• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 		"{C-Media,CMI8738B},"
35 		"{C-Media,CMI8338A},"
36 		"{C-Media,CMI8338B}}");
37 
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41 
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
45 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51 
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68 
69 /*
70  * CM8x38 registers definition
71  */
72 
73 #define CM_REG_FUNCTRL0		0x00
74 #define CM_RST_CH1		0x00080000
75 #define CM_RST_CH0		0x00040000
76 #define CM_CHEN1		0x00020000	/* ch1: enable */
77 #define CM_CHEN0		0x00010000	/* ch0: enable */
78 #define CM_PAUSE1		0x00000008	/* ch1: pause */
79 #define CM_PAUSE0		0x00000004	/* ch0: pause */
80 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
81 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
82 
83 #define CM_REG_FUNCTRL1		0x04
84 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
85 #define CM_DSFC_SHIFT		13
86 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
87 #define CM_ASFC_SHIFT		10
88 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
89 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
90 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
91 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
92 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
93 #define CM_BREQ			0x00000010	/* bus master enabled */
94 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
95 #define CM_UART_EN		0x00000004	/* legacy UART */
96 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
97 #define CM_ZVPORT		0x00000001	/* ZVPORT */
98 
99 #define CM_REG_CHFORMAT		0x08
100 
101 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
102 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
103 #define CM_CHB3D		0x20000000	/* 4 channels */
104 
105 #define CM_CHIP_MASK1		0x1f000000
106 #define CM_CHIP_037		0x01000000
107 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
108 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
109 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
110 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
111 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
112 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
113 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
114 
115 #define CM_ADCBITLEN_MASK	0x0000C000
116 #define CM_ADCBITLEN_16		0x00000000
117 #define CM_ADCBITLEN_15		0x00004000
118 #define CM_ADCBITLEN_14		0x00008000
119 #define CM_ADCBITLEN_13		0x0000C000
120 
121 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
122 #define CM_ADCDACLEN_060	0x00000000
123 #define CM_ADCDACLEN_066	0x00001000
124 #define CM_ADCDACLEN_130	0x00002000
125 #define CM_ADCDACLEN_280	0x00003000
126 
127 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
128 #define CM_ADCDLEN_ORIGINAL	0x00000000
129 #define CM_ADCDLEN_EXTRA	0x00001000
130 #define CM_ADCDLEN_24K		0x00002000
131 #define CM_ADCDLEN_WEIGHT	0x00003000
132 
133 #define CM_CH1_SRATE_176K	0x00000800
134 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
135 #define CM_CH1_SRATE_88K	0x00000400
136 #define CM_CH0_SRATE_176K	0x00000200
137 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
138 #define CM_CH0_SRATE_88K	0x00000100
139 #define CM_CH0_SRATE_128K	0x00000300
140 #define CM_CH0_SRATE_MASK	0x00000300
141 
142 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
143 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
144 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
145 #define CM_SPDLOCKED		0x00000010
146 
147 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
148 #define CM_CH1FMT_SHIFT		2
149 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
150 #define CM_CH0FMT_SHIFT		0
151 
152 #define CM_REG_INT_HLDCLR	0x0C
153 #define CM_CHIP_MASK2		0xff000000
154 #define CM_CHIP_8768		0x20000000
155 #define CM_CHIP_055		0x08000000
156 #define CM_CHIP_039		0x04000000
157 #define CM_CHIP_039_6CH		0x01000000
158 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
159 #define CM_TDMA_INT_EN		0x00040000
160 #define CM_CH1_INT_EN		0x00020000
161 #define CM_CH0_INT_EN		0x00010000
162 
163 #define CM_REG_INT_STATUS	0x10
164 #define CM_INTR			0x80000000
165 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
166 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
167 #define CM_UARTINT		0x00010000
168 #define CM_LTDMAINT		0x00008000
169 #define CM_HTDMAINT		0x00004000
170 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
171 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
172 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
173 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
174 #define CM_CH1BUSY		0x00000008
175 #define CM_CH0BUSY		0x00000004
176 #define CM_CHINT1		0x00000002
177 #define CM_CHINT0		0x00000001
178 
179 #define CM_REG_LEGACY_CTRL	0x14
180 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
181 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
182 #define CM_VMPU_330		0x00000000
183 #define CM_VMPU_320		0x20000000
184 #define CM_VMPU_310		0x40000000
185 #define CM_VMPU_300		0x60000000
186 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
187 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
188 #define CM_VSBSEL_220		0x00000000
189 #define CM_VSBSEL_240		0x04000000
190 #define CM_VSBSEL_260		0x08000000
191 #define CM_VSBSEL_280		0x0C000000
192 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
193 #define CM_FMSEL_388		0x00000000
194 #define CM_FMSEL_3C8		0x01000000
195 #define CM_FMSEL_3E0		0x02000000
196 #define CM_FMSEL_3E8		0x03000000
197 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
199 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
201 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
203 #define CM_C_EECS		0x00040000
204 #define CM_C_EEDI46		0x00020000
205 #define CM_C_EECK46		0x00010000
206 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
207 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
208 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
209 #define CM_EXBASEN		0x00001000	/* external bass input enable */
210 
211 #define CM_REG_MISC_CTRL	0x18
212 #define CM_PWD			0x80000000	/* power down */
213 #define CM_RESET		0x40000000
214 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
215 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
216 #define CM_TXVX			0x08000000	/* model 037? */
217 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
218 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
219 #define CM_SPDIF48K		0x01000000	/* write */
220 #define CM_SPATUS48K		0x01000000	/* read */
221 #define CM_ENDBDAC		0x00800000	/* enable double dac */
222 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
223 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
224 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
225 #define CM_FM_EN		0x00080000	/* enable legacy FM */
226 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
227 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
228 #define CM_VIDWPDSB		0x00010000	/* model 037? */
229 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
230 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
231 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
232 #define CM_VIDWPPRT		0x00002000	/* model 037? */
233 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
234 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
235 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
236 #define CM_ENCENTER		0x00000080
237 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
238 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
239 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
240 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
241 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
242 #define CM_UPDDMA_2048		0x00000000
243 #define CM_UPDDMA_1024		0x00000004
244 #define CM_UPDDMA_512		0x00000008
245 #define CM_UPDDMA_256		0x0000000C
246 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
247 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
249 
250 #define CM_REG_TDMA_POSITION	0x1C
251 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
252 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
253 
254 	/* byte */
255 #define CM_REG_MIXER0		0x20
256 #define CM_REG_SBVR		0x20		/* write: sb16 version */
257 #define CM_REG_DEV		0x20		/* read: hardware device version */
258 
259 #define CM_REG_MIXER21		0x21
260 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
261 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
262 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
263 #define CM_X_SB16		0x01		/* SB16 compatible */
264 
265 #define CM_REG_SB16_DATA	0x22
266 #define CM_REG_SB16_ADDR	0x23
267 
268 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
269 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
271 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
272 
273 #define CM_REG_MIXER1		0x24
274 #define CM_FMMUTE		0x80	/* mute FM */
275 #define CM_FMMUTE_SHIFT		7
276 #define CM_WSMUTE		0x40	/* mute PCM */
277 #define CM_WSMUTE_SHIFT		6
278 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
279 #define CM_REAR2LIN_SHIFT	5
280 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
281 #define CM_REAR2FRONT_SHIFT	4
282 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
283 #define CM_WAVEINL_SHIFT	3
284 #define CM_WAVEINR		0x04	/* digical wave rec. right */
285 #define CM_WAVEINR_SHIFT	2
286 #define CM_X3DEN		0x02	/* 3D surround enable */
287 #define CM_X3DEN_SHIFT		1
288 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
289 #define CM_CDPLAY_SHIFT		0
290 
291 #define CM_REG_MIXER2		0x25
292 #define CM_RAUXREN		0x80	/* AUX right capture */
293 #define CM_RAUXREN_SHIFT	7
294 #define CM_RAUXLEN		0x40	/* AUX left capture */
295 #define CM_RAUXLEN_SHIFT	6
296 #define CM_VAUXRM		0x20	/* AUX right mute */
297 #define CM_VAUXRM_SHIFT		5
298 #define CM_VAUXLM		0x10	/* AUX left mute */
299 #define CM_VAUXLM_SHIFT		4
300 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
301 #define CM_VADMIC_SHIFT		1
302 #define CM_MICGAINZ		0x01	/* mic boost */
303 #define CM_MICGAINZ_SHIFT	0
304 
305 #define CM_REG_AUX_VOL		0x26
306 #define CM_VAUXL_MASK		0xf0
307 #define CM_VAUXR_MASK		0x0f
308 
309 #define CM_REG_MISC		0x27
310 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
311 #define CM_XGPO1		0x20
312 // #define CM_XGPBIO		0x04
313 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
314 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
315 #define CM_SPDVALID		0x02	/* spdif input valid check */
316 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
317 
318 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
319 /*
320  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
321  * or identical with AC97 codec?
322  */
323 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
324 
325 /*
326  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
327  */
328 #define CM_REG_MPU_PCI		0x40
329 
330 /*
331  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
332  */
333 #define CM_REG_FM_PCI		0x50
334 
335 /*
336  * access from SB-mixer port
337  */
338 #define CM_REG_EXTENT_IND	0xf0
339 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
340 #define CM_VPHONE_SHIFT		5
341 #define CM_VPHOM		0x10	/* Phone mute control */
342 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
343 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
344 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
345 #define CM_VADMIC3		0x01	/* Mic record boost */
346 
347 /*
348  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
349  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
350  * unit (readonly?).
