1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 "{C-Media,CMI8738B},"
35 "{C-Media,CMI8338A},"
36 "{C-Media,CMI8338B}}");
37
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
45 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68
69 /*
70 * CM8x38 registers definition
71 */
72
73 #define CM_REG_FUNCTRL0 0x00
74 #define CM_RST_CH1 0x00080000
75 #define CM_RST_CH0 0x00040000
76 #define CM_CHEN1 0x00020000 /* ch1: enable */
77 #define CM_CHEN0 0x00010000 /* ch0: enable */
78 #define CM_PAUSE1 0x00000008 /* ch1: pause */
79 #define CM_PAUSE0 0x00000004 /* ch0: pause */
80 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
81 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
82
83 #define CM_REG_FUNCTRL1 0x04
84 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
85 #define CM_DSFC_SHIFT 13
86 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
87 #define CM_ASFC_SHIFT 10
88 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
89 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
90 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
91 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
92 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
93 #define CM_BREQ 0x00000010 /* bus master enabled */
94 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
95 #define CM_UART_EN 0x00000004 /* legacy UART */
96 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */
97 #define CM_ZVPORT 0x00000001 /* ZVPORT */
98
99 #define CM_REG_CHFORMAT 0x08
100
101 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
102 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
103 #define CM_CHB3D 0x20000000 /* 4 channels */
104
105 #define CM_CHIP_MASK1 0x1f000000
106 #define CM_CHIP_037 0x01000000
107 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */
108 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
109 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
110 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
111 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
112 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
113 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
114
115 #define CM_ADCBITLEN_MASK 0x0000C000
116 #define CM_ADCBITLEN_16 0x00000000
117 #define CM_ADCBITLEN_15 0x00004000
118 #define CM_ADCBITLEN_14 0x00008000
119 #define CM_ADCBITLEN_13 0x0000C000
120
121 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
122 #define CM_ADCDACLEN_060 0x00000000
123 #define CM_ADCDACLEN_066 0x00001000
124 #define CM_ADCDACLEN_130 0x00002000
125 #define CM_ADCDACLEN_280 0x00003000
126
127 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
128 #define CM_ADCDLEN_ORIGINAL 0x00000000
129 #define CM_ADCDLEN_EXTRA 0x00001000
130 #define CM_ADCDLEN_24K 0x00002000
131 #define CM_ADCDLEN_WEIGHT 0x00003000
132
133 #define CM_CH1_SRATE_176K 0x00000800
134 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
135 #define CM_CH1_SRATE_88K 0x00000400
136 #define CM_CH0_SRATE_176K 0x00000200
137 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
138 #define CM_CH0_SRATE_88K 0x00000100
139 #define CM_CH0_SRATE_128K 0x00000300
140 #define CM_CH0_SRATE_MASK 0x00000300
141
142 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
143 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
144 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
145 #define CM_SPDLOCKED 0x00000010
146
147 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
148 #define CM_CH1FMT_SHIFT 2
149 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
150 #define CM_CH0FMT_SHIFT 0
151
152 #define CM_REG_INT_HLDCLR 0x0C
153 #define CM_CHIP_MASK2 0xff000000
154 #define CM_CHIP_8768 0x20000000
155 #define CM_CHIP_055 0x08000000
156 #define CM_CHIP_039 0x04000000
157 #define CM_CHIP_039_6CH 0x01000000
158 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
159 #define CM_TDMA_INT_EN 0x00040000
160 #define CM_CH1_INT_EN 0x00020000
161 #define CM_CH0_INT_EN 0x00010000
162
163 #define CM_REG_INT_STATUS 0x10
164 #define CM_INTR 0x80000000
165 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
166 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
167 #define CM_UARTINT 0x00010000
168 #define CM_LTDMAINT 0x00008000
169 #define CM_HTDMAINT 0x00004000
170 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
171 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
172 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
173 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
174 #define CM_CH1BUSY 0x00000008
175 #define CM_CH0BUSY 0x00000004
176 #define CM_CHINT1 0x00000002
177 #define CM_CHINT0 0x00000001
178
179 #define CM_REG_LEGACY_CTRL 0x14
180 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
181 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
182 #define CM_VMPU_330 0x00000000
183 #define CM_VMPU_320 0x20000000
184 #define CM_VMPU_310 0x40000000
185 #define CM_VMPU_300 0x60000000
186 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
187 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
188 #define CM_VSBSEL_220 0x00000000
189 #define CM_VSBSEL_240 0x04000000
190 #define CM_VSBSEL_260 0x08000000
191 #define CM_VSBSEL_280 0x0C000000
192 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
193 #define CM_FMSEL_388 0x00000000
194 #define CM_FMSEL_3C8 0x01000000
195 #define CM_FMSEL_3E0 0x02000000
196 #define CM_FMSEL_3E8 0x03000000
197 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
199 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
201 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
203 #define CM_C_EECS 0x00040000
204 #define CM_C_EEDI46 0x00020000
205 #define CM_C_EECK46 0x00010000
206 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
207 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */
208 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */
209 #define CM_EXBASEN 0x00001000 /* external bass input enable */
210
211 #define CM_REG_MISC_CTRL 0x18
212 #define CM_PWD 0x80000000 /* power down */
213 #define CM_RESET 0x40000000
214 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
215 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
216 #define CM_TXVX 0x08000000 /* model 037? */
217 #define CM_N4SPK3D 0x04000000 /* copy front to rear */
218 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
219 #define CM_SPDIF48K 0x01000000 /* write */
220 #define CM_SPATUS48K 0x01000000 /* read */
221 #define CM_ENDBDAC 0x00800000 /* enable double dac */
222 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
223 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
224 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
225 #define CM_FM_EN 0x00080000 /* enable legacy FM */
226 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
227 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
228 #define CM_VIDWPDSB 0x00010000 /* model 037? */
229 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
230 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
231 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
232 #define CM_VIDWPPRT 0x00002000 /* model 037? */
233 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
234 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
235 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
236 #define CM_ENCENTER 0x00000080
237 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
238 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
239 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
240 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
241 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
242 #define CM_UPDDMA_2048 0x00000000
243 #define CM_UPDDMA_1024 0x00000004
244 #define CM_UPDDMA_512 0x00000008
245 #define CM_UPDDMA_256 0x0000000C
246 #define CM_TWAIT_MASK 0x00000003 /* model 037 */
247 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
249
250 #define CM_REG_TDMA_POSITION 0x1C
251 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
252 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
253
254 /* byte */
255 #define CM_REG_MIXER0 0x20
256 #define CM_REG_SBVR 0x20 /* write: sb16 version */
257 #define CM_REG_DEV 0x20 /* read: hardware device version */
258
259 #define CM_REG_MIXER21 0x21
260 #define CM_UNKNOWN_21_MASK 0x78 /* ? */
261 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
262 #define CM_PROINV 0x02 /* SBPro left/right channel switching */
263 #define CM_X_SB16 0x01 /* SB16 compatible */
264
265 #define CM_REG_SB16_DATA 0x22
266 #define CM_REG_SB16_ADDR 0x23
267
268 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
269 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
271 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
272
273 #define CM_REG_MIXER1 0x24
274 #define CM_FMMUTE 0x80 /* mute FM */
275 #define CM_FMMUTE_SHIFT 7
276 #define CM_WSMUTE 0x40 /* mute PCM */
277 #define CM_WSMUTE_SHIFT 6
278 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
279 #define CM_REAR2LIN_SHIFT 5
280 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
281 #define CM_REAR2FRONT_SHIFT 4
282 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
283 #define CM_WAVEINL_SHIFT 3
284 #define CM_WAVEINR 0x04 /* digical wave rec. right */
285 #define CM_WAVEINR_SHIFT 2
286 #define CM_X3DEN 0x02 /* 3D surround enable */
287 #define CM_X3DEN_SHIFT 1
288 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
289 #define CM_CDPLAY_SHIFT 0
290
291 #define CM_REG_MIXER2 0x25
292 #define CM_RAUXREN 0x80 /* AUX right capture */
293 #define CM_RAUXREN_SHIFT 7
294 #define CM_RAUXLEN 0x40 /* AUX left capture */
295 #define CM_RAUXLEN_SHIFT 6
296 #define CM_VAUXRM 0x20 /* AUX right mute */
297 #define CM_VAUXRM_SHIFT 5
298 #define CM_VAUXLM 0x10 /* AUX left mute */
299 #define CM_VAUXLM_SHIFT 4
300 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
301 #define CM_VADMIC_SHIFT 1
302 #define CM_MICGAINZ 0x01 /* mic boost */
303 #define CM_MICGAINZ_SHIFT 0
304
305 #define CM_REG_AUX_VOL 0x26
306 #define CM_VAUXL_MASK 0xf0
307 #define CM_VAUXR_MASK 0x0f
308
309 #define CM_REG_MISC 0x27
310 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */
311 #define CM_XGPO1 0x20
312 // #define CM_XGPBIO 0x04
313 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
314 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
315 #define CM_SPDVALID 0x02 /* spdif input valid check */
316 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
317
318 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
319 /*
320 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
321 * or identical with AC97 codec?
322 */
323 #define CM_REG_EXTERN_CODEC CM_REG_AC97
324
325 /*
326 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
327 */
328 #define CM_REG_MPU_PCI 0x40
329
330 /*
331 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
332 */
333 #define CM_REG_FM_PCI 0x50
334
335 /*
336 * access from SB-mixer port
337 */
338 #define CM_REG_EXTENT_IND 0xf0
339 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
340 #define CM_VPHONE_SHIFT 5
341 #define CM_VPHOM 0x10 /* Phone mute control */
342 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
343 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
344 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
345 #define CM_VADMIC3 0x01 /* Mic record boost */
346
347 /*
348 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
349 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
350 * unit (readonly?).
