• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by struct memblock_region that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the struct memblock_type
54  * which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with struct memblock. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 /*
136  * keep a pointer to &memblock.memory in the text section to use it in
137  * __next_mem_range() and its helpers.
138  *  For architectures that do not keep memblock data after init, this
139  * pointer will be reset to NULL at memblock_discard()
140  */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142 
143 #define for_each_memblock_type(i, memblock_type, rgn)			\
144 	for (i = 0, rgn = &memblock_type->regions[0];			\
145 	     i < memblock_type->cnt;					\
146 	     i++, rgn = &memblock_type->regions[i])
147 
148 #define memblock_dbg(fmt, ...)						\
149 	do {								\
150 		if (memblock_debug)					\
151 			pr_info(fmt, ##__VA_ARGS__);			\
152 	} while (0)
153 
154 static int memblock_debug __initdata_memblock;
155 static bool memblock_nomap_remove __initdata_memblock;
156 static bool system_has_some_mirror __initdata_memblock = false;
157 static int memblock_can_resize __initdata_memblock;
158 static int memblock_memory_in_slab __initdata_memblock = 0;
159 static int memblock_reserved_in_slab __initdata_memblock = 0;
160 
choose_memblock_flags(void)161 static enum memblock_flags __init_memblock choose_memblock_flags(void)
162 {
163 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
164 }
165 
166 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)167 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
168 {
169 	return *size = min(*size, PHYS_ADDR_MAX - base);
170 }
171 
172 /*
173  * Address comparison utilities
174  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)175 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
176 				       phys_addr_t base2, phys_addr_t size2)
177 {
178 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
179 }
180 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)181 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
182 					phys_addr_t base, phys_addr_t size)
183 {
184 	unsigned long i;
185 
186 	memblock_cap_size(base, &size);
187 
188 	for (i = 0; i < type->cnt; i++)
189 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
190 					   type->regions[i].size))
191 			break;
192 	return i < type->cnt;
193 }
194 
195 /**
196  * __memblock_find_range_bottom_up - find free area utility in bottom-up
197  * @start: start of candidate range
198  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199  *       %MEMBLOCK_ALLOC_ACCESSIBLE
200  * @size: size of free area to find
201  * @align: alignment of free area to find
202  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
203  * @flags: pick from blocks based on memory attributes
204  *
205  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
206  *
207  * Return:
208  * Found address on success, 0 on failure.
209  */
210 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)211 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
212 				phys_addr_t size, phys_addr_t align, int nid,
213 				enum memblock_flags flags)
214 {
215 	phys_addr_t this_start, this_end, cand;
216 	u64 i;
217 
218 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
219 		this_start = clamp(this_start, start, end);
220 		this_end = clamp(this_end, start, end);
221 
222 		cand = round_up(this_start, align);
223 		if (cand < this_end && this_end - cand >= size)
224 			return cand;
225 	}
226 
227 	return 0;
228 }
229 
230 /**
231  * __memblock_find_range_top_down - find free area utility, in top-down
232  * @start: start of candidate range
233  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
234  *       %MEMBLOCK_ALLOC_ACCESSIBLE
235  * @size: size of free area to find
236  * @align: alignment of free area to find
237  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
238  * @flags: pick from blocks based on memory attributes
239  *
240  * Utility called from memblock_find_in_range_node(), find free area top-down.
241  *
242  * Return:
243  * Found address on success, 0 on failure.
244  */
245 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)246 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
247 			       phys_addr_t size, phys_addr_t align, int nid,
248 			       enum memblock_flags flags)
249 {
250 	phys_addr_t this_start, this_end, cand;
251 	u64 i;
252 
253 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
254 					NULL) {
255 		this_start = clamp(this_start, start, end);
256 		this_end = clamp(this_end, start, end);
257 
258 		if (this_end < size)
259 			continue;
260 
261 		cand = round_down(this_end - size, align);
262 		if (cand >= this_start)
263 			return cand;
264 	}
265 
266 	return 0;
267 }
268 
269 /**
270  * memblock_find_in_range_node - find free area in given range and node
271  * @size: size of free area to find
272  * @align: alignment of free area to find
273  * @start: start of candidate range
274  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
275  *       %MEMBLOCK_ALLOC_ACCESSIBLE
276  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
277  * @flags: pick from blocks based on memory attributes
278  *
279  * Find @size free area aligned to @align in the specified range and node.
280  *
281  * Return:
282  * Found address on success, 0 on failure.
283  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)284 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
285 					phys_addr_t align, phys_addr_t start,
286 					phys_addr_t end, int nid,
287 					enum memblock_flags flags)
288 {
289 	/* pump up @end */
290 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
291 	    end == MEMBLOCK_ALLOC_KASAN)
292 		end = memblock.current_limit;
293 
294 	/* avoid allocating the first page */
295 	start = max_t(phys_addr_t, start, PAGE_SIZE);
296 	end = max(start, end);
297 
298 	if (memblock_bottom_up())
299 		return __memblock_find_range_bottom_up(start, end, size, align,
300 						       nid, flags);
301 	else
302 		return __memblock_find_range_top_down(start, end, size, align,
303 						      nid, flags);
304 }
305 
306 /**
307  * memblock_find_in_range - find free area in given range
308  * @start: start of candidate range
309  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
310  *       %MEMBLOCK_ALLOC_ACCESSIBLE
311  * @size: size of free area to find
312  * @align: alignment of free area to find
313  *
314  * Find @size free area aligned to @align in the specified range.
315  *
316  * Return:
317  * Found address on success, 0 on failure.
318  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)319 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
320 					phys_addr_t end, phys_addr_t size,
321 					phys_addr_t align)
322 {
323 	phys_addr_t ret;
324 	enum memblock_flags flags = choose_memblock_flags();
325 
326 again:
327 	ret = memblock_find_in_range_node(size, align, start, end,
328 					    NUMA_NO_NODE, flags);
329 
330 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
331 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
332 			&size);
333 		flags &= ~MEMBLOCK_MIRROR;
334 		goto again;
335 	}
336 
337 	return ret;
338 }
339 
memblock_remove_region(struct memblock_type * type,unsigned long r)340 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
341 {
342 	type->total_size -= type->regions[r].size;
343 	memmove(&type->regions[r], &type->regions[r + 1],
344 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
345 	type->cnt--;
346 
347 	/* Special case for empty arrays */
348 	if (type->cnt == 0) {
349 		WARN_ON(type->total_size != 0);
350 		type->cnt = 1;
351 		type->regions[0].base = 0;
352 		type->regions[0].size = 0;
353 		type->regions[0].flags = 0;
354 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
355 	}
356 }
357 
358 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
359 /**
360  * memblock_discard - discard memory and reserved arrays if they were allocated
361  */
memblock_discard(void)362 void __init memblock_discard(void)
363 {
364 	phys_addr_t addr, size;
365 
366 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
367 		addr = __pa(memblock.reserved.regions);
368 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
369 				  memblock.reserved.max);
370 		if (memblock_reserved_in_slab)
371 			kfree(memblock.reserved.regions);
372 		else
373 			__memblock_free_late(addr, size);
374 	}
375 
376 	if (memblock.memory.regions != memblock_memory_init_regions) {
377 		addr = __pa(memblock.memory.regions);
378 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
379 				  memblock.memory.max);
380 		if (memblock_memory_in_slab)
381 			kfree(memblock.memory.regions);
382 		else
383 			__memblock_free_late(addr, size);
384 	}
385 
386 	memblock_memory = NULL;
387 }
388 #endif
389 
390 /**
391  * memblock_double_array - double the size of the memblock regions array
392  * @type: memblock type of the regions array being doubled
393  * @new_area_start: starting address of memory range to avoid overlap with
394  * @new_area_size: size of memory range to avoid overlap with
395  *
396  * Double the size of the @type regions array. If memblock is being used to
397  * allocate memory for a new reserved regions array and there is a previously
398  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
399  * waiting to be reserved, ensure the memory used by the new array does
400  * not overlap.