351  */
352 #define CM_REG_PLL		0xf8
353 
354 /*
355  * extended registers
356  */
357 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
358 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
359 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
360 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
361 
362 #define CM_REG_EXT_MISC		0x90
363 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
364 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
365 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
366 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
367 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
368 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
369 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
370 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
371 
372 /*
373  * size of i/o region
374  */
375 #define CM_EXTENT_CODEC	  0x100
376 #define CM_EXTENT_MIDI	  0x2
377 #define CM_EXTENT_SYNTH	  0x4
378 
379 
380 /*
381  * channels for playback / capture
382  */
383 #define CM_CH_PLAY	0
384 #define CM_CH_CAPT	1
385 
386 /*
387  * flags to check device open/close
388  */
389 #define CM_OPEN_NONE	0
390 #define CM_OPEN_CH_MASK	0x01
391 #define CM_OPEN_DAC	0x10
392 #define CM_OPEN_ADC	0x20
393 #define CM_OPEN_SPDIF	0x40
394 #define CM_OPEN_MCHAN	0x80
395 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
396 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
398 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
399 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
400 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
401 
402 
403 #if CM_CH_PLAY == 1
404 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
405 #define CM_PLAYBACK_SPDF	CM_SPDF_1
406 #define CM_CAPTURE_SPDF		CM_SPDF_0
407 #else
408 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
409 #define CM_PLAYBACK_SPDF	CM_SPDF_0
410 #define CM_CAPTURE_SPDF		CM_SPDF_1
411 #endif
412 
413 
414 /*
415  * driver data
416  */
417 
418 struct cmipci_pcm {
419 	struct snd_pcm_substream *substream;
420 	u8 running;		/* dac/adc running? */
421 	u8 fmt;			/* format bits */
422 	u8 is_dac;
423 	u8 needs_silencing;
424 	unsigned int dma_size;	/* in frames */
425 	unsigned int shift;
426 	unsigned int ch;	/* channel (0/1) */
427 	unsigned int offset;	/* physical address of the buffer */
428 };
429 
430 /* mixer elements toggled/resumed during ac3 playback */
431 struct cmipci_mixer_auto_switches {
432 	const char *name;	/* switch to toggle */
433 	int toggle_on;		/* value to change when ac3 mode */
434 };
435 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
436 	{"PCM Playback Switch", 0},
437 	{"IEC958 Output Switch", 1},
438 	{"IEC958 Mix Analog", 0},
439 	// {"IEC958 Out To DAC", 1}, // no longer used
440 	{"IEC958 Loop", 0},
441 };
442 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
443 
444 struct cmipci {
445 	struct snd_card *card;
446 
447 	struct pci_dev *pci;
448 	unsigned int device;	/* device ID */
449 	int irq;
450 
451 	unsigned long iobase;
452 	unsigned int ctrl;	/* FUNCTRL0 current value */
453 
454 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
455 	struct snd_pcm *pcm2;	/* 2nd DAC */
456 	struct snd_pcm *pcm_spdif;	/* SPDIF */
457 
458 	int chip_version;
459 	int max_channels;
460 	unsigned int can_ac3_sw: 1;
461 	unsigned int can_ac3_hw: 1;
462 	unsigned int can_multi_ch: 1;
463 	unsigned int can_96k: 1;	/* samplerate above 48k */
464 	unsigned int do_soft_ac3: 1;
465 
466 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
467 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
468 	int spdif_counter;	/* for software AC3 */
469 
470 	unsigned int dig_status;
471 	unsigned int dig_pcm_status;
472 
473 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
474 
475 	int opened[2];	/* open mode */
476 	struct mutex open_mutex;
477 
478 	unsigned int mixer_insensitive: 1;
479 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
480 	int mixer_res_status[CM_SAVED_MIXERS];
481 
482 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
483 
484 	/* external MIDI */
485 	struct snd_rawmidi *rmidi;
486 
487 #ifdef SUPPORT_JOYSTICK
488 	struct gameport *gameport;
489 #endif
490 
491 	spinlock_t reg_lock;
492 
493 #ifdef CONFIG_PM_SLEEP
494 	unsigned int saved_regs[0x20];
495 	unsigned char saved_mixers[0x20];
496 #endif
497 };
498 
499 
500 /* read/write operations for dword register */
snd_cmipci_write(struct cmipci * cm,unsigned int cmd,unsigned int data)501 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
502 {
503 	outl(data, cm->iobase + cmd);
504 }
505 
snd_cmipci_read(struct cmipci * cm,unsigned int cmd)506 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
507 {
508 	return inl(cm->iobase + cmd);
509 }
510 
511 /* read/write operations for word register */
snd_cmipci_write_w(struct cmipci * cm,unsigned int cmd,unsigned short data)512 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
513 {
514 	outw(data, cm->iobase + cmd);
515 }
516 
snd_cmipci_read_w(struct cmipci * cm,unsigned int cmd)517 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
518 {
519 	return inw(cm->iobase + cmd);
520 }
521 
522 /* read/write operations for byte register */
snd_cmipci_write_b(struct cmipci * cm,unsigned int cmd,unsigned char data)523 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
524 {
525 	outb(data, cm->iobase + cmd);
526 }
527 
snd_cmipci_read_b(struct cmipci * cm,unsigned int cmd)528 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
529 {
530 	return inb(cm->iobase + cmd);
531 }
532 
533 /* bit operations for dword register */
snd_cmipci_set_bit(struct cmipci * cm,unsigned int cmd,unsigned int flag)534 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
535 {
536 	unsigned int val, oval;
537 	val = oval = inl(cm->iobase + cmd);
538 	val |= flag;
539 	if (val == oval)
540 		return 0;
541 	outl(val, cm->iobase + cmd);
542 	return 1;
543 }
544 
snd_cmipci_clear_bit(struct cmipci * cm,unsigned int cmd,unsigned int flag)545 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
546 {
547 	unsigned int val, oval;
548 	val = oval = inl(cm->iobase + cmd);
549 	val &= ~flag;
550 	if (val == oval)
551 		return 0;
552 	outl(val, cm->iobase + cmd);
553 	return 1;
554 }
555 
556 /* bit operations for byte register */
snd_cmipci_set_bit_b(struct cmipci * cm,unsigned int cmd,unsigned char flag)557 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
558 {
559 	unsigned char val, oval;
560 	val = oval = inb(cm->iobase + cmd);
561 	val |= flag;
562 	if (val == oval)
563 		return 0;
564 	outb(val, cm->iobase + cmd);
565 	return 1;
566 }
567 
snd_cmipci_clear_bit_b(struct cmipci * cm,unsigned int cmd,unsigned char flag)568 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
569 {
570 	unsigned char val, oval;
571 	val = oval = inb(cm->iobase + cmd);
572 	val &= ~flag;
573 	if (val == oval)
574 		return 0;
575 	outb(val, cm->iobase + cmd);
576 	return 1;
577 }
578 
579 
580 /*
581  * PCM interface
582  */
583 
584 /*
585  * calculate frequency
586  */
587 
588 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
589 
snd_cmipci_rate_freq(unsigned int rate)590 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
591 {
592 	unsigned int i;
593 
594 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
595 		if (rates[i] == rate)
596 			return i;
597 	}
598 	snd_BUG();
599 	return 0;
600 }
601 
602 #ifdef USE_VAR48KRATE
603 /*
604  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
605  * does it this way .. maybe not.  Never get any information from C-Media about
606  * that <werner@suse.de>.
607  */
snd_cmipci_pll_rmn(unsigned int rate,unsigned int adcmult,int * r,int * m,int * n)608 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
609 {
610 	unsigned int delta, tolerance;
611 	int xm, xn, xr;
612 
613 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
614 		rate <<= 1;
615 	*n = -1;
616 	if (*r > 0xff)
617 		goto out;
618 	tolerance = rate*CM_TOLERANCE_RATE;
619 
620 	for (xn = (1+2); xn < (0x1f+2); xn++) {
621 		for (xm = (1+2); xm < (0xff+2); xm++) {
622 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
623 
624 			if (xr < rate)
625 				delta = rate - xr;
626 			else
627 				delta = xr - rate;
628 
629 			/*
630 			 * If we found one, remember this,
631 			 * and try to find a closer one
632 			 */
633 			if (delta < tolerance) {
634 				tolerance = delta;
635 				*m = xm - 2;
636 				*n = xn - 2;
637 			}
638 		}
639 	}
640 out:
641 	return (*n > -1);
642 }
643 
644 /*
645  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
646  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
647  * at the register CM_REG_FUNCTRL1 (0x04).
648  * Problem: other ways are also possible (any information about that?)
649  */
snd_cmipci_set_pll(struct cmipci * cm,unsigned int rate,unsigned int slot)650 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
651 {
652 	unsigned int reg = CM_REG_PLL + slot;
653 	/*
654 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
655 	 * for DSFC/ASFC (000 up to 111).
656 	 */
657 
658 	/* FIXME: Init (Do we've to set an other register first before programming?) */
659 
660 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
661 	snd_cmipci_write_b(cm, reg, rate>>8);
662 	snd_cmipci_write_b(cm, reg, rate&0xff);
663 
664 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
665 }
666 #endif /* USE_VAR48KRATE */
667 
snd_cmipci_playback2_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)668 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
669 					  struct snd_pcm_hw_params *hw_params)
670 {
671 	struct cmipci *cm = snd_pcm_substream_chip(substream);
672 	if (params_channels(hw_params) > 2) {
673 		mutex_lock(&cm->open_mutex);
674 		if (cm->opened[CM_CH_PLAY]) {
675 			mutex_unlock(&cm->open_mutex);
676 			return -EBUSY;
677 		}
678 		/* reserve the channel A */
679 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
680 		mutex_unlock(&cm->open_mutex);
681 	}
682 	return 0;
683 }
684 
snd_cmipci_ch_reset(struct cmipci * cm,int ch)685 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
686 {
687 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
688 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
689 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
690 	udelay(10);
691 }
692 
693 
694 /*
695  */
696 
697 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
698 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
699 	.count = 3,
700 	.list = hw_channels,
701 	.mask = 0,
702 };
703 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
704 	.count = 4,
705 	.list = hw_channels,
706 	.mask = 0,
707 };
708 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
709 	.count = 5,
710 	.list = hw_channels,
711 	.mask = 0,
712 };
713 
set_dac_channels(struct cmipci * cm,struct cmipci_pcm * rec,int channels)714 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
715 {
716 	if (channels > 2) {
717 		if (!cm->can_multi_ch || !rec->ch)
718 			return -EINVAL;
719 		if (rec->fmt != 0x03) /* stereo 16bit only */
720 			return -EINVAL;
721 	}
722 
723 	if (cm->can_multi_ch) {
724 		spin_lock_irq(&cm->reg_lock);
725 		if (channels > 2) {
726 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
727 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
728 		} else {
729 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
730 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
731 		}
732 		if (channels == 8)
733 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
734 		else
735 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
736 		if (channels == 6) {
737 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
738 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
739 		} else {
740 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
741 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
742 		}
743 		if (channels == 4)
744 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
745 		else
746 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
747 		spin_unlock_irq(&cm->reg_lock);
748 	}
749 	return 0;
750 }
751 
752 
753 /*
754  * prepare playback/capture channel
755  * channel to be used must have been set in rec->ch.
756  */
snd_cmipci_pcm_prepare(struct cmipci * cm,struct cmipci_pcm * rec,struct snd_pcm_substream * substream)757 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
758 				 struct snd_pcm_substream *substream)
759 {
760 	unsigned int reg, freq, freq_ext, val;
761 	unsigned int period_size;
762 	struct snd_pcm_runtime *runtime = substream->runtime;
763 
764 	rec->fmt = 0;
765 	rec->shift = 0;
766 	if (snd_pcm_format_width(runtime->format) >= 16) {
767 		rec->fmt |= 0x02;
768 		if (snd_pcm_format_width(runtime->format) > 16)
769 			rec->shift++; /* 24/32bit */
770 	}
771 	if (runtime->channels > 1)
772 		rec->fmt |= 0x01;
773 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
774 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
775 		return -EINVAL;
776 	}
777 
778 	rec->offset = runtime->dma_addr;
779 	/* buffer and period sizes in frame */
780 	rec->dma_size = runtime->buffer_size << rec->shift;
781 	period_size = runtime->period_size << rec->shift;
782 	if (runtime->channels > 2) {
783 		/* multi-channels */
784 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
785 		period_size = (period_size * runtime->channels) / 2;
786 	}
787 
788 	spin_lock_irq(&cm->reg_lock);
789 
790 	/* set buffer address */
791 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
792 	snd_cmipci_write(cm, reg, rec->offset);
793 	/* program sample counts */
794 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
795 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
796 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
797 
798 	/* set adc/dac flag */
799 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
800 	if (rec->is_dac)
801 		cm->ctrl &= ~val;
802 	else
803 		cm->ctrl |= val;
804 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
805 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
806 
807 	/* set sample rate */
808 	freq = 0;
809 	freq_ext = 0;
810 	if (runtime->rate > 48000)
811 		switch (runtime->rate) {
812 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
813 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
814 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
815 		default:     snd_BUG(); break;
816 		}
817 	else
818 		freq = snd_cmipci_rate_freq(runtime->rate);
819 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
820 	if (rec->ch) {
821 		val &= ~CM_DSFC_MASK;
822 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
823 	} else {
824 		val &= ~CM_ASFC_MASK;
825 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
826 	}
827 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
828 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
829 
830 	/* set format */
831 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
832 	if (rec->ch) {
833 		val &= ~CM_CH1FMT_MASK;
834 		val |= rec->fmt << CM_CH1FMT_SHIFT;
835 	} else {
836 		val &= ~CM_CH0FMT_MASK;
837 		val |= rec->fmt << CM_CH0FMT_SHIFT;
838 	}
839 	if (cm->can_96k) {
840 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
841 		val |= freq_ext << (rec->ch * 2);
842 	}
843 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
844 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
845 
846 	if (!rec->is_dac && cm->chip_version) {
847 		if (runtime->rate > 44100)
848 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
849 		else
850 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
851 	}
852 
853 	rec->running = 0;
854 	spin_unlock_irq(&cm->reg_lock);
855 
856 	return 0;
857 }
858 
859 /*
860  * PCM trigger/stop
861  */
snd_cmipci_pcm_trigger(struct cmipci * cm,struct cmipci_pcm * rec,int cmd)862 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
863 				  int cmd)
864 {
865 	unsigned int inthld, chen, reset, pause;
866 	int result = 0;
867 
868 	inthld = CM_CH0_INT_EN << rec->ch;
869 	chen = CM_CHEN0 << rec->ch;
870 	reset = CM_RST_CH0 << rec->ch;
871 	pause = CM_PAUSE0 << rec->ch;
872 
873 	spin_lock(&cm->reg_lock);
874 	switch (cmd) {
875 	case SNDRV_PCM_TRIGGER_START:
876 		rec->running = 1;
877 		/* set interrupt */
878 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
879 		cm->ctrl |= chen;
880 		/* enable channel */
881 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
882 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
883 		break;
884 	case SNDRV_PCM_TRIGGER_STOP:
885 		rec->running = 0;
886 		/* disable interrupt */
887 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
888 		/* reset */
889 		cm->ctrl &= ~chen;
890 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
891 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
892 		rec->needs_silencing = rec->is_dac;
893 		break;
894 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
895 	case SNDRV_PCM_TRIGGER_SUSPEND:
896 		cm->ctrl |= pause;
897 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
898 		break;
899 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
900 	case SNDRV_PCM_TRIGGER_RESUME:
901 		cm->ctrl &= ~pause;
902 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
903 		break;
904 	default:
905 		result = -EINVAL;
906 		break;
907 	}
908 	spin_unlock(&cm->reg_lock);
909 	return result;
910 }
911 
912 /*
913  * return the current pointer
914  */
snd_cmipci_pcm_pointer(struct cmipci * cm,struct cmipci_pcm * rec,struct snd_pcm_substream * substream)915 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
916 						struct snd_pcm_substream *substream)
917 {
918 	size_t ptr;
919 	unsigned int reg, rem, tries;
920 
921 	if (!rec->running)
922 		return 0;
923 #if 1 // this seems better..
