpm(struct usb_device *udev);
836 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
837 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
838 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
839
840 extern int usb_disable_ltm(struct usb_device *udev);
841 extern void usb_enable_ltm(struct usb_device *udev);
842
usb_device_supports_ltm(struct usb_device * udev)843 static inline bool usb_device_supports_ltm(struct usb_device *udev)
844 {
845 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
846 return false;
847 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
848 }
849
usb_device_no_sg_constraint(struct usb_device * udev)850 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
851 {
852 return udev && udev->bus && udev->bus->no_sg_constraint;
853 }
854
855
856 /*-------------------------------------------------------------------------*/
857
858 /* for drivers using iso endpoints */
859 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
860
861 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
862 extern int usb_alloc_streams(struct usb_interface *interface,
863 struct usb_host_endpoint **eps, unsigned int num_eps,
864 unsigned int num_streams, gfp_t mem_flags);
865
866 /* Reverts a group of bulk endpoints back to not using stream IDs. */
867 extern int usb_free_streams(struct usb_interface *interface,
868 struct usb_host_endpoint **eps, unsigned int num_eps,
869 gfp_t mem_flags);
870
871 /* used these for multi-interface device registration */
872 extern int usb_driver_claim_interface(struct usb_driver *driver,
873 struct usb_interface *iface, void *priv);
874
875 /**
876 * usb_interface_claimed - returns true iff an interface is claimed
877 * @iface: the interface being checked
878 *
879 * Return: %true (nonzero) iff the interface is claimed, else %false
880 * (zero).
881 *
882 * Note:
883 * Callers must own the driver model's usb bus readlock. So driver
884 * probe() entries don't need extra locking, but other call contexts
885 * may need to explicitly claim that lock.
886 *
887 */
usb_interface_claimed(struct usb_interface * iface)888 static inline int usb_interface_claimed(struct usb_interface *iface)
889 {
890 return (iface->dev.driver != NULL);
891 }
892
893 extern void usb_driver_release_interface(struct usb_driver *driver,
894 struct usb_interface *iface);
895 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
896 const struct usb_device_id *id);
897 extern int usb_match_one_id(struct usb_interface *interface,
898 const struct usb_device_id *id);
899
900 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
901 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
902 int minor);
903 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
904 unsigned ifnum);
905 extern struct usb_host_interface *usb_altnum_to_altsetting(
906 const struct usb_interface *intf, unsigned int altnum);
907 extern struct usb_host_interface *usb_find_alt_setting(
908 struct usb_host_config *config,
909 unsigned int iface_num,
910 unsigned int alt_num);
911
912 /* port claiming functions */
913 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
914 struct usb_dev_state *owner);
915 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
916 struct usb_dev_state *owner);
917
918 /**
919 * usb_make_path - returns stable device path in the usb tree
920 * @dev: the device whose path is being constructed
921 * @buf: where to put the string
922 * @size: how big is "buf"?
923 *
924 * Return: Length of the string (> 0) or negative if size was too small.
925 *
926 * Note:
927 * This identifier is intended to be "stable", reflecting physical paths in
928 * hardware such as physical bus addresses for host controllers or ports on
929 * USB hubs. That makes it stay the same until systems are physically
930 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
931 * controllers. Adding and removing devices, including virtual root hubs
932 * in host controller driver modules, does not change these path identifiers;
933 * neither does rebooting or re-enumerating. These are more useful identifiers
934 * than changeable ("unstable") ones like bus numbers or device addresses.
935 *
936 * With a partial exception for devices connected to USB 2.0 root hubs, these
937 * identifiers are also predictable. So long as the device tree isn't changed,
938 * plugging any USB device into a given hub port always gives it the same path.
939 * Because of the use of "companion" controllers, devices connected to ports on
940 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
941 * high speed, and a different one if they are full or low speed.
942 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)943 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
944 {
945 int actual;
946 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
947 dev->devpath);
948 return (actual >= (int)size) ? -1 : actual;
949 }
950
951 /*-------------------------------------------------------------------------*/
952
953 #define USB_DEVICE_ID_MATCH_DEVICE \
954 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
955 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
956 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
957 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
958 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
959 #define USB_DEVICE_ID_MATCH_DEV_INFO \
960 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
961 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
962 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
963 #define USB_DEVICE_ID_MATCH_INT_INFO \
964 (USB_DEVICE_ID_MATCH_INT_CLASS | \
965 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
966 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
967
968 /**
969 * USB_DEVICE - macro used to describe a specific usb device
970 * @vend: the 16 bit USB Vendor ID
971 * @prod: the 16 bit USB Product ID
972 *
973 * This macro is used to create a struct usb_device_id that matches a
974 * specific device.
975 */
976 #define USB_DEVICE(vend, prod) \
977 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
978 .idVendor = (vend), \
979 .idProduct = (prod)
980 /**
981 * USB_DEVICE_VER - describe a specific usb device with a version range
982 * @vend: the 16 bit USB Vendor ID
983 * @prod: the 16 bit USB Product ID
984 * @lo: the bcdDevice_lo value
985 * @hi: the bcdDevice_hi value
986 *
987 * This macro is used to create a struct usb_device_id that matches a
988 * specific device, with a version range.
989 */
990 #define USB_DEVICE_VER(vend, prod, lo, hi) \
991 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
992 .idVendor = (vend), \
993 .idProduct = (prod), \
994 .bcdDevice_lo = (lo), \
995 .bcdDevice_hi = (hi)
996
997 /**
998 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
999 * @vend: the 16 bit USB Vendor ID
1000 * @prod: the 16 bit USB Product ID
1001 * @cl: bInterfaceClass value
1002 *
1003 * This macro is used to create a struct usb_device_id that matches a
1004 * specific interface class of devices.
