• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 #include <linux/android_kabi.h>
26 
27 struct usb_device;
28 struct usb_driver;
29 struct wusb_dev;
30 
31 /*-------------------------------------------------------------------------*/
32 
33 /*
34  * Host-side wrappers for standard USB descriptors ... these are parsed
35  * from the data provided by devices.  Parsing turns them from a flat
36  * sequence of descriptors into a hierarchy:
37  *
38  *  - devices have one (usually) or more configs;
39  *  - configs have one (often) or more interfaces;
40  *  - interfaces have one (usually) or more settings;
41  *  - each interface setting has zero or (usually) more endpoints.
42  *  - a SuperSpeed endpoint has a companion descriptor
43  *
44  * And there might be other descriptors mixed in with those.
45  *
46  * Devices may also have class-specific or vendor-specific descriptors.
47  */
48 
49 struct ep_device;
50 
51 /**
52  * struct usb_host_endpoint - host-side endpoint descriptor and queue
53  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
54  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
55  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
56  * @urb_list: urbs queued to this endpoint; maintained by usbcore
57  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
58  *	with one or more transfer descriptors (TDs) per urb
59  * @ep_dev: ep_device for sysfs info
60  * @extra: descriptors following this endpoint in the configuration
61  * @extralen: how many bytes of "extra" are valid
62  * @enabled: URBs may be submitted to this endpoint
63  * @streams: number of USB-3 streams allocated on the endpoint
64  *
65  * USB requests are always queued to a given endpoint, identified by a
66  * descriptor within an active interface in a given USB configuration.
67  */
68 struct usb_host_endpoint {
69 	struct usb_endpoint_descriptor		desc;
70 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
71 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
72 	struct list_head		urb_list;
73 	void				*hcpriv;
74 	struct ep_device		*ep_dev;	/* For sysfs info */
75 
76 	unsigned char *extra;   /* Extra descriptors */
77 	int extralen;
78 	int enabled;
79 	int streams;
80 };
81 
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 	struct usb_interface_descriptor	desc;
85 
86 	int extralen;
87 	unsigned char *extra;   /* Extra descriptors */
88 
89 	/* array of desc.bNumEndpoints endpoints associated with this
90 	 * interface setting.  these will be in no particular order.
91 	 */
92 	struct usb_host_endpoint *endpoint;
93 
94 	char *string;		/* iInterface string, if present */
95 };
96 
97 enum usb_interface_condition {
98 	USB_INTERFACE_UNBOUND = 0,
99 	USB_INTERFACE_BINDING,
100 	USB_INTERFACE_BOUND,
101 	USB_INTERFACE_UNBINDING,
102 };
103 
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 		struct usb_endpoint_descriptor **bulk_in,
107 		struct usb_endpoint_descriptor **bulk_out,
108 		struct usb_endpoint_descriptor **int_in,
109 		struct usb_endpoint_descriptor **int_out);
110 
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 		struct usb_endpoint_descriptor **bulk_in,
114 		struct usb_endpoint_descriptor **bulk_out,
115 		struct usb_endpoint_descriptor **int_in,
116 		struct usb_endpoint_descriptor **int_out);
117 
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 		struct usb_endpoint_descriptor **bulk_in)
121 {
122 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124 
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 		struct usb_endpoint_descriptor **bulk_out)
128 {
129 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131 
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 		struct usb_endpoint_descriptor **int_in)
135 {
136 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138 
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145 
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 		struct usb_endpoint_descriptor **bulk_in)
149 {
150 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152 
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 		struct usb_endpoint_descriptor **bulk_out)
156 {
157 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159 
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 		struct usb_endpoint_descriptor **int_in)
163 {
164 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166 
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 		struct usb_endpoint_descriptor **int_out)
170 {
171 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173 
174 /**
175  * struct usb_interface - what usb device drivers talk to
176  * @altsetting: array of interface structures, one for each alternate
177  *	setting that may be selected.  Each one includes a set of
178  *	endpoint configurations.  They will be in no particular order.
179  * @cur_altsetting: the current altsetting.
180  * @num_altsetting: number of altsettings defined.
181  * @intf_assoc: interface association descriptor
182  * @minor: the minor number assigned to this interface, if this
183  *	interface is bound to a driver that uses the USB major number.
184  *	If this interface does not use the USB major, this field should
185  *	be unused.  The driver should set this value in the probe()
186  *	function of the driver, after it has been assigned a minor
187  *	number from the USB core by calling usb_register_dev().
188  * @condition: binding state of the interface: not bound, binding
189  *	(in probe()), bound to a driver, or unbinding (in disconnect())
190  * @sysfs_files_created: sysfs attributes exist
191  * @ep_devs_created: endpoint child pseudo-devices exist
192  * @unregistering: flag set when the interface is being unregistered
193  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
194  *	capability during autosuspend.
195  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
196  *	has been deferred.
197  * @needs_binding: flag set when the driver should be re-probed or unbound
198  *	following a reset or suspend operation it doesn't support.
199  * @authorized: This allows to (de)authorize individual interfaces instead
200  *	a whole device in contrast to the device authorization.
201  * @dev: driver model's view of this device
202  * @usb_dev: if an interface is bound to the USB major, this will point
203  *	to the sysfs representation for that device.
204  * @reset_ws: Used for scheduling resets from atomic context.
205  * @resetting_device: USB core reset the device, so use alt setting 0 as
206  *	current; needs bandwidth alloc after reset.
207  *
208  * USB device drivers attach to interfaces on a physical device.  Each
209  * interface encapsulates a single high level function, such as feeding
210  * an audio stream to a speaker or reporting a change in a volume control.
211  * Many USB devices only have one interface.  The protocol used to talk to
212  * an interface's endpoints can be defined in a usb "class" specification,
213  * or by a product's vendor.  The (default) control endpoint is part of
214  * every interface, but is never listed among the interface's descriptors.
215  *
216  * The driver that is bound to the interface can use standard driver model
217  * calls such as dev_get_drvdata() on the dev member of this structure.
218  *
219  * Each interface may have alternate settings.  The initial configuration
220  * of a device sets altsetting 0, but the device driver can change
221  * that setting using usb_set_interface().  Alternate settings are often
222  * used to control the use of periodic endpoints, such as by having
223  * different endpoints use different amounts of reserved USB bandwidth.
224  * All standards-conformant USB devices that use isochronous endpoints
225  * will use them in non-default settings.
226  *
227  * The USB specification says that alternate setting numbers must run from
228  * 0 to one less than the total number of alternate settings.  But some
229  * devices manage to mess this up, and the structures aren't necessarily
230  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
231  * look up an alternate setting in the altsetting array based on its number.
232  */
233 struct usb_interface {
234 	/* array of alternate settings for this interface,
235 	 * stored in no particular order */
236 	struct usb_host_interface *altsetting;
237 
238 	struct usb_host_interface *cur_altsetting;	/* the currently
239 					 * active alternate setting */
240 	unsigned num_altsetting;	/* number of alternate settings */
241 
242 	/* If there is an interface association descriptor then it will list
243 	 * the associated interfaces */
244 	struct usb_interface_assoc_descriptor *intf_assoc;
245 
246 	int minor;			/* minor number this interface is
247 					 * bound to */
248 	enum usb_interface_condition condition;		/* state of binding */
249 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
250 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
251 	unsigned unregistering:1;	/* unregistration is in progress */
252 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
253 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
254 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
255 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
256 	unsigned authorized:1;		/* used for interface authorization */
257 
258 	struct device dev;		/* interface specific device info */
259 	struct device *usb_dev;
260 	struct work_struct reset_ws;	/* for resets in atomic context */
261 
262 	ANDROID_KABI_RESERVE(1);
263 	ANDROID_KABI_RESERVE(2);
264 	ANDROID_KABI_RESERVE(3);
265 	ANDROID_KABI_RESERVE(4);
266 };
267 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
268 
usb_get_intfdata(struct usb_interface * intf)269 static inline void *usb_get_intfdata(struct usb_interface *intf)
270 {
271 	return dev_get_drvdata(&intf->dev);
272 }
273 
usb_set_intfdata(struct usb_interface * intf,void * data)274 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
275 {
276 	dev_set_drvdata(&intf->dev, data);
277 }
278 
279 struct usb_interface *usb_get_intf(struct usb_interface *intf);
280 void usb_put_intf(struct usb_interface *intf);
281 
282 /* Hard limit */
283 #define USB_MAXENDPOINTS	30
284 /* this maximum is arbitrary */
285 #define USB_MAXINTERFACES	32
286 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
287 
288 bool usb_check_bulk_endpoints(
289 		const struct usb_interface *intf, const u8 *ep_addrs);
290 bool usb_check_int_endpoints(
291 		const struct usb_interface *intf, const u8 *ep_addrs);
292 
293 /*
294  * USB Resume Timer: Every Host controller driver should drive the resume
295  * signalling on the bus for the amount of time defined by this macro.