351 */
352 #define CM_REG_PLL 0xf8
353
354 /*
355 * extended registers
356 */
357 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */
358 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */
359 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
360 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
361
362 #define CM_REG_EXT_MISC 0x90
363 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
364 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
365 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
366 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
367 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
368 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
369 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
370 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
371
372 /*
373 * size of i/o region
374 */
375 #define CM_EXTENT_CODEC 0x100
376 #define CM_EXTENT_MIDI 0x2
377 #define CM_EXTENT_SYNTH 0x4
378
379
380 /*
381 * channels for playback / capture
382 */
383 #define CM_CH_PLAY 0
384 #define CM_CH_CAPT 1
385
386 /*
387 * flags to check device open/close
388 */
389 #define CM_OPEN_NONE 0
390 #define CM_OPEN_CH_MASK 0x01
391 #define CM_OPEN_DAC 0x10
392 #define CM_OPEN_ADC 0x20
393 #define CM_OPEN_SPDIF 0x40
394 #define CM_OPEN_MCHAN 0x80
395 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
396 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
398 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
399 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
400 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
401
402
403 #if CM_CH_PLAY == 1
404 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
405 #define CM_PLAYBACK_SPDF CM_SPDF_1
406 #define CM_CAPTURE_SPDF CM_SPDF_0
407 #else
408 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
409 #define CM_PLAYBACK_SPDF CM_SPDF_0
410 #define CM_CAPTURE_SPDF CM_SPDF_1
411 #endif
412
413
414 /*
415 * driver data
416 */
417
418 struct cmipci_pcm {
419 struct snd_pcm_substream *substream;
420 u8 running; /* dac/adc running? */
421 u8 fmt; /* format bits */
422 u8 is_dac;
423 u8 needs_silencing;
424 unsigned int dma_size; /* in frames */
425 unsigned int shift;
426 unsigned int ch; /* channel (0/1) */
427 unsigned int offset; /* physical address of the buffer */
428 };
429
430 /* mixer elements toggled/resumed during ac3 playback */
431 struct cmipci_mixer_auto_switches {
432 const char *name; /* switch to toggle */
433 int toggle_on; /* value to change when ac3 mode */
434 };
435 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
436 {"PCM Playback Switch", 0},
437 {"IEC958 Output Switch", 1},
438 {"IEC958 Mix Analog", 0},
439 // {"IEC958 Out To DAC", 1}, // no longer used
440 {"IEC958 Loop", 0},
441 };
442 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
443
444 struct cmipci {
445 struct snd_card *card;
446
447 struct pci_dev *pci;
448 unsigned int device; /* device ID */
449 int irq;
450
451 unsigned long iobase;
452 unsigned int ctrl; /* FUNCTRL0 current value */
453
454 struct snd_pcm *pcm; /* DAC/ADC PCM */
455 struct snd_pcm *pcm2; /* 2nd DAC */
456 struct snd_pcm *pcm_spdif; /* SPDIF */
457
458 int chip_version;
459 int max_channels;
460 unsigned int can_ac3_sw: 1;
461 unsigned int can_ac3_hw: 1;
462 unsigned int can_multi_ch: 1;
463 unsigned int can_96k: 1; /* samplerate above 48k */
464 unsigned int do_soft_ac3: 1;
465
466 unsigned int spdif_playback_avail: 1; /* spdif ready? */
467 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
468 int spdif_counter; /* for software AC3 */
469
470 unsigned int dig_status;
471 unsigned int dig_pcm_status;
472
473 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
474
475 int opened[2]; /* open mode */
476 struct mutex open_mutex;
477
478 unsigned int mixer_insensitive: 1;
479 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
480 int mixer_res_status[CM_SAVED_MIXERS];
481
482 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
483
484 /* external MIDI */
485 struct snd_rawmidi *rmidi;
486
487 #ifdef SUPPORT_JOYSTICK
488 struct gameport *gameport;
489 #endif
490
491 spinlock_t reg_lock;
492
493 #ifdef CONFIG_PM_SLEEP
494 unsigned int saved_regs[0x20];
495 unsigned char saved_mixers[0x20];
496 #endif
497 };
498
499
500 /* read/write operations for dword register */
snd_cmipci_write(struct cmipci * cm,unsigned int cmd,unsigned int data)501 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
502 {
503 outl(data, cm->iobase + cmd);
504 }
505
snd_cmipci_read(struct cmipci * cm,unsigned int cmd)506 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
507 {
508 return inl(cm->iobase + cmd);
509 }
510
511 /* read/write operations for word register */
snd_cmipci_write_w(struct cmipci * cm,unsigned int cmd,unsigned short data)512 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
513 {
514 outw(data, cm->iobase + cmd);
515 }
516
snd_cmipci_read_w(struct cmipci * cm,unsigned int cmd)517 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
518 {
519 return inw(cm->iobase + cmd);
520 }
521
522 /* read/write operations for byte register */
snd_cmipci_write_b(struct cmipci * cm,unsigned int cmd,unsigned char data)523 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
524 {
525 outb(data, cm->iobase + cmd);
526 }
527
snd_cmipci_read_b(struct cmipci * cm,unsigned int cmd)528 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
529 {
530 return inb(cm->iobase + cmd);
531 }
532
533 /* bit operations for dword register */
snd_cmipci_set_bit(struct cmipci * cm,unsigned int cmd,unsigned int flag)534 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
535 {
536 unsigned int val, oval;
537 val = oval = inl(cm->iobase + cmd);
538 val |= flag;
539 if (val == oval)
540 return 0;
541 outl(val, cm->iobase + cmd);
542 return 1;
543 }
544
snd_cmipci_clear_bit(struct cmipci * cm,unsigned int cmd,unsigned int flag)545 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
546 {
547 unsigned int val, oval;
548 val = oval = inl(cm->iobase + cmd);
549 val &= ~flag;
550 if (val == oval)
551 return 0;
552 outl(val, cm->iobase + cmd);
553 return 1;
554 }
555
556 /* bit operations for byte register */
snd_cmipci_set_bit_b(struct cmipci * cm,unsigned int cmd,unsigned char flag)557 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
558 {
559 unsigned char val, oval;
560 val = oval = inb(cm->iobase + cmd);
561 val |= flag;
562 if (val == oval)
563 return 0;
564 outb(val, cm->iobase + cmd);
565 return 1;
566 }
567
snd_cmipci_clear_bit_b(struct cmipci * cm,unsigned int cmd,unsigned char flag)568 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
569 {
570 unsigned char val, oval;
571 val = oval = inb(cm->iobase + cmd);
572 val &= ~flag;
573 if (val == oval)
574 return 0;
575 outb(val, cm->iobase + cmd);
576 return 1;
577 }
578
579
580 /*
581 * PCM interface
582 */
583
584 /*
585 * calculate frequency
586 */
587
588 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
589
snd_cmipci_rate_freq(unsigned int rate)590 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
591 {
592 unsigned int i;
593
594 for (i = 0; i < ARRAY_SIZE(rates); i++) {
595 if (rates[i] == rate)
596 return i;
597 }
598 snd_BUG();
599 return 0;
600 }
601
602 #ifdef USE_VAR48KRATE
603 /*
604 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
605 * does it this way .. maybe not. Never get any information from C-Media about
606 * that <werner@suse.de>.
607 */
snd_cmipci_pll_rmn(unsigned int rate,unsigned int adcmult,int * r,int * m,int * n)608 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
609 {
610 unsigned int delta, tolerance;
611 int xm, xn, xr;
612
613 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
614 rate <<= 1;
615 *n = -1;
616 if (*r > 0xff)
617 goto out;
618 tolerance = rate*CM_TOLERANCE_RATE;
619
620 for (xn = (1+2); xn < (0x1f+2); xn++) {
621 for (xm = (1+2); xm < (0xff+2); xm++) {
622 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
623
624 if (xr < rate)
625 delta = rate - xr;
626 else
627 delta = xr - rate;
628
629 /*
630 * If we found one, remember this,
631 * and try to find a closer one
632 */
633 if (delta < tolerance) {
634 tolerance = delta;
635 *m = xm - 2;
636 *n = xn - 2;
637 }
638 }
639 }
640 out:
641 return (*n > -1);
642 }
643
644 /*
645 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
646 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
647 * at the register CM_REG_FUNCTRL1 (0x04).
648 * Problem: other ways are also possible (any information about that?)
649 */
snd_cmipci_set_pll(struct cmipci * cm,unsigned int rate,unsigned int slot)650 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
651 {
652 unsigned int reg = CM_REG_PLL + slot;
653 /*
654 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
655 * for DSFC/ASFC (000 up to 111).
656 */
657
658 /* FIXME: Init (Do we've to set an other register first before programming?) */
659
660 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
661 snd_cmipci_write_b(cm, reg, rate>>8);
662 snd_cmipci_write_b(cm, reg, rate&0xff);
663
664 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
665 }
666 #endif /* USE_VAR48KRATE */
667
snd_cmipci_playback2_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)668 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
669 struct snd_pcm_hw_params *hw_params)
670 {
671 struct cmipci *cm = snd_pcm_substream_chip(substream);
672 if (params_channels(hw_params) > 2) {
673 mutex_lock(&cm->open_mutex);
674 if (cm->opened[CM_CH_PLAY]) {
675 mutex_unlock(&cm->open_mutex);
676 return -EBUSY;
677 }
678 /* reserve the channel A */
679 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
680 mutex_unlock(&cm->open_mutex);
681 }
682 return 0;
683 }
684
snd_cmipci_ch_reset(struct cmipci * cm,int ch)685 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
686 {
687 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
688 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
689 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
690 udelay(10);
691 }
692
693
694 /*
695 */
696
697 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
698 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
699 .count = 3,
700 .list = hw_channels,
701 .mask = 0,
702 };
703 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
704 .count = 4,
705 .list = hw_channels,
706 .mask = 0,
707 };
708 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
709 .count = 5,
710 .list = hw_channels,
711 .mask = 0,
712 };
713
set_dac_channels(struct cmipci * cm,struct cmipci_pcm * rec,int channels)714 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
715 {
716 if (channels > 2) {
717 if (!cm->can_multi_ch || !rec->ch)
718 return -EINVAL;
719 if (rec->fmt != 0x03) /* stereo 16bit only */
720 return -EINVAL;
721 }
722
723 if (cm->can_multi_ch) {
724 spin_lock_irq(&cm->reg_lock);
725 if (channels > 2) {
726 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
727 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
728 } else {
729 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
730 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
731 }
732 if (channels == 8)
733 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
734 else
735 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
736 if (channels == 6) {
737 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
738 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
739 } else {
740 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
741 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
742 }
743 if (channels == 4)
744 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
745 else
746 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
747 spin_unlock_irq(&cm->reg_lock);
748 }
749 return 0;
750 }
751
752
753 /*
754 * prepare playback/capture channel
755 * channel to be used must have been set in rec->ch.