1005 */
1006 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1007 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1008 USB_DEVICE_ID_MATCH_INT_CLASS, \
1009 .idVendor = (vend), \
1010 .idProduct = (prod), \
1011 .bInterfaceClass = (cl)
1012
1013 /**
1014 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1015 * @vend: the 16 bit USB Vendor ID
1016 * @prod: the 16 bit USB Product ID
1017 * @pr: bInterfaceProtocol value
1018 *
1019 * This macro is used to create a struct usb_device_id that matches a
1020 * specific interface protocol of devices.
1021 */
1022 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1023 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1024 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1025 .idVendor = (vend), \
1026 .idProduct = (prod), \
1027 .bInterfaceProtocol = (pr)
1028
1029 /**
1030 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1031 * @vend: the 16 bit USB Vendor ID
1032 * @prod: the 16 bit USB Product ID
1033 * @num: bInterfaceNumber value
1034 *
1035 * This macro is used to create a struct usb_device_id that matches a
1036 * specific interface number of devices.
1037 */
1038 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1039 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1040 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1041 .idVendor = (vend), \
1042 .idProduct = (prod), \
1043 .bInterfaceNumber = (num)
1044
1045 /**
1046 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1047 * @cl: bDeviceClass value
1048 * @sc: bDeviceSubClass value
1049 * @pr: bDeviceProtocol value
1050 *
1051 * This macro is used to create a struct usb_device_id that matches a
1052 * specific class of devices.
1053 */
1054 #define USB_DEVICE_INFO(cl, sc, pr) \
1055 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1056 .bDeviceClass = (cl), \
1057 .bDeviceSubClass = (sc), \
1058 .bDeviceProtocol = (pr)
1059
1060 /**
1061 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1062 * @cl: bInterfaceClass value
1063 * @sc: bInterfaceSubClass value
1064 * @pr: bInterfaceProtocol value
1065 *
1066 * This macro is used to create a struct usb_device_id that matches a
1067 * specific class of interfaces.
1068 */
1069 #define USB_INTERFACE_INFO(cl, sc, pr) \
1070 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1071 .bInterfaceClass = (cl), \
1072 .bInterfaceSubClass = (sc), \
1073 .bInterfaceProtocol = (pr)
1074
1075 /**
1076 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1077 * @vend: the 16 bit USB Vendor ID
1078 * @prod: the 16 bit USB Product ID
1079 * @cl: bInterfaceClass value
1080 * @sc: bInterfaceSubClass value
1081 * @pr: bInterfaceProtocol value
1082 *
1083 * This macro is used to create a struct usb_device_id that matches a
1084 * specific device with a specific class of interfaces.
1085 *
1086 * This is especially useful when explicitly matching devices that have
1087 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1088 */
1089 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1090 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1091 | USB_DEVICE_ID_MATCH_DEVICE, \
1092 .idVendor = (vend), \
1093 .idProduct = (prod), \
1094 .bInterfaceClass = (cl), \
1095 .bInterfaceSubClass = (sc), \
1096 .bInterfaceProtocol = (pr)
1097
1098 /**
1099 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1100 * @vend: the 16 bit USB Vendor ID
1101 * @cl: bInterfaceClass value
1102 * @sc: bInterfaceSubClass value
1103 * @pr: bInterfaceProtocol value
1104 *
1105 * This macro is used to create a struct usb_device_id that matches a
1106 * specific vendor with a specific class of interfaces.
1107 *
1108 * This is especially useful when explicitly matching devices that have
1109 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1110 */
1111 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1112 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1113 | USB_DEVICE_ID_MATCH_VENDOR, \
1114 .idVendor = (vend), \
1115 .bInterfaceClass = (cl), \
1116 .bInterfaceSubClass = (sc), \
1117 .bInterfaceProtocol = (pr)
1118
1119 /* ----------------------------------------------------------------------- */
1120
1121 /* Stuff for dynamic usb ids */
1122 struct usb_dynids {
1123 spinlock_t lock;
1124 struct list_head list;
1125 };
1126
1127 struct usb_dynid {
1128 struct list_head node;
1129 struct usb_device_id id;
1130 };
1131
1132 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1133 const struct usb_device_id *id_table,
1134 struct device_driver *driver,
1135 const char *buf, size_t count);
1136
1137 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1138
1139 /**
1140 * struct usbdrv_wrap - wrapper for driver-model structure
1141 * @driver: The driver-model core driver structure.
1142 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1143 */
1144 struct usbdrv_wrap {
1145 struct device_driver driver;
1146 int for_devices;
1147 };
1148
1149 /**
1150 * struct usb_driver - identifies USB interface driver to usbcore
1151 * @name: The driver name should be unique among USB drivers,
1152 * and should normally be the same as the module name.
1153 * @probe: Called to see if the driver is willing to manage a particular
1154 * interface on a device. If it is, probe returns zero and uses
1155 * usb_set_intfdata() to associate driver-specific data with the
1156 * interface. It may also use usb_set_interface() to specify the
1157 * appropriate altsetting. If unwilling to manage the interface,
1158 * return -ENODEV, if genuine IO errors occurred, an appropriate
1159 * negative errno value.
1160 * @disconnect: Called when the interface is no longer accessible, usually
1161 * because its device has been (or is being) disconnected or the
1162 * driver module is being unloaded.
1163 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1164 * the "usbfs" filesystem. This lets devices provide ways to
1165 * expose information to user space regardless of where they
1166 * do (or don't) show up otherwise in the filesystem.