401  *
402  * Return:
403  * 0 on success, -1 on failure.
404  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)405 static int __init_memblock memblock_double_array(struct memblock_type *type,
406 						phys_addr_t new_area_start,
407 						phys_addr_t new_area_size)
408 {
409 	struct memblock_region *new_array, *old_array;
410 	phys_addr_t old_alloc_size, new_alloc_size;
411 	phys_addr_t old_size, new_size, addr, new_end;
412 	int use_slab = slab_is_available();
413 	int *in_slab;
414 
415 	/* We don't allow resizing until we know about the reserved regions
416 	 * of memory that aren't suitable for allocation
417 	 */
418 	if (!memblock_can_resize)
419 		return -1;
420 
421 	/* Calculate new doubled size */
422 	old_size = type->max * sizeof(struct memblock_region);
423 	new_size = old_size << 1;
424 	/*
425 	 * We need to allocated new one align to PAGE_SIZE,
426 	 *   so we can free them completely later.
427 	 */
428 	old_alloc_size = PAGE_ALIGN(old_size);
429 	new_alloc_size = PAGE_ALIGN(new_size);
430 
431 	/* Retrieve the slab flag */
432 	if (type == &memblock.memory)
433 		in_slab = &memblock_memory_in_slab;
434 	else
435 		in_slab = &memblock_reserved_in_slab;
436 
437 	/* Try to find some space for it */
438 	if (use_slab) {
439 		new_array = kmalloc(new_size, GFP_KERNEL);
440 		addr = new_array ? __pa(new_array) : 0;
441 	} else {
442 		/* only exclude range when trying to double reserved.regions */
443 		if (type != &memblock.reserved)
444 			new_area_start = new_area_size = 0;
445 
446 		addr = memblock_find_in_range(new_area_start + new_area_size,
447 						memblock.current_limit,
448 						new_alloc_size, PAGE_SIZE);
449 		if (!addr && new_area_size)
450 			addr = memblock_find_in_range(0,
451 				min(new_area_start, memblock.current_limit),
452 				new_alloc_size, PAGE_SIZE);
453 
454 		new_array = addr ? __va(addr) : NULL;
455 	}
456 	if (!addr) {
457 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
458 		       type->name, type->max, type->max * 2);
459 		return -1;
460 	}
461 
462 	new_end = addr + new_size - 1;
463 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
464 			type->name, type->max * 2, &addr, &new_end);
465 
466 	/*
467 	 * Found space, we now need to move the array over before we add the
468 	 * reserved region since it may be our reserved array itself that is
469 	 * full.
470 	 */
471 	memcpy(new_array, type->regions, old_size);
472 	memset(new_array + type->max, 0, old_size);
473 	old_array = type->regions;
474 	type->regions = new_array;
475 	type->max <<= 1;
476 
477 	/* Free old array. We needn't free it if the array is the static one */
478 	if (*in_slab)
479 		kfree(old_array);
480 	else if (old_array != memblock_memory_init_regions &&
481 		 old_array != memblock_reserved_init_regions)
482 		memblock_free(__pa(old_array), old_alloc_size);
483 
484 	/*
485 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
486 	 * needn't do it
487 	 */
488 	if (!use_slab)
489 		BUG_ON(memblock_reserve(addr, new_alloc_size));
490 
491 	/* Update slab flag */
492 	*in_slab = use_slab;
493 
494 	return 0;
495 }
496 
497 /**
498  * memblock_merge_regions - merge neighboring compatible regions
499  * @type: memblock type to scan
500  *
501  * Scan @type and merge neighboring compatible regions.
502  */
memblock_merge_regions(struct memblock_type * type)503 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
504 {
505 	int i = 0;
506 
507 	/* cnt never goes below 1 */
508 	while (i < type->cnt - 1) {
509 		struct memblock_region *this = &type->regions[i];
510 		struct memblock_region *next = &type->regions[i + 1];
511 
512 		if (this->base + this->size != next->base ||
513 		    memblock_get_region_node(this) !=
514 		    memblock_get_region_node(next) ||
515 		    this->flags != next->flags) {
516 			BUG_ON(this->base + this->size > next->base);
517 			i++;
518 			continue;
519 		}
520 
521 		this->size += next->size;
522 		/* move forward from next + 1, index of which is i + 2 */
523 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
524 		type->cnt--;
525 	}
526 }
527 
528 /**
529  * memblock_insert_region - insert new memblock region
530  * @type:	memblock type to insert into
531  * @idx:	index for the insertion point
532  * @base:	base address of the new region
533  * @size:	size of the new region
534  * @nid:	node id of the new region
535  * @flags:	flags of the new region
536  *
537  * Insert new memblock region [@base, @base + @size) into @type at @idx.
538  * @type must already have extra room to accommodate the new region.
539  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)540 static void __init_memblock memblock_insert_region(struct memblock_type *type,
541 						   int idx, phys_addr_t base,
542 						   phys_addr_t size,
543 						   int nid,
544 						   enum memblock_flags flags)
545 {
546 	struct memblock_region *rgn = &type->regions[idx];
547 
548 	BUG_ON(type->cnt >= type->max);
549 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
550 	rgn->base = base;
551 	rgn->size = size;
552 	rgn->flags = flags;
553 	memblock_set_region_node(rgn, nid);
554 	type->cnt++;
555 	type->total_size += size;
556 }
557 
558 /**
559  * memblock_add_range - add new memblock region
560  * @type: memblock type to add new region into
561  * @base: base address of the new region
562  * @size: size of the new region
563  * @nid: nid of the new region
564  * @flags: flags of the new region
565  *
566  * Add new memblock region [@base, @base + @size) into @type.  The new region
567  * is allowed to overlap with existing ones - overlaps don't affect already
568  * existing regions.  @type is guaranteed to be minimal (all neighbouring
569  * compatible regions are merged) after the addition.
570  *
571  * Return:
572  * 0 on success, -errno on failure.
573  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)574 static int __init_memblock memblock_add_range(struct memblock_type *type,
575 				phys_addr_t base, phys_addr_t size,
576 				int nid, enum memblock_flags flags)
577 {
578 	bool insert = false;
579 	phys_addr_t obase = base;
580 	phys_addr_t end = base + memblock_cap_size(base, &size);
581 	int idx, nr_new;
582 	struct memblock_region *rgn;
583 
584 	if (!size)
585 		return 0;
586 
587 	/* special case for empty array */
588 	if (type->regions[0].size == 0) {
589 		WARN_ON(type->cnt != 1 || type->total_size);
590 		type->regions[0].base = base;
591 		type->regions[0].size = size;
592 		type->regions[0].flags = flags;
593 		memblock_set_region_node(&type->regions[0], nid);
594 		type->total_size = size;
595 		return 0;
596 	}
597 repeat:
598 	/*
599 	 * The following is executed twice.  Once with %false @insert and
600 	 * then with %true.  The first counts the number of regions needed
601 	 * to accommodate the new area.  The second actually inserts them.