924 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
925 	for (tries = 0; tries < 3; tries++) {
926 		rem = snd_cmipci_read_w(cm, reg);
927 		if (rem < rec->dma_size)
928 			goto ok;
929 	}
930 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
931 	return SNDRV_PCM_POS_XRUN;
932 ok:
933 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
934 #else
935 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
936 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
937 	ptr = bytes_to_frames(substream->runtime, ptr);
938 #endif
939 	if (substream->runtime->channels > 2)
940 		ptr = (ptr * 2) / substream->runtime->channels;
941 	return ptr;
942 }
943 
944 /*
945  * playback
946  */
947 
snd_cmipci_playback_trigger(struct snd_pcm_substream * substream,int cmd)948 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
949 				       int cmd)
950 {
951 	struct cmipci *cm = snd_pcm_substream_chip(substream);
952 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
953 }
954 
snd_cmipci_playback_pointer(struct snd_pcm_substream * substream)955 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
956 {
957 	struct cmipci *cm = snd_pcm_substream_chip(substream);
958 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
959 }
960 
961 
962 
963 /*
964  * capture
965  */
966 
snd_cmipci_capture_trigger(struct snd_pcm_substream * substream,int cmd)967 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
968 				     int cmd)
969 {
970 	struct cmipci *cm = snd_pcm_substream_chip(substream);
971 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
972 }
973 
snd_cmipci_capture_pointer(struct snd_pcm_substream * substream)974 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
975 {
976 	struct cmipci *cm = snd_pcm_substream_chip(substream);
977 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
978 }
979 
980 
981 /*
982  * hw preparation for spdif
983  */
984 
snd_cmipci_spdif_default_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)985 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
986 					 struct snd_ctl_elem_info *uinfo)
987 {
988 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
989 	uinfo->count = 1;
990 	return 0;
991 }
992 
snd_cmipci_spdif_default_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)993 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
994 					struct snd_ctl_elem_value *ucontrol)
995 {
996 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
997 	int i;
998 
999 	spin_lock_irq(&chip->reg_lock);
1000 	for (i = 0; i < 4; i++)
1001 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1002 	spin_unlock_irq(&chip->reg_lock);
1003 	return 0;
1004 }
1005 
snd_cmipci_spdif_default_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1006 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1007 					 struct snd_ctl_elem_value *ucontrol)
1008 {
1009 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1010 	int i, change;
1011 	unsigned int val;
1012 
1013 	val = 0;
1014 	spin_lock_irq(&chip->reg_lock);
1015 	for (i = 0; i < 4; i++)
1016 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1017 	change = val != chip->dig_status;
1018 	chip->dig_status = val;
1019 	spin_unlock_irq(&chip->reg_lock);
1020 	return change;
1021 }
1022 
1023 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1024 {
1025 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1026 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1027 	.info =		snd_cmipci_spdif_default_info,
1028 	.get =		snd_cmipci_spdif_default_get,
1029 	.put =		snd_cmipci_spdif_default_put
1030 };
1031 
snd_cmipci_spdif_mask_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1032 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1033 				      struct snd_ctl_elem_info *uinfo)
1034 {
1035 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1036 	uinfo->count = 1;
1037 	return 0;
1038 }
1039 
snd_cmipci_spdif_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1040 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1041 				     struct snd_ctl_elem_value *ucontrol)
1042 {
1043 	ucontrol->value.iec958.status[0] = 0xff;
1044 	ucontrol->value.iec958.status[1] = 0xff;
1045 	ucontrol->value.iec958.status[2] = 0xff;
1046 	ucontrol->value.iec958.status[3] = 0xff;
1047 	return 0;
1048 }
1049 
1050 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1051 {
1052 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1053 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1054 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1055 	.info =		snd_cmipci_spdif_mask_info,
1056 	.get =		snd_cmipci_spdif_mask_get,
1057 };
1058 
snd_cmipci_spdif_stream_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1059 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1060 					struct snd_ctl_elem_info *uinfo)
1061 {
1062 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1063 	uinfo->count = 1;
1064 	return 0;
1065 }
1066 
snd_cmipci_spdif_stream_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1067 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1068 				       struct snd_ctl_elem_value *ucontrol)
1069 {
1070 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1071 	int i;
1072 
1073 	spin_lock_irq(&chip->reg_lock);
1074 	for (i = 0; i < 4; i++)
1075 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1076 	spin_unlock_irq(&chip->reg_lock);
1077 	return 0;
1078 }
1079 
snd_cmipci_spdif_stream_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1080 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1081 				       struct snd_ctl_elem_value *ucontrol)
1082 {
1083 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1084 	int i, change;
1085 	unsigned int val;
1086 
1087 	val = 0;
1088 	spin_lock_irq(&chip->reg_lock);
1089 	for (i = 0; i < 4; i++)
1090 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1091 	change = val != chip->dig_pcm_status;
1092 	chip->dig_pcm_status = val;
1093 	spin_unlock_irq(&chip->reg_lock);
1094 	return change;
1095 }
1096 
1097 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1098 {
1099 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1100 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1101 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1102 	.info =		snd_cmipci_spdif_stream_info,
1103 	.get =		snd_cmipci_spdif_stream_get,
1104 	.put =		snd_cmipci_spdif_stream_put
1105 };
1106 
1107 /*
1108  */
1109 
1110 /* save mixer setting and mute for AC3 playback */
save_mixer_state(struct cmipci * cm)1111 static int save_mixer_state(struct cmipci *cm)
1112 {
1113 	if (! cm->mixer_insensitive) {
1114 		struct snd_ctl_elem_value *val;
1115 		unsigned int i;
1116 
1117 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1118 		if (!val)
1119 			return -ENOMEM;
1120 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1121 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1122 			if (ctl) {
1123 				int event;
1124 				memset(val, 0, sizeof(*val));
1125 				ctl->get(ctl, val);
1126 				cm->mixer_res_status[i] = val->value.integer.value[0];
1127 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1128 				event = SNDRV_CTL_EVENT_MASK_INFO;
1129 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1130 					ctl->put(ctl, val); /* toggle */
1131 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1132 				}
1133 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1134 				snd_ctl_notify(cm->card, event, &ctl->id);
1135 			}
1136 		}
1137 		kfree(val);
1138 		cm->mixer_insensitive = 1;
1139 	}
1140 	return 0;
1141 }
1142 
1143 
1144 /* restore the previously saved mixer status */
restore_mixer_state(struct cmipci * cm)1145 static void restore_mixer_state(struct cmipci *cm)
1146 {
1147 	if (cm->mixer_insensitive) {
1148 		struct snd_ctl_elem_value *val;
1149 		unsigned int i;
1150 
1151 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1152 		if (!val)
1153 			return;
1154 		cm->mixer_insensitive = 0; /* at first clear this;
1155 					      otherwise the changes will be ignored */
1156 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1157 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1158 			if (ctl) {
1159 				int event;
1160 
1161 				memset(val, 0, sizeof(*val));
1162 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1163 				ctl->get(ctl, val);
1164 				event = SNDRV_CTL_EVENT_MASK_INFO;
1165 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1166 					val->value.integer.value[0] = cm->mixer_res_status[i];
1167 					ctl->put(ctl, val);
1168 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1169 				}
1170 				snd_ctl_notify(cm->card, event, &ctl->id);
1171 			}
1172 		}
1173 		kfree(val);
1174 	}
1175 }
1176 
1177 /* spinlock held! */
setup_ac3(struct cmipci * cm,struct snd_pcm_substream * subs,int do_ac3,int rate)1178 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1179 {
1180 	if (do_ac3) {
1181 		/* AC3EN for 037 */
1182 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1183 		/* AC3EN for 039 */
1184 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1185 
1186 		if (cm->can_ac3_hw) {
1187 			/* SPD24SEL for 037, 0x02 */
1188 			/* SPD24SEL for 039, 0x20, but cannot be set */
1189 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1190 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191 		} else { /* can_ac3_sw */
1192 			/* SPD32SEL for 037 & 039, 0x20 */
1193 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1194 			/* set 176K sample rate to fix 033 HW bug */
1195 			if (cm->chip_version == 33) {
1196 				if (rate >= 48000) {
1197 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1198 				} else {
1199 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1200 				}
1201 			}
1202 		}
1203 
1204 	} else {
1205 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1206 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1207 
1208 		if (cm->can_ac3_hw) {
1209 			/* chip model >= 37 */
1210 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1211 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213 			} else {
1214 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216 			}
1217 		} else {
1218 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1220 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1221 		}
1222 	}
1223 }
1224 
setup_spdif_playback(struct cmipci * cm,struct snd_pcm_substream * subs,int up,int do_ac3)1225 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1226 {
1227 	int rate, err;
1228 
1229 	rate = subs->runtime->rate;
1230 
1231 	if (up && do_ac3)
1232 		if ((err = save_mixer_state(cm)) < 0)
1233 			return err;
1234 
1235 	spin_lock_irq(&cm->reg_lock);
1236 	cm->spdif_playback_avail = up;
1237 	if (up) {
1238 		/* they are controlled via "IEC958 Output Switch" */
1239 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1240 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1241 		if (cm->spdif_playback_enabled)
1242 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1243 		setup_ac3(cm, subs, do_ac3, rate);
1244 
1245 		if (rate == 48000 || rate == 96000)
1246 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247 		else
1248 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1249 		if (rate > 48000)
1250 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251 		else
1252 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1253 	} else {
1254 		/* they are controlled via "IEC958 Output Switch" */
1255 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1256 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1257 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1258 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1259 		setup_ac3(cm, subs, 0, 0);
1260 	}
1261 	spin_unlock_irq(&cm->reg_lock);
1262 	return 0;
1263 }
1264 
1265 
1266 /*
1267  * preparation
1268  */
1269 
1270 /* playback - enable spdif only on the certain condition */
snd_cmipci_playback_prepare(struct snd_pcm_substream * substream)1271 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1272 {
1273 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1274 	int rate = substream->runtime->rate;
1275 	int err, do_spdif, do_ac3 = 0;
1276 
1277 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1278 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1279 		    substream->runtime->channels == 2);
1280 	if (do_spdif && cm->can_ac3_hw)
1281 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1282 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1283 		return err;
1284 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285 }
1286 
1287 /* playback  (via device #2) - enable spdif always */
snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream * substream)1288 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289 {
1290 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1291 	int err, do_ac3;
1292 
1293 	if (cm->can_ac3_hw)
1294 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295 	else
1296 		do_ac3 = 1; /* doesn't matter */
1297 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1298 		return err;
1299 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300 }
1301 
1302 /*
1303  * Apparently, the samples last played on channel A stay in some buffer, even
1304  * after the channel is reset, and get added to the data for the rear DACs when
1305  * playing a multichannel stream on channel B.  This is likely to generate
1306  * wraparounds and thus distortions.