1167 * @suspend: Called when the device is going to be suspended by the
1168 * system either from system sleep or runtime suspend context. The
1169 * return value will be ignored in system sleep context, so do NOT
1170 * try to continue using the device if suspend fails in this case.
1171 * Instead, let the resume or reset-resume routine recover from
1172 * the failure.
1173 * @resume: Called when the device is being resumed by the system.
1174 * @reset_resume: Called when the suspended device has been reset instead
1175 * of being resumed.
1176 * @pre_reset: Called by usb_reset_device() when the device is about to be
1177 * reset. This routine must not return until the driver has no active
1178 * URBs for the device, and no more URBs may be submitted until the
1179 * post_reset method is called.
1180 * @post_reset: Called by usb_reset_device() after the device
1181 * has been reset
1182 * @id_table: USB drivers use ID table to support hotplugging.
1183 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1184 * or your driver's probe function will never get called.
1185 * @dev_groups: Attributes attached to the device that will be created once it
1186 * is bound to the driver.
1187 * @dynids: used internally to hold the list of dynamically added device
1188 * ids for this driver.
1189 * @drvwrap: Driver-model core structure wrapper.
1190 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1191 * added to this driver by preventing the sysfs file from being created.
1192 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1193 * for interfaces bound to this driver.
1194 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1195 * endpoints before calling the driver's disconnect method.
1196 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1197 * to initiate lower power link state transitions when an idle timeout
1198 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1199 *
1200 * USB interface drivers must provide a name, probe() and disconnect()
1201 * methods, and an id_table. Other driver fields are optional.
1202 *
1203 * The id_table is used in hotplugging. It holds a set of descriptors,
1204 * and specialized data may be associated with each entry. That table
1205 * is used by both user and kernel mode hotplugging support.
1206 *
1207 * The probe() and disconnect() methods are called in a context where
1208 * they can sleep, but they should avoid abusing the privilege. Most
1209 * work to connect to a device should be done when the device is opened,
1210 * and undone at the last close. The disconnect code needs to address
1211 * concurrency issues with respect to open() and close() methods, as
1212 * well as forcing all pending I/O requests to complete (by unlinking
1213 * them as necessary, and blocking until the unlinks complete).
1214 */
1215 struct usb_driver {
1216 const char *name;
1217
1218 int (*probe) (struct usb_interface *intf,
1219 const struct usb_device_id *id);
1220
1221 void (*disconnect) (struct usb_interface *intf);
1222
1223 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1224 void *buf);
1225
1226 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1227 int (*resume) (struct usb_interface *intf);
1228 int (*reset_resume)(struct usb_interface *intf);
1229
1230 int (*pre_reset)(struct usb_interface *intf);
1231 int (*post_reset)(struct usb_interface *intf);
1232
1233 const struct usb_device_id *id_table;
1234 const struct attribute_group **dev_groups;
1235
1236 struct usb_dynids dynids;
1237 struct usbdrv_wrap drvwrap;
1238 unsigned int no_dynamic_id:1;
1239 unsigned int supports_autosuspend:1;
1240 unsigned int disable_hub_initiated_lpm:1;
1241 unsigned int soft_unbind:1;
1242
1243 ANDROID_KABI_RESERVE(1);
1244 ANDROID_KABI_RESERVE(2);
1245 ANDROID_KABI_RESERVE(3);
1246 ANDROID_KABI_RESERVE(4);
1247 };
1248 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1249
1250 /**
1251 * struct usb_device_driver - identifies USB device driver to usbcore
1252 * @name: The driver name should be unique among USB drivers,
1253 * and should normally be the same as the module name.
1254 * @match: If set, used for better device/driver matching.
1255 * @probe: Called to see if the driver is willing to manage a particular
1256 * device. If it is, probe returns zero and uses dev_set_drvdata()
1257 * to associate driver-specific data with the device. If unwilling
1258 * to manage the device, return a negative errno value.
1259 * @disconnect: Called when the device is no longer accessible, usually
1260 * because it has been (or is being) disconnected or the driver's
1261 * module is being unloaded.
1262 * @suspend: Called when the device is going to be suspended by the system.
1263 * @resume: Called when the device is being resumed by the system.
1264 * @dev_groups: Attributes attached to the device that will be created once it
1265 * is bound to the driver.
1266 * @drvwrap: Driver-model core structure wrapper.
1267 * @id_table: used with @match() to select better matching driver at
1268 * probe() time.
1269 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1270 * for devices bound to this driver.
1271 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1272 * resume and suspend functions will be called in addition to the driver's
1273 * own, so this part of the setup does not need to be replicated.
1274 *
1275 * USB drivers must provide all the fields listed above except drvwrap,
1276 * match, and id_table.
1277 */
1278 struct usb_device_driver {
1279 const char *name;
1280
1281 bool (*match) (struct usb_device *udev);
1282 int (*probe) (struct usb_device *udev);
1283 void (*disconnect) (struct usb_device *udev);
1284
1285 int (*suspend) (struct usb_device *udev, pm_message_t message);
1286 int (*resume) (struct usb_device *udev, pm_message_t message);
1287 const struct attribute_group **dev_groups;
1288 struct usbdrv_wrap drvwrap;
1289 const struct usb_device_id *id_table;
1290 unsigned int supports_autosuspend:1;
1291 unsigned int generic_subclass:1;
1292 };
1293 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1294 drvwrap.driver)
1295
1296 extern struct bus_type usb_bus_type;
1297
1298 /**
1299 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1300 * @name: the usb class device name for this driver. Will show up in sysfs.
1301 * @devnode: Callback to provide a naming hint for a possible
1302 * device node to create.
1303 * @fops: pointer to the struct file_operations of this driver.