602 	 */
603 	base = obase;
604 	nr_new = 0;
605 
606 	for_each_memblock_type(idx, type, rgn) {
607 		phys_addr_t rbase = rgn->base;
608 		phys_addr_t rend = rbase + rgn->size;
609 
610 		if (rbase >= end)
611 			break;
612 		if (rend <= base)
613 			continue;
614 		/*
615 		 * @rgn overlaps.  If it separates the lower part of new
616 		 * area, insert that portion.
617 		 */
618 		if (rbase > base) {
619 #ifdef CONFIG_NEED_MULTIPLE_NODES
620 			WARN_ON(nid != memblock_get_region_node(rgn));
621 #endif
622 			WARN_ON(flags != rgn->flags);
623 			nr_new++;
624 			if (insert)
625 				memblock_insert_region(type, idx++, base,
626 						       rbase - base, nid,
627 						       flags);
628 		}
629 		/* area below @rend is dealt with, forget about it */
630 		base = min(rend, end);
631 	}
632 
633 	/* insert the remaining portion */
634 	if (base < end) {
635 		nr_new++;
636 		if (insert)
637 			memblock_insert_region(type, idx, base, end - base,
638 					       nid, flags);
639 	}
640 
641 	if (!nr_new)
642 		return 0;
643 
644 	/*
645 	 * If this was the first round, resize array and repeat for actual
646 	 * insertions; otherwise, merge and return.
647 	 */
648 	if (!insert) {
649 		while (type->cnt + nr_new > type->max)
650 			if (memblock_double_array(type, obase, size) < 0)
651 				return -ENOMEM;
652 		insert = true;
653 		goto repeat;
654 	} else {
655 		memblock_merge_regions(type);
656 		return 0;
657 	}
658 }
659 
660 /**
661  * memblock_add_node - add new memblock region within a NUMA node
662  * @base: base address of the new region
663  * @size: size of the new region
664  * @nid: nid of the new region
665  *
666  * Add new memblock region [@base, @base + @size) to the "memory"
667  * type. See memblock_add_range() description for mode details
668  *
669  * Return:
670  * 0 on success, -errno on failure.
671  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 				       int nid)
674 {
675 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
676 }
677 
678 /**
679  * memblock_add - add new memblock region
680  * @base: base address of the new region
681  * @size: size of the new region
682  *
683  * Add new memblock region [@base, @base + @size) to the "memory"
684  * type. See memblock_add_range() description for mode details
685  *
686  * Return:
687  * 0 on success, -errno on failure.
688  */
memblock_add(phys_addr_t base,phys_addr_t size)689 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
690 {
691 	phys_addr_t end = base + size - 1;
692 
693 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
694 		     &base, &end, (void *)_RET_IP_);
695 
696 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
697 }
698 
699 /**
700  * memblock_isolate_range - isolate given range into disjoint memblocks
701  * @type: memblock type to isolate range for
702  * @base: base of range to isolate
703  * @size: size of range to isolate
704  * @start_rgn: out parameter for the start of isolated region
705  * @end_rgn: out parameter for the end of isolated region
706  *
707  * Walk @type and ensure that regions don't cross the boundaries defined by
708  * [@base, @base + @size).  Crossing regions are split at the boundaries,
709  * which may create at most two more regions.  The index of the first
710  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
711  *
712  * Return:
713  * 0 on success, -errno on failure.
714  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)715 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
716 					phys_addr_t base, phys_addr_t size,
717 					int *start_rgn, int *end_rgn)
718 {
719 	phys_addr_t end = base + memblock_cap_size(base, &size);
720 	int idx;
721 	struct memblock_region *rgn;
722 
723 	*start_rgn = *end_rgn = 0;
724 
725 	if (!size)
726 		return 0;
727 
728 	/* we'll create at most two more regions */
729 	while (type->cnt + 2 > type->max)
730 		if (memblock_double_array(type, base, size) < 0)
731 			return -ENOMEM;
732 
733 	for_each_memblock_type(idx, type, rgn) {
734 		phys_addr_t rbase = rgn->base;
735 		phys_addr_t rend = rbase + rgn->size;
736 
737 		if (rbase >= end)
738 			break;
739 		if (rend <= base)
740 			continue;
741 
742 		if (rbase < base) {
743 			/*
744 			 * @rgn intersects from below.  Split and continue
745 			 * to process the next region - the new top half.
746 			 */
747 			rgn->base = base;
748 			rgn->size -= base - rbase;
749 			type->total_size -= base - rbase;
750 			memblock_insert_region(type, idx, rbase, base - rbase,
751 					       memblock_get_region_node(rgn),
752 					       rgn->flags);
753 		} else if (rend > end) {
754 			/*
755 			 * @rgn intersects from above.  Split and redo the
756 			 * current region - the new bottom half.
757 			 */
758 			rgn->base = end;
759 			rgn->size -= end - rbase;
760 			type->total_size -= end - rbase;
761 			memblock_insert_region(type, idx--, rbase, end - rbase,
762 					       memblock_get_region_node(rgn),
763 					       rgn->flags);
764 		} else {
765 			/* @rgn is fully contained, record it */
766 			if (!*end_rgn)
767 				*start_rgn = idx;
768 			*end_rgn = idx + 1;
769 		}
770 	}
771 
772 	return 0;
773 }
774 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)775 static int __init_memblock memblock_remove_range(struct memblock_type *type,
776 					  phys_addr_t base, phys_addr_t size)
777 {
778 	int start_rgn, end_rgn;
779 	int i, ret;
780 
781 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
782 	if (ret)
783 		return ret;
784 
785 	for (i = end_rgn - 1; i >= start_rgn; i--)
786 		memblock_remove_region(type, i);
787 	return 0;
788 }
789 
memblock_remove(phys_addr_t base,phys_addr_t size)790 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
791 {
792 	phys_addr_t end = base + size - 1;
793 
794 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
795 		     &base, &end, (void *)_RET_IP_);
796 
797 	return memblock_remove_range(&memblock.memory, base, size);
798 }
799 
800 /**
801  * memblock_free - free boot memory block
802  * @base: phys starting address of the  boot memory block
803  * @size: size of the boot memory block in bytes
804  *
805  * Free boot memory block previously allocated by memblock_alloc_xx() API.
806  * The freeing memory will not be released to the buddy allocator.
807  */
memblock_free(phys_addr_t base,phys_addr_t size)808 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
809 {
810 	phys_addr_t end = base + size - 1;
811 
812 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
813 		     &base, &end, (void *)_RET_IP_);
814 
815 	kmemleak_free_part_phys(base, size);
816 	return memblock_remove_range(&memblock.reserved, base, size);
817 }
818 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
819 EXPORT_SYMBOL_GPL(memblock_free);
820 #endif
821 
memblock_reserve(phys_addr_t base,phys_addr_t size)822 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
823 {
824 	phys_addr_t end = base + size - 1;
825 
826 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
827 		     &base, &end, (void *)_RET_IP_);
828 
829 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
830 }
831 
832 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)833 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
834 {
835 	phys_addr_t end = base + size - 1;
836 
837 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
838 		     &base, &end, (void *)_RET_IP_);
839 
840 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
841 }
842 #endif
843 
844 /**
845  * memblock_setclr_flag - set or clear flag for a memory region
846  * @base: base address of the region
847  * @size: size of the region
848  * @set: set or clear the flag
849  * @flag: the flag to udpate
850  *
851  * This function isolates region [@base, @base + @size), and sets/clears flag
852  *
853  * Return: 0 on success, -errno on failure.