1307  * To avoid this, we play at least one zero sample after the actual stream has
1308  * stopped.
1309  */
snd_cmipci_silence_hack(struct cmipci * cm,struct cmipci_pcm * rec)1310 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311 {
1312 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313 	unsigned int reg, val;
1314 
1315 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1316 		/* set up a small silence buffer */
1317 		memset(runtime->dma_area, 0, PAGE_SIZE);
1318 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320 		snd_cmipci_write(cm, reg, val);
1321 
1322 		/* configure for 16 bits, 2 channels, 8 kHz */
1323 		if (runtime->channels > 2)
1324 			set_dac_channels(cm, rec, 2);
1325 		spin_lock_irq(&cm->reg_lock);
1326 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333 		if (cm->can_96k)
1334 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336 
1337 		/* start stream (we don't need interrupts) */
1338 		cm->ctrl |= CM_CHEN0 << rec->ch;
1339 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340 		spin_unlock_irq(&cm->reg_lock);
1341 
1342 		msleep(1);
1343 
1344 		/* stop and reset stream */
1345 		spin_lock_irq(&cm->reg_lock);
1346 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347 		val = CM_RST_CH0 << rec->ch;
1348 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350 		spin_unlock_irq(&cm->reg_lock);
1351 
1352 		rec->needs_silencing = 0;
1353 	}
1354 }
1355 
snd_cmipci_playback_hw_free(struct snd_pcm_substream * substream)1356 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357 {
1358 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1359 	setup_spdif_playback(cm, substream, 0, 0);
1360 	restore_mixer_state(cm);
1361 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362 	return 0;
1363 }
1364 
snd_cmipci_playback2_hw_free(struct snd_pcm_substream * substream)1365 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366 {
1367 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369 	return 0;
1370 }
1371 
1372 /* capture */
snd_cmipci_capture_prepare(struct snd_pcm_substream * substream)1373 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374 {
1375 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1376 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377 }
1378 
1379 /* capture with spdif (via device #2) */
snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream * substream)1380 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381 {
1382 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1383 
1384 	spin_lock_irq(&cm->reg_lock);
1385 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386 	if (cm->can_96k) {
1387 		if (substream->runtime->rate > 48000)
1388 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389 		else
1390 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391 	}
1392 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1393 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394 	else
1395 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396 
1397 	spin_unlock_irq(&cm->reg_lock);
1398 
1399 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400 }
1401 
snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream * subs)1402 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403 {
1404 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1405 
1406 	spin_lock_irq(&cm->reg_lock);
1407 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409 	spin_unlock_irq(&cm->reg_lock);
1410 
1411 	return 0;
1412 }
1413 
1414 
1415 /*
1416  * interrupt handler
1417  */
snd_cmipci_interrupt(int irq,void * dev_id)1418 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419 {
1420 	struct cmipci *cm = dev_id;
1421 	unsigned int status, mask = 0;
1422 
1423 	/* fastpath out, to ease interrupt sharing */
1424 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425 	if (!(status & CM_INTR))
1426 		return IRQ_NONE;
1427 
1428 	/* acknowledge interrupt */
1429 	spin_lock(&cm->reg_lock);
1430 	if (status & CM_CHINT0)
1431 		mask |= CM_CH0_INT_EN;
1432 	if (status & CM_CHINT1)
1433 		mask |= CM_CH1_INT_EN;
1434 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436 	spin_unlock(&cm->reg_lock);
1437 
1438 	if (cm->rmidi && (status & CM_UARTINT))
1439 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440 
1441 	if (cm->pcm) {
1442 		if ((status & CM_CHINT0) && cm->channel[0].running)
1443 			snd_pcm_period_elapsed(cm->channel[0].substream);
1444 		if ((status & CM_CHINT1) && cm->channel[1].running)
1445 			snd_pcm_period_elapsed(cm->channel[1].substream);
1446 	}
1447 	return IRQ_HANDLED;
1448 }
1449 
1450 /*
1451  * h/w infos
1452  */
1453 
1454 /* playback on channel A */
1455 static const struct snd_pcm_hardware snd_cmipci_playback =
1456 {
1457 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462 	.rate_min =		5512,
1463 	.rate_max =		48000,
1464 	.channels_min =		1,
1465 	.channels_max =		2,
1466 	.buffer_bytes_max =	(128*1024),
1467 	.period_bytes_min =	64,
1468 	.period_bytes_max =	(128*1024),
1469 	.periods_min =		2,
1470 	.periods_max =		1024,
1471 	.fifo_size =		0,
1472 };
1473 
1474 /* capture on channel B */
1475 static const struct snd_pcm_hardware snd_cmipci_capture =
1476 {
1477 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482 	.rate_min =		5512,
1483 	.rate_max =		48000,
1484 	.channels_min =		1,
1485 	.channels_max =		2,
1486 	.buffer_bytes_max =	(128*1024),
1487 	.period_bytes_min =	64,
1488 	.period_bytes_max =	(128*1024),
1489 	.periods_min =		2,
1490 	.periods_max =		1024,
1491 	.fifo_size =		0,
1492 };
1493 
1494 /* playback on channel B - stereo 16bit only? */
1495 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496 {
1497 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1501 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502 	.rate_min =		5512,
1503 	.rate_max =		48000,
1504 	.channels_min =		2,
1505 	.channels_max =		2,
1506 	.buffer_bytes_max =	(128*1024),
1507 	.period_bytes_min =	64,
1508 	.period_bytes_max =	(128*1024),
1509 	.periods_min =		2,
1510 	.periods_max =		1024,
1511 	.fifo_size =		0,
1512 };
1513 
1514 /* spdif playback on channel A */
1515 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516 {
1517 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1521 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522 	.rate_min =		44100,
1523 	.rate_max =		48000,
1524 	.channels_min =		2,
1525 	.channels_max =		2,
1526 	.buffer_bytes_max =	(128*1024),
1527 	.period_bytes_min =	64,
1528 	.period_bytes_max =	(128*1024),
1529 	.periods_min =		2,
1530 	.periods_max =		1024,
1531 	.fifo_size =		0,
1532 };
1533 
1534 /* spdif playback on channel A (32bit, IEC958 subframes) */
1535 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536 {
1537 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542 	.rate_min =		44100,
1543 	.rate_max =		48000,
1544 	.channels_min =		2,
1545 	.channels_max =		2,
1546 	.buffer_bytes_max =	(128*1024),
1547 	.period_bytes_min =	64,
1548 	.period_bytes_max =	(128*1024),
1549 	.periods_min =		2,
1550 	.periods_max =		1024,
1551 	.fifo_size =		0,
1552 };
1553 
1554 /* spdif capture on channel B */
1555 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556 {
1557 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1561 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563 	.rate_min =		44100,
1564 	.rate_max =		48000,
1565 	.channels_min =		2,
1566 	.channels_max =		2,
1567 	.buffer_bytes_max =	(128*1024),
1568 	.period_bytes_min =	64,
1569 	.period_bytes_max =	(128*1024),
1570 	.periods_min =		2,
1571 	.periods_max =		1024,
1572 	.fifo_size =		0,
1573 };
1574 
1575 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576 			32000, 44100, 48000, 88200, 96000, 128000 };
1577 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578 		.count = ARRAY_SIZE(rate_constraints),
1579 		.list = rate_constraints,
1580 		.mask = 0,
1581 };
1582 
1583 /*
1584  * check device open/close
1585  */
open_device_check(struct cmipci * cm,int mode,struct snd_pcm_substream * subs)1586 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587 {
1588 	int ch = mode & CM_OPEN_CH_MASK;
1589 
1590 	/* FIXME: a file should wait until the device becomes free
1591 	 * when it's opened on blocking mode.  however, since the current
1592 	 * pcm framework doesn't pass file pointer before actually opened,
1593 	 * we can't know whether blocking mode or not in open callback..