1304 * @minor_base: the start of the minor range for this driver.
1305 *
1306 * This structure is used for the usb_register_dev() and
1307 * usb_deregister_dev() functions, to consolidate a number of the
1308 * parameters used for them.
1309 */
1310 struct usb_class_driver {
1311 char *name;
1312 char *(*devnode)(struct device *dev, umode_t *mode);
1313 const struct file_operations *fops;
1314 int minor_base;
1315 };
1316
1317 /*
1318 * use these in module_init()/module_exit()
1319 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1320 */
1321 extern int usb_register_driver(struct usb_driver *, struct module *,
1322 const char *);
1323
1324 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1325 #define usb_register(driver) \
1326 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1327
1328 extern void usb_deregister(struct usb_driver *);
1329
1330 /**
1331 * module_usb_driver() - Helper macro for registering a USB driver
1332 * @__usb_driver: usb_driver struct
1333 *
1334 * Helper macro for USB drivers which do not do anything special in module
1335 * init/exit. This eliminates a lot of boilerplate. Each module may only
1336 * use this macro once, and calling it replaces module_init() and module_exit()
1337 */
1338 #define module_usb_driver(__usb_driver) \
1339 module_driver(__usb_driver, usb_register, \
1340 usb_deregister)
1341
1342 extern int usb_register_device_driver(struct usb_device_driver *,
1343 struct module *);
1344 extern void usb_deregister_device_driver(struct usb_device_driver *);
1345
1346 extern int usb_register_dev(struct usb_interface *intf,
1347 struct usb_class_driver *class_driver);
1348 extern void usb_deregister_dev(struct usb_interface *intf,
1349 struct usb_class_driver *class_driver);
1350
1351 extern int usb_disabled(void);
1352
1353 /* ----------------------------------------------------------------------- */
1354
1355 /*
1356 * URB support, for asynchronous request completions
1357 */
1358
1359 /*
1360 * urb->transfer_flags:
1361 *
1362 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1363 */
1364 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1365 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1366 * slot in the schedule */
1367 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1368 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1369 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1370 * needed */
1371 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1372
1373 /* The following flags are used internally by usbcore and HCDs */
1374 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1375 #define URB_DIR_OUT 0
1376 #define URB_DIR_MASK URB_DIR_IN
1377
1378 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1379 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1380 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1381 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1382 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1383 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1384 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1385 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1386
1387 struct usb_iso_packet_descriptor {
1388 unsigned int offset;
1389 unsigned int length; /* expected length */
1390 unsigned int actual_length;
1391 int status;
1392 };
1393
1394 struct urb;
1395
1396 struct usb_anchor {
1397 struct list_head urb_list;
1398 wait_queue_head_t wait;
1399 spinlock_t lock;
1400 atomic_t suspend_wakeups;
1401 unsigned int poisoned:1;
1402 };
1403
init_usb_anchor(struct usb_anchor * anchor)1404 static inline void init_usb_anchor(struct usb_anchor *anchor)
1405 {
1406 memset(anchor, 0, sizeof(*anchor));
1407 INIT_LIST_HEAD(&anchor->urb_list);
1408 init_waitqueue_head(&anchor->wait);
1409 spin_lock_init(&anchor->lock);
1410 }
1411
1412 typedef void (*usb_complete_t)(struct urb *);
1413
1414 /**
1415 * struct urb - USB Request Block
1416 * @urb_list: For use by current owner of the URB.
1417 * @anchor_list: membership in the list of an anchor
1418 * @anchor: to anchor URBs to a common mooring
1419 * @ep: Points to the endpoint's data structure. Will eventually
1420 * replace @pipe.
1421 * @pipe: Holds endpoint number, direction, type, and more.
1422 * Create these values with the eight macros available;
1423 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1424 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1425 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1426 * numbers range from zero to fifteen. Note that "in" endpoint two
1427 * is a different endpoint (and pipe) from "out" endpoint two.
1428 * The current configuration controls the existence, type, and
1429 * maximum packet size of any given endpoint.
1430 * @stream_id: the endpoint's stream ID for bulk streams
1431 * @dev: Identifies the USB device to perform the request.
1432 * @status: This is read in non-iso completion functions to get the
1433 * status of the particular request. ISO requests only use it
1434 * to tell whether the URB was unlinked; detailed status for
1435 * each frame is in the fields of the iso_frame-desc.
1436 * @transfer_flags: A variety of flags may be used to affect how URB
1437 * submission, unlinking, or operation are handled. Different
1438 * kinds of URB can use different flags.
1439 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1440 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1441 * (however, do not leave garbage in transfer_buffer even then).
1442 * This buffer must be suitable for DMA; allocate it with
1443 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1444 * of this buffer will be modified. This buffer is used for the data
1445 * stage of control transfers.
1446 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1447 * the device driver is saying that it provided this DMA address,
1448 * which the host controller driver should use in preference to the
1449 * transfer_buffer.
1450 * @sg: scatter gather buffer list, the buffer size of each element in
1451 * the list (except the last) must be divisible by the endpoint's
1452 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1453 * @num_mapped_sgs: (internal) number of mapped sg entries
1454 * @num_sgs: number of entries in the sg list
1455 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1456 * be broken up into chunks according to the current maximum packet
1457 * size for the endpoint, which is a function of the configuration
1458 * and is encoded in the pipe. When the length is zero, neither
1459 * transfer_buffer nor transfer_dma is used.
1460 * @actual_length: This is read in non-iso completion functions, and
1461 * it tells how many bytes (out of transfer_buffer_length) were
1462 * transferred. It will normally be the same as requested, unless
1463 * either an error was reported or a short read was performed.
1464 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1465 * short reads be reported as errors.