854  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)855 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
856 				phys_addr_t size, int set, int flag)
857 {
858 	struct memblock_type *type = &memblock.memory;
859 	int i, ret, start_rgn, end_rgn;
860 
861 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
862 	if (ret)
863 		return ret;
864 
865 	for (i = start_rgn; i < end_rgn; i++) {
866 		struct memblock_region *r = &type->regions[i];
867 
868 		if (set)
869 			r->flags |= flag;
870 		else
871 			r->flags &= ~flag;
872 	}
873 
874 	memblock_merge_regions(type);
875 	return 0;
876 }
877 
878 /**
879  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
880  * @base: the base phys addr of the region
881  * @size: the size of the region
882  *
883  * Return: 0 on success, -errno on failure.
884  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
886 {
887 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
888 }
889 
890 /**
891  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
892  * @base: the base phys addr of the region
893  * @size: the size of the region
894  *
895  * Return: 0 on success, -errno on failure.
896  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)897 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
898 {
899 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
900 }
901 
902 /**
903  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
904  * @base: the base phys addr of the region
905  * @size: the size of the region
906  *
907  * Return: 0 on success, -errno on failure.
908  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)909 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
910 {
911 	system_has_some_mirror = true;
912 
913 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
914 }
915 
916 /**
917  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
918  * @base: the base phys addr of the region
919  * @size: the size of the region
920  *
921  * Return: 0 on success, -errno on failure.
922  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)923 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
924 {
925 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
926 }
927 
928 /**
929  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
930  * @base: the base phys addr of the region
931  * @size: the size of the region
932  *
933  * Return: 0 on success, -errno on failure.
934  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)935 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
936 {
937 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
938 }
939 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)940 static bool should_skip_region(struct memblock_type *type,
941 			       struct memblock_region *m,
942 			       int nid, int flags)
943 {
944 	int m_nid = memblock_get_region_node(m);
945 
946 	/* we never skip regions when iterating memblock.reserved or physmem */
947 	if (type != memblock_memory)
948 		return false;
949 
950 	/* only memory regions are associated with nodes, check it */
951 	if (nid != NUMA_NO_NODE && nid != m_nid)
952 		return true;
953 
954 	/* skip hotpluggable memory regions if needed */
955 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
956 	    !(flags & MEMBLOCK_HOTPLUG))
957 		return true;
958 
959 	/* if we want mirror memory skip non-mirror memory regions */
960 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
961 		return true;
962 
963 	/* skip nomap memory unless we were asked for it explicitly */
964 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
965 		return true;
966 
967 	return false;
968 }
969 
970 /**
971  * __next_mem_range - next function for for_each_free_mem_range() etc.
972  * @idx: pointer to u64 loop variable
973  * @nid: node selector, %NUMA_NO_NODE for all nodes
974  * @flags: pick from blocks based on memory attributes
975  * @type_a: pointer to memblock_type from where the range is taken
976  * @type_b: pointer to memblock_type which excludes memory from being taken
977  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979  * @out_nid: ptr to int for nid of the range, can be %NULL
980  *
981  * Find the first area from *@idx which matches @nid, fill the out
982  * parameters, and update *@idx for the next iteration.  The lower 32bit of
983  * *@idx contains index into type_a and the upper 32bit indexes the
984  * areas before each region in type_b.	For example, if type_b regions
985  * look like the following,
986  *
987  *	0:[0-16), 1:[32-48), 2:[128-130)
988  *
989  * The upper 32bit indexes the following regions.
990  *
991  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
992  *
993  * As both region arrays are sorted, the function advances the two indices
994  * in lockstep and returns each intersection.
995  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)996 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
997 		      struct memblock_type *type_a,
998 		      struct memblock_type *type_b, phys_addr_t *out_start,
999 		      phys_addr_t *out_end, int *out_nid)
1000 {
1001 	int idx_a = *idx & 0xffffffff;
1002 	int idx_b = *idx >> 32;
1003 
1004 	if (WARN_ONCE(nid == MAX_NUMNODES,
1005 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006 		nid = NUMA_NO_NODE;
1007 
1008 	for (; idx_a < type_a->cnt; idx_a++) {
1009 		struct memblock_region *m = &type_a->regions[idx_a];
1010 
1011 		phys_addr_t m_start = m->base;
1012 		phys_addr_t m_end = m->base + m->size;
1013 		int	    m_nid = memblock_get_region_node(m);
1014 
1015 		if (should_skip_region(type_a, m, nid, flags))
1016 			continue;
1017 
1018 		if (!type_b) {
1019 			if (out_start)
1020 				*out_start = m_start;
1021 			if (out_end)
1022 				*out_end = m_end;
1023 			if (out_nid)
1024 				*out_nid = m_nid;
1025 			idx_a++;
1026 			*idx = (u32)idx_a | (u64)idx_b << 32;
1027 			return;
1028 		}
1029 
1030 		/* scan areas before each reservation */
1031 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1032 			struct memblock_region *r;
1033 			phys_addr_t r_start;
1034 			phys_addr_t r_end;
1035 
1036 			r = &type_b->regions[idx_b];
1037 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1038 			r_end = idx_b < type_b->cnt ?
1039 				r->base : PHYS_ADDR_MAX;
1040 
1041 			/*
1042 			 * if idx_b advanced past idx_a,
1043 			 * break out to advance idx_a
1044 			 */
1045 			if (r_start >= m_end)
1046 				break;
1047 			/* if the two regions intersect, we're done */
1048 			if (m_start < r_end) {
1049 				if (out_start)
1050 					*out_start =
1051 						max(m_start, r_start);
1052 				if (out_end)
1053 					*out_end = min(m_end, r_end);
1054 				if (out_nid)
1055 					*out_nid = m_nid;
1056 				/*
1057 				 * The region which ends first is
1058 				 * advanced for the next iteration.
1059 				 */
1060 				if (m_end <= r_end)
1061 					idx_a++;
1062 				else
1063 					idx_b++;
1064 				*idx = (u32)idx_a | (u64)idx_b << 32;
1065 				return;
1066 			}
1067 		}
1068 	}
1069 
1070 	/* signal end of iteration */
1071 	*idx = ULLONG_MAX;
1072 }
1073 
1074 /**
1075  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1076  *
1077  * @idx: pointer to u64 loop variable
1078  * @nid: node selector, %NUMA_NO_NODE for all nodes
1079  * @flags: pick from blocks based on memory attributes
1080  * @type_a: pointer to memblock_type from where the range is taken
1081  * @type_b: pointer to memblock_type which excludes memory from being taken
1082  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1083  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1084  * @out_nid: ptr to int for nid of the range, can be %NULL
1085  *
1086  * Finds the next range from type_a which is not marked as unsuitable
1087  * in type_b.
1088  *
1089  * Reverse of __next_mem_range().
1090  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1091 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1092 					  enum memblock_flags flags,
1093 					  struct memblock_type *type_a,
1094 					  struct memblock_type *type_b,
1095 					  phys_addr_t *out_start,
1096 					  phys_addr_t *out_end, int *out_nid)
1097 {
1098 	int idx_a = *idx & 0xffffffff;
1099 	int idx_b = *idx >> 32;
1100 
1101 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1102 		nid = NUMA_NO_NODE;
1103 
1104 	if (*idx == (u64)ULLONG_MAX) {
1105 		idx_a = type_a->cnt - 1;
1106 		if (type_b != NULL)
1107 			idx_b = type_b->cnt;
1108 		else
1109 			idx_b = 0;
1110 	}
1111 
1112 	for (; idx_a >= 0; idx_a--) {
1113 		struct memblock_region *m = &type_a->regions[idx_a];
1114 
1115 		phys_addr_t m_start = m->base;
1116 		phys_addr_t m_end = m->base + m->size;
1117 		int m_nid = memblock_get_region_node(m);
1118 
1119 		if (should_skip_region(type_a, m, nid, flags))
1120 			continue;
1121 
1122 		if (!type_b) {
1123 			if (out_start)
1124 				*out_start = m_start;
1125 			if (out_end)
1126 				*out_end = m_end;
1127 			if (out_nid)
1128 				*out_nid = m_nid;
1129 			idx_a--;
1130 			*idx = (u32)idx_a | (u64)idx_b << 32;
1131 			return;
1132 		}
1133 
1134 		/* scan areas before each reservation */
1135 		for (; idx_b >= 0; idx_b--) {
1136 			struct memblock_region *r;
1137 			phys_addr_t r_start;
1138 			phys_addr_t r_end;
1139 
1140 			r = &type_b->regions[idx_b];
1141 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1142 			r_end = idx_b < type_b->cnt ?