756 */
snd_cmipci_pcm_prepare(struct cmipci * cm,struct cmipci_pcm * rec,struct snd_pcm_substream * substream)757 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
758 struct snd_pcm_substream *substream)
759 {
760 unsigned int reg, freq, freq_ext, val;
761 unsigned int period_size;
762 struct snd_pcm_runtime *runtime = substream->runtime;
763
764 rec->fmt = 0;
765 rec->shift = 0;
766 if (snd_pcm_format_width(runtime->format) >= 16) {
767 rec->fmt |= 0x02;
768 if (snd_pcm_format_width(runtime->format) > 16)
769 rec->shift++; /* 24/32bit */
770 }
771 if (runtime->channels > 1)
772 rec->fmt |= 0x01;
773 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
774 dev_dbg(cm->card->dev, "cannot set dac channels\n");
775 return -EINVAL;
776 }
777
778 rec->offset = runtime->dma_addr;
779 /* buffer and period sizes in frame */
780 rec->dma_size = runtime->buffer_size << rec->shift;
781 period_size = runtime->period_size << rec->shift;
782 if (runtime->channels > 2) {
783 /* multi-channels */
784 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
785 period_size = (period_size * runtime->channels) / 2;
786 }
787
788 spin_lock_irq(&cm->reg_lock);
789
790 /* set buffer address */
791 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
792 snd_cmipci_write(cm, reg, rec->offset);
793 /* program sample counts */
794 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
795 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
796 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
797
798 /* set adc/dac flag */
799 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
800 if (rec->is_dac)
801 cm->ctrl &= ~val;
802 else
803 cm->ctrl |= val;
804 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
805 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
806
807 /* set sample rate */
808 freq = 0;
809 freq_ext = 0;
810 if (runtime->rate > 48000)
811 switch (runtime->rate) {
812 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
813 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
814 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
815 default: snd_BUG(); break;
816 }
817 else
818 freq = snd_cmipci_rate_freq(runtime->rate);
819 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
820 if (rec->ch) {
821 val &= ~CM_DSFC_MASK;
822 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
823 } else {
824 val &= ~CM_ASFC_MASK;
825 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
826 }
827 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
828 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
829
830 /* set format */
831 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
832 if (rec->ch) {
833 val &= ~CM_CH1FMT_MASK;
834 val |= rec->fmt << CM_CH1FMT_SHIFT;
835 } else {
836 val &= ~CM_CH0FMT_MASK;
837 val |= rec->fmt << CM_CH0FMT_SHIFT;
838 }
839 if (cm->can_96k) {
840 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
841 val |= freq_ext << (rec->ch * 2);
842 }
843 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
844 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
845
846 if (!rec->is_dac && cm->chip_version) {
847 if (runtime->rate > 44100)
848 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
849 else
850 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
851 }
852
853 rec->running = 0;
854 spin_unlock_irq(&cm->reg_lock);
855
856 return 0;
857 }
858
859 /*
860 * PCM trigger/stop
861 */
snd_cmipci_pcm_trigger(struct cmipci * cm,struct cmipci_pcm * rec,int cmd)862 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
863 int cmd)
864 {
865 unsigned int inthld, chen, reset, pause;
866 int result = 0;
867
868 inthld = CM_CH0_INT_EN << rec->ch;
869 chen = CM_CHEN0 << rec->ch;
870 reset = CM_RST_CH0 << rec->ch;
871 pause = CM_PAUSE0 << rec->ch;
872
873 spin_lock(&cm->reg_lock);
874 switch (cmd) {
875 case SNDRV_PCM_TRIGGER_START:
876 rec->running = 1;
877 /* set interrupt */
878 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
879 cm->ctrl |= chen;
880 /* enable channel */
881 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
882 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
883 break;
884 case SNDRV_PCM_TRIGGER_STOP:
885 rec->running = 0;
886 /* disable interrupt */
887 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
888 /* reset */
889 cm->ctrl &= ~chen;
890 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
891 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
892 rec->needs_silencing = rec->is_dac;
893 break;
894 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
895 case SNDRV_PCM_TRIGGER_SUSPEND:
896 cm->ctrl |= pause;
897 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
898 break;
899 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
900 case SNDRV_PCM_TRIGGER_RESUME:
901 cm->ctrl &= ~pause;
902 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
903 break;
904 default:
905 result = -EINVAL;
906 break;
907 }
908 spin_unlock(&cm->reg_lock);
909 return result;
910 }
911
912 /*
913 * return the current pointer
914 */
snd_cmipci_pcm_pointer(struct cmipci * cm,struct cmipci_pcm * rec,struct snd_pcm_substream * substream)915 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
916 struct snd_pcm_substream *substream)
917 {
918 size_t ptr;
919 unsigned int reg, rem, tries;
920
921 if (!rec->running)
922 return 0;
923 #if 1 // this seems better..
924 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
925 for (tries = 0; tries < 3; tries++) {
926 rem = snd_cmipci_read_w(cm, reg);
927 if (rem < rec->dma_size)
928 goto ok;
929 }
930 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
931 return SNDRV_PCM_POS_XRUN;
932 ok:
933 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
934 #else
935 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
936 ptr = snd_cmipci_read(cm, reg) - rec->offset;
937 ptr = bytes_to_frames(substream->runtime, ptr);
938 #endif
939 if (substream->runtime->channels > 2)
940 ptr = (ptr * 2) / substream->runtime->channels;
941 return ptr;
942 }
943
944 /*
945 * playback
946 */
947
snd_cmipci_playback_trigger(struct snd_pcm_substream * substream,int cmd)948 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
949 int cmd)
950 {
951 struct cmipci *cm = snd_pcm_substream_chip(substream);
952 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
953 }
954
snd_cmipci_playback_pointer(struct snd_pcm_substream * substream)955 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
956 {
957 struct cmipci *cm = snd_pcm_substream_chip(substream);
958 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
959 }
960
961
962
963 /*
964 * capture
965 */
966
snd_cmipci_capture_trigger(struct snd_pcm_substream * substream,int cmd)967 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
968 int cmd)
969 {
970 struct cmipci *cm = snd_pcm_substream_chip(substream);
971 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
972 }
973
snd_cmipci_capture_pointer(struct snd_pcm_substream * substream)974 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
975 {
976 struct cmipci *cm = snd_pcm_substream_chip(substream);
977 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
978 }
979
980
981 /*
982 * hw preparation for spdif
983 */
984
snd_cmipci_spdif_default_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)985 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
986 struct snd_ctl_elem_info *uinfo)
987 {
988 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
989 uinfo->count = 1;
990 return 0;
991 }
992
snd_cmipci_spdif_default_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)993 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
994 struct snd_ctl_elem_value *ucontrol)
995 {
996 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
997 int i;
998
999 spin_lock_irq(&chip->reg_lock);
1000 for (i = 0; i < 4; i++)
1001 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1002 spin_unlock_irq(&chip->reg_lock);
1003 return 0;
1004 }
1005
snd_cmipci_spdif_default_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1006 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1007 struct snd_ctl_elem_value *ucontrol)
1008 {
1009 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1010 int i, change;
1011 unsigned int val;
1012
1013 val = 0;
1014 spin_lock_irq(&chip->reg_lock);
1015 for (i = 0; i < 4; i++)
1016 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1017 change = val != chip->dig_status;
1018 chip->dig_status = val;
1019 spin_unlock_irq(&chip->reg_lock);
1020 return change;
1021 }
1022
1023 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1024 {
1025 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1026 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1027 .info = snd_cmipci_spdif_default_info,
1028 .get = snd_cmipci_spdif_default_get,
1029 .put = snd_cmipci_spdif_default_put
1030 };
1031
snd_cmipci_spdif_mask_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1032 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1033 struct snd_ctl_elem_info *uinfo)
1034 {
1035 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1036 uinfo->count = 1;
1037 return 0;
1038 }
1039
snd_cmipci_spdif_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1040 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1041 struct snd_ctl_elem_value *ucontrol)
1042 {
1043 ucontrol->value.iec958.status[0] = 0xff;
1044 ucontrol->value.iec958.status[1] = 0xff;
1045 ucontrol->value.iec958.status[2] = 0xff;
1046 ucontrol->value.iec958.status[3] = 0xff;
1047 return 0;
1048 }
1049
1050 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1051 {
1052 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1053 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1054 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1055 .info = snd_cmipci_spdif_mask_info,
1056 .get = snd_cmipci_spdif_mask_get,
1057 };
1058
snd_cmipci_spdif_stream_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1059 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1060 struct snd_ctl_elem_info *uinfo)
1061 {
1062 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1063 uinfo->count = 1;
1064 return 0;
1065 }
1066
snd_cmipci_spdif_stream_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1067 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1068 struct snd_ctl_elem_value *ucontrol)
1069 {
1070 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1071 int i;
1072
1073 spin_lock_irq(&chip->reg_lock);
1074 for (i = 0; i < 4; i++)
1075 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1076 spin_unlock_irq(&chip->reg_lock);
1077 return 0;
1078 }
1079
snd_cmipci_spdif_stream_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1080 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1081 struct snd_ctl_elem_value *ucontrol)
1082 {
1083 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1084 int i, change;
1085 unsigned int val;
1086
1087 val = 0;
1088 spin_lock_irq(&chip->reg_lock);
1089 for (i = 0; i < 4; i++)
1090 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1091 change = val != chip->dig_pcm_status;
1092 chip->dig_pcm_status = val;
1093 spin_unlock_irq(&chip->reg_lock);
1094 return change;
1095 }
1096
1097 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1098 {
1099 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1100 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1101 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1102 .info = snd_cmipci_spdif_stream_info,
1103 .get = snd_cmipci_spdif_stream_get,
1104 .put = snd_cmipci_spdif_stream_put
1105 };
1106
1107 /*
1108 */
1109
1110 /* save mixer setting and mute for AC3 playback */
save_mixer_state(struct cmipci * cm)1111 static int save_mixer_state(struct cmipci *cm)
1112 {
1113 if (! cm->mixer_insensitive) {
1114 struct snd_ctl_elem_value *val;
1115 unsigned int i;
1116
1117 val = kmalloc(sizeof(*val), GFP_KERNEL);
1118 if (!val)
1119 return -ENOMEM;
1120 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1121 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1122 if (ctl) {
1123 int event;
1124 memset(val, 0, sizeof(*val));
1125 ctl->get(ctl, val);
1126 cm->mixer_res_status[i] = val->value.integer.value[0];
1127 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1128 event = SNDRV_CTL_EVENT_MASK_INFO;
1129 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1130 ctl->put(ctl, val); /* toggle */
1131 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1132 }
1133 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1134 snd_ctl_notify(cm->card, event, &ctl->id);
1135 }
1136 }
1137 kfree(val);
1138 cm->mixer_insensitive = 1;
1139 }
1140 return 0;
1141 }
1142
1143
1144 /* restore the previously saved mixer status */
restore_mixer_state(struct cmipci * cm)1145 static void restore_mixer_state(struct cmipci *cm)
1146 {
1147 if (cm->mixer_insensitive) {
1148 struct snd_ctl_elem_value *val;
1149 unsigned int i;
1150
1151 val = kmalloc(sizeof(*val), GFP_KERNEL);
1152 if (!val)
1153 return;
1154 cm->mixer_insensitive = 0; /* at first clear this;
1155 otherwise the changes will be ignored */
1156 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1157 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1158 if (ctl) {
1159 int event;
1160
1161 memset(val, 0, sizeof(*val));
1162 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1163 ctl->get(ctl, val);
1164 event = SNDRV_CTL_EVENT_MASK_INFO;
1165 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1166 val->value.integer.value[0] = cm->mixer_res_status[i];
1167 ctl->put(ctl, val);
1168 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1169 }
1170 snd_ctl_notify(cm->card, event, &ctl->id);
1171 }
1172 }
1173 kfree(val);
1174 }
1175 }
1176
1177 /* spinlock held! */
setup_ac3(struct cmipci * cm,struct snd_pcm_substream * subs,int do_ac3,int rate)1178 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1179 {
1180 if (do_ac3) {
1181 /* AC3EN for 037 */
1182 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1183 /* AC3EN for 039 */
1184 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1185
1186 if (cm->can_ac3_hw) {
1187 /* SPD24SEL for 037, 0x02 */
1188 /* SPD24SEL for 039, 0x20, but cannot be set */
1189 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1190 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191 } else { /* can_ac3_sw */
1192 /* SPD32SEL for 037 & 039, 0x20 */
1193 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1194 /* set 176K sample rate to fix 033 HW bug */
1195 if (cm->chip_version == 33) {
1196 if (rate >= 48000) {
1197 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1198 } else {
1199 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1200 }
1201 }
1202 }
1203
1204 } else {
1205 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1206 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1207
1208 if (cm->can_ac3_hw) {
1209 /* chip model >= 37 */
1210 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1211 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213 } else {
1214 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216 }
1217 } else {
1218 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1220 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1221 }
1222 }
1223 }
1224
setup_spdif_playback(struct cmipci * cm,struct snd_pcm_substream * subs,int up,int do_ac3)1225 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1226 {
1227 int rate, err;
1228
1229 rate = subs->runtime->rate;
1230
1231 if (up && do_ac3)
1232 if ((err = save_mixer_state(cm)) < 0)
1233 return err;
1234
1235 spin_lock_irq(&cm->reg_lock);
1236 cm->spdif_playback_avail = up;
1237 if (up) {
1238 /* they are controlled via "IEC958 Output Switch" */
1239 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1240 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1241 if (cm->spdif_playback_enabled)
1242 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1243 setup_ac3(cm, subs, do_ac3, rate);
1244
1245 if (rate == 48000 || rate == 96000)
1246 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247 else
1248 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1249 if (rate > 48000)
1250 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251 else
1252 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1253 } else {
1254 /* they are controlled via "IEC958 Output Switch" */
1255 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1256 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1257 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1258 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1259 setup_ac3(cm, subs, 0, 0);
1260 }
1261 spin_unlock_irq(&cm->reg_lock);
1262 return 0;
1263 }
1264
1265
1266 /*
1267 * preparation
1268 */
1269
1270 /* playback - enable spdif only on the certain condition */
snd_cmipci_playback_prepare(struct snd_pcm_substream * substream)1271 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1272 {
1273 struct cmipci *cm = snd_pcm_substream_chip(substream);
1274 int rate = substream->runtime->rate;
1275 int err, do_spdif, do_ac3 = 0;
1276
1277 do_spdif = (rate >= 44100 && rate <= 96000 &&
1278 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1279 substream->runtime->channels == 2);
1280 if (do_spdif && cm->can_ac3_hw)
1281 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1282 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1283 return err;
1284 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285 }
1286
1287 /* playback (via device #2) - enable spdif always */
snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream * substream)1288 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289 {
1290 struct cmipci *cm = snd_pcm_substream_chip(substream);
1291 int err, do_ac3;
1292
1293 if (cm->can_ac3_hw)
1294 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295 else
1296 do_ac3 = 1; /* doesn't matter */
1297 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1298 return err;
1299 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300 }
1301
1302 /*
1303 * Apparently, the samples last played on channel A stay in some buffer, even
1304 * after the channel is reset, and get added to the data for the rear DACs when
1305 * playing a multichannel stream on channel B. This is likely to generate
1306 * wraparounds and thus distortions.