1466 * @setup_packet: Only used for control transfers, this points to eight bytes
1467 * of setup data. Control transfers always start by sending this data
1468 * to the device. Then transfer_buffer is read or written, if needed.
1469 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1470 * this field; setup_packet must point to a valid buffer.
1471 * @start_frame: Returns the initial frame for isochronous transfers.
1472 * @number_of_packets: Lists the number of ISO transfer buffers.
1473 * @interval: Specifies the polling interval for interrupt or isochronous
1474 * transfers. The units are frames (milliseconds) for full and low
1475 * speed devices, and microframes (1/8 millisecond) for highspeed
1476 * and SuperSpeed devices.
1477 * @error_count: Returns the number of ISO transfers that reported errors.
1478 * @context: For use in completion functions. This normally points to
1479 * request-specific driver context.
1480 * @complete: Completion handler. This URB is passed as the parameter to the
1481 * completion function. The completion function may then do what
1482 * it likes with the URB, including resubmitting or freeing it.
1483 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1484 * collect the transfer status for each buffer.
1485 *
1486 * This structure identifies USB transfer requests. URBs must be allocated by
1487 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1488 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1489 * are submitted using usb_submit_urb(), and pending requests may be canceled
1490 * using usb_unlink_urb() or usb_kill_urb().
1491 *
1492 * Data Transfer Buffers:
1493 *
1494 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1495 * taken from the general page pool. That is provided by transfer_buffer
1496 * (control requests also use setup_packet), and host controller drivers
1497 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1498 * mapping operations can be expensive on some platforms (perhaps using a dma
1499 * bounce buffer or talking to an IOMMU),
1500 * although they're cheap on commodity x86 and ppc hardware.
1501 *
1502 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1503 * which tells the host controller driver that no such mapping is needed for
1504 * the transfer_buffer since
1505 * the device driver is DMA-aware. For example, a device driver might
1506 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1507 * When this transfer flag is provided, host controller drivers will
1508 * attempt to use the dma address found in the transfer_dma
1509 * field rather than determining a dma address themselves.
1510 *
1511 * Note that transfer_buffer must still be set if the controller
1512 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1513 * to root hub. If you have to trasfer between highmem zone and the device
1514 * on such controller, create a bounce buffer or bail out with an error.
1515 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1516 * capable, assign NULL to it, so that usbmon knows not to use the value.
1517 * The setup_packet must always be set, so it cannot be located in highmem.
1518 *
1519 * Initialization:
1520 *
1521 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1522 * zero), and complete fields. All URBs must also initialize
1523 * transfer_buffer and transfer_buffer_length. They may provide the
1524 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1525 * to be treated as errors; that flag is invalid for write requests.
1526 *
1527 * Bulk URBs may
1528 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1529 * should always terminate with a short packet, even if it means adding an
1530 * extra zero length packet.
1531 *
1532 * Control URBs must provide a valid pointer in the setup_packet field.
1533 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1534 * beforehand.
1535 *
1536 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1537 * or, for highspeed devices, 125 microsecond units)
1538 * to poll for transfers. After the URB has been submitted, the interval
1539 * field reflects how the transfer was actually scheduled.
1540 * The polling interval may be more frequent than requested.
1541 * For example, some controllers have a maximum interval of 32 milliseconds,
1542 * while others support intervals of up to 1024 milliseconds.
1543 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1544 * endpoints, as well as high speed interrupt endpoints, the encoding of
1545 * the transfer interval in the endpoint descriptor is logarithmic.
1546 * Device drivers must convert that value to linear units themselves.)
1547 *
1548 * If an isochronous endpoint queue isn't already running, the host
1549 * controller will schedule a new URB to start as soon as bandwidth
1550 * utilization allows. If the queue is running then a new URB will be
1551 * scheduled to start in the first transfer slot following the end of the
1552 * preceding URB, if that slot has not already expired. If the slot has
1553 * expired (which can happen when IRQ delivery is delayed for a long time),
1554 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1555 * is clear then the URB will be scheduled to start in the expired slot,
1556 * implying that some of its packets will not be transferred; if the flag
1557 * is set then the URB will be scheduled in the first unexpired slot,
1558 * breaking the queue's synchronization. Upon URB completion, the
1559 * start_frame field will be set to the (micro)frame number in which the
1560 * transfer was scheduled. Ranges for frame counter values are HC-specific
1561 * and can go from as low as 256 to as high as 65536 frames.
1562 *
1563 * Isochronous URBs have a different data transfer model, in part because
1564 * the quality of service is only "best effort". Callers provide specially
1565 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1566 * at the end. Each such packet is an individual ISO transfer. Isochronous
1567 * URBs are normally queued, submitted by drivers to arrange that
1568 * transfers are at least double buffered, and then explicitly resubmitted
1569 * in completion handlers, so
1570 * that data (such as audio or video) streams at as constant a rate as the
1571 * host controller scheduler can support.
1572 *
1573 * Completion Callbacks:
1574 *
1575 * The completion callback is made in_interrupt(), and one of the first
1576 * things that a completion handler should do is check the status field.
1577 * The status field is provided for all URBs. It is used to report
1578 * unlinked URBs, and status for all non-ISO transfers. It should not
1579 * be examined before the URB is returned to the completion handler.
1580 *
1581 * The context field is normally used to link URBs back to the relevant
1582 * driver or request state.
1583 *
1584 * When the completion callback is invoked for non-isochronous URBs, the
1585 * actual_length field tells how many bytes were transferred. This field
1586 * is updated even when the URB terminated with an error or was unlinked.