1143 				r->base : PHYS_ADDR_MAX;
1144 			/*
1145 			 * if idx_b advanced past idx_a,
1146 			 * break out to advance idx_a
1147 			 */
1148 
1149 			if (r_end <= m_start)
1150 				break;
1151 			/* if the two regions intersect, we're done */
1152 			if (m_end > r_start) {
1153 				if (out_start)
1154 					*out_start = max(m_start, r_start);
1155 				if (out_end)
1156 					*out_end = min(m_end, r_end);
1157 				if (out_nid)
1158 					*out_nid = m_nid;
1159 				if (m_start >= r_start)
1160 					idx_a--;
1161 				else
1162 					idx_b--;
1163 				*idx = (u32)idx_a | (u64)idx_b << 32;
1164 				return;
1165 			}
1166 		}
1167 	}
1168 	/* signal end of iteration */
1169 	*idx = ULLONG_MAX;
1170 }
1171 
1172 /*
1173  * Common iterator interface used to define for_each_mem_pfn_range().
1174  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1175 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1176 				unsigned long *out_start_pfn,
1177 				unsigned long *out_end_pfn, int *out_nid)
1178 {
1179 	struct memblock_type *type = &memblock.memory;
1180 	struct memblock_region *r;
1181 	int r_nid;
1182 
1183 	while (++*idx < type->cnt) {
1184 		r = &type->regions[*idx];
1185 		r_nid = memblock_get_region_node(r);
1186 
1187 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1188 			continue;
1189 		if (nid == MAX_NUMNODES || nid == r_nid)
1190 			break;
1191 	}
1192 	if (*idx >= type->cnt) {
1193 		*idx = -1;
1194 		return;
1195 	}
1196 
1197 	if (out_start_pfn)
1198 		*out_start_pfn = PFN_UP(r->base);
1199 	if (out_end_pfn)
1200 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1201 	if (out_nid)
1202 		*out_nid = r_nid;
1203 }
1204 
1205 /**
1206  * memblock_set_node - set node ID on memblock regions
1207  * @base: base of area to set node ID for
1208  * @size: size of area to set node ID for
1209  * @type: memblock type to set node ID for
1210  * @nid: node ID to set
1211  *
1212  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1213  * Regions which cross the area boundaries are split as necessary.
1214  *
1215  * Return:
1216  * 0 on success, -errno on failure.
1217  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1218 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1219 				      struct memblock_type *type, int nid)
1220 {
1221 #ifdef CONFIG_NEED_MULTIPLE_NODES
1222 	int start_rgn, end_rgn;
1223 	int i, ret;
1224 
1225 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1226 	if (ret)
1227 		return ret;
1228 
1229 	for (i = start_rgn; i < end_rgn; i++)
1230 		memblock_set_region_node(&type->regions[i], nid);
1231 
1232 	memblock_merge_regions(type);
1233 #endif
1234 	return 0;
1235 }
1236 
1237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1238 /**
1239  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1240  *
1241  * @idx: pointer to u64 loop variable
1242  * @zone: zone in which all of the memory blocks reside
1243  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1244  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1245  *
1246  * This function is meant to be a zone/pfn specific wrapper for the
1247  * for_each_mem_range type iterators. Specifically they are used in the
1248  * deferred memory init routines and as such we were duplicating much of
1249  * this logic throughout the code. So instead of having it in multiple
1250  * locations it seemed like it would make more sense to centralize this to
1251  * one new iterator that does everything they need.
1252  */
1253 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1254 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1255 			     unsigned long *out_spfn, unsigned long *out_epfn)
1256 {
1257 	int zone_nid = zone_to_nid(zone);
1258 	phys_addr_t spa, epa;
1259 	int nid;
1260 
1261 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1262 			 &memblock.memory, &memblock.reserved,
1263 			 &spa, &epa, &nid);
1264 
1265 	while (*idx != U64_MAX) {
1266 		unsigned long epfn = PFN_DOWN(epa);
1267 		unsigned long spfn = PFN_UP(spa);
1268 
1269 		/*
1270 		 * Verify the end is at least past the start of the zone and
1271 		 * that we have at least one PFN to initialize.
1272 		 */
1273 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1274 			/* if we went too far just stop searching */
1275 			if (zone_end_pfn(zone) <= spfn) {
1276 				*idx = U64_MAX;
1277 				break;
1278 			}
1279 
1280 			if (out_spfn)
1281 				*out_spfn = max(zone->zone_start_pfn, spfn);
1282 			if (out_epfn)
1283 				*out_epfn = min(zone_end_pfn(zone), epfn);
1284 
1285 			return;
1286 		}
1287 
1288 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 				 &memblock.memory, &memblock.reserved,
1290 				 &spa, &epa, &nid);
1291 	}
1292 
1293 	/* signal end of iteration */
1294 	if (out_spfn)
1295 		*out_spfn = ULONG_MAX;
1296 	if (out_epfn)
1297 		*out_epfn = 0;
1298 }
1299 
1300 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1301 
1302 /**
1303  * memblock_alloc_range_nid - allocate boot memory block
1304  * @size: size of memory block to be allocated in bytes
1305  * @align: alignment of the region and block's size
1306  * @start: the lower bound of the memory region to allocate (phys address)
1307  * @end: the upper bound of the memory region to allocate (phys address)
1308  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1309  * @exact_nid: control the allocation fall back to other nodes
1310  *
1311  * The allocation is performed from memory region limited by
1312  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1313  *
1314  * If the specified node can not hold the requested memory and @exact_nid
1315  * is false, the allocation falls back to any node in the system.
1316  *
1317  * For systems with memory mirroring, the allocation is attempted first
1318  * from the regions with mirroring enabled and then retried from any
1319  * memory region.
1320  *
1321  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1322  * allocated boot memory block, so that it is never reported as leaks.
1323  *
1324  * Return:
1325  * Physical address of allocated memory block on success, %0 on failure.
1326  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1327 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1328 					phys_addr_t align, phys_addr_t start,
1329 					phys_addr_t end, int nid,
1330 					bool exact_nid)
1331 {
1332 	enum memblock_flags flags = choose_memblock_flags();
1333 	phys_addr_t found;
1334 
1335 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1336 		nid = NUMA_NO_NODE;
1337 
1338 	if (!align) {
1339 		/* Can't use WARNs this early in boot on powerpc */
1340 		dump_stack();
1341 		align = SMP_CACHE_BYTES;
1342 	}
1343 
1344 again:
1345 	found = memblock_find_in_range_node(size, align, start, end, nid,
1346 					    flags);
1347 	if (found && !memblock_reserve(found, size))
1348 		goto done;
1349 
1350 	if (nid != NUMA_NO_NODE && !exact_nid) {
1351 		found = memblock_find_in_range_node(size, align, start,
1352 						    end, NUMA_NO_NODE,
1353 						    flags);
1354 		if (found && !memblock_reserve(found, size))
1355 			goto done;
1356 	}
1357 
1358 	if (flags & MEMBLOCK_MIRROR) {
1359 		flags &= ~MEMBLOCK_MIRROR;
1360 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1361 			&size);
1362 		goto again;
1363 	}
1364 
1365 	return 0;
1366 
1367 done:
1368 	/* Skip kmemleak for kasan_init() due to high volume. */
1369 	if (end != MEMBLOCK_ALLOC_KASAN)
1370 		/*
1371 		 * The min_count is set to 0 so that memblock allocated
1372 		 * blocks are never reported as leaks. This is because many
1373 		 * of these blocks are only referred via the physical
1374 		 * address which is not looked up by kmemleak.