1307 * To avoid this, we play at least one zero sample after the actual stream has
1308 * stopped.
1309 */
snd_cmipci_silence_hack(struct cmipci * cm,struct cmipci_pcm * rec)1310 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311 {
1312 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313 unsigned int reg, val;
1314
1315 if (rec->needs_silencing && runtime && runtime->dma_area) {
1316 /* set up a small silence buffer */
1317 memset(runtime->dma_area, 0, PAGE_SIZE);
1318 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320 snd_cmipci_write(cm, reg, val);
1321
1322 /* configure for 16 bits, 2 channels, 8 kHz */
1323 if (runtime->channels > 2)
1324 set_dac_channels(cm, rec, 2);
1325 spin_lock_irq(&cm->reg_lock);
1326 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333 if (cm->can_96k)
1334 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336
1337 /* start stream (we don't need interrupts) */
1338 cm->ctrl |= CM_CHEN0 << rec->ch;
1339 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340 spin_unlock_irq(&cm->reg_lock);
1341
1342 msleep(1);
1343
1344 /* stop and reset stream */
1345 spin_lock_irq(&cm->reg_lock);
1346 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347 val = CM_RST_CH0 << rec->ch;
1348 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350 spin_unlock_irq(&cm->reg_lock);
1351
1352 rec->needs_silencing = 0;
1353 }
1354 }
1355
snd_cmipci_playback_hw_free(struct snd_pcm_substream * substream)1356 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357 {
1358 struct cmipci *cm = snd_pcm_substream_chip(substream);
1359 setup_spdif_playback(cm, substream, 0, 0);
1360 restore_mixer_state(cm);
1361 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362 return 0;
1363 }
1364
snd_cmipci_playback2_hw_free(struct snd_pcm_substream * substream)1365 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366 {
1367 struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369 return 0;
1370 }
1371
1372 /* capture */
snd_cmipci_capture_prepare(struct snd_pcm_substream * substream)1373 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374 {
1375 struct cmipci *cm = snd_pcm_substream_chip(substream);
1376 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377 }
1378
1379 /* capture with spdif (via device #2) */
snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream * substream)1380 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381 {
1382 struct cmipci *cm = snd_pcm_substream_chip(substream);
1383
1384 spin_lock_irq(&cm->reg_lock);
1385 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386 if (cm->can_96k) {
1387 if (substream->runtime->rate > 48000)
1388 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389 else
1390 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391 }
1392 if (snd_pcm_format_width(substream->runtime->format) > 16)
1393 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394 else
1395 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396
1397 spin_unlock_irq(&cm->reg_lock);
1398
1399 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400 }
1401
snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream * subs)1402 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403 {
1404 struct cmipci *cm = snd_pcm_substream_chip(subs);
1405
1406 spin_lock_irq(&cm->reg_lock);
1407 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409 spin_unlock_irq(&cm->reg_lock);
1410
1411 return 0;
1412 }
1413
1414
1415 /*
1416 * interrupt handler
1417 */
snd_cmipci_interrupt(int irq,void * dev_id)1418 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419 {
1420 struct cmipci *cm = dev_id;
1421 unsigned int status, mask = 0;
1422
1423 /* fastpath out, to ease interrupt sharing */
1424 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425 if (!(status & CM_INTR))
1426 return IRQ_NONE;
1427
1428 /* acknowledge interrupt */
1429 spin_lock(&cm->reg_lock);
1430 if (status & CM_CHINT0)
1431 mask |= CM_CH0_INT_EN;
1432 if (status & CM_CHINT1)
1433 mask |= CM_CH1_INT_EN;
1434 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436 spin_unlock(&cm->reg_lock);
1437
1438 if (cm->rmidi && (status & CM_UARTINT))
1439 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440
1441 if (cm->pcm) {
1442 if ((status & CM_CHINT0) && cm->channel[0].running)
1443 snd_pcm_period_elapsed(cm->channel[0].substream);
1444 if ((status & CM_CHINT1) && cm->channel[1].running)
1445 snd_pcm_period_elapsed(cm->channel[1].substream);
1446 }
1447 return IRQ_HANDLED;
1448 }
1449
1450 /*
1451 * h/w infos
1452 */
1453
1454 /* playback on channel A */
1455 static const struct snd_pcm_hardware snd_cmipci_playback =
1456 {
1457 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462 .rate_min = 5512,
1463 .rate_max = 48000,
1464 .channels_min = 1,
1465 .channels_max = 2,
1466 .buffer_bytes_max = (128*1024),
1467 .period_bytes_min = 64,
1468 .period_bytes_max = (128*1024),
1469 .periods_min = 2,
1470 .periods_max = 1024,
1471 .fifo_size = 0,
1472 };
1473
1474 /* capture on channel B */
1475 static const struct snd_pcm_hardware snd_cmipci_capture =
1476 {
1477 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482 .rate_min = 5512,
1483 .rate_max = 48000,
1484 .channels_min = 1,
1485 .channels_max = 2,
1486 .buffer_bytes_max = (128*1024),
1487 .period_bytes_min = 64,
1488 .period_bytes_max = (128*1024),
1489 .periods_min = 2,
1490 .periods_max = 1024,
1491 .fifo_size = 0,
1492 };
1493
1494 /* playback on channel B - stereo 16bit only? */
1495 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496 {
1497 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1501 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502 .rate_min = 5512,
1503 .rate_max = 48000,
1504 .channels_min = 2,
1505 .channels_max = 2,
1506 .buffer_bytes_max = (128*1024),
1507 .period_bytes_min = 64,
1508 .period_bytes_max = (128*1024),
1509 .periods_min = 2,
1510 .periods_max = 1024,
1511 .fifo_size = 0,
1512 };
1513
1514 /* spdif playback on channel A */
1515 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516 {
1517 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1521 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522 .rate_min = 44100,
1523 .rate_max = 48000,
1524 .channels_min = 2,
1525 .channels_max = 2,
1526 .buffer_bytes_max = (128*1024),
1527 .period_bytes_min = 64,
1528 .period_bytes_max = (128*1024),
1529 .periods_min = 2,
1530 .periods_max = 1024,
1531 .fifo_size = 0,
1532 };
1533
1534 /* spdif playback on channel A (32bit, IEC958 subframes) */
1535 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536 {
1537 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542 .rate_min = 44100,
1543 .rate_max = 48000,
1544 .channels_min = 2,
1545 .channels_max = 2,
1546 .buffer_bytes_max = (128*1024),
1547 .period_bytes_min = 64,
1548 .period_bytes_max = (128*1024),
1549 .periods_min = 2,
1550 .periods_max = 1024,
1551 .fifo_size = 0,
1552 };
1553
1554 /* spdif capture on channel B */
1555 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556 {
1557 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1561 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563 .rate_min = 44100,
1564 .rate_max = 48000,
1565 .channels_min = 2,
1566 .channels_max = 2,
1567 .buffer_bytes_max = (128*1024),
1568 .period_bytes_min = 64,
1569 .period_bytes_max = (128*1024),
1570 .periods_min = 2,
1571 .periods_max = 1024,
1572 .fifo_size = 0,
1573 };
1574
1575 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576 32000, 44100, 48000, 88200, 96000, 128000 };
1577 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578 .count = ARRAY_SIZE(rate_constraints),
1579 .list = rate_constraints,
1580 .mask = 0,
1581 };
1582
1583 /*
1584 * check device open/close
1585 */
open_device_check(struct cmipci * cm,int mode,struct snd_pcm_substream * subs)1586 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587 {
1588 int ch = mode & CM_OPEN_CH_MASK;
1589
1590 /* FIXME: a file should wait until the device becomes free
1591 * when it's opened on blocking mode. however, since the current
1592 * pcm framework doesn't pass file pointer before actually opened,
1593 * we can't know whether blocking mode or not in open callback..