1594 	 */
1595 	mutex_lock(&cm->open_mutex);
1596 	if (cm->opened[ch]) {
1597 		mutex_unlock(&cm->open_mutex);
1598 		return -EBUSY;
1599 	}
1600 	cm->opened[ch] = mode;
1601 	cm->channel[ch].substream = subs;
1602 	if (! (mode & CM_OPEN_DAC)) {
1603 		/* disable dual DAC mode */
1604 		cm->channel[ch].is_dac = 0;
1605 		spin_lock_irq(&cm->reg_lock);
1606 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607 		spin_unlock_irq(&cm->reg_lock);
1608 	}
1609 	mutex_unlock(&cm->open_mutex);
1610 	return 0;
1611 }
1612 
close_device_check(struct cmipci * cm,int mode)1613 static void close_device_check(struct cmipci *cm, int mode)
1614 {
1615 	int ch = mode & CM_OPEN_CH_MASK;
1616 
1617 	mutex_lock(&cm->open_mutex);
1618 	if (cm->opened[ch] == mode) {
1619 		if (cm->channel[ch].substream) {
1620 			snd_cmipci_ch_reset(cm, ch);
1621 			cm->channel[ch].running = 0;
1622 			cm->channel[ch].substream = NULL;
1623 		}
1624 		cm->opened[ch] = 0;
1625 		if (! cm->channel[ch].is_dac) {
1626 			/* enable dual DAC mode again */
1627 			cm->channel[ch].is_dac = 1;
1628 			spin_lock_irq(&cm->reg_lock);
1629 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630 			spin_unlock_irq(&cm->reg_lock);
1631 		}
1632 	}
1633 	mutex_unlock(&cm->open_mutex);
1634 }
1635 
1636 /*
1637  */
1638 
snd_cmipci_playback_open(struct snd_pcm_substream * substream)1639 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640 {
1641 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1642 	struct snd_pcm_runtime *runtime = substream->runtime;
1643 	int err;
1644 
1645 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1646 		return err;
1647 	runtime->hw = snd_cmipci_playback;
1648 	if (cm->chip_version == 68) {
1649 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1650 				     SNDRV_PCM_RATE_96000;
1651 		runtime->hw.rate_max = 96000;
1652 	} else if (cm->chip_version == 55) {
1653 		err = snd_pcm_hw_constraint_list(runtime, 0,
1654 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1655 		if (err < 0)
1656 			return err;
1657 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1658 		runtime->hw.rate_max = 128000;
1659 	}
1660 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1661 	cm->dig_pcm_status = cm->dig_status;
1662 	return 0;
1663 }
1664 
snd_cmipci_capture_open(struct snd_pcm_substream * substream)1665 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1666 {
1667 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1668 	struct snd_pcm_runtime *runtime = substream->runtime;
1669 	int err;
1670 
1671 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1672 		return err;
1673 	runtime->hw = snd_cmipci_capture;
1674 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1675 		runtime->hw.rate_min = 41000;
1676 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1677 	} else if (cm->chip_version == 55) {
1678 		err = snd_pcm_hw_constraint_list(runtime, 0,
1679 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680 		if (err < 0)
1681 			return err;
1682 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 		runtime->hw.rate_max = 128000;
1684 	}
1685 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686 	return 0;
1687 }
1688 
snd_cmipci_playback2_open(struct snd_pcm_substream * substream)1689 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1690 {
1691 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1692 	struct snd_pcm_runtime *runtime = substream->runtime;
1693 	int err;
1694 
1695 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1696 		return err;
1697 	runtime->hw = snd_cmipci_playback2;
1698 	mutex_lock(&cm->open_mutex);
1699 	if (! cm->opened[CM_CH_PLAY]) {
1700 		if (cm->can_multi_ch) {
1701 			runtime->hw.channels_max = cm->max_channels;
1702 			if (cm->max_channels == 4)
1703 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1704 			else if (cm->max_channels == 6)
1705 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1706 			else if (cm->max_channels == 8)
1707 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1708 		}
1709 	}
1710 	mutex_unlock(&cm->open_mutex);
1711 	if (cm->chip_version == 68) {
1712 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1713 				     SNDRV_PCM_RATE_96000;
1714 		runtime->hw.rate_max = 96000;
1715 	} else if (cm->chip_version == 55) {
1716 		err = snd_pcm_hw_constraint_list(runtime, 0,
1717 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1718 		if (err < 0)
1719 			return err;
1720 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1721 		runtime->hw.rate_max = 128000;
1722 	}
1723 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1724 	return 0;
1725 }
1726 
snd_cmipci_playback_spdif_open(struct snd_pcm_substream * substream)1727 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1728 {
1729 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1730 	struct snd_pcm_runtime *runtime = substream->runtime;
1731 	int err;
1732 
1733 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1734 		return err;
1735 	if (cm->can_ac3_hw) {
1736 		runtime->hw = snd_cmipci_playback_spdif;
1737 		if (cm->chip_version >= 37) {
1738 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1739 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1740 		}
1741 		if (cm->can_96k) {
1742 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1743 					     SNDRV_PCM_RATE_96000;
1744 			runtime->hw.rate_max = 96000;
1745 		}
1746 	} else {
1747 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1748 	}
1749 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1750 	cm->dig_pcm_status = cm->dig_status;
1751 	return 0;
1752 }
1753 
snd_cmipci_capture_spdif_open(struct snd_pcm_substream * substream)1754 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1755 {
1756 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1757 	struct snd_pcm_runtime *runtime = substream->runtime;
1758 	int err;
1759 
1760 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1761 		return err;
1762 	runtime->hw = snd_cmipci_capture_spdif;
1763 	if (cm->can_96k && !(cm->chip_version == 68)) {
1764 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1765 				     SNDRV_PCM_RATE_96000;
1766 		runtime->hw.rate_max = 96000;
1767 	}
1768 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1769 	return 0;
1770 }
1771 
1772 
1773 /*
1774  */
1775 
snd_cmipci_playback_close(struct snd_pcm_substream * substream)1776 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1777 {
1778 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1779 	close_device_check(cm, CM_OPEN_PLAYBACK);
1780 	return 0;
1781 }
1782 
snd_cmipci_capture_close(struct snd_pcm_substream * substream)1783 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1784 {
1785 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1786 	close_device_check(cm, CM_OPEN_CAPTURE);
1787 	return 0;
1788 }
1789 
snd_cmipci_playback2_close(struct snd_pcm_substream * substream)1790 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1791 {
1792 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1793 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1794 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1795 	return 0;
1796 }
1797 
snd_cmipci_playback_spdif_close(struct snd_pcm_substream * substream)1798 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1799 {
1800 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1801 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1802 	return 0;
1803 }
1804 
snd_cmipci_capture_spdif_close(struct snd_pcm_substream * substream)1805 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1806 {
1807 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1808 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1809 	return 0;
1810 }
1811 
1812 
1813 /*
1814  */
1815 
1816 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1817 	.open =		snd_cmipci_playback_open,
1818 	.close =	snd_cmipci_playback_close,
1819 	.hw_free =	snd_cmipci_playback_hw_free,
1820 	.prepare =	snd_cmipci_playback_prepare,
1821 	.trigger =	snd_cmipci_playback_trigger,
1822 	.pointer =	snd_cmipci_playback_pointer,
1823 };
1824 
1825 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1826 	.open =		snd_cmipci_capture_open,
1827 	.close =	snd_cmipci_capture_close,
1828 	.prepare =	snd_cmipci_capture_prepare,
1829 	.trigger =	snd_cmipci_capture_trigger,
1830 	.pointer =	snd_cmipci_capture_pointer,
1831 };
1832 
1833 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1834 	.open =		snd_cmipci_playback2_open,
1835 	.close =	snd_cmipci_playback2_close,
1836 	.hw_params =	snd_cmipci_playback2_hw_params,
1837 	.hw_free =	snd_cmipci_playback2_hw_free,
1838 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1839 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1840 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1841 };
1842 
1843 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1844 	.open =		snd_cmipci_playback_spdif_open,
1845 	.close =	snd_cmipci_playback_spdif_close,
1846 	.hw_free =	snd_cmipci_playback_hw_free,
1847 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1848 	.trigger =	snd_cmipci_playback_trigger,
1849 	.pointer =	snd_cmipci_playback_pointer,
1850 };
1851 
1852 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1853 	.open =		snd_cmipci_capture_spdif_open,
1854 	.close =	snd_cmipci_capture_spdif_close,
1855 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1856 	.prepare =	snd_cmipci_capture_spdif_prepare,
1857 	.trigger =	snd_cmipci_capture_trigger,
1858 	.pointer =	snd_cmipci_capture_pointer,
1859 };
1860 
1861 
1862 /*
1863  */
1864 
snd_cmipci_pcm_new(struct cmipci * cm,int device)1865 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1866 {
1867 	struct snd_pcm *pcm;
1868 	int err;
1869 
1870 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1871 	if (err < 0)
1872 		return err;
1873 
1874 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1875 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1876 
1877 	pcm->private_data = cm;
1878 	pcm->info_flags = 0;
1879 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1880 	cm->pcm = pcm;
1881 
1882 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1883 				       &cm->pci->dev, 64*1024, 128*1024);
1884 
1885 	return 0;
1886 }
1887 
snd_cmipci_pcm2_new(struct cmipci * cm,int device)1888 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1889 {
1890 	struct snd_pcm *pcm;
1891 	int err;
1892 
1893 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1894 	if (err < 0)
1895 		return err;
1896 
1897 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1898 
1899 	pcm->private_data = cm;
1900 	pcm->info_flags = 0;
1901 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1902 	cm->pcm2 = pcm;
1903 
1904 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1905 				       &cm->pci->dev, 64*1024, 128*1024);
1906 
1907 	return 0;
1908 }
1909 
snd_cmipci_pcm_spdif_new(struct cmipci * cm,int device)1910 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1911 {
1912 	struct snd_pcm *pcm;
1913 	int err;
1914 
1915 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1916 	if (err < 0)
1917 		return err;
1918 
1919 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1920 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1921 
1922 	pcm->private_data = cm;
1923 	pcm->info_flags = 0;
1924 	strcpy(pcm->name, "C-Media PCI IEC958");
1925 	cm->pcm_spdif = pcm;
1926 
1927 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1928 				       &cm->pci->dev, 64*1024, 128*1024);
1929 
1930 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1931 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1932 				     NULL);
1933 	if (err < 0)
1934 		return err;
1935 
1936 	return 0;
1937 }
1938 
1939 /*
1940  * mixer interface:
1941  * - CM8338/8738 has a compatible mixer interface with SB16, but
1942  *   lack of some elements like tone control, i/o gain and AGC.
1943  * - Access to native registers:
1944  *   - A 3D switch
1945  *   - Output mute switches
1946  */
1947 
snd_cmipci_mixer_write(struct cmipci * s,unsigned char idx,unsigned char data)1948 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1949 {
1950 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951 	outb(data, s->iobase + CM_REG_SB16_DATA);
1952 }
1953 
snd_cmipci_mixer_read(struct cmipci * s,unsigned char idx)1954 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1955 {
1956 	unsigned char v;
1957 
1958 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959 	v = inb(s->iobase + CM_REG_SB16_DATA);
1960 	return v;
1961 }
1962 
1963 /*
1964  * general mixer element
1965  */
1966 struct cmipci_sb_reg {
1967 	unsigned int left_reg, right_reg;
1968 	unsigned int left_shift, right_shift;
1969 	unsigned int mask;
1970 	unsigned int invert: 1;
1971 	unsigned int stereo: 1;
1972 };
1973 
1974 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1975  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1976 
1977 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1978 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1979   .info = snd_cmipci_info_volume, \
1980   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1981   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1982 }
1983 
1984 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1985 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1986 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1987 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1988 
cmipci_sb_reg_decode(struct cmipci_sb_reg * r,unsigned long val)1989 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1990 {
1991 	r->left_reg = val & 0xff;
1992 	r->right_reg = (val >> 8) & 0xff;
1993 	r->left_shift = (val >> 16) & 0x07;
1994 	r->right_shift = (val >> 19) & 0x07;
1995 	r->invert = (val >> 22) & 1;
1996 	r->stereo = (val >> 23) & 1;
1997 	r->mask = (val >> 24) & 0xff;
1998 }
1999 
snd_cmipci_info_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2000 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2001 				  struct snd_ctl_elem_info *uinfo)
2002 {
2003 	struct cmipci_sb_reg reg;
2004 
2005 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2006 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2007 	uinfo->count = reg.stereo + 1;
2008 	uinfo->value.integer.min = 0;
2009 	uinfo->value.integer.max = reg.mask;
2010 	return 0;
2011 }
2012 
snd_cmipci_get_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2013 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2014 				 struct snd_ctl_elem_value *ucontrol)
2015 {
2016 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2017 	struct cmipci_sb_reg reg;
2018 	int val;
2019 
2020 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2021 	spin_lock_irq(&cm->reg_lock);
2022 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2023 	if (reg.invert)
2024 		val = reg.mask - val;
2025 	ucontrol->value.integer.value[0] = val;
2026 	if (reg.stereo) {
2027 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2028 		if (reg.invert)
2029 			val = reg.mask - val;
2030 		ucontrol->value.integer.value[1] = val;
2031 	}
2032 	spin_unlock_irq(&cm->reg_lock);
2033 	return 0;
2034 }
2035 
snd_cmipci_put_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2036 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2037 				 struct snd_ctl_elem_value *ucontrol)
2038 {
2039 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2040 	struct cmipci_sb_reg reg;
2041 	int change;
2042 	int left, right, oleft, oright;
2043 