1375 		 */
1376 		kmemleak_alloc_phys(found, size, 0, 0);
1377 
1378 	return found;
1379 }
1380 
1381 /**
1382  * memblock_phys_alloc_range - allocate a memory block inside specified range
1383  * @size: size of memory block to be allocated in bytes
1384  * @align: alignment of the region and block's size
1385  * @start: the lower bound of the memory region to allocate (physical address)
1386  * @end: the upper bound of the memory region to allocate (physical address)
1387  *
1388  * Allocate @size bytes in the between @start and @end.
1389  *
1390  * Return: physical address of the allocated memory block on success,
1391  * %0 on failure.
1392  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1393 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1394 					     phys_addr_t align,
1395 					     phys_addr_t start,
1396 					     phys_addr_t end)
1397 {
1398 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1399 		     __func__, (u64)size, (u64)align, &start, &end,
1400 		     (void *)_RET_IP_);
1401 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1402 					false);
1403 }
1404 
1405 /**
1406  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1407  * @size: size of memory block to be allocated in bytes
1408  * @align: alignment of the region and block's size
1409  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1410  *
1411  * Allocates memory block from the specified NUMA node. If the node
1412  * has no available memory, attempts to allocated from any node in the
1413  * system.
1414  *
1415  * Return: physical address of the allocated memory block on success,
1416  * %0 on failure.
1417  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1418 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1419 {
1420 	return memblock_alloc_range_nid(size, align, 0,
1421 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1422 }
1423 
1424 /**
1425  * memblock_alloc_internal - allocate boot memory block
1426  * @size: size of memory block to be allocated in bytes
1427  * @align: alignment of the region and block's size
1428  * @min_addr: the lower bound of the memory region to allocate (phys address)
1429  * @max_addr: the upper bound of the memory region to allocate (phys address)
1430  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1431  * @exact_nid: control the allocation fall back to other nodes
1432  *
1433  * Allocates memory block using memblock_alloc_range_nid() and
1434  * converts the returned physical address to virtual.
1435  *
1436  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1437  * will fall back to memory below @min_addr. Other constraints, such
1438  * as node and mirrored memory will be handled again in
1439  * memblock_alloc_range_nid().
1440  *
1441  * Return:
1442  * Virtual address of allocated memory block on success, NULL on failure.
1443  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1444 static void * __init memblock_alloc_internal(
1445 				phys_addr_t size, phys_addr_t align,
1446 				phys_addr_t min_addr, phys_addr_t max_addr,
1447 				int nid, bool exact_nid)
1448 {
1449 	phys_addr_t alloc;
1450 
1451 	/*
1452 	 * Detect any accidental use of these APIs after slab is ready, as at
1453 	 * this moment memblock may be deinitialized already and its
1454 	 * internal data may be destroyed (after execution of memblock_free_all)
1455 	 */
1456 	if (WARN_ON_ONCE(slab_is_available()))
1457 		return kzalloc_node(size, GFP_NOWAIT, nid);
1458 
1459 	if (max_addr > memblock.current_limit)
1460 		max_addr = memblock.current_limit;
1461 
1462 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1463 					exact_nid);
1464 
1465 	/* retry allocation without lower limit */
1466 	if (!alloc && min_addr)
1467 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1468 						exact_nid);
1469 
1470 	if (!alloc)
1471 		return NULL;
1472 
1473 	return phys_to_virt(alloc);
1474 }
1475 
1476 /**
1477  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1478  * without zeroing memory
1479  * @size: size of memory block to be allocated in bytes
1480  * @align: alignment of the region and block's size
1481  * @min_addr: the lower bound of the memory region from where the allocation
1482  *	  is preferred (phys address)
1483  * @max_addr: the upper bound of the memory region from where the allocation
1484  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1485  *	      allocate only from memory limited by memblock.current_limit value
1486  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1487  *
1488  * Public function, provides additional debug information (including caller
1489  * info), if enabled. Does not zero allocated memory.
1490  *
1491  * Return:
1492  * Virtual address of allocated memory block on success, NULL on failure.
1493  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1494 void * __init memblock_alloc_exact_nid_raw(
1495 			phys_addr_t size, phys_addr_t align,
1496 			phys_addr_t min_addr, phys_addr_t max_addr,
1497 			int nid)
1498 {
1499 	void *ptr;
1500 
1501 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1502 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1503 		     &max_addr, (void *)_RET_IP_);
1504 
1505 	ptr = memblock_alloc_internal(size, align,
1506 					   min_addr, max_addr, nid, true);
1507 	if (ptr && size > 0)
1508 		page_init_poison(ptr, size);
1509 
1510 	return ptr;
1511 }
1512 
1513 /**
1514  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1515  * memory and without panicking
1516  * @size: size of memory block to be allocated in bytes
1517  * @align: alignment of the region and block's size
1518  * @min_addr: the lower bound of the memory region from where the allocation
1519  *	  is preferred (phys address)
1520  * @max_addr: the upper bound of the memory region from where the allocation
1521  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1522  *	      allocate only from memory limited by memblock.current_limit value
1523  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524  *
1525  * Public function, provides additional debug information (including caller
1526  * info), if enabled. Does not zero allocated memory, does not panic if request
1527  * cannot be satisfied.
1528  *
1529  * Return:
1530  * Virtual address of allocated memory block on success, NULL on failure.
1531  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1532 void * __init memblock_alloc_try_nid_raw(
1533 			phys_addr_t size, phys_addr_t align,
1534 			phys_addr_t min_addr, phys_addr_t max_addr,
1535 			int nid)
1536 {
1537 	void *ptr;
1538 
1539 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1540 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1541 		     &max_addr, (void *)_RET_IP_);
1542 
1543 	ptr = memblock_alloc_internal(size, align,
1544 					   min_addr, max_addr, nid, false);
1545 	if (ptr && size > 0)
1546 		page_init_poison(ptr, size);
1547 
1548 	return ptr;
1549 }
1550 
1551 /**
1552  * memblock_alloc_try_nid - allocate boot memory block
1553  * @size: size of memory block to be allocated in bytes
1554  * @align: alignment of the region and block's size
1555  * @min_addr: the lower bound of the memory region from where the allocation
1556  *	  is preferred (phys address)
1557  * @max_addr: the upper bound of the memory region from where the allocation
1558  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1559  *	      allocate only from memory limited by memblock.current_limit value
1560  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1561  *
1562  * Public function, provides additional debug information (including caller
1563  * info), if enabled. This function zeroes the allocated memory.
1564  *
1565  * Return:
1566  * Virtual address of allocated memory block on success, NULL on failure.