296  *
297  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
298  *
299  * Note that the USB Specification states we should drive resume for *at least*
300  * 20 ms, but it doesn't give an upper bound. This creates two possible
301  * situations which we want to avoid:
302  *
303  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
304  * us to fail USB Electrical Tests, thus failing Certification
305  *
306  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
307  * and while we can argue that's against the USB Specification, we don't have
308  * control over which devices a certification laboratory will be using for
309  * certification. If CertLab uses a device which was tested against Windows and
310  * that happens to have relaxed resume signalling rules, we might fall into
311  * situations where we fail interoperability and electrical tests.
312  *
313  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
314  * should cope with both LPJ calibration errors and devices not following every
315  * detail of the USB Specification.
316  */
317 #define USB_RESUME_TIMEOUT	40 /* ms */
318 
319 /**
320  * struct usb_interface_cache - long-term representation of a device interface
321  * @num_altsetting: number of altsettings defined.
322  * @ref: reference counter.
323  * @altsetting: variable-length array of interface structures, one for
324  *	each alternate setting that may be selected.  Each one includes a
325  *	set of endpoint configurations.  They will be in no particular order.
326  *
327  * These structures persist for the lifetime of a usb_device, unlike
328  * struct usb_interface (which persists only as long as its configuration
329  * is installed).  The altsetting arrays can be accessed through these
330  * structures at any time, permitting comparison of configurations and
331  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
332  */
333 struct usb_interface_cache {
334 	unsigned num_altsetting;	/* number of alternate settings */
335 	struct kref ref;		/* reference counter */
336 
337 	/* variable-length array of alternate settings for this interface,
338 	 * stored in no particular order */
339 	struct usb_host_interface altsetting[];
340 };
341 #define	ref_to_usb_interface_cache(r) \
342 		container_of(r, struct usb_interface_cache, ref)
343 #define	altsetting_to_usb_interface_cache(a) \
344 		container_of(a, struct usb_interface_cache, altsetting[0])
345 
346 /**
347  * struct usb_host_config - representation of a device's configuration
348  * @desc: the device's configuration descriptor.
349  * @string: pointer to the cached version of the iConfiguration string, if
350  *	present for this configuration.
351  * @intf_assoc: list of any interface association descriptors in this config
352  * @interface: array of pointers to usb_interface structures, one for each
353  *	interface in the configuration.  The number of interfaces is stored
354  *	in desc.bNumInterfaces.  These pointers are valid only while the
355  *	configuration is active.
356  * @intf_cache: array of pointers to usb_interface_cache structures, one
357  *	for each interface in the configuration.  These structures exist
358  *	for the entire life of the device.
359  * @extra: pointer to buffer containing all extra descriptors associated
360  *	with this configuration (those preceding the first interface
361  *	descriptor).
362  * @extralen: length of the extra descriptors buffer.
363  *
364  * USB devices may have multiple configurations, but only one can be active
365  * at any time.  Each encapsulates a different operational environment;
366  * for example, a dual-speed device would have separate configurations for
367  * full-speed and high-speed operation.  The number of configurations
368  * available is stored in the device descriptor as bNumConfigurations.
369  *
370  * A configuration can contain multiple interfaces.  Each corresponds to
371  * a different function of the USB device, and all are available whenever
372  * the configuration is active.  The USB standard says that interfaces
373  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
374  * of devices get this wrong.  In addition, the interface array is not
375  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
376  * look up an interface entry based on its number.
377  *
378  * Device drivers should not attempt to activate configurations.  The choice
379  * of which configuration to install is a policy decision based on such
380  * considerations as available power, functionality provided, and the user's
381  * desires (expressed through userspace tools).  However, drivers can call
382  * usb_reset_configuration() to reinitialize the current configuration and
383  * all its interfaces.
384  */
385 struct usb_host_config {
386 	struct usb_config_descriptor	desc;
387 
388 	char *string;		/* iConfiguration string, if present */
389 
390 	/* List of any Interface Association Descriptors in this
391 	 * configuration. */
392 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
393 
394 	/* the interfaces associated with this configuration,
395 	 * stored in no particular order */
396 	struct usb_interface *interface[USB_MAXINTERFACES];
397 
398 	/* Interface information available even when this is not the
399 	 * active configuration */
400 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
401 
402 	unsigned char *extra;   /* Extra descriptors */
403 	int extralen;
404 };
405 
406 /* USB2.0 and USB3.0 device BOS descriptor set */
407 struct usb_host_bos {
408 	struct usb_bos_descriptor	*desc;
409 
410 	/* wireless cap descriptor is handled by wusb */
411 	struct usb_ext_cap_descriptor	*ext_cap;
412 	struct usb_ss_cap_descriptor	*ss_cap;
413 	struct usb_ssp_cap_descriptor	*ssp_cap;
414 	struct usb_ss_container_id_descriptor	*ss_id;
415 	struct usb_ptm_cap_descriptor	*ptm_cap;
416 
417 	ANDROID_KABI_RESERVE(1);
418 	ANDROID_KABI_RESERVE(2);
419 	ANDROID_KABI_RESERVE(3);
420 	ANDROID_KABI_RESERVE(4);
421 };
422 
423 int __usb_get_extra_descriptor(char *buffer, unsigned size,
424 	unsigned char type, void **ptr, size_t min);
425 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
426 				__usb_get_extra_descriptor((ifpoint)->extra, \
427 				(ifpoint)->extralen, \
428 				type, (void **)ptr, sizeof(**(ptr)))
429 
430 /* ----------------------------------------------------------------------- */
431 
432 /* USB device number allocation bitmap */
433 struct usb_devmap {
434 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
435 };
436 
437 /*
438  * Allocated per bus (tree of devices) we have:
439  */
440 struct usb_bus {
441 	struct device *controller;	/* host side hardware */
442 	struct device *sysdev;		/* as seen from firmware or bus */
443 	int busnum;			/* Bus number (in order of reg) */
444 	const char *bus_name;		/* stable id (PCI slot_name etc) */
445 	u8 uses_pio_for_control;	/*
446 					 * Does the host controller use PIO
447 					 * for control transfers?
448 					 */
449 	u8 otg_port;			/* 0, or number of OTG/HNP port */
450 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
451 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
452 	unsigned no_stop_on_short:1;    /*
453 					 * Quirk: some controllers don't stop
454 					 * the ep queue on a short transfer
455 					 * with the URB_SHORT_NOT_OK flag set.
456 					 */
457 	unsigned no_sg_constraint:1;	/* no sg constraint */
458 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
459 
460 	int devnum_next;		/* Next open device number in
461 					 * round-robin allocation */
462 	struct mutex devnum_next_mutex; /* devnum_next mutex */
463 
464 	struct usb_devmap devmap;	/* device address allocation map */
465 	struct usb_device *root_hub;	/* Root hub */
466 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
467 
468 	int bandwidth_allocated;	/* on this bus: how much of the time
469 					 * reserved for periodic (intr/iso)
470 					 * requests is used, on average?
471 					 * Units: microseconds/frame.
472 					 * Limits: Full/low speed reserve 90%,
473 					 * while high speed reserves 80%.
474 					 */
475 	int bandwidth_int_reqs;		/* number of Interrupt requests */
476 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
477 
478 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
479 
480 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
481 	struct mon_bus *mon_bus;	/* non-null when associated */
482 	int monitored;			/* non-zero when monitored */
483 #endif
484 
485 	ANDROID_KABI_RESERVE(1);
486 	ANDROID_KABI_RESERVE(2);
487 	ANDROID_KABI_RESERVE(3);
488 	ANDROID_KABI_RESERVE(4);
489 };
490 
491 struct usb_dev_state;
492 
493 /* ----------------------------------------------------------------------- */
494 
495 struct usb_tt;
496 
497 enum usb_device_removable {
498 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
499 	USB_DEVICE_REMOVABLE,
500 	USB_DEVICE_FIXED,
501 };
502 
503 enum usb_port_connect_type {
504 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 	USB_PORT_NOT_USED,
508 };
509 
510 /*
511  * USB port quirks.
512  */
513 
514 /* For the given port, prefer the old (faster) enumeration scheme. */
515 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
516 
517 /* Decrease TRSTRCY to 10ms during device enumeration. */
518 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
519 
520 /*
521  * USB 2.0 Link Power Management (LPM) parameters.
522  */
523 struct usb2_lpm_parameters {
524 	/* Best effort service latency indicate how long the host will drive
525 	 * resume on an exit from L1.
526 	 */
527 	unsigned int besl;
528 
529 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 	 * When the timer counts to zero, the parent hub will initiate a LPM
531 	 * transition to L1.
532 	 */
533 	int timeout;
534 };
535 
536 /*
537  * USB 3.0 Link Power Management (LPM) parameters.
538  *
539  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541  * All three are stored in nanoseconds.
542  */
543 struct usb3_lpm_parameters {
544 	/*
545 	 * Maximum exit latency (MEL) for the host to send a packet to the
546 	 * device (either a Ping for isoc endpoints, or a data packet for
547 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 	 * in the path to transition the links to U0.
549 	 */
550 	unsigned int mel;
551 	/*
552 	 * Maximum exit latency for a device-initiated LPM transition to bring
553 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
554 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
555 	 */
556 	unsigned int pel;
557 
558 	/*
559 	 * The System Exit Latency (SEL) includes PEL, and three other
560 	 * latencies.  After a device initiates a U0 transition, it will take
561 	 * some time from when the device sends the ERDY to when it will finally
562 	 * receive the data packet.  Basically, SEL should be the worse-case
563 	 * latency from when a device starts initiating a U0 transition to when
564 	 * it will get data.