1594 */
1595 mutex_lock(&cm->open_mutex);
1596 if (cm->opened[ch]) {
1597 mutex_unlock(&cm->open_mutex);
1598 return -EBUSY;
1599 }
1600 cm->opened[ch] = mode;
1601 cm->channel[ch].substream = subs;
1602 if (! (mode & CM_OPEN_DAC)) {
1603 /* disable dual DAC mode */
1604 cm->channel[ch].is_dac = 0;
1605 spin_lock_irq(&cm->reg_lock);
1606 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607 spin_unlock_irq(&cm->reg_lock);
1608 }
1609 mutex_unlock(&cm->open_mutex);
1610 return 0;
1611 }
1612
close_device_check(struct cmipci * cm,int mode)1613 static void close_device_check(struct cmipci *cm, int mode)
1614 {
1615 int ch = mode & CM_OPEN_CH_MASK;
1616
1617 mutex_lock(&cm->open_mutex);
1618 if (cm->opened[ch] == mode) {
1619 if (cm->channel[ch].substream) {
1620 snd_cmipci_ch_reset(cm, ch);
1621 cm->channel[ch].running = 0;
1622 cm->channel[ch].substream = NULL;
1623 }
1624 cm->opened[ch] = 0;
1625 if (! cm->channel[ch].is_dac) {
1626 /* enable dual DAC mode again */
1627 cm->channel[ch].is_dac = 1;
1628 spin_lock_irq(&cm->reg_lock);
1629 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630 spin_unlock_irq(&cm->reg_lock);
1631 }
1632 }
1633 mutex_unlock(&cm->open_mutex);
1634 }
1635
1636 /*
1637 */
1638
snd_cmipci_playback_open(struct snd_pcm_substream * substream)1639 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640 {
1641 struct cmipci *cm = snd_pcm_substream_chip(substream);
1642 struct snd_pcm_runtime *runtime = substream->runtime;
1643 int err;
1644
1645 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1646 return err;
1647 runtime->hw = snd_cmipci_playback;
1648 if (cm->chip_version == 68) {
1649 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1650 SNDRV_PCM_RATE_96000;
1651 runtime->hw.rate_max = 96000;
1652 } else if (cm->chip_version == 55) {
1653 err = snd_pcm_hw_constraint_list(runtime, 0,
1654 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1655 if (err < 0)
1656 return err;
1657 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1658 runtime->hw.rate_max = 128000;
1659 }
1660 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1661 cm->dig_pcm_status = cm->dig_status;
1662 return 0;
1663 }
1664
snd_cmipci_capture_open(struct snd_pcm_substream * substream)1665 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1666 {
1667 struct cmipci *cm = snd_pcm_substream_chip(substream);
1668 struct snd_pcm_runtime *runtime = substream->runtime;
1669 int err;
1670
1671 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1672 return err;
1673 runtime->hw = snd_cmipci_capture;
1674 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1675 runtime->hw.rate_min = 41000;
1676 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1677 } else if (cm->chip_version == 55) {
1678 err = snd_pcm_hw_constraint_list(runtime, 0,
1679 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680 if (err < 0)
1681 return err;
1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 runtime->hw.rate_max = 128000;
1684 }
1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686 return 0;
1687 }
1688
snd_cmipci_playback2_open(struct snd_pcm_substream * substream)1689 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1690 {
1691 struct cmipci *cm = snd_pcm_substream_chip(substream);
1692 struct snd_pcm_runtime *runtime = substream->runtime;
1693 int err;
1694
1695 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1696 return err;
1697 runtime->hw = snd_cmipci_playback2;
1698 mutex_lock(&cm->open_mutex);
1699 if (! cm->opened[CM_CH_PLAY]) {
1700 if (cm->can_multi_ch) {
1701 runtime->hw.channels_max = cm->max_channels;
1702 if (cm->max_channels == 4)
1703 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1704 else if (cm->max_channels == 6)
1705 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1706 else if (cm->max_channels == 8)
1707 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1708 }
1709 }
1710 mutex_unlock(&cm->open_mutex);
1711 if (cm->chip_version == 68) {
1712 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1713 SNDRV_PCM_RATE_96000;
1714 runtime->hw.rate_max = 96000;
1715 } else if (cm->chip_version == 55) {
1716 err = snd_pcm_hw_constraint_list(runtime, 0,
1717 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1718 if (err < 0)
1719 return err;
1720 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1721 runtime->hw.rate_max = 128000;
1722 }
1723 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1724 return 0;
1725 }
1726
snd_cmipci_playback_spdif_open(struct snd_pcm_substream * substream)1727 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1728 {
1729 struct cmipci *cm = snd_pcm_substream_chip(substream);
1730 struct snd_pcm_runtime *runtime = substream->runtime;
1731 int err;
1732
1733 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1734 return err;
1735 if (cm->can_ac3_hw) {
1736 runtime->hw = snd_cmipci_playback_spdif;
1737 if (cm->chip_version >= 37) {
1738 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1739 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1740 }
1741 if (cm->can_96k) {
1742 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1743 SNDRV_PCM_RATE_96000;
1744 runtime->hw.rate_max = 96000;
1745 }
1746 } else {
1747 runtime->hw = snd_cmipci_playback_iec958_subframe;
1748 }
1749 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1750 cm->dig_pcm_status = cm->dig_status;
1751 return 0;
1752 }
1753
snd_cmipci_capture_spdif_open(struct snd_pcm_substream * substream)1754 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1755 {
1756 struct cmipci *cm = snd_pcm_substream_chip(substream);
1757 struct snd_pcm_runtime *runtime = substream->runtime;
1758 int err;
1759
1760 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1761 return err;
1762 runtime->hw = snd_cmipci_capture_spdif;
1763 if (cm->can_96k && !(cm->chip_version == 68)) {
1764 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1765 SNDRV_PCM_RATE_96000;
1766 runtime->hw.rate_max = 96000;
1767 }
1768 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1769 return 0;
1770 }
1771
1772
1773 /*
1774 */
1775
snd_cmipci_playback_close(struct snd_pcm_substream * substream)1776 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1777 {
1778 struct cmipci *cm = snd_pcm_substream_chip(substream);
1779 close_device_check(cm, CM_OPEN_PLAYBACK);
1780 return 0;
1781 }
1782
snd_cmipci_capture_close(struct snd_pcm_substream * substream)1783 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1784 {
1785 struct cmipci *cm = snd_pcm_substream_chip(substream);
1786 close_device_check(cm, CM_OPEN_CAPTURE);
1787 return 0;
1788 }
1789
snd_cmipci_playback2_close(struct snd_pcm_substream * substream)1790 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1791 {
1792 struct cmipci *cm = snd_pcm_substream_chip(substream);
1793 close_device_check(cm, CM_OPEN_PLAYBACK2);
1794 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1795 return 0;
1796 }
1797
snd_cmipci_playback_spdif_close(struct snd_pcm_substream * substream)1798 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1799 {
1800 struct cmipci *cm = snd_pcm_substream_chip(substream);
1801 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1802 return 0;
1803 }
1804
snd_cmipci_capture_spdif_close(struct snd_pcm_substream * substream)1805 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1806 {
1807 struct cmipci *cm = snd_pcm_substream_chip(substream);
1808 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1809 return 0;
1810 }
1811
1812
1813 /*
1814 */
1815
1816 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1817 .open = snd_cmipci_playback_open,
1818 .close = snd_cmipci_playback_close,
1819 .hw_free = snd_cmipci_playback_hw_free,
1820 .prepare = snd_cmipci_playback_prepare,
1821 .trigger = snd_cmipci_playback_trigger,
1822 .pointer = snd_cmipci_playback_pointer,
1823 };
1824
1825 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1826 .open = snd_cmipci_capture_open,
1827 .close = snd_cmipci_capture_close,
1828 .prepare = snd_cmipci_capture_prepare,
1829 .trigger = snd_cmipci_capture_trigger,
1830 .pointer = snd_cmipci_capture_pointer,
1831 };
1832
1833 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1834 .open = snd_cmipci_playback2_open,
1835 .close = snd_cmipci_playback2_close,
1836 .hw_params = snd_cmipci_playback2_hw_params,
1837 .hw_free = snd_cmipci_playback2_hw_free,
1838 .prepare = snd_cmipci_capture_prepare, /* channel B */
1839 .trigger = snd_cmipci_capture_trigger, /* channel B */
1840 .pointer = snd_cmipci_capture_pointer, /* channel B */
1841 };
1842
1843 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1844 .open = snd_cmipci_playback_spdif_open,
1845 .close = snd_cmipci_playback_spdif_close,
1846 .hw_free = snd_cmipci_playback_hw_free,
1847 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1848 .trigger = snd_cmipci_playback_trigger,
1849 .pointer = snd_cmipci_playback_pointer,
1850 };
1851
1852 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1853 .open = snd_cmipci_capture_spdif_open,
1854 .close = snd_cmipci_capture_spdif_close,
1855 .hw_free = snd_cmipci_capture_spdif_hw_free,
1856 .prepare = snd_cmipci_capture_spdif_prepare,
1857 .trigger = snd_cmipci_capture_trigger,
1858 .pointer = snd_cmipci_capture_pointer,
1859 };
1860
1861
1862 /*
1863 */
1864
snd_cmipci_pcm_new(struct cmipci * cm,int device)1865 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1866 {
1867 struct snd_pcm *pcm;
1868 int err;
1869
1870 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1871 if (err < 0)
1872 return err;
1873
1874 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1875 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1876
1877 pcm->private_data = cm;
1878 pcm->info_flags = 0;
1879 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1880 cm->pcm = pcm;
1881
1882 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1883 &cm->pci->dev, 64*1024, 128*1024);
1884
1885 return 0;
1886 }
1887
snd_cmipci_pcm2_new(struct cmipci * cm,int device)1888 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1889 {
1890 struct snd_pcm *pcm;
1891 int err;
1892
1893 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1894 if (err < 0)
1895 return err;
1896
1897 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1898
1899 pcm->private_data = cm;
1900 pcm->info_flags = 0;
1901 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1902 cm->pcm2 = pcm;
1903
1904 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1905 &cm->pci->dev, 64*1024, 128*1024);
1906
1907 return 0;
1908 }
1909
snd_cmipci_pcm_spdif_new(struct cmipci * cm,int device)1910 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1911 {
1912 struct snd_pcm *pcm;
1913 int err;
1914
1915 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1916 if (err < 0)
1917 return err;
1918
1919 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1920 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1921
1922 pcm->private_data = cm;
1923 pcm->info_flags = 0;
1924 strcpy(pcm->name, "C-Media PCI IEC958");
1925 cm->pcm_spdif = pcm;
1926
1927 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1928 &cm->pci->dev, 64*1024, 128*1024);
1929
1930 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1931 snd_pcm_alt_chmaps, cm->max_channels, 0,
1932 NULL);
1933 if (err < 0)
1934 return err;
1935
1936 return 0;
1937 }
1938
1939 /*
1940 * mixer interface:
1941 * - CM8338/8738 has a compatible mixer interface with SB16, but
1942 * lack of some elements like tone control, i/o gain and AGC.