1587 *
1588 * ISO transfer status is reported in the status and actual_length fields
1589 * of the iso_frame_desc array, and the number of errors is reported in
1590 * error_count. Completion callbacks for ISO transfers will normally
1591 * (re)submit URBs to ensure a constant transfer rate.
1592 *
1593 * Note that even fields marked "public" should not be touched by the driver
1594 * when the urb is owned by the hcd, that is, since the call to
1595 * usb_submit_urb() till the entry into the completion routine.
1596 */
1597 struct urb {
1598 /* private: usb core and host controller only fields in the urb */
1599 struct kref kref; /* reference count of the URB */
1600 int unlinked; /* unlink error code */
1601 void *hcpriv; /* private data for host controller */
1602 atomic_t use_count; /* concurrent submissions counter */
1603 atomic_t reject; /* submissions will fail */
1604
1605 /* public: documented fields in the urb that can be used by drivers */
1606 struct list_head urb_list; /* list head for use by the urb's
1607 * current owner */
1608 struct list_head anchor_list; /* the URB may be anchored */
1609 struct usb_anchor *anchor;
1610 struct usb_device *dev; /* (in) pointer to associated device */
1611 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1612 unsigned int pipe; /* (in) pipe information */
1613 unsigned int stream_id; /* (in) stream ID */
1614 int status; /* (return) non-ISO status */
1615 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1616 void *transfer_buffer; /* (in) associated data buffer */
1617 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1618 struct scatterlist *sg; /* (in) scatter gather buffer list */
1619 int num_mapped_sgs; /* (internal) mapped sg entries */
1620 int num_sgs; /* (in) number of entries in the sg list */
1621 u32 transfer_buffer_length; /* (in) data buffer length */
1622 u32 actual_length; /* (return) actual transfer length */
1623 unsigned char *setup_packet; /* (in) setup packet (control only) */
1624 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1625 int start_frame; /* (modify) start frame (ISO) */
1626 int number_of_packets; /* (in) number of ISO packets */
1627 int interval; /* (modify) transfer interval
1628 * (INT/ISO) */
1629 int error_count; /* (return) number of ISO errors */
1630 void *context; /* (in) context for completion */
1631 usb_complete_t complete; /* (in) completion routine */
1632
1633 ANDROID_KABI_RESERVE(1);
1634 ANDROID_KABI_RESERVE(2);
1635 ANDROID_KABI_RESERVE(3);
1636 ANDROID_KABI_RESERVE(4);
1637
1638 struct usb_iso_packet_descriptor iso_frame_desc[];
1639 /* (in) ISO ONLY */
1640 };
1641
1642 /* ----------------------------------------------------------------------- */
1643
1644 /**
1645 * usb_fill_control_urb - initializes a control urb
1646 * @urb: pointer to the urb to initialize.
1647 * @dev: pointer to the struct usb_device for this urb.
1648 * @pipe: the endpoint pipe
1649 * @setup_packet: pointer to the setup_packet buffer
1650 * @transfer_buffer: pointer to the transfer buffer
1651 * @buffer_length: length of the transfer buffer
1652 * @complete_fn: pointer to the usb_complete_t function
1653 * @context: what to set the urb context to.
1654 *
1655 * Initializes a control urb with the proper information needed to submit
1656 * it to a device.
1657 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1658 static inline void usb_fill_control_urb(struct urb *urb,
1659 struct usb_device *dev,
1660 unsigned int pipe,
1661 unsigned char *setup_packet,
1662 void *transfer_buffer,
1663 int buffer_length,
1664 usb_complete_t complete_fn,
1665 void *context)
1666 {
1667 urb->dev = dev;
1668 urb->pipe = pipe;
1669 urb->setup_packet = setup_packet;
1670 urb->transfer_buffer = transfer_buffer;
1671 urb->transfer_buffer_length = buffer_length;
1672 urb->complete = complete_fn;
1673 urb->context = context;
1674 }
1675
1676 /**
1677 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1678 * @urb: pointer to the urb to initialize.
1679 * @dev: pointer to the struct usb_device for this urb.
1680 * @pipe: the endpoint pipe
1681 * @transfer_buffer: pointer to the transfer buffer
1682 * @buffer_length: length of the transfer buffer
1683 * @complete_fn: pointer to the usb_complete_t function
1684 * @context: what to set the urb context to.
1685 *
1686 * Initializes a bulk urb with the proper information needed to submit it
1687 * to a device.
1688 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1689 static inline void usb_fill_bulk_urb(struct urb *urb,
1690 struct usb_device *dev,
1691 unsigned int pipe,
1692 void *transfer_buffer,
1693 int buffer_length,
1694 usb_complete_t complete_fn,
1695 void *context)
1696 {
1697 urb->dev = dev;
1698 urb->pipe = pipe;
1699 urb->transfer_buffer = transfer_buffer;
1700 urb->transfer_buffer_length = buffer_length;
1701 urb->complete = complete_fn;
1702 urb->context = context;
1703 }
1704
1705 /**
1706 * usb_fill_int_urb - macro to help initialize a interrupt urb
1707 * @urb: pointer to the urb to initialize.
1708 * @dev: pointer to the struct usb_device for this urb.
1709 * @pipe: the endpoint pipe
1710 * @transfer_buffer: pointer to the transfer buffer
1711 * @buffer_length: length of the transfer buffer
1712 * @complete_fn: pointer to the usb_complete_t function
1713 * @context: what to set the urb context to.
1714 * @interval: what to set the urb interval to, encoded like
1715 * the endpoint descriptor's bInterval value.
1716 *
1717 * Initializes a interrupt urb with the proper information needed to submit
1718 * it to a device.