2044 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2045 	left = ucontrol->value.integer.value[0] & reg.mask;
2046 	if (reg.invert)
2047 		left = reg.mask - left;
2048 	left <<= reg.left_shift;
2049 	if (reg.stereo) {
2050 		right = ucontrol->value.integer.value[1] & reg.mask;
2051 		if (reg.invert)
2052 			right = reg.mask - right;
2053 		right <<= reg.right_shift;
2054 	} else
2055 		right = 0;
2056 	spin_lock_irq(&cm->reg_lock);
2057 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2058 	left |= oleft & ~(reg.mask << reg.left_shift);
2059 	change = left != oleft;
2060 	if (reg.stereo) {
2061 		if (reg.left_reg != reg.right_reg) {
2062 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2064 		} else
2065 			oright = left;
2066 		right |= oright & ~(reg.mask << reg.right_shift);
2067 		change |= right != oright;
2068 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2069 	} else
2070 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071 	spin_unlock_irq(&cm->reg_lock);
2072 	return change;
2073 }
2074 
2075 /*
2076  * input route (left,right) -> (left,right)
2077  */
2078 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2079 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2080   .info = snd_cmipci_info_input_sw, \
2081   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2082   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2083 }
2084 
snd_cmipci_info_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2085 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2086 				    struct snd_ctl_elem_info *uinfo)
2087 {
2088 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2089 	uinfo->count = 4;
2090 	uinfo->value.integer.min = 0;
2091 	uinfo->value.integer.max = 1;
2092 	return 0;
2093 }
2094 
snd_cmipci_get_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2095 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2096 				   struct snd_ctl_elem_value *ucontrol)
2097 {
2098 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2099 	struct cmipci_sb_reg reg;
2100 	int val1, val2;
2101 
2102 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2103 	spin_lock_irq(&cm->reg_lock);
2104 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2105 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2106 	spin_unlock_irq(&cm->reg_lock);
2107 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2108 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2109 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2110 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2111 	return 0;
2112 }
2113 
snd_cmipci_put_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2114 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2115 				   struct snd_ctl_elem_value *ucontrol)
2116 {
2117 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2118 	struct cmipci_sb_reg reg;
2119 	int change;
2120 	int val1, val2, oval1, oval2;
2121 
2122 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2123 	spin_lock_irq(&cm->reg_lock);
2124 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2125 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2126 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2127 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2129 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2130 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2131 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2132 	change = val1 != oval1 || val2 != oval2;
2133 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2134 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2135 	spin_unlock_irq(&cm->reg_lock);
2136 	return change;
2137 }
2138 
2139 /*
2140  * native mixer switches/volumes
2141  */
2142 
2143 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2144 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2145   .info = snd_cmipci_info_native_mixer, \
2146   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2147   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2148 }
2149 
2150 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2151 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2152   .info = snd_cmipci_info_native_mixer, \
2153   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2154   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2155 }
2156 
2157 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2158 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2159   .info = snd_cmipci_info_native_mixer, \
2160   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2161   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2162 }
2163 
2164 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2165 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166   .info = snd_cmipci_info_native_mixer, \
2167   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2169 }
2170 
snd_cmipci_info_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2171 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2172 					struct snd_ctl_elem_info *uinfo)
2173 {
2174 	struct cmipci_sb_reg reg;
2175 
2176 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2177 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2178 	uinfo->count = reg.stereo + 1;
2179 	uinfo->value.integer.min = 0;
2180 	uinfo->value.integer.max = reg.mask;
2181 	return 0;
2182 
2183 }
2184 
snd_cmipci_get_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2185 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2186 				       struct snd_ctl_elem_value *ucontrol)
2187 {
2188 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2189 	struct cmipci_sb_reg reg;
2190 	unsigned char oreg, val;
2191 
2192 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2193 	spin_lock_irq(&cm->reg_lock);
2194 	oreg = inb(cm->iobase + reg.left_reg);
2195 	val = (oreg >> reg.left_shift) & reg.mask;
2196 	if (reg.invert)
2197 		val = reg.mask - val;
2198 	ucontrol->value.integer.value[0] = val;
2199 	if (reg.stereo) {
2200 		val = (oreg >> reg.right_shift) & reg.mask;
2201 		if (reg.invert)
2202 			val = reg.mask - val;
2203 		ucontrol->value.integer.value[1] = val;
2204 	}
2205 	spin_unlock_irq(&cm->reg_lock);
2206 	return 0;
2207 }
2208 
snd_cmipci_put_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2209 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2210 				       struct snd_ctl_elem_value *ucontrol)
2211 {
2212 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2213 	struct cmipci_sb_reg reg;
2214 	unsigned char oreg, nreg, val;
2215 
2216 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2217 	spin_lock_irq(&cm->reg_lock);
2218 	oreg = inb(cm->iobase + reg.left_reg);
2219 	val = ucontrol->value.integer.value[0] & reg.mask;
2220 	if (reg.invert)
2221 		val = reg.mask - val;
2222 	nreg = oreg & ~(reg.mask << reg.left_shift);
2223 	nreg |= (val << reg.left_shift);
2224 	if (reg.stereo) {
2225 		val = ucontrol->value.integer.value[1] & reg.mask;
2226 		if (reg.invert)
2227 			val = reg.mask - val;
2228 		nreg &= ~(reg.mask << reg.right_shift);
2229 		nreg |= (val << reg.right_shift);
2230 	}
2231 	outb(nreg, cm->iobase + reg.left_reg);
2232 	spin_unlock_irq(&cm->reg_lock);
2233 	return (nreg != oreg);
2234 }
2235 
2236 /*
2237  * special case - check mixer sensitivity
2238  */
snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2239 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2240 						 struct snd_ctl_elem_value *ucontrol)
2241 {
2242 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2243 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2244 }
2245 
snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2246 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2247 						 struct snd_ctl_elem_value *ucontrol)
2248 {
2249 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2250 	if (cm->mixer_insensitive) {
2251 		/* ignored */
2252 		return 0;
2253 	}
2254 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2255 }
2256 
2257 
2258 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2259 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2260 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2261 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2262 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2263 	{ /* switch with sensitivity */
2264 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2265 		.name = "PCM Playback Switch",
2266 		.info = snd_cmipci_info_native_mixer,
2267 		.get = snd_cmipci_get_native_mixer_sensitive,
2268 		.put = snd_cmipci_put_native_mixer_sensitive,
2269 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2270 	},
2271 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2272 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2273 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2274 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2275 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2276 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2277 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2278 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2279 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2280 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2281 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2282 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2283 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2284 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2285 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2286 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2287 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2288 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2289 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2290 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2291 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2292 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2293 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2294 };
2295 
2296 /*
2297  * other switches
2298  */
2299 
2300 struct cmipci_switch_args {
2301 	int reg;		/* register index */
2302 	unsigned int mask;	/* mask bits */
2303 	unsigned int mask_on;	/* mask bits to turn on */
2304 	unsigned int is_byte: 1;		/* byte access? */
2305 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2306 					 * non-audio operation?
2307 					 */
2308 };
2309 
2310 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2311 
_snd_cmipci_uswitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol,struct cmipci_switch_args * args)2312 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2313 				   struct snd_ctl_elem_value *ucontrol,
2314 				   struct cmipci_switch_args *args)
2315 {
2316 	unsigned int val;
2317 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2318 
2319 	spin_lock_irq(&cm->reg_lock);
2320 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2321 		ucontrol->value.integer.value[0] = 0;
2322 		spin_unlock_irq(&cm->reg_lock);
2323 		return 0;
2324 	}
2325 	if (args->is_byte)
2326 		val = inb(cm->iobase + args->reg);
2327 	else
2328 		val = snd_cmipci_read(cm, args->reg);
2329 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2330 	spin_unlock_irq(&cm->reg_lock);
2331 	return 0;
2332 }
2333 
snd_cmipci_uswitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2334 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335 				  struct snd_ctl_elem_value *ucontrol)
2336 {
2337 	struct cmipci_switch_args *args;
2338 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2339 	if (snd_BUG_ON(!args))
2340 		return -EINVAL;
2341 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2342 }
2343 
_snd_cmipci_uswitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol,struct cmipci_switch_args * args)2344 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2345 				   struct snd_ctl_elem_value *ucontrol,
2346 				   struct cmipci_switch_args *args)
2347 {
2348 	unsigned int val;
2349 	int change;
2350 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2351 
2352 	spin_lock_irq(&cm->reg_lock);
2353 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2354 		/* ignored */
2355 		spin_unlock_irq(&cm->reg_lock);
2356 		return 0;
2357 	}
2358 	if (args->is_byte)
2359 		val = inb(cm->iobase + args->reg);
2360 	else
2361 		val = snd_cmipci_read(cm, args->reg);
2362 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2363 			args->mask_on : (args->mask & ~args->mask_on));
2364 	if (change) {
2365 		val &= ~args->mask;
2366 		if (ucontrol->value.integer.value[0])
2367 			val |= args->mask_on;
2368 		else
2369 			val |= (args->mask & ~args->mask_on);
2370 		if (args->is_byte)
2371 			outb((unsigned char)val, cm->iobase + args->reg);
2372 		else
2373 			snd_cmipci_write(cm, args->reg, val);
2374 	}
2375 	spin_unlock_irq(&cm->reg_lock);
2376 	return change;
2377 }
2378 
snd_cmipci_uswitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2379 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380 				  struct snd_ctl_elem_value *ucontrol)
2381 {
2382 	struct cmipci_switch_args *args;
2383 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2384 	if (snd_BUG_ON(!args))
2385 		return -EINVAL;
2386 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2387 }
2388 
2389 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2390 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2391   .reg = xreg, \
2392   .mask = xmask, \
2393   .mask_on = xmask_on, \
2394   .is_byte = xis_byte, \
2395   .ac3_sensitive = xac3, \
2396 }
2397 
2398 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2399 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2400 
2401 #if 0 /* these will be controlled in pcm device */
2402 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2403 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2404 #endif
2405 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2406 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2407 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2408 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2409 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2410 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2412 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2413 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2414 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2415 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2416 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2417 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2418 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2419 #if CM_CH_PLAY == 1
2420 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2421 #else
2422 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2423 #endif
2424 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2425 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2426 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2427 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2428 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2429 
2430 #define DEFINE_SWITCH(sname, stype, sarg) \
2431 { .name = sname, \
2432   .iface = stype, \
2433   .info = snd_cmipci_uswitch_info, \
2434   .get = snd_cmipci_uswitch_get, \
2435   .put = snd_cmipci_uswitch_put, \
2436   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2437 }
2438 
2439 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2440 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2441 
2442 
2443 /*
2444  * callbacks for spdif output switch
2445  * needs toggle two registers..