1943 * - Access to native registers:
1944 * - A 3D switch
1945 * - Output mute switches
1946 */
1947
snd_cmipci_mixer_write(struct cmipci * s,unsigned char idx,unsigned char data)1948 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1949 {
1950 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951 outb(data, s->iobase + CM_REG_SB16_DATA);
1952 }
1953
snd_cmipci_mixer_read(struct cmipci * s,unsigned char idx)1954 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1955 {
1956 unsigned char v;
1957
1958 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959 v = inb(s->iobase + CM_REG_SB16_DATA);
1960 return v;
1961 }
1962
1963 /*
1964 * general mixer element
1965 */
1966 struct cmipci_sb_reg {
1967 unsigned int left_reg, right_reg;
1968 unsigned int left_shift, right_shift;
1969 unsigned int mask;
1970 unsigned int invert: 1;
1971 unsigned int stereo: 1;
1972 };
1973
1974 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1975 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1976
1977 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1978 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1979 .info = snd_cmipci_info_volume, \
1980 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1981 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1982 }
1983
1984 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1985 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1986 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1987 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1988
cmipci_sb_reg_decode(struct cmipci_sb_reg * r,unsigned long val)1989 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1990 {
1991 r->left_reg = val & 0xff;
1992 r->right_reg = (val >> 8) & 0xff;
1993 r->left_shift = (val >> 16) & 0x07;
1994 r->right_shift = (val >> 19) & 0x07;
1995 r->invert = (val >> 22) & 1;
1996 r->stereo = (val >> 23) & 1;
1997 r->mask = (val >> 24) & 0xff;
1998 }
1999
snd_cmipci_info_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2000 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2001 struct snd_ctl_elem_info *uinfo)
2002 {
2003 struct cmipci_sb_reg reg;
2004
2005 cmipci_sb_reg_decode(®, kcontrol->private_value);
2006 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2007 uinfo->count = reg.stereo + 1;
2008 uinfo->value.integer.min = 0;
2009 uinfo->value.integer.max = reg.mask;
2010 return 0;
2011 }
2012
snd_cmipci_get_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2013 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2014 struct snd_ctl_elem_value *ucontrol)
2015 {
2016 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2017 struct cmipci_sb_reg reg;
2018 int val;
2019
2020 cmipci_sb_reg_decode(®, kcontrol->private_value);
2021 spin_lock_irq(&cm->reg_lock);
2022 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2023 if (reg.invert)
2024 val = reg.mask - val;
2025 ucontrol->value.integer.value[0] = val;
2026 if (reg.stereo) {
2027 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2028 if (reg.invert)
2029 val = reg.mask - val;
2030 ucontrol->value.integer.value[1] = val;
2031 }
2032 spin_unlock_irq(&cm->reg_lock);
2033 return 0;
2034 }
2035
snd_cmipci_put_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2036 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2037 struct snd_ctl_elem_value *ucontrol)
2038 {
2039 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2040 struct cmipci_sb_reg reg;
2041 int change;
2042 int left, right, oleft, oright;
2043
2044 cmipci_sb_reg_decode(®, kcontrol->private_value);
2045 left = ucontrol->value.integer.value[0] & reg.mask;
2046 if (reg.invert)
2047 left = reg.mask - left;
2048 left <<= reg.left_shift;
2049 if (reg.stereo) {
2050 right = ucontrol->value.integer.value[1] & reg.mask;
2051 if (reg.invert)
2052 right = reg.mask - right;
2053 right <<= reg.right_shift;
2054 } else
2055 right = 0;
2056 spin_lock_irq(&cm->reg_lock);
2057 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2058 left |= oleft & ~(reg.mask << reg.left_shift);
2059 change = left != oleft;
2060 if (reg.stereo) {
2061 if (reg.left_reg != reg.right_reg) {
2062 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2064 } else
2065 oright = left;
2066 right |= oright & ~(reg.mask << reg.right_shift);
2067 change |= right != oright;
2068 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2069 } else
2070 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071 spin_unlock_irq(&cm->reg_lock);
2072 return change;
2073 }
2074
2075 /*
2076 * input route (left,right) -> (left,right)
2077 */
2078 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2079 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2080 .info = snd_cmipci_info_input_sw, \
2081 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2082 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2083 }
2084
snd_cmipci_info_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2085 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2086 struct snd_ctl_elem_info *uinfo)
2087 {
2088 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2089 uinfo->count = 4;
2090 uinfo->value.integer.min = 0;
2091 uinfo->value.integer.max = 1;
2092 return 0;
2093 }
2094
snd_cmipci_get_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2095 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2096 struct snd_ctl_elem_value *ucontrol)
2097 {
2098 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2099 struct cmipci_sb_reg reg;
2100 int val1, val2;
2101
2102 cmipci_sb_reg_decode(®, kcontrol->private_value);
2103 spin_lock_irq(&cm->reg_lock);
2104 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2105 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2106 spin_unlock_irq(&cm->reg_lock);
2107 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2108 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2109 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2110 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2111 return 0;
2112 }
2113
snd_cmipci_put_input_sw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2114 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2115 struct snd_ctl_elem_value *ucontrol)
2116 {
2117 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2118 struct cmipci_sb_reg reg;
2119 int change;
2120 int val1, val2, oval1, oval2;
2121
2122 cmipci_sb_reg_decode(®, kcontrol->private_value);
2123 spin_lock_irq(&cm->reg_lock);
2124 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2125 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2126 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2127 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2129 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2130 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2131 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2132 change = val1 != oval1 || val2 != oval2;
2133 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2134 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2135 spin_unlock_irq(&cm->reg_lock);
2136 return change;
2137 }
2138
2139 /*
2140 * native mixer switches/volumes
2141 */
2142
2143 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2144 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2145 .info = snd_cmipci_info_native_mixer, \
2146 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2147 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2148 }
2149
2150 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2151 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2152 .info = snd_cmipci_info_native_mixer, \
2153 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2154 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2155 }
2156
2157 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2158 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2159 .info = snd_cmipci_info_native_mixer, \
2160 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2161 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2162 }
2163
2164 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2165 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166 .info = snd_cmipci_info_native_mixer, \
2167 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2169 }
2170
snd_cmipci_info_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2171 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2172 struct snd_ctl_elem_info *uinfo)
2173 {
2174 struct cmipci_sb_reg reg;
2175
2176 cmipci_sb_reg_decode(®, kcontrol->private_value);
2177 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2178 uinfo->count = reg.stereo + 1;
2179 uinfo->value.integer.min = 0;
2180 uinfo->value.integer.max = reg.mask;
2181 return 0;
2182
2183 }
2184
snd_cmipci_get_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2185 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2186 struct snd_ctl_elem_value *ucontrol)
2187 {
2188 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2189 struct cmipci_sb_reg reg;
2190 unsigned char oreg, val;
2191
2192 cmipci_sb_reg_decode(®, kcontrol->private_value);
2193 spin_lock_irq(&cm->reg_lock);
2194 oreg = inb(cm->iobase + reg.left_reg);
2195 val = (oreg >> reg.left_shift) & reg.mask;
2196 if (reg.invert)
2197 val = reg.mask - val;
2198 ucontrol->value.integer.value[0] = val;
2199 if (reg.stereo) {
2200 val = (oreg >> reg.right_shift) & reg.mask;
2201 if (reg.invert)
2202 val = reg.mask - val;
2203 ucontrol->value.integer.value[1] = val;
2204 }
2205 spin_unlock_irq(&cm->reg_lock);
2206 return 0;
2207 }
2208
snd_cmipci_put_native_mixer(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2209 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2210 struct snd_ctl_elem_value *ucontrol)
2211 {
2212 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2213 struct cmipci_sb_reg reg;
2214 unsigned char oreg, nreg, val;
2215
2216 cmipci_sb_reg_decode(®, kcontrol->private_value);
2217 spin_lock_irq(&cm->reg_lock);
2218 oreg = inb(cm->iobase + reg.left_reg);
2219 val = ucontrol->value.integer.value[0] & reg.mask;
2220 if (reg.invert)
2221 val = reg.mask - val;
2222 nreg = oreg & ~(reg.mask << reg.left_shift);
2223 nreg |= (val << reg.left_shift);
2224 if (reg.stereo) {
2225 val = ucontrol->value.integer.value[1] & reg.mask;
2226 if (reg.invert)
2227 val = reg.mask - val;
2228 nreg &= ~(reg.mask << reg.right_shift);
2229 nreg |= (val << reg.right_shift);
2230 }
2231 outb(nreg, cm->iobase + reg.left_reg);
2232 spin_unlock_irq(&cm->reg_lock);
2233 return (nreg != oreg);
2234 }
2235
2236 /*
2237 * special case - check mixer sensitivity
2238 */
snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2239 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2240 struct snd_ctl_elem_value *ucontrol)
2241 {
2242 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2243 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2244 }
2245
snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2246 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2247 struct snd_ctl_elem_value *ucontrol)
2248 {
2249 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2250 if (cm->mixer_insensitive) {
2251 /* ignored */
2252 return 0;
2253 }
2254 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2255 }
2256
2257
2258 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2259 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2260 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2261 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2262 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2263 { /* switch with sensitivity */
2264 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2265 .name = "PCM Playback Switch",
2266 .info = snd_cmipci_info_native_mixer,
2267 .get = snd_cmipci_get_native_mixer_sensitive,
2268 .put = snd_cmipci_put_native_mixer_sensitive,
2269 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2270 },
2271 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2272 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2273 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2274 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2275 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2276 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2277 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2278 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2279 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2280 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2281 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2282 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2283 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2284 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2285 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2286 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2287 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2288 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2289 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2290 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2291 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2292 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2293 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2294 };
2295
2296 /*
2297 * other switches
2298 */
2299
2300 struct cmipci_switch_args {
2301 int reg; /* register index */
2302 unsigned int mask; /* mask bits */
2303 unsigned int mask_on; /* mask bits to turn on */
2304 unsigned int is_byte: 1; /* byte access? */
2305 unsigned int ac3_sensitive: 1; /* access forbidden during
2306 * non-audio operation?
2307 */
2308 };
2309
2310 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2311
_snd_cmipci_uswitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol,struct cmipci_switch_args * args)2312 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2313 struct snd_ctl_elem_value *ucontrol,
2314 struct cmipci_switch_args *args)
2315 {
2316 unsigned int val;
2317 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2318
2319 spin_lock_irq(&cm->reg_lock);
2320 if (args->ac3_sensitive && cm->mixer_insensitive) {
2321 ucontrol->value.integer.value[0] = 0;
2322 spin_unlock_irq(&cm->reg_lock);
2323 return 0;
2324 }
2325 if (args->is_byte)
2326 val = inb(cm->iobase + args->reg);
2327 else
2328 val = snd_cmipci_read(cm, args->reg);
2329 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2330 spin_unlock_irq(&cm->reg_lock);
2331 return 0;
2332 }
2333
snd_cmipci_uswitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2334 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335 struct snd_ctl_elem_value *ucontrol)
2336 {
2337 struct cmipci_switch_args *args;
2338 args = (struct cmipci_switch_args *)kcontrol->private_value;
2339 if (snd_BUG_ON(!args))
2340 return -EINVAL;
2341 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2342 }
2343
_snd_cmipci_uswitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol,struct cmipci_switch_args * args)2344 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2345 struct snd_ctl_elem_value *ucontrol,
2346 struct cmipci_switch_args *args)
2347 {
2348 unsigned int val;
2349 int change;
2350 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2351
2352 spin_lock_irq(&cm->reg_lock);
2353 if (args->ac3_sensitive && cm->mixer_insensitive) {
2354 /* ignored */
2355 spin_unlock_irq(&cm->reg_lock);
2356 return 0;
2357 }
2358 if (args->is_byte)
2359 val = inb(cm->iobase + args->reg);
2360 else
2361 val = snd_cmipci_read(cm, args->reg);
2362 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2363 args->mask_on : (args->mask & ~args->mask_on));
2364 if (change) {
2365 val &= ~args->mask;
2366 if (ucontrol->value.integer.value[0])
2367 val |= args->mask_on;
2368 else
2369 val |= (args->mask & ~args->mask_on);
2370 if (args->is_byte)
2371 outb((unsigned char)val, cm->iobase + args->reg);
2372 else
2373 snd_cmipci_write(cm, args->reg, val);
2374 }
2375 spin_unlock_irq(&cm->reg_lock);
2376 return change;
2377 }
2378
snd_cmipci_uswitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2379 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380 struct snd_ctl_elem_value *ucontrol)
2381 {
2382 struct cmipci_switch_args *args;
2383 args = (struct cmipci_switch_args *)kcontrol->private_value;
2384 if (snd_BUG_ON(!args))
2385 return -EINVAL;
2386 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2387 }
2388
2389 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2390 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2391 .reg = xreg, \
2392 .mask = xmask, \
2393 .mask_on = xmask_on, \
2394 .is_byte = xis_byte, \
2395 .ac3_sensitive = xac3, \
2396 }
2397
2398 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2399 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2400
2401 #if 0 /* these will be controlled in pcm device */
2402 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2403 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2404 #endif
2405 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2406 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2407 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2408 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2409 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2410 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2412 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2413 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2414 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2415 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2416 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2417 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2418 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2419 #if CM_CH_PLAY == 1
2420 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2421 #else
2422 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2423 #endif
2424 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2425 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2426 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2427 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2428 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2429
2430 #define DEFINE_SWITCH(sname, stype, sarg) \
2431 { .name = sname, \
2432 .iface = stype, \
2433 .info = snd_cmipci_uswitch_info, \
2434 .get = snd_cmipci_uswitch_get, \
2435 .put = snd_cmipci_uswitch_put, \
2436 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2437 }
2438
2439 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2440 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2441
2442
2443 /*
2444 * callbacks for spdif output switch
2445 * needs toggle two registers..