1567  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1568 void * __init memblock_alloc_try_nid(
1569 			phys_addr_t size, phys_addr_t align,
1570 			phys_addr_t min_addr, phys_addr_t max_addr,
1571 			int nid)
1572 {
1573 	void *ptr;
1574 
1575 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1576 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1577 		     &max_addr, (void *)_RET_IP_);
1578 	ptr = memblock_alloc_internal(size, align,
1579 					   min_addr, max_addr, nid, false);
1580 	if (ptr)
1581 		memset(ptr, 0, size);
1582 
1583 	return ptr;
1584 }
1585 
1586 /**
1587  * __memblock_free_late - free pages directly to buddy allocator
1588  * @base: phys starting address of the  boot memory block
1589  * @size: size of the boot memory block in bytes
1590  *
1591  * This is only useful when the memblock allocator has already been torn
1592  * down, but we are still initializing the system.  Pages are released directly
1593  * to the buddy allocator.
1594  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1595 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1596 {
1597 	phys_addr_t cursor, end;
1598 
1599 	end = base + size - 1;
1600 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1601 		     __func__, &base, &end, (void *)_RET_IP_);
1602 	kmemleak_free_part_phys(base, size);
1603 	cursor = PFN_UP(base);
1604 	end = PFN_DOWN(base + size);
1605 
1606 	for (; cursor < end; cursor++) {
1607 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1608 		totalram_pages_inc();
1609 	}
1610 }
1611 
1612 /*
1613  * Remaining API functions
1614  */
1615 
memblock_phys_mem_size(void)1616 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1617 {
1618 	return memblock.memory.total_size;
1619 }
1620 
memblock_reserved_size(void)1621 phys_addr_t __init_memblock memblock_reserved_size(void)
1622 {
1623 	return memblock.reserved.total_size;
1624 }
1625 
1626 /* lowest address */
memblock_start_of_DRAM(void)1627 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1628 {
1629 	return memblock.memory.regions[0].base;
1630 }
1631 
memblock_end_of_DRAM(void)1632 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1633 {
1634 	int idx = memblock.memory.cnt - 1;
1635 
1636 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1637 }
1638 EXPORT_SYMBOL_GPL(memblock_end_of_DRAM);
1639 
__find_max_addr(phys_addr_t limit)1640 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1641 {
1642 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1643 	struct memblock_region *r;
1644 
1645 	/*
1646 	 * translate the memory @limit size into the max address within one of
1647 	 * the memory memblock regions, if the @limit exceeds the total size
1648 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1649 	 */
1650 	for_each_mem_region(r) {
1651 		if (limit <= r->size) {
1652 			max_addr = r->base + limit;
1653 			break;
1654 		}
1655 		limit -= r->size;
1656 	}
1657 
1658 	return max_addr;
1659 }
1660 
memblock_enforce_memory_limit(phys_addr_t limit)1661 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1662 {
1663 	phys_addr_t max_addr;
1664 
1665 	if (!limit)
1666 		return;
1667 
1668 	max_addr = __find_max_addr(limit);
1669 
1670 	/* @limit exceeds the total size of the memory, do nothing */
1671 	if (max_addr == PHYS_ADDR_MAX)
1672 		return;
1673 
1674 	/* truncate both memory and reserved regions */
1675 	memblock_remove_range(&memblock.memory, max_addr,
1676 			      PHYS_ADDR_MAX);
1677 	memblock_remove_range(&memblock.reserved, max_addr,
1678 			      PHYS_ADDR_MAX);
1679 }
1680 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1681 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1682 {
1683 	int start_rgn, end_rgn;
1684 	int i, ret;
1685 
1686 	if (!size)
1687 		return;
1688 
1689 	ret = memblock_isolate_range(&memblock.memory, base, size,
1690 						&start_rgn, &end_rgn);
1691 	if (ret)
1692 		return;
1693 
1694 	/* remove all the MAP regions */
1695 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1696 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1697 			memblock_remove_region(&memblock.memory, i);
1698 
1699 	for (i = start_rgn - 1; i >= 0; i--)
1700 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1701 			memblock_remove_region(&memblock.memory, i);
1702 
1703 	/* truncate the reserved regions */
1704 	memblock_remove_range(&memblock.reserved, 0, base);
1705 	memblock_remove_range(&memblock.reserved,
1706 			base + size, PHYS_ADDR_MAX);
1707 }
1708 
memblock_mem_limit_remove_map(phys_addr_t limit)1709 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1710 {
1711 	phys_addr_t max_addr;
1712 
1713 	if (!limit)
1714 		return;
1715 
1716 	max_addr = __find_max_addr(limit);
1717 
1718 	/* @limit exceeds the total size of the memory, do nothing */
1719 	if (max_addr == PHYS_ADDR_MAX)
1720 		return;
1721 
1722 	memblock_cap_memory_range(0, max_addr);
1723 }
1724 
memblock_search(struct memblock_type * type,phys_addr_t addr)1725 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1726 {
1727 	unsigned int left = 0, right = type->cnt;
1728 
1729 	do {
1730 		unsigned int mid = (right + left) / 2;
1731 
1732 		if (addr < type->regions[mid].base)
1733 			right = mid;
1734 		else if (addr >= (type->regions[mid].base +
1735 				  type->regions[mid].size))
1736 			left = mid + 1;
1737 		else
1738 			return mid;
1739 	} while (left < right);
1740 	return -1;
1741 }
1742 
memblock_is_reserved(phys_addr_t addr)1743 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1744 {
1745 	return memblock_search(&memblock.reserved, addr) != -1;
1746 }
1747 
memblock_is_memory(phys_addr_t addr)1748 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1749 {
1750 	return memblock_search(&memblock.memory, addr) != -1;
1751 }
1752 
memblock_is_map_memory(phys_addr_t addr)1753 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1754 {
1755 	int i = memblock_search(&memblock.memory, addr);
1756 
1757 	if (i == -1)
1758 		return false;
1759 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1760 }
1761 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1762 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1763 			 unsigned long *start_pfn, unsigned long *end_pfn)
1764 {
1765 	struct memblock_type *type = &memblock.memory;
1766 	int mid = memblock_search(type, PFN_PHYS(pfn));
1767 
1768 	if (mid == -1)
1769 		return -1;
1770 
1771 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1772 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1773 
1774 	return memblock_get_region_node(&type->regions[mid]);
1775 }
1776 
1777 /**
1778  * memblock_is_region_memory - check if a region is a subset of memory
1779  * @base: base of region to check
1780  * @size: size of region to check
1781  *
1782  * Check if the region [@base, @base + @size) is a subset of a memory block.
1783  *
1784  * Return:
1785  * 0 if false, non-zero if true
1786  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1787 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1788 {
1789 	int idx = memblock_search(&memblock.memory, base);
1790 	phys_addr_t end = base + memblock_cap_size(base, &size);
1791 
1792 	if (idx == -1)
1793 		return false;
1794 	return (memblock.memory.regions[idx].base +
1795 		 memblock.memory.regions[idx].size) >= end;
1796 }
1797 
1798 /**
1799  * memblock_is_region_reserved - check if a region intersects reserved memory
1800  * @base: base of region to check
1801  * @size: size of region to check
1802  *
1803  * Check if the region [@base, @base + @size) intersects a reserved
1804  * memory block.
1805  *
1806  * Return:
1807  * True if they intersect, false if not.