2446  */
snd_cmipci_spdout_enable_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2447 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2448 					struct snd_ctl_elem_value *ucontrol)
2449 {
2450 	int changed;
2451 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2452 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2453 	return changed;
2454 }
2455 
snd_cmipci_spdout_enable_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2456 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2457 					struct snd_ctl_elem_value *ucontrol)
2458 {
2459 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2460 	int changed;
2461 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2462 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2463 	if (changed) {
2464 		if (ucontrol->value.integer.value[0]) {
2465 			if (chip->spdif_playback_avail)
2466 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2467 		} else {
2468 			if (chip->spdif_playback_avail)
2469 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2470 		}
2471 	}
2472 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2473 	return changed;
2474 }
2475 
2476 
snd_cmipci_line_in_mode_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2477 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2478 					struct snd_ctl_elem_info *uinfo)
2479 {
2480 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2481 	static const char *const texts[3] = {
2482 		"Line-In", "Rear Output", "Bass Output"
2483 	};
2484 
2485 	return snd_ctl_enum_info(uinfo, 1,
2486 				 cm->chip_version >= 39 ? 3 : 2, texts);
2487 }
2488 
get_line_in_mode(struct cmipci * cm)2489 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2490 {
2491 	unsigned int val;
2492 	if (cm->chip_version >= 39) {
2493 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2494 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2495 			return 2;
2496 	}
2497 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2498 	if (val & CM_REAR2LIN)
2499 		return 1;
2500 	return 0;
2501 }
2502 
snd_cmipci_line_in_mode_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2503 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2504 				       struct snd_ctl_elem_value *ucontrol)
2505 {
2506 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2507 
2508 	spin_lock_irq(&cm->reg_lock);
2509 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2510 	spin_unlock_irq(&cm->reg_lock);
2511 	return 0;
2512 }
2513 
snd_cmipci_line_in_mode_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2514 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2515 				       struct snd_ctl_elem_value *ucontrol)
2516 {
2517 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2518 	int change;
2519 
2520 	spin_lock_irq(&cm->reg_lock);
2521 	if (ucontrol->value.enumerated.item[0] == 2)
2522 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2523 	else
2524 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2525 	if (ucontrol->value.enumerated.item[0] == 1)
2526 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2527 	else
2528 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2529 	spin_unlock_irq(&cm->reg_lock);
2530 	return change;
2531 }
2532 
snd_cmipci_mic_in_mode_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2533 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2534 				       struct snd_ctl_elem_info *uinfo)
2535 {
2536 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2537 
2538 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2539 }
2540 
snd_cmipci_mic_in_mode_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2541 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2542 				      struct snd_ctl_elem_value *ucontrol)
2543 {
2544 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2545 	/* same bit as spdi_phase */
2546 	spin_lock_irq(&cm->reg_lock);
2547 	ucontrol->value.enumerated.item[0] =
2548 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2549 	spin_unlock_irq(&cm->reg_lock);
2550 	return 0;
2551 }
2552 
snd_cmipci_mic_in_mode_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2553 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2554 				      struct snd_ctl_elem_value *ucontrol)
2555 {
2556 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2557 	int change;
2558 
2559 	spin_lock_irq(&cm->reg_lock);
2560 	if (ucontrol->value.enumerated.item[0])
2561 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2562 	else
2563 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2564 	spin_unlock_irq(&cm->reg_lock);
2565 	return change;
2566 }
2567 
2568 /* both for CM8338/8738 */
2569 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2570 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2571 	{
2572 		.name = "Line-In Mode",
2573 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2574 		.info = snd_cmipci_line_in_mode_info,
2575 		.get = snd_cmipci_line_in_mode_get,
2576 		.put = snd_cmipci_line_in_mode_put,
2577 	},
2578 };
2579 
2580 /* for non-multichannel chips */
2581 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2582 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2583 
2584 /* only for CM8738 */
2585 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2586 #if 0 /* controlled in pcm device */
2587 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2588 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2589 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2590 #endif
2591 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2592 	{ .name = "IEC958 Output Switch",
2593 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2594 	  .info = snd_cmipci_uswitch_info,
2595 	  .get = snd_cmipci_spdout_enable_get,
2596 	  .put = snd_cmipci_spdout_enable_put,
2597 	},
2598 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2599 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2600 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2601 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2602 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2603 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2604 };
2605 
2606 /* only for model 033/037 */
2607 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2608 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2609 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2610 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2611 };
2612 
2613 /* only for model 039 or later */
2614 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2615 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2616 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2617 	{
2618 		.name = "Mic-In Mode",
2619 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2620 		.info = snd_cmipci_mic_in_mode_info,
2621 		.get = snd_cmipci_mic_in_mode_get,
2622 		.put = snd_cmipci_mic_in_mode_put,
2623 	}
2624 };
2625 
2626 /* card control switches */
2627 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2628 DEFINE_CARD_SWITCH("Modem", modem);
2629 
2630 
snd_cmipci_mixer_new(struct cmipci * cm,int pcm_spdif_device)2631 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2632 {
2633 	struct snd_card *card;
2634 	const struct snd_kcontrol_new *sw;
2635 	struct snd_kcontrol *kctl;
2636 	unsigned int idx;
2637 	int err;
2638 
2639 	if (snd_BUG_ON(!cm || !cm->card))
2640 		return -EINVAL;
2641 
2642 	card = cm->card;
2643 
2644 	strcpy(card->mixername, "CMedia PCI");
2645 
2646 	spin_lock_irq(&cm->reg_lock);
2647 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2648 	spin_unlock_irq(&cm->reg_lock);
2649 
2650 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2651 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2652 			if (!strcmp(snd_cmipci_mixers[idx].name,
2653 				"PCM Playback Volume"))
2654 				continue;
2655 		}
2656 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2657 			return err;
2658 	}
2659 
2660 	/* mixer switches */
2661 	sw = snd_cmipci_mixer_switches;
2662 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2663 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2664 		if (err < 0)
2665 			return err;
2666 	}
2667 	if (! cm->can_multi_ch) {
2668 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2669 		if (err < 0)
2670 			return err;
2671 	}
2672 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2673 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2674 		sw = snd_cmipci_8738_mixer_switches;
2675 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2676 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2677 			if (err < 0)
2678 				return err;
2679 		}
2680 		if (cm->can_ac3_hw) {
2681 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2682 				return err;
2683 			kctl->id.device = pcm_spdif_device;
2684 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2685 				return err;
2686 			kctl->id.device = pcm_spdif_device;
2687 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2688 				return err;
2689 			kctl->id.device = pcm_spdif_device;
2690 		}
2691 		if (cm->chip_version <= 37) {
2692 			sw = snd_cmipci_old_mixer_switches;
2693 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2694 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2695 				if (err < 0)
2696 					return err;
2697 			}
2698 		}
2699 	}
2700 	if (cm->chip_version >= 39) {
2701 		sw = snd_cmipci_extra_mixer_switches;
2702 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2703 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2704 			if (err < 0)
2705 				return err;
2706 		}
2707 	}
2708 
2709 	/* card switches */
2710 	/*
2711 	 * newer chips don't have the register bits to force modem link
2712 	 * detection; the bit that was FLINKON now mutes CH1
2713 	 */
2714 	if (cm->chip_version < 39) {
2715 		err = snd_ctl_add(cm->card,
2716 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2717 		if (err < 0)
2718 			return err;
2719 	}
2720 
2721 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2722 		struct snd_ctl_elem_id elem_id;
2723 		struct snd_kcontrol *ctl;
2724 		memset(&elem_id, 0, sizeof(elem_id));
2725 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2726 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2727 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2728 		if (ctl)
2729 			cm->mixer_res_ctl[idx] = ctl;
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 
2736 /*
2737  * proc interface
2738  */
2739 
snd_cmipci_proc_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2740 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2741 				 struct snd_info_buffer *buffer)
2742 {
2743 	struct cmipci *cm = entry->private_data;
2744 	int i, v;
2745 
2746 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2747 	for (i = 0; i < 0x94; i++) {
2748 		if (i == 0x28)
2749 			i = 0x90;
2750 		v = inb(cm->iobase + i);
2751 		if (i % 4 == 0)
2752 			snd_iprintf(buffer, "\n%02x:", i);
2753 		snd_iprintf(buffer, " %02x", v);
2754 	}
2755 	snd_iprintf(buffer, "\n");
2756 }
2757 
snd_cmipci_proc_init(struct cmipci * cm)2758 static void snd_cmipci_proc_init(struct cmipci *cm)
2759 {
2760 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2761 }
2762 
2763 static const struct pci_device_id snd_cmipci_ids[] = {
2764 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2765 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2766 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2767 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2768 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2769 	{0,},
2770 };
2771 
2772 
2773 /*
2774  * check chip version and capabilities
2775  * driver name is modified according to the chip model
2776  */
query_chip(struct cmipci * cm)2777 static void query_chip(struct cmipci *cm)
2778 {
2779 	unsigned int detect;
2780 
2781 	/* check reg 0Ch, bit 24-31 */
2782 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2783 	if (! detect) {
2784 		/* check reg 08h, bit 24-28 */
2785 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2786 		switch (detect) {
2787 		case 0:
2788 			cm->chip_version = 33;
2789 			if (cm->do_soft_ac3)
2790 				cm->can_ac3_sw = 1;
2791 			else
2792 				cm->can_ac3_hw = 1;
2793 			break;
2794 		case CM_CHIP_037:
2795 			cm->chip_version = 37;
2796 			cm->can_ac3_hw = 1;
2797 			break;
2798 		default:
2799 			cm->chip_version = 39;
2800 			cm->can_ac3_hw = 1;
2801 			break;
2802 		}
2803 		cm->max_channels = 2;
2804 	} else {
2805 		if (detect & CM_CHIP_039) {
2806 			cm->chip_version = 39;
2807 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2808 				cm->max_channels = 6;
2809 			else
2810 				cm->max_channels = 4;
2811 		} else if (detect & CM_CHIP_8768) {
2812 			cm->chip_version = 68;
2813 			cm->max_channels = 8;
2814 			cm->can_96k = 1;
2815 		} else {
2816 			cm->chip_version = 55;
2817 			cm->max_channels = 6;
2818 			cm->can_96k = 1;
2819 		}
2820 		cm->can_ac3_hw = 1;
2821 		cm->can_multi_ch = 1;
2822 	}
2823 }
2824 
2825 #ifdef SUPPORT_JOYSTICK
snd_cmipci_create_gameport(struct cmipci * cm,int dev)2826 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2827 {
2828 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2829 	struct gameport *gp;
2830 	struct resource *r = NULL;
2831 	int i, io_port = 0;
2832 
2833 	if (joystick_port[dev] == 0)
2834 		return -ENODEV;
2835 
2836 	if (joystick_port[dev] == 1) { /* auto-detect */
2837 		for (i = 0; ports[i]; i++) {
2838 			io_port = ports[i];
2839 			r = request_region(io_port, 1, "CMIPCI gameport");
2840 			if (r)
2841 				break;
2842 		}
2843 	} else {
2844 		io_port = joystick_port[dev];
2845 		r = request_region(io_port, 1, "CMIPCI gameport");
2846 	}
2847 
2848 	if (!r) {
2849 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2850 		return -EBUSY;
2851 	}
2852 
2853 	cm->gameport = gp = gameport_allocate_port();
2854 	if (!gp) {
2855 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2856 		release_and_free_resource(r);
2857 		return -ENOMEM;
2858 	}
2859 	gameport_set_name(gp, "C-Media Gameport");
2860 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2861 	gameport_set_dev_parent(gp, &cm->pci->dev);
2862 	gp->io = io_port;
2863 	gameport_set_port_data(gp, r);
2864 
2865 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2866 
2867 	gameport_register_port(cm->gameport);
2868 
2869 	return 0;
2870 }
2871 
snd_cmipci_free_gameport(struct cmipci * cm)2872 static void snd_cmipci_free_gameport(struct cmipci *cm)
2873 {
2874 	if (cm->gameport) {
2875 		struct resource *r = gameport_get_port_data(cm->gameport);
2876 
2877 		gameport_unregister_port(cm->gameport);
2878 		cm->gameport = NULL;
2879 
2880 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2881 		release_and_free_resource(r);
2882 	}
2883 }
2884 #else
snd_cmipci_create_gameport(struct cmipci * cm,int dev)2885 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
snd_cmipci_free_gameport(struct cmipci * cm)2886 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2887 #endif