565 	 */
566 	unsigned int sel;
567 	/*
568 	 * The idle timeout value that is currently programmed into the parent
569 	 * hub for this device.  When the timer counts to zero, the parent hub
570 	 * will initiate an LPM transition to either U1 or U2.
571 	 */
572 	int timeout;
573 };
574 
575 /**
576  * struct usb_device - kernel's representation of a USB device
577  * @devnum: device number; address on a USB bus
578  * @devpath: device ID string for use in messages (e.g., /port/...)
579  * @route: tree topology hex string for use with xHCI
580  * @state: device state: configured, not attached, etc.
581  * @speed: device speed: high/full/low (or error)
582  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
585  * @ttport: device port on that tt hub
586  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
587  * @parent: our hub, unless we're the root
588  * @bus: bus we're part of
589  * @ep0: endpoint 0 data (default control pipe)
590  * @dev: generic device interface
591  * @descriptor: USB device descriptor
592  * @bos: USB device BOS descriptor set
593  * @config: all of the device's configs
594  * @actconfig: the active configuration
595  * @ep_in: array of IN endpoints
596  * @ep_out: array of OUT endpoints
597  * @rawdescriptors: raw descriptors for each config
598  * @bus_mA: Current available from the bus
599  * @portnum: parent port number (origin 1)
600  * @level: number of USB hub ancestors
601  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
602  * @can_submit: URBs may be submitted
603  * @persist_enabled:  USB_PERSIST enabled for this device
604  * @have_langid: whether string_langid is valid
605  * @authorized: policy has said we can use it;
606  *	(user space) policy determines if we authorize this device to be
607  *	used or not. By default, wired USB devices are authorized.
608  *	WUSB devices are not, until we authorize them from user space.
609  *	FIXME -- complete doc
610  * @authenticated: Crypto authentication passed
611  * @wusb: device is Wireless USB
612  * @lpm_capable: device supports LPM
613  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
614  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
615  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
616  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
617  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
618  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
619  * @string_langid: language ID for strings
620  * @product: iProduct string, if present (static)
621  * @manufacturer: iManufacturer string, if present (static)
622  * @serial: iSerialNumber string, if present (static)
623  * @filelist: usbfs files that are open to this device
624  * @maxchild: number of ports if hub
625  * @quirks: quirks of the whole device
626  * @urbnum: number of URBs submitted for the whole device
627  * @active_duration: total time device is not suspended
628  * @connect_time: time device was first connected
629  * @do_remote_wakeup:  remote wakeup should be enabled
630  * @reset_resume: needs reset instead of resume
631  * @port_is_suspended: the upstream port is suspended (L2 or U3)
632  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
633  *	specific data for the device.
634  * @slot_id: Slot ID assigned by xHCI
635  * @removable: Device can be physically removed from this port
636  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
637  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
638  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
639  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
640  *	to keep track of the number of functions that require USB 3.0 Link Power
641  *	Management to be disabled for this usb_device.  This count should only
642  *	be manipulated by those functions, with the bandwidth_mutex is held.
643  * @hub_delay: cached value consisting of:
644  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
645  *	Will be used as wValue for SetIsochDelay requests.
646  * @use_generic_driver: ask driver core to reprobe using the generic driver.
647  *
648  * Notes:
649  * Usbcore drivers should not set usbdev->state directly.  Instead use
650  * usb_set_device_state().
651  */
652 struct usb_device {
653 	int		devnum;
654 	char		devpath[16];
655 	u32		route;
656 	enum usb_device_state	state;
657 	enum usb_device_speed	speed;
658 	unsigned int		rx_lanes;
659 	unsigned int		tx_lanes;
660 
661 	struct usb_tt	*tt;
662 	int		ttport;
663 
664 	unsigned int toggle[2];
665 
666 	struct usb_device *parent;
667 	struct usb_bus *bus;
668 	struct usb_host_endpoint ep0;
669 
670 	struct device dev;
671 
672 	struct usb_device_descriptor descriptor;
673 	struct usb_host_bos *bos;
674 	struct usb_host_config *config;
675 
676 	struct usb_host_config *actconfig;
677 	struct usb_host_endpoint *ep_in[16];
678 	struct usb_host_endpoint *ep_out[16];
679 
680 	char **rawdescriptors;
681 
682 	unsigned short bus_mA;
683 	u8 portnum;
684 	u8 level;
685 	u8 devaddr;
686 
687 	unsigned can_submit:1;
688 	unsigned persist_enabled:1;
689 	unsigned have_langid:1;
690 	unsigned authorized:1;
691 	unsigned authenticated:1;
692 	unsigned wusb:1;
693 	unsigned lpm_capable:1;
694 	unsigned usb2_hw_lpm_capable:1;
695 	unsigned usb2_hw_lpm_besl_capable:1;
696 	unsigned usb2_hw_lpm_enabled:1;
697 	unsigned usb2_hw_lpm_allowed:1;
698 	unsigned usb3_lpm_u1_enabled:1;
699 	unsigned usb3_lpm_u2_enabled:1;
700 	int string_langid;
701 
702 	/* static strings from the device */
703 	char *product;
704 	char *manufacturer;
705 	char *serial;
706 
707 	struct list_head filelist;
708 
709 	int maxchild;
710 
711 	u32 quirks;
712 	atomic_t urbnum;
713 
714 	unsigned long active_duration;
715 
716 #ifdef CONFIG_PM
717 	unsigned long connect_time;
718 
719 	unsigned do_remote_wakeup:1;
720 	unsigned reset_resume:1;
721 	unsigned port_is_suspended:1;
722 #endif
723 	struct wusb_dev *wusb_dev;
724 	int slot_id;
725 	enum usb_device_removable removable;
726 	struct usb2_lpm_parameters l1_params;
727 	struct usb3_lpm_parameters u1_params;
728 	struct usb3_lpm_parameters u2_params;
729 	unsigned lpm_disable_count;
730 
731 	u16 hub_delay;
732 	unsigned use_generic_driver:1;
733 
734 	ANDROID_KABI_RESERVE(1);
735 	ANDROID_KABI_RESERVE(2);
736 	ANDROID_KABI_RESERVE(3);
737 	ANDROID_KABI_RESERVE(4);
738 };
739 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
740 
interface_to_usbdev(struct usb_interface * intf)741 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
742 {
743 	return to_usb_device(intf->dev.parent);
744 }
745 
746 extern struct usb_device *usb_get_dev(struct usb_device *dev);
747 extern void usb_put_dev(struct usb_device *dev);
748 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
749 	int port1);
750 
751 /**
752  * usb_hub_for_each_child - iterate over all child devices on the hub
753  * @hdev:  USB device belonging to the usb hub
754  * @port1: portnum associated with child device
755  * @child: child device pointer
756  */
757 #define usb_hub_for_each_child(hdev, port1, child) \
758 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
759 			port1 <= hdev->maxchild; \
760 			child = usb_hub_find_child(hdev, ++port1)) \
761 		if (!child) continue; else
762 
763 /* USB device locking */
764 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
765 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
766 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
767 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
768 extern int usb_lock_device_for_reset(struct usb_device *udev,
769 				     const struct usb_interface *iface);
770 
771 /* USB port reset for device reinitialization */
772 extern int usb_reset_device(struct usb_device *dev);
773 extern void usb_queue_reset_device(struct usb_interface *dev);
774 
775 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
776 
777 #ifdef CONFIG_ACPI
778 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
779 	bool enable);
780 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
781 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
782 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)783 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
784 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)785 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
786 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)787 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
788 	{ return 0; }
789 #endif
790 
791 /* USB autosuspend and autoresume */
792 #ifdef CONFIG_PM
793 extern void usb_enable_autosuspend(struct usb_device *udev);
794 extern void usb_disable_autosuspend(struct usb_device *udev);
795 
796 extern int usb_autopm_get_interface(struct usb_interface *intf);
797 extern void usb_autopm_put_interface(struct usb_interface *intf);
798 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
799 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
800 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
801 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
802 
usb_mark_last_busy(struct usb_device * udev)803 static inline void usb_mark_last_busy(struct usb_device *udev)
804 {
805 	pm_runtime_mark_last_busy(&udev->dev);
806 }
807 
808 #else
809 
usb_enable_autosuspend(struct usb_device * udev)810 static inline int usb_enable_autosuspend(struct usb_device *udev)
811 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)812 static inline int usb_disable_autosuspend(struct usb_device *udev)
813 { return 0; }
814 
usb_autopm_get_interface(struct usb_interface * intf)815 static inline int usb_autopm_get_interface(struct usb_interface *intf)
816 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)817 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
818 { return 0; }
819 
usb_autopm_put_interface(struct usb_interface * intf)820 static inline void usb_autopm_put_interface(struct usb_interface *intf)
821 { }
usb_autopm_put_interface_async(struct usb_interface * intf)822 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
823 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)824 static inline void usb_autopm_get_interface_no_resume(
825 		struct usb_interface *intf)
826 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)827 static inline void usb_autopm_put_interface_no_suspend(
828 		struct usb_interface *intf)
829 { }
usb_mark_last_busy(struct usb_device * udev)830 static inline void usb_mark_last_busy(struct usb_device *udev)
831 { }
832 #endif
833 
834 extern int usb_disable_lpm(struct usb_device *udev);
835 extern void usb_enable_lpm(struct usb_device *udev);
836 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
837 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
838 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
839 
840 extern int usb_disable_ltm(struct usb_device *udev);
841 extern void usb_enable_ltm(struct usb_device *udev);
842 
usb_device_supports_ltm(struct usb_device * udev)843 static inline bool usb_device_supports_ltm(struct usb_device *udev)
844 {
845 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
846 		return false;
847 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
848 }
849 
usb_device_no_sg_constraint(struct usb_device * udev)850 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
851 {
852 	return udev && udev->bus && udev->bus->no_sg_constraint;
853 }
854 
855 
856 /*-------------------------------------------------------------------------*/
857 
858 /* for drivers using iso endpoints */
859 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
860 
861 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
862 extern int usb_alloc_streams(struct usb_interface *interface,
863 		struct usb_host_endpoint **eps, unsigned int num_eps,
864 		unsigned int num_streams, gfp_t mem_flags);
865 
866 /* Reverts a group of bulk endpoints back to not using stream IDs. */
867 extern int usb_free_streams(struct usb_interface *interface,
868 		struct usb_host_endpoint **eps, unsigned int num_eps,
869 		gfp_t mem_flags);
870 
871 /* used these for multi-interface device registration */
872 extern int usb_driver_claim_interface(struct usb_driver *driver,
873 			struct usb_interface *iface, void *priv);
874 
875 /**
876  * usb_interface_claimed - returns true iff an interface is claimed
877  * @iface: the interface being checked
878  *
879  * Return: %true (nonzero) iff the interface is claimed, else %false
880  * (zero).