1719 *
1720 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1721 * encoding of the endpoint interval, and express polling intervals in
1722 * microframes (eight per millisecond) rather than in frames (one per
1723 * millisecond).
1724 *
1725 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1726 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1727 * through to the host controller, rather than being translated into microframe
1728 * units.
1729 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1730 static inline void usb_fill_int_urb(struct urb *urb,
1731 struct usb_device *dev,
1732 unsigned int pipe,
1733 void *transfer_buffer,
1734 int buffer_length,
1735 usb_complete_t complete_fn,
1736 void *context,
1737 int interval)
1738 {
1739 urb->dev = dev;
1740 urb->pipe = pipe;
1741 urb->transfer_buffer = transfer_buffer;
1742 urb->transfer_buffer_length = buffer_length;
1743 urb->complete = complete_fn;
1744 urb->context = context;
1745
1746 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1747 /* make sure interval is within allowed range */
1748 interval = clamp(interval, 1, 16);
1749
1750 urb->interval = 1 << (interval - 1);
1751 } else {
1752 urb->interval = interval;
1753 }
1754
1755 urb->start_frame = -1;
1756 }
1757
1758 extern void usb_init_urb(struct urb *urb);
1759 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1760 extern void usb_free_urb(struct urb *urb);
1761 #define usb_put_urb usb_free_urb
1762 extern struct urb *usb_get_urb(struct urb *urb);
1763 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1764 extern int usb_unlink_urb(struct urb *urb);
1765 extern void usb_kill_urb(struct urb *urb);
1766 extern void usb_poison_urb(struct urb *urb);
1767 extern void usb_unpoison_urb(struct urb *urb);
1768 extern void usb_block_urb(struct urb *urb);
1769 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1770 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1771 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1772 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1773 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1774 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1775 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1776 extern void usb_unanchor_urb(struct urb *urb);
1777 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1778 unsigned int timeout);
1779 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1780 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1781 extern int usb_anchor_empty(struct usb_anchor *anchor);
1782
1783 #define usb_unblock_urb usb_unpoison_urb
1784
1785 /**
1786 * usb_urb_dir_in - check if an URB describes an IN transfer
1787 * @urb: URB to be checked
1788 *
1789 * Return: 1 if @urb describes an IN transfer (device-to-host),
1790 * otherwise 0.
1791 */
usb_urb_dir_in(struct urb * urb)1792 static inline int usb_urb_dir_in(struct urb *urb)
1793 {
1794 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1795 }
1796
1797 /**
1798 * usb_urb_dir_out - check if an URB describes an OUT transfer
1799 * @urb: URB to be checked
1800 *
1801 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1802 * otherwise 0.
1803 */
usb_urb_dir_out(struct urb * urb)1804 static inline int usb_urb_dir_out(struct urb *urb)
1805 {
1806 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1807 }
1808
1809 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1810 int usb_urb_ep_type_check(const struct urb *urb);
1811
1812 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1813 gfp_t mem_flags, dma_addr_t *dma);
1814 void usb_free_coherent(struct usb_device *dev, size_t size,
1815 void *addr, dma_addr_t dma);
1816
1817 #if 0
1818 struct urb *usb_buffer_map(struct urb *urb);
1819 void usb_buffer_dmasync(struct urb *urb);
1820 void usb_buffer_unmap(struct urb *urb);
1821 #endif
1822
1823 struct scatterlist;
1824 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1825 struct scatterlist *sg, int nents);
1826 #if 0
1827 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1828 struct scatterlist *sg, int n_hw_ents);
1829 #endif
1830 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1831 struct scatterlist *sg, int n_hw_ents);
1832
1833 /*-------------------------------------------------------------------*
1834 * SYNCHRONOUS CALL SUPPORT *
1835 *-------------------------------------------------------------------*/
1836
1837 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1838 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1839 void *data, __u16 size, int timeout);
1840 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1841 void *data, int len, int *actual_length, int timeout);
1842 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1843 void *data, int len, int *actual_length,
1844 int timeout);
1845
1846 /* wrappers around usb_control_msg() for the most common standard requests */
1847 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1848 __u8 requesttype, __u16 value, __u16 index,
1849 const void *data, __u16 size, int timeout,
1850 gfp_t memflags);
1851 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1852 __u8 requesttype, __u16 value, __u16 index,
1853 void *data, __u16 size, int timeout,
1854 gfp_t memflags);
1855 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1856 unsigned char descindex, void *buf, int size);
1857 extern int usb_get_status(struct usb_device *dev,
1858 int recip, int type, int target, void *data);
1859
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1860 static inline int usb_get_std_status(struct usb_device *dev,
1861 int recip, int target, void *data)
1862 {
1863 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1864 data);
1865 }
1866
usb_get_ptm_status(struct usb_device * dev,void * data)1867 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1868 {
1869 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1870 0, data);
1871 }
1872
1873 extern int usb_string(struct usb_device *dev, int index,
1874 char *buf, size_t size);
1875
1876 /* wrappers that also update important state inside usbcore */
1877 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1878 extern int usb_reset_configuration(struct usb_device *dev);
1879 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1880 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1881
1882 /* this request isn't really synchronous, but it belongs with the others */
1883 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1884
1885 /* choose and set configuration for device */
1886 extern int usb_choose_configuration(struct usb_device *udev);
1887 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1888
1889 /*
1890 * timeouts, in milliseconds, used for sending/receiving control messages
1891 * they typically complete within a few frames (msec) after they're issued
1892 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1893 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1894 */
1895 #define USB_CTRL_GET_TIMEOUT 5000
1896 #define USB_CTRL_SET_TIMEOUT 5000
1897
1898
1899 /**
1900 * struct usb_sg_request - support for scatter/gather I/O
1901 * @status: zero indicates success, else negative errno
1902 * @bytes: counts bytes transferred.