2446 */
snd_cmipci_spdout_enable_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2447 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2448 struct snd_ctl_elem_value *ucontrol)
2449 {
2450 int changed;
2451 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2452 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2453 return changed;
2454 }
2455
snd_cmipci_spdout_enable_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2456 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2457 struct snd_ctl_elem_value *ucontrol)
2458 {
2459 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2460 int changed;
2461 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2462 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2463 if (changed) {
2464 if (ucontrol->value.integer.value[0]) {
2465 if (chip->spdif_playback_avail)
2466 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2467 } else {
2468 if (chip->spdif_playback_avail)
2469 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2470 }
2471 }
2472 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2473 return changed;
2474 }
2475
2476
snd_cmipci_line_in_mode_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2477 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2478 struct snd_ctl_elem_info *uinfo)
2479 {
2480 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2481 static const char *const texts[3] = {
2482 "Line-In", "Rear Output", "Bass Output"
2483 };
2484
2485 return snd_ctl_enum_info(uinfo, 1,
2486 cm->chip_version >= 39 ? 3 : 2, texts);
2487 }
2488
get_line_in_mode(struct cmipci * cm)2489 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2490 {
2491 unsigned int val;
2492 if (cm->chip_version >= 39) {
2493 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2494 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2495 return 2;
2496 }
2497 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2498 if (val & CM_REAR2LIN)
2499 return 1;
2500 return 0;
2501 }
2502
snd_cmipci_line_in_mode_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2503 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2504 struct snd_ctl_elem_value *ucontrol)
2505 {
2506 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2507
2508 spin_lock_irq(&cm->reg_lock);
2509 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2510 spin_unlock_irq(&cm->reg_lock);
2511 return 0;
2512 }
2513
snd_cmipci_line_in_mode_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2514 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2515 struct snd_ctl_elem_value *ucontrol)
2516 {
2517 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2518 int change;
2519
2520 spin_lock_irq(&cm->reg_lock);
2521 if (ucontrol->value.enumerated.item[0] == 2)
2522 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2523 else
2524 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2525 if (ucontrol->value.enumerated.item[0] == 1)
2526 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2527 else
2528 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2529 spin_unlock_irq(&cm->reg_lock);
2530 return change;
2531 }
2532
snd_cmipci_mic_in_mode_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2533 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2534 struct snd_ctl_elem_info *uinfo)
2535 {
2536 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2537
2538 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2539 }
2540
snd_cmipci_mic_in_mode_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2541 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2542 struct snd_ctl_elem_value *ucontrol)
2543 {
2544 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2545 /* same bit as spdi_phase */
2546 spin_lock_irq(&cm->reg_lock);
2547 ucontrol->value.enumerated.item[0] =
2548 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2549 spin_unlock_irq(&cm->reg_lock);
2550 return 0;
2551 }
2552
snd_cmipci_mic_in_mode_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2553 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2554 struct snd_ctl_elem_value *ucontrol)
2555 {
2556 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2557 int change;
2558
2559 spin_lock_irq(&cm->reg_lock);
2560 if (ucontrol->value.enumerated.item[0])
2561 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2562 else
2563 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2564 spin_unlock_irq(&cm->reg_lock);
2565 return change;
2566 }
2567
2568 /* both for CM8338/8738 */
2569 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2570 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2571 {
2572 .name = "Line-In Mode",
2573 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2574 .info = snd_cmipci_line_in_mode_info,
2575 .get = snd_cmipci_line_in_mode_get,
2576 .put = snd_cmipci_line_in_mode_put,
2577 },
2578 };
2579
2580 /* for non-multichannel chips */
2581 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2582 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2583
2584 /* only for CM8738 */
2585 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2586 #if 0 /* controlled in pcm device */
2587 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2588 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2589 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2590 #endif
2591 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2592 { .name = "IEC958 Output Switch",
2593 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2594 .info = snd_cmipci_uswitch_info,
2595 .get = snd_cmipci_spdout_enable_get,
2596 .put = snd_cmipci_spdout_enable_put,
2597 },
2598 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2599 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2600 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2601 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2602 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2603 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2604 };
2605
2606 /* only for model 033/037 */
2607 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2608 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2609 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2610 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2611 };
2612
2613 /* only for model 039 or later */
2614 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2615 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2616 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2617 {
2618 .name = "Mic-In Mode",
2619 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2620 .info = snd_cmipci_mic_in_mode_info,
2621 .get = snd_cmipci_mic_in_mode_get,
2622 .put = snd_cmipci_mic_in_mode_put,
2623 }
2624 };
2625
2626 /* card control switches */
2627 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2628 DEFINE_CARD_SWITCH("Modem", modem);
2629
2630
snd_cmipci_mixer_new(struct cmipci * cm,int pcm_spdif_device)2631 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2632 {
2633 struct snd_card *card;
2634 const struct snd_kcontrol_new *sw;
2635 struct snd_kcontrol *kctl;
2636 unsigned int idx;
2637 int err;
2638
2639 if (snd_BUG_ON(!cm || !cm->card))
2640 return -EINVAL;
2641
2642 card = cm->card;
2643
2644 strcpy(card->mixername, "CMedia PCI");
2645
2646 spin_lock_irq(&cm->reg_lock);
2647 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2648 spin_unlock_irq(&cm->reg_lock);
2649
2650 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2651 if (cm->chip_version == 68) { // 8768 has no PCM volume
2652 if (!strcmp(snd_cmipci_mixers[idx].name,
2653 "PCM Playback Volume"))
2654 continue;
2655 }
2656 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2657 return err;
2658 }
2659
2660 /* mixer switches */
2661 sw = snd_cmipci_mixer_switches;
2662 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2663 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2664 if (err < 0)
2665 return err;
2666 }
2667 if (! cm->can_multi_ch) {
2668 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2669 if (err < 0)
2670 return err;
2671 }
2672 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2673 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2674 sw = snd_cmipci_8738_mixer_switches;
2675 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2676 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2677 if (err < 0)
2678 return err;
2679 }
2680 if (cm->can_ac3_hw) {
2681 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2682 return err;
2683 kctl->id.device = pcm_spdif_device;
2684 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2685 return err;
2686 kctl->id.device = pcm_spdif_device;
2687 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2688 return err;
2689 kctl->id.device = pcm_spdif_device;
2690 }
2691 if (cm->chip_version <= 37) {
2692 sw = snd_cmipci_old_mixer_switches;
2693 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2694 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2695 if (err < 0)
2696 return err;
2697 }
2698 }
2699 }
2700 if (cm->chip_version >= 39) {
2701 sw = snd_cmipci_extra_mixer_switches;
2702 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2703 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2704 if (err < 0)
2705 return err;
2706 }
2707 }
2708
2709 /* card switches */
2710 /*
2711 * newer chips don't have the register bits to force modem link
2712 * detection; the bit that was FLINKON now mutes CH1
2713 */
2714 if (cm->chip_version < 39) {
2715 err = snd_ctl_add(cm->card,
2716 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2717 if (err < 0)
2718 return err;
2719 }
2720
2721 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2722 struct snd_ctl_elem_id elem_id;
2723 struct snd_kcontrol *ctl;
2724 memset(&elem_id, 0, sizeof(elem_id));
2725 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2726 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2727 ctl = snd_ctl_find_id(cm->card, &elem_id);
2728 if (ctl)
2729 cm->mixer_res_ctl[idx] = ctl;
2730 }
2731
2732 return 0;
2733 }
2734
2735
2736 /*
2737 * proc interface
2738 */
2739
snd_cmipci_proc_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2740 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2741 struct snd_info_buffer *buffer)
2742 {
2743 struct cmipci *cm = entry->private_data;
2744 int i, v;
2745
2746 snd_iprintf(buffer, "%s\n", cm->card->longname);
2747 for (i = 0; i < 0x94; i++) {
2748 if (i == 0x28)
2749 i = 0x90;
2750 v = inb(cm->iobase + i);
2751 if (i % 4 == 0)
2752 snd_iprintf(buffer, "\n%02x:", i);
2753 snd_iprintf(buffer, " %02x", v);
2754 }
2755 snd_iprintf(buffer, "\n");
2756 }
2757
snd_cmipci_proc_init(struct cmipci * cm)2758 static void snd_cmipci_proc_init(struct cmipci *cm)
2759 {
2760 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2761 }
2762
2763 static const struct pci_device_id snd_cmipci_ids[] = {
2764 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2765 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2766 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2767 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2768 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2769 {0,},
2770 };
2771
2772
2773 /*
2774 * check chip version and capabilities
2775 * driver name is modified according to the chip model
2776 */
query_chip(struct cmipci * cm)2777 static void query_chip(struct cmipci *cm)
2778 {
2779 unsigned int detect;
2780
2781 /* check reg 0Ch, bit 24-31 */
2782 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2783 if (! detect) {
2784 /* check reg 08h, bit 24-28 */
2785 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2786 switch (detect) {
2787 case 0:
2788 cm->chip_version = 33;
2789 if (cm->do_soft_ac3)
2790 cm->can_ac3_sw = 1;
2791 else
2792 cm->can_ac3_hw = 1;
2793 break;
2794 case CM_CHIP_037:
2795 cm->chip_version = 37;
2796 cm->can_ac3_hw = 1;
2797 break;
2798 default:
2799 cm->chip_version = 39;
2800 cm->can_ac3_hw = 1;
2801 break;
2802 }
2803 cm->max_channels = 2;
2804 } else {
2805 if (detect & CM_CHIP_039) {
2806 cm->chip_version = 39;
2807 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2808 cm->max_channels = 6;
2809 else
2810 cm->max_channels = 4;
2811 } else if (detect & CM_CHIP_8768) {
2812 cm->chip_version = 68;
2813 cm->max_channels = 8;
2814 cm->can_96k = 1;
2815 } else {
2816 cm->chip_version = 55;
2817 cm->max_channels = 6;
2818 cm->can_96k = 1;
2819 }
2820 cm->can_ac3_hw = 1;
2821 cm->can_multi_ch = 1;
2822 }
2823 }
2824
2825 #ifdef SUPPORT_JOYSTICK
snd_cmipci_create_gameport(struct cmipci * cm,int dev)2826 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2827 {
2828 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2829 struct gameport *gp;
2830 struct resource *r = NULL;
2831 int i, io_port = 0;
2832
2833 if (joystick_port[dev] == 0)
2834 return -ENODEV;
2835
2836 if (joystick_port[dev] == 1) { /* auto-detect */