881  *
882  * Note:
883  * Callers must own the driver model's usb bus readlock.  So driver
884  * probe() entries don't need extra locking, but other call contexts
885  * may need to explicitly claim that lock.
886  *
887  */
usb_interface_claimed(struct usb_interface * iface)888 static inline int usb_interface_claimed(struct usb_interface *iface)
889 {
890 	return (iface->dev.driver != NULL);
891 }
892 
893 extern void usb_driver_release_interface(struct usb_driver *driver,
894 			struct usb_interface *iface);
895 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
896 					 const struct usb_device_id *id);
897 extern int usb_match_one_id(struct usb_interface *interface,
898 			    const struct usb_device_id *id);
899 
900 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
901 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
902 		int minor);
903 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
904 		unsigned ifnum);
905 extern struct usb_host_interface *usb_altnum_to_altsetting(
906 		const struct usb_interface *intf, unsigned int altnum);
907 extern struct usb_host_interface *usb_find_alt_setting(
908 		struct usb_host_config *config,
909 		unsigned int iface_num,
910 		unsigned int alt_num);
911 
912 /* port claiming functions */
913 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
914 		struct usb_dev_state *owner);
915 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
916 		struct usb_dev_state *owner);
917 
918 /**
919  * usb_make_path - returns stable device path in the usb tree
920  * @dev: the device whose path is being constructed
921  * @buf: where to put the string
922  * @size: how big is "buf"?
923  *
924  * Return: Length of the string (> 0) or negative if size was too small.
925  *
926  * Note:
927  * This identifier is intended to be "stable", reflecting physical paths in
928  * hardware such as physical bus addresses for host controllers or ports on
929  * USB hubs.  That makes it stay the same until systems are physically
930  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
931  * controllers.  Adding and removing devices, including virtual root hubs
932  * in host controller driver modules, does not change these path identifiers;
933  * neither does rebooting or re-enumerating.  These are more useful identifiers
934  * than changeable ("unstable") ones like bus numbers or device addresses.
935  *
936  * With a partial exception for devices connected to USB 2.0 root hubs, these
937  * identifiers are also predictable.  So long as the device tree isn't changed,
938  * plugging any USB device into a given hub port always gives it the same path.
939  * Because of the use of "companion" controllers, devices connected to ports on
940  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
941  * high speed, and a different one if they are full or low speed.
942  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)943 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
944 {
945 	int actual;
946 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
947 			  dev->devpath);
948 	return (actual >= (int)size) ? -1 : actual;
949 }
950 
951 /*-------------------------------------------------------------------------*/
952 
953 #define USB_DEVICE_ID_MATCH_DEVICE \
954 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
955 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
956 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
957 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
958 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
959 #define USB_DEVICE_ID_MATCH_DEV_INFO \
960 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
961 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
962 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
963 #define USB_DEVICE_ID_MATCH_INT_INFO \
964 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
965 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
966 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
967 
968 /**
969  * USB_DEVICE - macro used to describe a specific usb device
970  * @vend: the 16 bit USB Vendor ID
971  * @prod: the 16 bit USB Product ID
972  *
973  * This macro is used to create a struct usb_device_id that matches a
974  * specific device.
975  */
976 #define USB_DEVICE(vend, prod) \
977 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
978 	.idVendor = (vend), \
979 	.idProduct = (prod)
980 /**
981  * USB_DEVICE_VER - describe a specific usb device with a version range
982  * @vend: the 16 bit USB Vendor ID
983  * @prod: the 16 bit USB Product ID
984  * @lo: the bcdDevice_lo value
985  * @hi: the bcdDevice_hi value
986  *
987  * This macro is used to create a struct usb_device_id that matches a
988  * specific device, with a version range.
989  */
990 #define USB_DEVICE_VER(vend, prod, lo, hi) \
991 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
992 	.idVendor = (vend), \
993 	.idProduct = (prod), \
994 	.bcdDevice_lo = (lo), \
995 	.bcdDevice_hi = (hi)
996 
997 /**
998  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
999  * @vend: the 16 bit USB Vendor ID
1000  * @prod: the 16 bit USB Product ID
1001  * @cl: bInterfaceClass value
1002  *
1003  * This macro is used to create a struct usb_device_id that matches a
1004  * specific interface class of devices.
1005  */
1006 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1007 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1008 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1009 	.idVendor = (vend), \
1010 	.idProduct = (prod), \
1011 	.bInterfaceClass = (cl)
1012 
1013 /**
1014  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1015  * @vend: the 16 bit USB Vendor ID
1016  * @prod: the 16 bit USB Product ID
1017  * @pr: bInterfaceProtocol value
1018  *
1019  * This macro is used to create a struct usb_device_id that matches a
1020  * specific interface protocol of devices.
1021  */
1022 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1023 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1024 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1025 	.idVendor = (vend), \
1026 	.idProduct = (prod), \
1027 	.bInterfaceProtocol = (pr)
1028 
1029 /**
1030  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1031  * @vend: the 16 bit USB Vendor ID
1032  * @prod: the 16 bit USB Product ID
1033  * @num: bInterfaceNumber value
1034  *
1035  * This macro is used to create a struct usb_device_id that matches a
1036  * specific interface number of devices.
1037  */
1038 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1039 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1040 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1041 	.idVendor = (vend), \
1042 	.idProduct = (prod), \
1043 	.bInterfaceNumber = (num)
1044 
1045 /**
1046  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1047  * @cl: bDeviceClass value
1048  * @sc: bDeviceSubClass value
1049  * @pr: bDeviceProtocol value
1050  *
1051  * This macro is used to create a struct usb_device_id that matches a
1052  * specific class of devices.
1053  */
1054 #define USB_DEVICE_INFO(cl, sc, pr) \
1055 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1056 	.bDeviceClass = (cl), \
1057 	.bDeviceSubClass = (sc), \
1058 	.bDeviceProtocol = (pr)
1059 
1060 /**
1061  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1062  * @cl: bInterfaceClass value
1063  * @sc: bInterfaceSubClass value
1064  * @pr: bInterfaceProtocol value
1065  *
1066  * This macro is used to create a struct usb_device_id that matches a
1067  * specific class of interfaces.
1068  */
1069 #define USB_INTERFACE_INFO(cl, sc, pr) \
1070 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1071 	.bInterfaceClass = (cl), \
1072 	.bInterfaceSubClass = (sc), \
1073 	.bInterfaceProtocol = (pr)
1074 
1075 /**
1076  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1077  * @vend: the 16 bit USB Vendor ID
1078  * @prod: the 16 bit USB Product ID
1079  * @cl: bInterfaceClass value
1080  * @sc: bInterfaceSubClass value
1081  * @pr: bInterfaceProtocol value
1082  *
1083  * This macro is used to create a struct usb_device_id that matches a
1084  * specific device with a specific class of interfaces.
1085  *
1086  * This is especially useful when explicitly matching devices that have
1087  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1088  */
1089 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1090 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1091 		| USB_DEVICE_ID_MATCH_DEVICE, \
1092 	.idVendor = (vend), \
1093 	.idProduct = (prod), \
1094 	.bInterfaceClass = (cl), \
1095 	.bInterfaceSubClass = (sc), \
1096 	.bInterfaceProtocol = (pr)
1097 
1098 /**
1099  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1100  * @vend: the 16 bit USB Vendor ID
1101  * @cl: bInterfaceClass value
1102  * @sc: bInterfaceSubClass value
1103  * @pr: bInterfaceProtocol value
1104  *
1105  * This macro is used to create a struct usb_device_id that matches a
1106  * specific vendor with a specific class of interfaces.