1903 *
1904 * These requests are initialized using usb_sg_init(), and then are used
1905 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1906 * members of the request object aren't for driver access.
1907 *
1908 * The status and bytecount values are valid only after usb_sg_wait()
1909 * returns. If the status is zero, then the bytecount matches the total
1910 * from the request.
1911 *
1912 * After an error completion, drivers may need to clear a halt condition
1913 * on the endpoint.
1914 */
1915 struct usb_sg_request {
1916 int status;
1917 size_t bytes;
1918
1919 /* private:
1920 * members below are private to usbcore,
1921 * and are not provided for driver access!
1922 */
1923 spinlock_t lock;
1924
1925 struct usb_device *dev;
1926 int pipe;
1927
1928 int entries;
1929 struct urb **urbs;
1930
1931 int count;
1932 struct completion complete;
1933 };
1934
1935 int usb_sg_init(
1936 struct usb_sg_request *io,
1937 struct usb_device *dev,
1938 unsigned pipe,
1939 unsigned period,
1940 struct scatterlist *sg,
1941 int nents,
1942 size_t length,
1943 gfp_t mem_flags
1944 );
1945 void usb_sg_cancel(struct usb_sg_request *io);
1946 void usb_sg_wait(struct usb_sg_request *io);
1947
1948
1949 /* ----------------------------------------------------------------------- */
1950
1951 /*
1952 * For various legacy reasons, Linux has a small cookie that's paired with
1953 * a struct usb_device to identify an endpoint queue. Queue characteristics
1954 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1955 * an unsigned int encoded as:
1956 *
1957 * - direction: bit 7 (0 = Host-to-Device [Out],
1958 * 1 = Device-to-Host [In] ...
1959 * like endpoint bEndpointAddress)
1960 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1961 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1962 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1963 * 10 = control, 11 = bulk)
1964 *
1965 * Given the device address and endpoint descriptor, pipes are redundant.
1966 */
1967
1968 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1969 /* (yet ... they're the values used by usbfs) */
1970 #define PIPE_ISOCHRONOUS 0
1971 #define PIPE_INTERRUPT 1
1972 #define PIPE_CONTROL 2
1973 #define PIPE_BULK 3
1974
1975 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1976 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1977
1978 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1979 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1980
1981 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1982 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1983 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1984 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1985 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1986
__create_pipe(struct usb_device * dev,unsigned int endpoint)1987 static inline unsigned int __create_pipe(struct usb_device *dev,
1988 unsigned int endpoint)
1989 {
1990 return (dev->devnum << 8) | (endpoint << 15);
1991 }
1992
1993 /* Create various pipes... */
1994 #define usb_sndctrlpipe(dev, endpoint) \
1995 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1996 #define usb_rcvctrlpipe(dev, endpoint) \
1997 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1998 #define usb_sndisocpipe(dev, endpoint) \
1999 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2000 #define usb_rcvisocpipe(dev, endpoint) \
2001 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2002 #define usb_sndbulkpipe(dev, endpoint) \
2003 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2004 #define usb_rcvbulkpipe(dev, endpoint) \
2005 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2006 #define usb_sndintpipe(dev, endpoint) \
2007 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2008 #define usb_rcvintpipe(dev, endpoint) \
2009 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2010
2011 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2012 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2013 {
2014 struct usb_host_endpoint **eps;
2015 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2016 return eps[usb_pipeendpoint(pipe)];
2017 }
2018
2019 /*-------------------------------------------------------------------------*/
2020
2021 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)2022 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
2023 {
2024 struct usb_host_endpoint *ep;
2025 unsigned epnum = usb_pipeendpoint(pipe);
2026
2027 if (is_out) {
2028 WARN_ON(usb_pipein(pipe));
2029 ep = udev->ep_out[epnum];
2030 } else {
2031 WARN_ON(usb_pipeout(pipe));
2032 ep = udev->ep_in[epnum];
2033 }
2034 if (!ep)
2035 return 0;
2036
2037 /* NOTE: only 0x07ff bits are for packet size... */
2038 return usb_endpoint_maxp(&ep->desc);
2039 }
2040
2041 /* ----------------------------------------------------------------------- */
2042
2043 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2044 static inline int usb_translate_errors(int error_code)
2045 {
2046 switch (error_code) {
2047 case 0:
2048 case -ENOMEM:
2049 case -ENODEV:
2050 case -EOPNOTSUPP:
2051 return error_code;
2052 default:
2053 return -EIO;
2054 }
2055 }
2056
2057 /* Events from the usb core */
2058 #define USB_DEVICE_ADD 0x0001
2059 #define USB_DEVICE_REMOVE 0x0002
2060 #define USB_BUS_ADD 0x0003
2061 #define USB_BUS_REMOVE 0x0004
2062 extern void usb_register_notify(struct notifier_block *nb);
2063 extern void usb_unregister_notify(struct notifier_block *nb);
2064
2065 /* debugfs stuff */
2066 extern struct dentry *usb_debug_root;
2067
2068 /* LED triggers */
2069 enum usb_led_event {
2070 USB_LED_EVENT_HOST = 0,
2071 USB_LED_EVENT_GADGET = 1,
2072 };
2073
2074 #ifdef CONFIG_USB_LED_TRIG
2075 extern void usb_led_activity(enum usb_led_event ev);
2076 #else
usb_led_activity(enum usb_led_event ev)2077 static inline void usb_led_activity(enum usb_led_event ev) {}
2078 #endif
2079
2080 #endif /* __KERNEL__ */
2081
2082 #endif
2083