1808  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1809 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1810 {
1811 	return memblock_overlaps_region(&memblock.reserved, base, size);
1812 }
1813 
memblock_trim_memory(phys_addr_t align)1814 void __init_memblock memblock_trim_memory(phys_addr_t align)
1815 {
1816 	phys_addr_t start, end, orig_start, orig_end;
1817 	struct memblock_region *r;
1818 
1819 	for_each_mem_region(r) {
1820 		orig_start = r->base;
1821 		orig_end = r->base + r->size;
1822 		start = round_up(orig_start, align);
1823 		end = round_down(orig_end, align);
1824 
1825 		if (start == orig_start && end == orig_end)
1826 			continue;
1827 
1828 		if (start < end) {
1829 			r->base = start;
1830 			r->size = end - start;
1831 		} else {
1832 			memblock_remove_region(&memblock.memory,
1833 					       r - memblock.memory.regions);
1834 			r--;
1835 		}
1836 	}
1837 }
1838 
memblock_set_current_limit(phys_addr_t limit)1839 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1840 {
1841 	memblock.current_limit = limit;
1842 }
1843 
memblock_get_current_limit(void)1844 phys_addr_t __init_memblock memblock_get_current_limit(void)
1845 {
1846 	return memblock.current_limit;
1847 }
1848 
memblock_dump(struct memblock_type * type)1849 static void __init_memblock memblock_dump(struct memblock_type *type)
1850 {
1851 	phys_addr_t base, end, size;
1852 	enum memblock_flags flags;
1853 	int idx;
1854 	struct memblock_region *rgn;
1855 
1856 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1857 
1858 	for_each_memblock_type(idx, type, rgn) {
1859 		char nid_buf[32] = "";
1860 
1861 		base = rgn->base;
1862 		size = rgn->size;
1863 		end = base + size - 1;
1864 		flags = rgn->flags;
1865 #ifdef CONFIG_NEED_MULTIPLE_NODES
1866 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1867 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1868 				 memblock_get_region_node(rgn));
1869 #endif
1870 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1871 			type->name, idx, &base, &end, &size, nid_buf, flags);
1872 	}
1873 }
1874 
__memblock_dump_all(void)1875 static void __init_memblock __memblock_dump_all(void)
1876 {
1877 	pr_info("MEMBLOCK configuration:\n");
1878 	pr_info(" memory size = %pa reserved size = %pa\n",
1879 		&memblock.memory.total_size,
1880 		&memblock.reserved.total_size);
1881 
1882 	memblock_dump(&memblock.memory);
1883 	memblock_dump(&memblock.reserved);
1884 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1885 	memblock_dump(&physmem);
1886 #endif
1887 }
1888 
memblock_dump_all(void)1889 void __init_memblock memblock_dump_all(void)
1890 {
1891 	if (memblock_debug)
1892 		__memblock_dump_all();
1893 }
1894 
memblock_allow_resize(void)1895 void __init memblock_allow_resize(void)
1896 {
1897 	memblock_can_resize = 1;
1898 }
1899 
early_memblock(char * p)1900 static int __init early_memblock(char *p)
1901 {
1902 	if (p && strstr(p, "debug"))
1903 		memblock_debug = 1;
1904 	return 0;
1905 }
1906 early_param("memblock", early_memblock);
1907 
early_memblock_nomap(char * str)1908 static int __init early_memblock_nomap(char *str)
1909 {
1910 	return kstrtobool(str, &memblock_nomap_remove);
1911 }
1912 early_param("android12_only.will_be_removed_soon.memblock_nomap_remove", early_memblock_nomap);
1913 
memblock_is_nomap_remove(void)1914 bool __init memblock_is_nomap_remove(void)
1915 {
1916 	return memblock_nomap_remove;
1917 }
1918 
__free_pages_memory(unsigned long start,unsigned long end)1919 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1920 {
1921 	int order;
1922 
1923 	while (start < end) {
1924 		order = min(MAX_ORDER - 1UL, __ffs(start));
1925 
1926 		while (start + (1UL << order) > end)
1927 			order--;
1928 
1929 		memblock_free_pages(pfn_to_page(start), start, order);
1930 
1931 		start += (1UL << order);
1932 	}
1933 }
1934 
__free_memory_core(phys_addr_t start,phys_addr_t end)1935 static unsigned long __init __free_memory_core(phys_addr_t start,
1936 				 phys_addr_t end)
1937 {
1938 	unsigned long start_pfn = PFN_UP(start);
1939 	unsigned long end_pfn = min_t(unsigned long,
1940 				      PFN_DOWN(end), max_low_pfn);
1941 
1942 	if (start_pfn >= end_pfn)
1943 		return 0;
1944 
1945 	__free_pages_memory(start_pfn, end_pfn);
1946 
1947 	return end_pfn - start_pfn;
1948 }
1949 
free_low_memory_core_early(void)1950 static unsigned long __init free_low_memory_core_early(void)
1951 {
1952 	unsigned long count = 0;
1953 	phys_addr_t start, end;
1954 	u64 i;
1955 
1956 	memblock_clear_hotplug(0, -1);
1957 
1958 	for_each_reserved_mem_range(i, &start, &end)
1959 		reserve_bootmem_region(start, end);
1960 
1961 	/*
1962 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1963 	 *  because in some case like Node0 doesn't have RAM installed
1964 	 *  low ram will be on Node1
1965 	 */
1966 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1967 				NULL)
1968 		count += __free_memory_core(start, end);
1969 
1970 	return count;
1971 }
1972 
1973 static int reset_managed_pages_done __initdata;
1974 
reset_node_managed_pages(pg_data_t * pgdat)1975 void reset_node_managed_pages(pg_data_t *pgdat)
1976 {
1977 	struct zone *z;
1978 
1979 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1980 		atomic_long_set(&z->managed_pages, 0);
1981 }
1982 
reset_all_zones_managed_pages(void)1983 void __init reset_all_zones_managed_pages(void)
1984 {
1985 	struct pglist_data *pgdat;
1986 
1987 	if (reset_managed_pages_done)
1988 		return;
1989 
1990 	for_each_online_pgdat(pgdat)
1991 		reset_node_managed_pages(pgdat);
1992 
1993 	reset_managed_pages_done = 1;
1994 }
1995 
1996 /**
1997  * memblock_free_all - release free pages to the buddy allocator
1998  *
1999  * Return: the number of pages actually released.
2000  */
memblock_free_all(void)2001 unsigned long __init memblock_free_all(void)
2002 {
2003 	unsigned long pages;
2004 
2005 	reset_all_zones_managed_pages();
2006 
2007 	pages = free_low_memory_core_early();
2008 	totalram_pages_add(pages);
2009 
2010 	return pages;
2011 }
2012 
2013 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2014 
memblock_debug_show(struct seq_file * m,void * private)2015 static int memblock_debug_show(struct seq_file *m, void *private)
2016 {
2017 	struct memblock_type *type = m->private;
2018 	struct memblock_region *reg;
2019 	int i;
2020 	phys_addr_t end;
2021 
2022 	for (i = 0; i < type->cnt; i++) {
2023 		reg = &type->regions[i];
2024 		end = reg->base + reg->size - 1;
2025 
2026 		seq_printf(m, "%4d: ", i);
2027 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2028 	}
2029 	return 0;
2030 }
2031 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2032 
memblock_init_debugfs(void)2033 static int __init memblock_init_debugfs(void)
2034 {
2035 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2036 
2037 	debugfs_create_file("memory", 0444, root,
2038 			    &memblock.memory, &memblock_debug_fops);
2039 	debugfs_create_file("reserved", 0444, root,
2040 			    &memblock.reserved, &memblock_debug_fops);
2041 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2042 	debugfs_create_file("physmem", 0444, root, &physmem,
2043 			    &memblock_debug_fops);
2044 #endif
2045 
2046 	return 0;
2047 }
2048 __initcall(memblock_init_debugfs);
2049 
2050 #endif /* CONFIG_DEBUG_FS */
2051