1107  *
1108  * This is especially useful when explicitly matching devices that have
1109  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1110  */
1111 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1112 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1113 		| USB_DEVICE_ID_MATCH_VENDOR, \
1114 	.idVendor = (vend), \
1115 	.bInterfaceClass = (cl), \
1116 	.bInterfaceSubClass = (sc), \
1117 	.bInterfaceProtocol = (pr)
1118 
1119 /* ----------------------------------------------------------------------- */
1120 
1121 /* Stuff for dynamic usb ids */
1122 struct usb_dynids {
1123 	spinlock_t lock;
1124 	struct list_head list;
1125 };
1126 
1127 struct usb_dynid {
1128 	struct list_head node;
1129 	struct usb_device_id id;
1130 };
1131 
1132 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1133 				const struct usb_device_id *id_table,
1134 				struct device_driver *driver,
1135 				const char *buf, size_t count);
1136 
1137 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1138 
1139 /**
1140  * struct usbdrv_wrap - wrapper for driver-model structure
1141  * @driver: The driver-model core driver structure.
1142  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1143  */
1144 struct usbdrv_wrap {
1145 	struct device_driver driver;
1146 	int for_devices;
1147 };
1148 
1149 /**
1150  * struct usb_driver - identifies USB interface driver to usbcore
1151  * @name: The driver name should be unique among USB drivers,
1152  *	and should normally be the same as the module name.
1153  * @probe: Called to see if the driver is willing to manage a particular
1154  *	interface on a device.  If it is, probe returns zero and uses
1155  *	usb_set_intfdata() to associate driver-specific data with the
1156  *	interface.  It may also use usb_set_interface() to specify the
1157  *	appropriate altsetting.  If unwilling to manage the interface,
1158  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1159  *	negative errno value.
1160  * @disconnect: Called when the interface is no longer accessible, usually
1161  *	because its device has been (or is being) disconnected or the
1162  *	driver module is being unloaded.
1163  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1164  *	the "usbfs" filesystem.  This lets devices provide ways to
1165  *	expose information to user space regardless of where they
1166  *	do (or don't) show up otherwise in the filesystem.
1167  * @suspend: Called when the device is going to be suspended by the
1168  *	system either from system sleep or runtime suspend context. The
1169  *	return value will be ignored in system sleep context, so do NOT
1170  *	try to continue using the device if suspend fails in this case.
1171  *	Instead, let the resume or reset-resume routine recover from
1172  *	the failure.
1173  * @resume: Called when the device is being resumed by the system.
1174  * @reset_resume: Called when the suspended device has been reset instead
1175  *	of being resumed.
1176  * @pre_reset: Called by usb_reset_device() when the device is about to be
1177  *	reset.  This routine must not return until the driver has no active
1178  *	URBs for the device, and no more URBs may be submitted until the
1179  *	post_reset method is called.
1180  * @post_reset: Called by usb_reset_device() after the device
1181  *	has been reset
1182  * @id_table: USB drivers use ID table to support hotplugging.
1183  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1184  *	or your driver's probe function will never get called.
1185  * @dev_groups: Attributes attached to the device that will be created once it
1186  *	is bound to the driver.
1187  * @dynids: used internally to hold the list of dynamically added device
1188  *	ids for this driver.
1189  * @drvwrap: Driver-model core structure wrapper.
1190  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1191  *	added to this driver by preventing the sysfs file from being created.
1192  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1193  *	for interfaces bound to this driver.
1194  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1195  *	endpoints before calling the driver's disconnect method.
1196  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1197  *	to initiate lower power link state transitions when an idle timeout
1198  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1199  *
1200  * USB interface drivers must provide a name, probe() and disconnect()
1201  * methods, and an id_table.  Other driver fields are optional.
1202  *
1203  * The id_table is used in hotplugging.  It holds a set of descriptors,
1204  * and specialized data may be associated with each entry.  That table
1205  * is used by both user and kernel mode hotplugging support.
1206  *
1207  * The probe() and disconnect() methods are called in a context where
1208  * they can sleep, but they should avoid abusing the privilege.  Most
1209  * work to connect to a device should be done when the device is opened,
1210  * and undone at the last close.  The disconnect code needs to address
1211  * concurrency issues with respect to open() and close() methods, as
1212  * well as forcing all pending I/O requests to complete (by unlinking
1213  * them as necessary, and blocking until the unlinks complete).
1214  */
1215 struct usb_driver {
1216 	const char *name;
1217 
1218 	int (*probe) (struct usb_interface *intf,
1219 		      const struct usb_device_id *id);
1220 
1221 	void (*disconnect) (struct usb_interface *intf);
1222 
1223 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1224 			void *buf);
1225 
1226 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1227 	int (*resume) (struct usb_interface *intf);
1228 	int (*reset_resume)(struct usb_interface *intf);
1229 
1230 	int (*pre_reset)(struct usb_interface *intf);
1231 	int (*post_reset)(struct usb_interface *intf);
1232 
1233 	const struct usb_device_id *id_table;
1234 	const struct attribute_group **dev_groups;
1235 
1236 	struct usb_dynids dynids;
1237 	struct usbdrv_wrap drvwrap;
1238 	unsigned int no_dynamic_id:1;
1239 	unsigned int supports_autosuspend:1;
1240 	unsigned int disable_hub_initiated_lpm:1;
1241 	unsigned int soft_unbind:1;
1242 
1243 	ANDROID_KABI_RESERVE(1);
1244 	ANDROID_KABI_RESERVE(2);
1245 	ANDROID_KABI_RESERVE(3);
1246 	ANDROID_KABI_RESERVE(4);
1247 };
1248 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1249 
1250 /**
1251  * struct usb_device_driver - identifies USB device driver to usbcore
1252  * @name: The driver name should be unique among USB drivers,
1253  *	and should normally be the same as the module name.
1254  * @match: If set, used for better device/driver matching.
1255  * @probe: Called to see if the driver is willing to manage a particular
1256  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1257  *	to associate driver-specific data with the device.  If unwilling
1258  *	to manage the device, return a negative errno value.
1259  * @disconnect: Called when the device is no longer accessible, usually
1260  *	because it has been (or is being) disconnected or the driver's
1261  *	module is being unloaded.
1262  * @suspend: Called when the device is going to be suspended by the system.
1263  * @resume: Called when the device is being resumed by the system.
1264  * @dev_groups: Attributes attached to the device that will be created once it
1265  *	is bound to the driver.
1266  * @drvwrap: Driver-model core structure wrapper.
1267  * @id_table: used with @match() to select better matching driver at
1268  * 	probe() time.
1269  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1270  *	for devices bound to this driver.
1271  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1272  *	resume and suspend functions will be called in addition to the driver's
1273  *	own, so this part of the setup does not need to be replicated.
1274  *
1275  * USB drivers must provide all the fields listed above except drvwrap,
1276  * match, and id_table.
1277  */
1278 struct usb_device_driver {
1279 	const char *name;
1280 
1281 	bool (*match) (struct usb_device *udev);
1282 	int (*probe) (struct usb_device *udev);
1283 	void (*disconnect) (struct usb_device *udev);
1284 
1285 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1286 	int (*resume) (struct usb_device *udev, pm_message_t message);
1287 	const struct attribute_group **dev_groups;
1288 	struct usbdrv_wrap drvwrap;
1289 	const struct usb_device_id *id_table;
1290 	unsigned int supports_autosuspend:1;
1291 	unsigned int generic_subclass:1;
1292 };
1293 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1294 		drvwrap.driver)
1295 
1296 extern struct bus_type usb_bus_type;
1297 
1298 /**
1299  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1300  * @name: the usb class device name for this driver.  Will show up in sysfs.
1301  * @devnode: Callback to provide a naming hint for a possible
1302  *	device node to create.
1303  * @fops: pointer to the struct file_operations of this driver.
1304  * @minor_base: the start of the minor range for this driver.
1305  *
1306  * This structure is used for the usb_register_dev() and
1307  * usb_deregister_dev() functions, to consolidate a number of the
1308  * parameters used for them.