2888 
snd_cmipci_free(struct cmipci * cm)2889 static int snd_cmipci_free(struct cmipci *cm)
2890 {
2891 	if (cm->irq >= 0) {
2892 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2893 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2894 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2895 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2896 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2897 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2898 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2899 
2900 		/* reset mixer */
2901 		snd_cmipci_mixer_write(cm, 0, 0);
2902 
2903 		free_irq(cm->irq, cm);
2904 	}
2905 
2906 	snd_cmipci_free_gameport(cm);
2907 	pci_release_regions(cm->pci);
2908 	pci_disable_device(cm->pci);
2909 	kfree(cm);
2910 	return 0;
2911 }
2912 
snd_cmipci_dev_free(struct snd_device * device)2913 static int snd_cmipci_dev_free(struct snd_device *device)
2914 {
2915 	struct cmipci *cm = device->device_data;
2916 	return snd_cmipci_free(cm);
2917 }
2918 
snd_cmipci_create_fm(struct cmipci * cm,long fm_port)2919 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2920 {
2921 	long iosynth;
2922 	unsigned int val;
2923 	struct snd_opl3 *opl3;
2924 	int err;
2925 
2926 	if (!fm_port)
2927 		goto disable_fm;
2928 
2929 	if (cm->chip_version >= 39) {
2930 		/* first try FM regs in PCI port range */
2931 		iosynth = cm->iobase + CM_REG_FM_PCI;
2932 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2933 				      OPL3_HW_OPL3, 1, &opl3);
2934 	} else {
2935 		err = -EIO;
2936 	}
2937 	if (err < 0) {
2938 		/* then try legacy ports */
2939 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2940 		iosynth = fm_port;
2941 		switch (iosynth) {
2942 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2943 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2944 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2945 		case 0x388: val |= CM_FMSEL_388; break;
2946 		default:
2947 			goto disable_fm;
2948 		}
2949 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2950 		/* enable FM */
2951 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2952 
2953 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2955 			dev_err(cm->card->dev,
2956 				"no OPL device at %#lx, skipping...\n",
2957 				iosynth);
2958 			goto disable_fm;
2959 		}
2960 	}
2961 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2962 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2963 		return err;
2964 	}
2965 	return 0;
2966 
2967  disable_fm:
2968 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2969 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2970 	return 0;
2971 }
2972 
snd_cmipci_create(struct snd_card * card,struct pci_dev * pci,int dev,struct cmipci ** rcmipci)2973 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2974 			     int dev, struct cmipci **rcmipci)
2975 {
2976 	struct cmipci *cm;
2977 	int err;
2978 	static const struct snd_device_ops ops = {
2979 		.dev_free =	snd_cmipci_dev_free,
2980 	};
2981 	unsigned int val;
2982 	long iomidi = 0;
2983 	int integrated_midi = 0;
2984 	char modelstr[16];
2985 	int pcm_index, pcm_spdif_index;
2986 	static const struct pci_device_id intel_82437vx[] = {
2987 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2988 		{ },
2989 	};
2990 
2991 	*rcmipci = NULL;
2992 
2993 	if ((err = pci_enable_device(pci)) < 0)
2994 		return err;
2995 
2996 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2997 	if (cm == NULL) {
2998 		pci_disable_device(pci);
2999 		return -ENOMEM;
3000 	}
3001 
3002 	spin_lock_init(&cm->reg_lock);
3003 	mutex_init(&cm->open_mutex);
3004 	cm->device = pci->device;
3005 	cm->card = card;
3006 	cm->pci = pci;
3007 	cm->irq = -1;
3008 	cm->channel[0].ch = 0;
3009 	cm->channel[1].ch = 1;
3010 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3011 
3012 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3013 		kfree(cm);
3014 		pci_disable_device(pci);
3015 		return err;
3016 	}
3017 	cm->iobase = pci_resource_start(pci, 0);
3018 
3019 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3020 			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3021 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3022 		snd_cmipci_free(cm);
3023 		return -EBUSY;
3024 	}
3025 	cm->irq = pci->irq;
3026 	card->sync_irq = cm->irq;
3027 
3028 	pci_set_master(cm->pci);
3029 
3030 	/*
3031 	 * check chip version, max channels and capabilities
3032 	 */
3033 
3034 	cm->chip_version = 0;
3035 	cm->max_channels = 2;
3036 	cm->do_soft_ac3 = soft_ac3[dev];
3037 
3038 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3039 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3040 		query_chip(cm);
3041 	/* added -MCx suffix for chip supporting multi-channels */
3042 	if (cm->can_multi_ch)
3043 		sprintf(cm->card->driver + strlen(cm->card->driver),
3044 			"-MC%d", cm->max_channels);
3045 	else if (cm->can_ac3_sw)
3046 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3047 
3048 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3049 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050 
3051 #if CM_CH_PLAY == 1
3052 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3053 #else
3054 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3055 #endif
3056 
3057 	/* initialize codec registers */
3058 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3059 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3061 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3062 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3063 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3064 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3065 
3066 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3067 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3068 #if CM_CH_PLAY == 1
3069 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3070 #else
3071 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3072 #endif
3073 	if (cm->chip_version) {
3074 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3075 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3076 	}
3077 	/* Set Bus Master Request */
3078 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3079 
3080 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3081 	switch (pci->device) {
3082 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3083 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3084 		if (!pci_dev_present(intel_82437vx))
3085 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3086 		break;
3087 	default:
3088 		break;
3089 	}
3090 
3091 	if (cm->chip_version < 68) {
3092 		val = pci->device < 0x110 ? 8338 : 8738;
3093 	} else {
3094 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3095 		case 0:
3096 			val = 8769;
3097 			break;
3098 		case 2:
3099 			val = 8762;
3100 			break;
3101 		default:
3102 			switch ((pci->subsystem_vendor << 16) |
3103 				pci->subsystem_device) {
3104 			case 0x13f69761:
3105 			case 0x584d3741:
3106 			case 0x584d3751:
3107 			case 0x584d3761:
3108 			case 0x584d3771:
3109 			case 0x72848384:
3110 				val = 8770;
3111 				break;
3112 			default:
3113 				val = 8768;
3114 				break;
3115 			}
3116 		}
3117 	}
3118 	sprintf(card->shortname, "C-Media CMI%d", val);
3119 	if (cm->chip_version < 68)
3120 		sprintf(modelstr, " (model %d)", cm->chip_version);
3121 	else
3122 		modelstr[0] = '\0';
3123 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3124 		card->shortname, modelstr, cm->iobase, cm->irq);
3125 
3126 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3127 		snd_cmipci_free(cm);
3128 		return err;
3129 	}
3130 
3131 	if (cm->chip_version >= 39) {
3132 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3133 		if (val != 0x00 && val != 0xff) {
3134 			if (mpu_port[dev])
3135 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3136 			integrated_midi = 1;
3137 		}
3138 	}
3139 	if (!integrated_midi) {
3140 		val = 0;
3141 		iomidi = mpu_port[dev];
3142 		switch (iomidi) {
3143 		case 0x320: val = CM_VMPU_320; break;
3144 		case 0x310: val = CM_VMPU_310; break;
3145 		case 0x300: val = CM_VMPU_300; break;
3146 		case 0x330: val = CM_VMPU_330; break;
3147 		default:
3148 			    iomidi = 0; break;
3149 		}
3150 		if (iomidi > 0) {
3151 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3152 			/* enable UART */
3153 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3154 			if (inb(iomidi + 1) == 0xff) {
3155 				dev_err(cm->card->dev,
3156 					"cannot enable MPU-401 port at %#lx\n",
3157 					iomidi);
3158 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3159 						     CM_UART_EN);
3160 				iomidi = 0;
3161 			}
3162 		}
3163 	}
3164 
3165 	if (cm->chip_version < 68) {
3166 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3167 		if (err < 0)
3168 			return err;
3169 	}
3170 
3171 	/* reset mixer */
3172 	snd_cmipci_mixer_write(cm, 0, 0);
3173 
3174 	snd_cmipci_proc_init(cm);
3175 
3176 	/* create pcm devices */
3177 	pcm_index = pcm_spdif_index = 0;
3178 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3179 		return err;
3180 	pcm_index++;
3181 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3182 		return err;
3183 	pcm_index++;
3184 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3185 		pcm_spdif_index = pcm_index;
3186 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3187 			return err;
3188 	}
3189 
3190 	/* create mixer interface & switches */
3191 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3192 		return err;
3193 
3194 	if (iomidi > 0) {
3195 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3196 					       iomidi,
3197 					       (integrated_midi ?
3198 						MPU401_INFO_INTEGRATED : 0) |
3199 					       MPU401_INFO_IRQ_HOOK,
3200 					       -1, &cm->rmidi)) < 0) {
3201 			dev_err(cm->card->dev,
3202 				"no UART401 device at 0x%lx\n", iomidi);
3203 		}
3204 	}
3205 
3206 #ifdef USE_VAR48KRATE
3207 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3208 		snd_cmipci_set_pll(cm, rates[val], val);
3209 
3210 	/*
3211 	 * (Re-)Enable external switch spdo_48k
3212 	 */
3213 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3214 #endif /* USE_VAR48KRATE */
3215 
3216 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3217 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3218 
3219 	*rcmipci = cm;
3220 	return 0;
3221 }
3222 
3223 /*
3224  */
3225 
3226 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3227 
snd_cmipci_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)3228 static int snd_cmipci_probe(struct pci_dev *pci,
3229 			    const struct pci_device_id *pci_id)
3230 {
3231 	static int dev;
3232 	struct snd_card *card;
3233 	struct cmipci *cm;
3234 	int err;
3235 
3236 	if (dev >= SNDRV_CARDS)
3237 		return -ENODEV;
3238 	if (! enable[dev]) {
3239 		dev++;
3240 		return -ENOENT;
3241 	}
3242 
3243 	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3244 			   0, &card);
3245 	if (err < 0)
3246 		return err;
3247 
3248 	switch (pci->device) {
3249 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3250 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3251 		strcpy(card->driver, "CMI8738");
3252 		break;
3253 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3254 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3255 		strcpy(card->driver, "CMI8338");
3256 		break;
3257 	default:
3258 		strcpy(card->driver, "CMIPCI");
3259 		break;
3260 	}
3261 
3262 	err = snd_cmipci_create(card, pci, dev, &cm);
3263 	if (err < 0)
3264 		goto free_card;
3265 
3266 	card->private_data = cm;
3267 
3268 	err = snd_card_register(card);
3269 	if (err < 0)
3270 		goto free_card;
3271 
3272 	pci_set_drvdata(pci, card);
3273 	dev++;
3274 	return 0;
3275 
3276 free_card:
3277 	snd_card_free(card);
3278 	return err;
3279 }
3280 
snd_cmipci_remove(struct pci_dev * pci)3281 static void snd_cmipci_remove(struct pci_dev *pci)
3282 {
3283 	snd_card_free(pci_get_drvdata(pci));
3284 }
3285 
3286 
3287 #ifdef CONFIG_PM_SLEEP
3288 /*
3289  * power management
3290  */
3291 static const unsigned char saved_regs[] = {
3292 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3293 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3294 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3295 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3296 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3297 };
3298 
3299 static const unsigned char saved_mixers[] = {
3300 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3301 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3302 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3303 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3304 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3305 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3306 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3307 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3308 };
3309 
snd_cmipci_suspend(struct device * dev)3310 static int snd_cmipci_suspend(struct device *dev)
3311 {
3312 	struct snd_card *card = dev_get_drvdata(dev);
3313 	struct cmipci *cm = card->private_data;
3314 	int i;
3315 
3316 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3317 
3318 	/* save registers */
3319 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3320 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3321 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3322 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3323 
3324 	/* disable ints */
3325 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3326 	return 0;
3327 }
3328 
snd_cmipci_resume(struct device * dev)3329 static int snd_cmipci_resume(struct device *dev)
3330 {
3331 	struct snd_card *card = dev_get_drvdata(dev);
3332 	struct cmipci *cm = card->private_data;
3333 	int i;
3334 
3335 	/* reset / initialize to a sane state */
3336 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3337 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3338 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3339 	snd_cmipci_mixer_write(cm, 0, 0);
3340 
3341 	/* restore registers */
3342 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3343 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3344 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3345 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3346 
3347 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3348 	return 0;
3349 }
3350 
3351 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3352 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3353 #else
3354 #define SND_CMIPCI_PM_OPS	NULL
3355 #endif /* CONFIG_PM_SLEEP */
3356 
3357 static struct pci_driver cmipci_driver = {
3358 	.name = KBUILD_MODNAME,
3359 	.id_table = snd_cmipci_ids,
3360 	.probe = snd_cmipci_probe,
3361 	.remove = snd_cmipci_remove,
3362 	.driver = {
3363 		.pm = SND_CMIPCI_PM_OPS,
3364 	},
3365 };
3366 
3367 module_pci_driver(cmipci_driver);
3368