1309  */
1310 struct usb_class_driver {
1311 	char *name;
1312 	char *(*devnode)(struct device *dev, umode_t *mode);
1313 	const struct file_operations *fops;
1314 	int minor_base;
1315 };
1316 
1317 /*
1318  * use these in module_init()/module_exit()
1319  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1320  */
1321 extern int usb_register_driver(struct usb_driver *, struct module *,
1322 			       const char *);
1323 
1324 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1325 #define usb_register(driver) \
1326 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1327 
1328 extern void usb_deregister(struct usb_driver *);
1329 
1330 /**
1331  * module_usb_driver() - Helper macro for registering a USB driver
1332  * @__usb_driver: usb_driver struct
1333  *
1334  * Helper macro for USB drivers which do not do anything special in module
1335  * init/exit. This eliminates a lot of boilerplate. Each module may only
1336  * use this macro once, and calling it replaces module_init() and module_exit()
1337  */
1338 #define module_usb_driver(__usb_driver) \
1339 	module_driver(__usb_driver, usb_register, \
1340 		       usb_deregister)
1341 
1342 extern int usb_register_device_driver(struct usb_device_driver *,
1343 			struct module *);
1344 extern void usb_deregister_device_driver(struct usb_device_driver *);
1345 
1346 extern int usb_register_dev(struct usb_interface *intf,
1347 			    struct usb_class_driver *class_driver);
1348 extern void usb_deregister_dev(struct usb_interface *intf,
1349 			       struct usb_class_driver *class_driver);
1350 
1351 extern int usb_disabled(void);
1352 
1353 /* ----------------------------------------------------------------------- */
1354 
1355 /*
1356  * URB support, for asynchronous request completions
1357  */
1358 
1359 /*
1360  * urb->transfer_flags:
1361  *
1362  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1363  */
1364 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1365 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1366 					 * slot in the schedule */
1367 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1368 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1369 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1370 					 * needed */
1371 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1372 
1373 /* The following flags are used internally by usbcore and HCDs */
1374 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1375 #define URB_DIR_OUT		0
1376 #define URB_DIR_MASK		URB_DIR_IN
1377 
1378 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1379 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1380 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1381 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1382 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1383 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1384 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1385 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1386 
1387 struct usb_iso_packet_descriptor {
1388 	unsigned int offset;
1389 	unsigned int length;		/* expected length */
1390 	unsigned int actual_length;
1391 	int status;
1392 };
1393 
1394 struct urb;
1395 
1396 struct usb_anchor {
1397 	struct list_head urb_list;
1398 	wait_queue_head_t wait;
1399 	spinlock_t lock;
1400 	atomic_t suspend_wakeups;
1401 	unsigned int poisoned:1;
1402 };
1403 
init_usb_anchor(struct usb_anchor * anchor)1404 static inline void init_usb_anchor(struct usb_anchor *anchor)
1405 {
1406 	memset(anchor, 0, sizeof(*anchor));
1407 	INIT_LIST_HEAD(&anchor->urb_list);
1408 	init_waitqueue_head(&anchor->wait);
1409 	spin_lock_init(&anchor->lock);
1410 }
1411 
1412 typedef void (*usb_complete_t)(struct urb *);
1413 
1414 /**
1415  * struct urb - USB Request Block
1416  * @urb_list: For use by current owner of the URB.
1417  * @anchor_list: membership in the list of an anchor
1418  * @anchor: to anchor URBs to a common mooring
1419  * @ep: Points to the endpoint's data structure.  Will eventually
1420  *	replace @pipe.
1421  * @pipe: Holds endpoint number, direction, type, and more.
1422  *	Create these values with the eight macros available;
1423  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1424  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1425  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1426  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1427  *	is a different endpoint (and pipe) from "out" endpoint two.
1428  *	The current configuration controls the existence, type, and
1429  *	maximum packet size of any given endpoint.
1430  * @stream_id: the endpoint's stream ID for bulk streams
1431  * @dev: Identifies the USB device to perform the request.
1432  * @status: This is read in non-iso completion functions to get the
1433  *	status of the particular request.  ISO requests only use it
1434  *	to tell whether the URB was unlinked; detailed status for
1435  *	each frame is in the fields of the iso_frame-desc.
1436  * @transfer_flags: A variety of flags may be used to affect how URB
1437  *	submission, unlinking, or operation are handled.  Different
1438  *	kinds of URB can use different flags.
1439  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1440  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1441  *	(however, do not leave garbage in transfer_buffer even then).
1442  *	This buffer must be suitable for DMA; allocate it with
1443  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1444  *	of this buffer will be modified.  This buffer is used for the data
1445  *	stage of control transfers.
1446  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1447  *	the device driver is saying that it provided this DMA address,
1448  *	which the host controller driver should use in preference to the
1449  *	transfer_buffer.
1450  * @sg: scatter gather buffer list, the buffer size of each element in
1451  * 	the list (except the last) must be divisible by the endpoint's
1452  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1453  * @num_mapped_sgs: (internal) number of mapped sg entries
1454  * @num_sgs: number of entries in the sg list
1455  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1456  *	be broken up into chunks according to the current maximum packet
1457  *	size for the endpoint, which is a function of the configuration
1458  *	and is encoded in the pipe.  When the length is zero, neither
1459  *	transfer_buffer nor transfer_dma is used.
1460  * @actual_length: This is read in non-iso completion functions, and
1461  *	it tells how many bytes (out of transfer_buffer_length) were
1462  *	transferred.  It will normally be the same as requested, unless
1463  *	either an error was reported or a short read was performed.
1464  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1465  *	short reads be reported as errors.
1466  * @setup_packet: Only used for control transfers, this points to eight bytes
1467  *	of setup data.  Control transfers always start by sending this data
1468  *	to the device.  Then transfer_buffer is read or written, if needed.
1469  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1470  *	this field; setup_packet must point to a valid buffer.
1471  * @start_frame: Returns the initial frame for isochronous transfers.
1472  * @number_of_packets: Lists the number of ISO transfer buffers.
1473  * @interval: Specifies the polling interval for interrupt or isochronous
1474  *	transfers.  The units are frames (milliseconds) for full and low
1475  *	speed devices, and microframes (1/8 millisecond) for highspeed
1476  *	and SuperSpeed devices.
1477  * @error_count: Returns the number of ISO transfers that reported errors.
1478  * @context: For use in completion functions.  This normally points to
1479  *	request-specific driver context.
1480  * @complete: Completion handler. This URB is passed as the parameter to the
1481  *	completion function.  The completion function may then do what
1482  *	it likes with the URB, including resubmitting or freeing it.
1483  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1484  *	collect the transfer status for each buffer.
1485  *
1486  * This structure identifies USB transfer requests.  URBs must be allocated by
1487  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1488  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1489  * are submitted using usb_submit_urb(), and pending requests may be canceled
1490  * using usb_unlink_urb() or usb_kill_urb().
1491  *
1492  * Data Transfer Buffers:
1493  *
1494  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1495  * taken from the general page pool.  That is provided by transfer_buffer
1496  * (control requests also use setup_packet), and host controller drivers
1497  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1498  * mapping operations can be expensive on some platforms (perhaps using a dma
1499  * bounce buffer or talking to an IOMMU),
1500  * although they're cheap on commodity x86 and ppc hardware.
1501  *
1502  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1503  * which tells the host controller driver that no such mapping is needed for
1504  * the transfer_buffer since
1505  * the device driver is DMA-aware.  For example, a device driver might
1506  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1507  * When this transfer flag is provided, host controller drivers will
1508  * attempt to use the dma address found in the transfer_dma
1509  * field rather than determining a dma address themselves.
1510  *
1511  * Note that transfer_buffer must still be set if the controller
1512  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1513  * to root hub. If you have to trasfer between highmem zone and the device
1514  * on such controller, create a bounce buffer or bail out with an error.
1515  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1516  * capable, assign NULL to it, so that usbmon knows not to use the value.
1517  * The setup_packet must always be set, so it cannot be located in highmem.
1518  *
1519  * Initialization:
1520  *
1521  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1522  * zero), and complete fields.  All URBs must also initialize
1523  * transfer_buffer and transfer_buffer_length.  They may provide the
1524  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1525  * to be treated as errors; that flag is invalid for write requests.
1526  *
1527  * Bulk URBs may
1528  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1529  * should always terminate with a short packet, even if it means adding an
1530  * extra zero length packet.
1531  *
1532  * Control URBs must provide a valid pointer in the setup_packet field.
1533  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1534  * beforehand.
1535  *
1536  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1537  * or, for highspeed devices, 125 microsecond units)
1538  * to poll for transfers.  After the URB has been submitted, the interval
1539  * field reflects how the transfer was actually scheduled.
1540  * The polling interval may be more frequent than requested.
1541  * For example, some controllers have a maximum interval of 32 milliseconds,
1542  * while others support intervals of up to 1024 milliseconds.
1543  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1544  * endpoints, as well as high speed interrupt endpoints, the encoding of
1545  * the transfer interval in the endpoint descriptor is logarithmic.
1546  * Device drivers must convert that value to linear units themselves.)
1547  *
1548  * If an isochronous endpoint queue isn't already running, the host
1549  * controller will schedule a new URB to start as soon as bandwidth
1550  * utilization allows.  If the queue is running then a new URB will be
1551  * scheduled to start in the first transfer slot following the end of the
1552  * preceding URB, if that slot has not already expired.  If the slot has
1553  * expired (which can happen when IRQ delivery is delayed for a long time),
1554  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1555  * is clear then the URB will be scheduled to start in the expired slot,
1556  * implying that some of its packets will not be transferred; if the flag
1557  * is set then the URB will be scheduled in the first unexpired slot,
1558  * breaking the queue's synchronization.  Upon URB completion, the
1559  * start_frame field will be set to the (micro)frame number in which the
1560  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1561  * and can go from as low as 256 to as high as 65536 frames.
1562  *
1563  * Isochronous URBs have a different data transfer model, in part because
1564  * the quality of service is only "best effort".  Callers provide specially
1565  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1566  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1567  * URBs are normally queued, submitted by drivers to arrange that
1568  * transfers are at least double buffered, and then explicitly resubmitted
1569  * in completion handlers, so
1570  * that data (such as audio or video) streams at as constant a rate as the
1571  * host controller scheduler can support.
1572  *
1573  * Completion Callbacks:
1574  *
1575  * The completion callback is made in_interrupt(), and one of the first
1576  * things that a completion handler should do is check the status field.
1577  * The status field is provided for all URBs.  It is used to report
1578  * unlinked URBs, and status for all non-ISO transfers.  It should not
1579  * be examined before the URB is returned to the completion handler.
1580  *
1581  * The context field is normally used to link URBs back to the relevant
1582  * driver or request state.
1583  *
1584  * When the completion callback is invoked for non-isochronous URBs, the
1585  * actual_length field tells how many bytes were transferred.  This field
1586  * is updated even when the URB terminated with an error or was unlinked.
1587  *
1588  * ISO transfer status is reported in the status and actual_length fields
1589  * of the iso_frame_desc array, and the number of errors is reported in
1590  * error_count.  Completion callbacks for ISO transfers will normally
1591  * (re)submit URBs to ensure a constant transfer rate.
1592  *
1593  * Note that even fields marked "public" should not be touched by the driver
1594  * when the urb is owned by the hcd, that is, since the call to
1595  * usb_submit_urb() till the entry into the completion routine.
1596  */
1597 struct urb {
1598 	/* private: usb core and host controller only fields in the urb */
1599 	struct kref kref;		/* reference count of the URB */
1600 	int unlinked;			/* unlink error code */
1601 	void *hcpriv;			/* private data for host controller */
1602 	atomic_t use_count;		/* concurrent submissions counter */
1603 	atomic_t reject;		/* submissions will fail */
1604 
1605 	/* public: documented fields in the urb that can be used by drivers */
1606 	struct list_head urb_list;	/* list head for use by the urb's
1607 					 * current owner */
1608 	struct list_head anchor_list;	/* the URB may be anchored */
1609 	struct usb_anchor *anchor;
1610 	struct usb_device *dev;		/* (in) pointer to associated device */
1611 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1612 	unsigned int pipe;		/* (in) pipe information */
1613 	unsigned int stream_id;		/* (in) stream ID */
1614 	int status;			/* (return) non-ISO status */
1615 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1616 	void *transfer_buffer;		/* (in) associated data buffer */
1617 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1618 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1619 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1620 	int num_sgs;			/* (in) number of entries in the sg list */
1621 	u32 transfer_buffer_length;	/* (in) data buffer length */
1622 	u32 actual_length;		/* (return) actual transfer length */
1623 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1624 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1625 	int start_frame;		/* (modify) start frame (ISO) */
1626 	int number_of_packets;		/* (in) number of ISO packets */
1627 	int interval;			/* (modify) transfer interval
1628 					 * (INT/ISO) */
1629 	int error_count;		/* (return) number of ISO errors */
1630 	void *context;			/* (in) context for completion */
1631 	usb_complete_t complete;	/* (in) completion routine */
1632 
1633 	ANDROID_KABI_RESERVE(1);
1634 	ANDROID_KABI_RESERVE(2);
1635 	ANDROID_KABI_RESERVE(3);
1636 	ANDROID_KABI_RESERVE(4);
1637 
1638 	struct usb_iso_packet_descriptor iso_frame_desc[];
1639 					/* (in) ISO ONLY */
1640 };
1641 
1642 /* ----------------------------------------------------------------------- */
1643 
1644 /**
1645  * usb_fill_control_urb - initializes a control urb
1646  * @urb: pointer to the urb to initialize.
1647  * @dev: pointer to the struct usb_device for this urb.
1648  * @pipe: the endpoint pipe
1649  * @setup_packet: pointer to the setup_packet buffer
1650  * @transfer_buffer: pointer to the transfer buffer
1651  * @buffer_length: length of the transfer buffer
1652  * @complete_fn: pointer to the usb_complete_t function
1653  * @context: what to set the urb context to.
1654  *
1655  * Initializes a control urb with the proper information needed to submit
1656  * it to a device.
1657  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1658 static inline void usb_fill_control_urb(struct urb *urb,
1659 					struct usb_device *dev,
1660 					unsigned int pipe,
1661 					unsigned char *setup_packet,
1662 					void *transfer_buffer,
1663 					int buffer_length,
1664 					usb_complete_t complete_fn,
1665 					void *context)
1666 {
1667 	urb->dev = dev;
1668 	urb->pipe = pipe;
1669 	urb->setup_packet = setup_packet;
1670 	urb->transfer_buffer = transfer_buffer;
1671 	urb->transfer_buffer_length = buffer_length;
1672 	urb->complete = complete_fn;
1673 	urb->context = context;
1674 }
1675 
1676 /**
1677  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1678  * @urb: pointer to the urb to initialize.
1679  * @dev: pointer to the struct usb_device for this urb.
1680  * @pipe: the endpoint pipe
1681  * @transfer_buffer: pointer to the transfer buffer
1682  * @buffer_length: length of the transfer buffer
1683  * @complete_fn: pointer to the usb_complete_t function
1684  * @context: what to set the urb context to.
1685  *
1686  * Initializes a bulk urb with the proper information needed to submit it
1687  * to a device.
1688  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1689 static inline void usb_fill_bulk_urb(struct urb *urb,
1690 				     struct usb_device *dev,
1691 				     unsigned int pipe,
1692 				     void *transfer_buffer,
1693 				     int buffer_length,
1694 				     usb_complete_t complete_fn,
1695 				     void *context)
1696 {
1697 	urb->dev = dev;
1698 	urb->pipe = pipe;
1699 	urb->transfer_buffer = transfer_buffer;
1700 	urb->transfer_buffer_length = buffer_length;
1701 	urb->complete = complete_fn;
1702 	urb->context = context;
1703 }
1704 
1705 /**
1706  * usb_fill_int_urb - macro to help initialize a interrupt urb
1707  * @urb: pointer to the urb to initialize.
1708  * @dev: pointer to the struct usb_device for this urb.
1709  * @pipe: the endpoint pipe
1710  * @transfer_buffer: pointer to the transfer buffer
1711  * @buffer_length: length of the transfer buffer
1712  * @complete_fn: pointer to the usb_complete_t function
1713  * @context: what to set the urb context to.
1714  * @interval: what to set the urb interval to, encoded like
1715  *	the endpoint descriptor's bInterval value.
1716  *
1717  * Initializes a interrupt urb with the proper information needed to submit
1718  * it to a device.
1719  *
1720  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1721  * encoding of the endpoint interval, and express polling intervals in
1722  * microframes (eight per millisecond) rather than in frames (one per
1723  * millisecond).
1724  *
1725  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1726  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1727  * through to the host controller, rather than being translated into microframe
1728  * units.
1729  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1730 static inline void usb_fill_int_urb(struct urb *urb,
1731 				    struct usb_device *dev,
1732 				    unsigned int pipe,
1733 				    void *transfer_buffer,
1734 				    int buffer_length,
1735 				    usb_complete_t complete_fn,
1736 				    void *context,
1737 				    int interval)
1738 {
1739 	urb->dev = dev;
1740 	urb->pipe = pipe;
1741 	urb->transfer_buffer = transfer_buffer;
1742 	urb->transfer_buffer_length = buffer_length;
1743 	urb->complete = complete_fn;
1744 	urb->context = context;
1745 
1746 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1747 		/* make sure interval is within allowed range */
1748 		interval = clamp(interval, 1, 16);
1749 
1750 		urb->interval = 1 << (interval - 1);
1751 	} else {
1752 		urb->interval = interval;
1753 	}
1754 
1755 	urb->start_frame = -1;
1756 }
1757 
1758 extern void usb_init_urb(struct urb *urb);
1759 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1760 extern void usb_free_urb(struct urb *urb);
1761 #define usb_put_urb usb_free_urb
1762 extern struct urb *usb_get_urb(struct urb *urb);
1763 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1764 extern int usb_unlink_urb(struct urb *urb);
1765 extern void usb_kill_urb(struct urb *urb);
1766 extern void usb_poison_urb(struct urb *urb);
1767 extern void usb_unpoison_urb(struct urb *urb);
1768 extern void usb_block_urb(struct urb *urb);
1769 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1770 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1771 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1772 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1773 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1774 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1775 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1776 extern void usb_unanchor_urb(struct urb *urb);
1777 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1778 					 unsigned int timeout);
1779 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1780 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1781 extern int usb_anchor_empty(struct usb_anchor *anchor);
1782 
1783 #define usb_unblock_urb	usb_unpoison_urb
1784 
1785 /**
1786  * usb_urb_dir_in - check if an URB describes an IN transfer
1787  * @urb: URB to be checked
1788  *
1789  * Return: 1 if @urb describes an IN transfer (device-to-host),
1790  * otherwise 0.
1791  */
usb_urb_dir_in(struct urb * urb)1792 static inline int usb_urb_dir_in(struct urb *urb)
1793 {
1794 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1795 }
1796 
1797 /**
1798  * usb_urb_dir_out - check if an URB describes an OUT transfer
1799  * @urb: URB to be checked
1800  *
1801  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1802  * otherwise 0.
1803  */
usb_urb_dir_out(struct urb * urb)1804 static inline int usb_urb_dir_out(struct urb *urb)
1805 {
1806 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1807 }
1808 
1809 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1810 int usb_urb_ep_type_check(const struct urb *urb);
1811 
1812 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1813 	gfp_t mem_flags, dma_addr_t *dma);
1814 void usb_free_coherent(struct usb_device *dev, size_t size,
1815 	void *addr, dma_addr_t dma);
1816 
1817 #if 0
1818 struct urb *usb_buffer_map(struct urb *urb);
1819 void usb_buffer_dmasync(struct urb *urb);
1820 void usb_buffer_unmap(struct urb *urb);
1821 #endif
1822 
1823 struct scatterlist;
1824 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1825 		      struct scatterlist *sg, int nents);
1826 #if 0
1827 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1828 			   struct scatterlist *sg, int n_hw_ents);
1829 #endif
1830 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1831 			 struct scatterlist *sg, int n_hw_ents);
1832 
1833 /*-------------------------------------------------------------------*
1834  *                         SYNCHRONOUS CALL SUPPORT                  *
1835  *-------------------------------------------------------------------*/
1836 
1837 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1838 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1839 	void *data, __u16 size, int timeout);
1840 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1841 	void *data, int len, int *actual_length, int timeout);
1842 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1843 	void *data, int len, int *actual_length,
1844 	int timeout);
1845 
1846 /* wrappers around usb_control_msg() for the most common standard requests */
1847 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1848 			 __u8 requesttype, __u16 value, __u16 index,
1849 			 const void *data, __u16 size, int timeout,
1850 			 gfp_t memflags);
1851 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1852 			 __u8 requesttype, __u16 value, __u16 index,
1853 			 void *data, __u16 size, int timeout,
1854 			 gfp_t memflags);
1855 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1856 	unsigned char descindex, void *buf, int size);
1857 extern int usb_get_status(struct usb_device *dev,
1858 	int recip, int type, int target, void *data);
1859 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1860 static inline int usb_get_std_status(struct usb_device *dev,
1861 	int recip, int target, void *data)
1862 {
1863 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1864 		data);
1865 }
1866 
usb_get_ptm_status(struct usb_device * dev,void * data)1867 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1868 {
1869 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1870 		0, data);
1871 }
1872 
1873 extern int usb_string(struct usb_device *dev, int index,
1874 	char *buf, size_t size);
1875 
1876 /* wrappers that also update important state inside usbcore */
1877 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1878 extern int usb_reset_configuration(struct usb_device *dev);
1879 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1880 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1881 
1882 /* this request isn't really synchronous, but it belongs with the others */
1883 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1884 
1885 /* choose and set configuration for device */
1886 extern int usb_choose_configuration(struct usb_device *udev);
1887 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1888 
1889 /*
1890  * timeouts, in milliseconds, used for sending/receiving control messages
1891  * they typically complete within a few frames (msec) after they're issued
1892  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1893  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1894  */
1895 #define USB_CTRL_GET_TIMEOUT	5000
1896 #define USB_CTRL_SET_TIMEOUT	5000
1897 
1898 
1899 /**
1900  * struct usb_sg_request - support for scatter/gather I/O
1901  * @status: zero indicates success, else negative errno
1902  * @bytes: counts bytes transferred.
1903  *
1904  * These requests are initialized using usb_sg_init(), and then are used
1905  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1906  * members of the request object aren't for driver access.
1907  *
1908  * The status and bytecount values are valid only after usb_sg_wait()
1909  * returns.  If the status is zero, then the bytecount matches the total
1910  * from the request.
1911  *
1912  * After an error completion, drivers may need to clear a halt condition
1913  * on the endpoint.
1914  */
1915 struct usb_sg_request {
1916 	int			status;
1917 	size_t			bytes;
1918 
1919 	/* private:
1920 	 * members below are private to usbcore,
1921 	 * and are not provided for driver access!
1922 	 */
1923 	spinlock_t		lock;
1924 
1925 	struct usb_device	*dev;
1926 	int			pipe;
1927 
1928 	int			entries;
1929 	struct urb		**urbs;
1930 
1931 	int			count;
1932 	struct completion	complete;
1933 };
1934 
1935 int usb_sg_init(
1936 	struct usb_sg_request	*io,
1937 	struct usb_device	*dev,
1938 	unsigned		pipe,
1939 	unsigned		period,
1940 	struct scatterlist	*sg,
1941 	int			nents,
1942 	size_t			length,
1943 	gfp_t			mem_flags
1944 );
1945 void usb_sg_cancel(struct usb_sg_request *io);
1946 void usb_sg_wait(struct usb_sg_request *io);
1947 
1948 
1949 /* ----------------------------------------------------------------------- */
1950 
1951 /*
1952  * For various legacy reasons, Linux has a small cookie that's paired with
1953  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1954  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1955  * an unsigned int encoded as:
1956  *
1957  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1958  *					 1 = Device-to-Host [In] ...
1959  *					like endpoint bEndpointAddress)
1960  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1961  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1962  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1963  *					 10 = control, 11 = bulk)
1964  *
1965  * Given the device address and endpoint descriptor, pipes are redundant.
1966  */
1967 
1968 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1969 /* (yet ... they're the values used by usbfs) */
1970 #define PIPE_ISOCHRONOUS		0
1971 #define PIPE_INTERRUPT			1
1972 #define PIPE_CONTROL			2
1973 #define PIPE_BULK			3
1974 
1975 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1976 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1977 
1978 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1979 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1980 
1981 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1982 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1983 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1984 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1985 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1986 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1987 static inline unsigned int __create_pipe(struct usb_device *dev,
1988 		unsigned int endpoint)
1989 {
1990 	return (dev->devnum << 8) | (endpoint << 15);
1991 }
1992 
1993 /* Create various pipes... */
1994 #define usb_sndctrlpipe(dev, endpoint)	\
1995 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1996 #define usb_rcvctrlpipe(dev, endpoint)	\
1997 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1998 #define usb_sndisocpipe(dev, endpoint)	\
1999 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2000 #define usb_rcvisocpipe(dev, endpoint)	\
2001 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2002 #define usb_sndbulkpipe(dev, endpoint)	\
2003 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2004 #define usb_rcvbulkpipe(dev, endpoint)	\
2005 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2006 #define usb_sndintpipe(dev, endpoint)	\
2007 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2008 #define usb_rcvintpipe(dev, endpoint)	\
2009 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2010 
2011 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2012 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2013 {
2014 	struct usb_host_endpoint **eps;
2015 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2016 	return eps[usb_pipeendpoint(pipe)];
2017 }
2018 
2019 /*-------------------------------------------------------------------------*/
2020 
2021 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)2022 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
2023 {
2024 	struct usb_host_endpoint	*ep;
2025 	unsigned			epnum = usb_pipeendpoint(pipe);
2026 
2027 	if (is_out) {
2028 		WARN_ON(usb_pipein(pipe));
2029 		ep = udev->ep_out[epnum];
2030 	} else {
2031 		WARN_ON(usb_pipeout(pipe));
2032 		ep = udev->ep_in[epnum];
2033 	}
2034 	if (!ep)
2035 		return 0;
2036 
2037 	/* NOTE:  only 0x07ff bits are for packet size... */
2038 	return usb_endpoint_maxp(&ep->desc);
2039 }
2040 
2041 /* ----------------------------------------------------------------------- */
2042 
2043 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2044 static inline int usb_translate_errors(int error_code)
2045 {
2046 	switch (error_code) {
2047 	case 0:
2048 	case -ENOMEM:
2049 	case -ENODEV:
2050 	case -EOPNOTSUPP:
2051 		return error_code;
2052 	default:
2053 		return -EIO;
2054 	}
2055 }
2056 
2057 /* Events from the usb core */
2058 #define USB_DEVICE_ADD		0x0001
2059 #define USB_DEVICE_REMOVE	0x0002
2060 #define USB_BUS_ADD		0x0003
2061 #define USB_BUS_REMOVE		0x0004
2062 extern void usb_register_notify(struct notifier_block *nb);
2063 extern void usb_unregister_notify(struct notifier_block *nb);
2064 
2065 /* debugfs stuff */
2066 extern struct dentry *usb_debug_root;
2067 
2068 /* LED triggers */
2069 enum usb_led_event {
2070 	USB_LED_EVENT_HOST = 0,
2071 	USB_LED_EVENT_GADGET = 1,
2072 };
2073 
2074 #ifdef CONFIG_USB_LED_TRIG
2075 extern void usb_led_activity(enum usb_led_event ev);
2076 #else
usb_led_activity(enum usb_led_event ev)2077 static inline void usb_led_activity(enum usb_led_event ev) {}
2078 #endif
2079 
2080 #endif  /* __KERNEL__ */
2081 
2082 #endif
2083