2837 for (i = 0; ports[i]; i++) {
2838 io_port = ports[i];
2839 r = request_region(io_port, 1, "CMIPCI gameport");
2840 if (r)
2841 break;
2842 }
2843 } else {
2844 io_port = joystick_port[dev];
2845 r = request_region(io_port, 1, "CMIPCI gameport");
2846 }
2847
2848 if (!r) {
2849 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2850 return -EBUSY;
2851 }
2852
2853 cm->gameport = gp = gameport_allocate_port();
2854 if (!gp) {
2855 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2856 release_and_free_resource(r);
2857 return -ENOMEM;
2858 }
2859 gameport_set_name(gp, "C-Media Gameport");
2860 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2861 gameport_set_dev_parent(gp, &cm->pci->dev);
2862 gp->io = io_port;
2863 gameport_set_port_data(gp, r);
2864
2865 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2866
2867 gameport_register_port(cm->gameport);
2868
2869 return 0;
2870 }
2871
snd_cmipci_free_gameport(struct cmipci * cm)2872 static void snd_cmipci_free_gameport(struct cmipci *cm)
2873 {
2874 if (cm->gameport) {
2875 struct resource *r = gameport_get_port_data(cm->gameport);
2876
2877 gameport_unregister_port(cm->gameport);
2878 cm->gameport = NULL;
2879
2880 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2881 release_and_free_resource(r);
2882 }
2883 }
2884 #else
snd_cmipci_create_gameport(struct cmipci * cm,int dev)2885 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
snd_cmipci_free_gameport(struct cmipci * cm)2886 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2887 #endif
2888
snd_cmipci_free(struct cmipci * cm)2889 static int snd_cmipci_free(struct cmipci *cm)
2890 {
2891 if (cm->irq >= 0) {
2892 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2893 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2894 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2895 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2896 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2897 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2898 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2899
2900 /* reset mixer */
2901 snd_cmipci_mixer_write(cm, 0, 0);
2902
2903 free_irq(cm->irq, cm);
2904 }
2905
2906 snd_cmipci_free_gameport(cm);
2907 pci_release_regions(cm->pci);
2908 pci_disable_device(cm->pci);
2909 kfree(cm);
2910 return 0;
2911 }
2912
snd_cmipci_dev_free(struct snd_device * device)2913 static int snd_cmipci_dev_free(struct snd_device *device)
2914 {
2915 struct cmipci *cm = device->device_data;
2916 return snd_cmipci_free(cm);
2917 }
2918
snd_cmipci_create_fm(struct cmipci * cm,long fm_port)2919 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2920 {
2921 long iosynth;
2922 unsigned int val;
2923 struct snd_opl3 *opl3;
2924 int err;
2925
2926 if (!fm_port)
2927 goto disable_fm;
2928
2929 if (cm->chip_version >= 39) {
2930 /* first try FM regs in PCI port range */
2931 iosynth = cm->iobase + CM_REG_FM_PCI;
2932 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2933 OPL3_HW_OPL3, 1, &opl3);
2934 } else {
2935 err = -EIO;
2936 }
2937 if (err < 0) {
2938 /* then try legacy ports */
2939 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2940 iosynth = fm_port;
2941 switch (iosynth) {
2942 case 0x3E8: val |= CM_FMSEL_3E8; break;
2943 case 0x3E0: val |= CM_FMSEL_3E0; break;
2944 case 0x3C8: val |= CM_FMSEL_3C8; break;
2945 case 0x388: val |= CM_FMSEL_388; break;
2946 default:
2947 goto disable_fm;
2948 }
2949 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2950 /* enable FM */
2951 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2952
2953 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954 OPL3_HW_OPL3, 0, &opl3) < 0) {
2955 dev_err(cm->card->dev,
2956 "no OPL device at %#lx, skipping...\n",
2957 iosynth);
2958 goto disable_fm;
2959 }
2960 }
2961 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2962 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2963 return err;
2964 }
2965 return 0;
2966
2967 disable_fm:
2968 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2969 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2970 return 0;
2971 }
2972
snd_cmipci_create(struct snd_card * card,struct pci_dev * pci,int dev,struct cmipci ** rcmipci)2973 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2974 int dev, struct cmipci **rcmipci)
2975 {
2976 struct cmipci *cm;
2977 int err;
2978 static const struct snd_device_ops ops = {
2979 .dev_free = snd_cmipci_dev_free,
2980 };
2981 unsigned int val;
2982 long iomidi = 0;
2983 int integrated_midi = 0;
2984 char modelstr[16];
2985 int pcm_index, pcm_spdif_index;
2986 static const struct pci_device_id intel_82437vx[] = {
2987 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2988 { },
2989 };
2990
2991 *rcmipci = NULL;
2992
2993 if ((err = pci_enable_device(pci)) < 0)
2994 return err;
2995
2996 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2997 if (cm == NULL) {
2998 pci_disable_device(pci);
2999 return -ENOMEM;
3000 }
3001
3002 spin_lock_init(&cm->reg_lock);
3003 mutex_init(&cm->open_mutex);
3004 cm->device = pci->device;
3005 cm->card = card;
3006 cm->pci = pci;
3007 cm->irq = -1;
3008 cm->channel[0].ch = 0;
3009 cm->channel[1].ch = 1;
3010 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3011
3012 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3013 kfree(cm);
3014 pci_disable_device(pci);
3015 return err;
3016 }
3017 cm->iobase = pci_resource_start(pci, 0);
3018
3019 if (request_irq(pci->irq, snd_cmipci_interrupt,
3020 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3021 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3022 snd_cmipci_free(cm);
3023 return -EBUSY;
3024 }
3025 cm->irq = pci->irq;
3026 card->sync_irq = cm->irq;
3027
3028 pci_set_master(cm->pci);
3029
3030 /*
3031 * check chip version, max channels and capabilities
3032 */
3033
3034 cm->chip_version = 0;
3035 cm->max_channels = 2;
3036 cm->do_soft_ac3 = soft_ac3[dev];
3037
3038 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3039 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3040 query_chip(cm);
3041 /* added -MCx suffix for chip supporting multi-channels */
3042 if (cm->can_multi_ch)
3043 sprintf(cm->card->driver + strlen(cm->card->driver),
3044 "-MC%d", cm->max_channels);
3045 else if (cm->can_ac3_sw)
3046 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3047
3048 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3049 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050
3051 #if CM_CH_PLAY == 1
3052 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3053 #else
3054 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3055 #endif
3056
3057 /* initialize codec registers */
3058 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3059 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3061 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3062 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3063 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3064 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3065
3066 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3067 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3068 #if CM_CH_PLAY == 1
3069 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3070 #else
3071 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3072 #endif
3073 if (cm->chip_version) {
3074 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3075 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3076 }
3077 /* Set Bus Master Request */
3078 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3079
3080 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3081 switch (pci->device) {
3082 case PCI_DEVICE_ID_CMEDIA_CM8738:
3083 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3084 if (!pci_dev_present(intel_82437vx))
3085 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3086 break;
3087 default:
3088 break;
3089 }
3090
3091 if (cm->chip_version < 68) {
3092 val = pci->device < 0x110 ? 8338 : 8738;
3093 } else {
3094 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3095 case 0:
3096 val = 8769;
3097 break;
3098 case 2:
3099 val = 8762;
3100 break;
3101 default:
3102 switch ((pci->subsystem_vendor << 16) |
3103 pci->subsystem_device) {
3104 case 0x13f69761:
3105 case 0x584d3741:
3106 case 0x584d3751:
3107 case 0x584d3761:
3108 case 0x584d3771:
3109 case 0x72848384:
3110 val = 8770;
3111 break;
3112 default:
3113 val = 8768;
3114 break;
3115 }
3116 }
3117 }
3118 sprintf(card->shortname, "C-Media CMI%d", val);
3119 if (cm->chip_version < 68)
3120 sprintf(modelstr, " (model %d)", cm->chip_version);
3121 else
3122 modelstr[0] = '\0';
3123 sprintf(card->longname, "%s%s at %#lx, irq %i",
3124 card->shortname, modelstr, cm->iobase, cm->irq);
3125
3126 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3127 snd_cmipci_free(cm);
3128 return err;
3129 }
3130
3131 if (cm->chip_version >= 39) {
3132 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3133 if (val != 0x00 && val != 0xff) {
3134 if (mpu_port[dev])
3135 iomidi = cm->iobase + CM_REG_MPU_PCI;
3136 integrated_midi = 1;
3137 }
3138 }
3139 if (!integrated_midi) {
3140 val = 0;
3141 iomidi = mpu_port[dev];
3142 switch (iomidi) {
3143 case 0x320: val = CM_VMPU_320; break;
3144 case 0x310: val = CM_VMPU_310; break;
3145 case 0x300: val = CM_VMPU_300; break;
3146 case 0x330: val = CM_VMPU_330; break;
3147 default:
3148 iomidi = 0; break;
3149 }
3150 if (iomidi > 0) {
3151 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3152 /* enable UART */
3153 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3154 if (inb(iomidi + 1) == 0xff) {
3155 dev_err(cm->card->dev,
3156 "cannot enable MPU-401 port at %#lx\n",
3157 iomidi);
3158 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3159 CM_UART_EN);
3160 iomidi = 0;
3161 }
3162 }
3163 }
3164
3165 if (cm->chip_version < 68) {
3166 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3167 if (err < 0)
3168 return err;
3169 }
3170
3171 /* reset mixer */
3172 snd_cmipci_mixer_write(cm, 0, 0);
3173
3174 snd_cmipci_proc_init(cm);
3175
3176 /* create pcm devices */
3177 pcm_index = pcm_spdif_index = 0;
3178 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3179 return err;
3180 pcm_index++;
3181 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3182 return err;
3183 pcm_index++;
3184 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3185 pcm_spdif_index = pcm_index;
3186 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3187 return err;
3188 }
3189
3190 /* create mixer interface & switches */
3191 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3192 return err;
3193
3194 if (iomidi > 0) {
3195 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3196 iomidi,
3197 (integrated_midi ?
3198 MPU401_INFO_INTEGRATED : 0) |
3199 MPU401_INFO_IRQ_HOOK,
3200 -1, &cm->rmidi)) < 0) {
3201 dev_err(cm->card->dev,
3202 "no UART401 device at 0x%lx\n", iomidi);
3203 }
3204 }
3205
3206 #ifdef USE_VAR48KRATE
3207 for (val = 0; val < ARRAY_SIZE(rates); val++)
3208 snd_cmipci_set_pll(cm, rates[val], val);
3209
3210 /*
3211 * (Re-)Enable external switch spdo_48k
3212 */
3213 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3214 #endif /* USE_VAR48KRATE */
3215
3216 if (snd_cmipci_create_gameport(cm, dev) < 0)
3217 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3218
3219 *rcmipci = cm;
3220 return 0;
3221 }
3222
3223 /*
3224 */
3225
3226 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3227
snd_cmipci_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)3228 static int snd_cmipci_probe(struct pci_dev *pci,
3229 const struct pci_device_id *pci_id)
3230 {
3231 static int dev;
3232 struct snd_card *card;
3233 struct cmipci *cm;
3234 int err;
3235
3236 if (dev >= SNDRV_CARDS)
3237 return -ENODEV;
3238 if (! enable[dev]) {
3239 dev++;
3240 return -ENOENT;
3241 }
3242
3243 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3244 0, &card);
3245 if (err < 0)
3246 return err;
3247
3248 switch (pci->device) {
3249 case PCI_DEVICE_ID_CMEDIA_CM8738:
3250 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3251 strcpy(card->driver, "CMI8738");
3252 break;
3253 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3254 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3255 strcpy(card->driver, "CMI8338");
3256 break;
3257 default:
3258 strcpy(card->driver, "CMIPCI");
3259 break;
3260 }
3261
3262 err = snd_cmipci_create(card, pci, dev, &cm);
3263 if (err < 0)
3264 goto free_card;
3265
3266 card->private_data = cm;
3267
3268 err = snd_card_register(card);
3269 if (err < 0)
3270 goto free_card;
3271
3272 pci_set_drvdata(pci, card);
3273 dev++;
3274 return 0;
3275
3276 free_card:
3277 snd_card_free(card);
3278 return err;
3279 }
3280
snd_cmipci_remove(struct pci_dev * pci)3281 static void snd_cmipci_remove(struct pci_dev *pci)
3282 {
3283 snd_card_free(pci_get_drvdata(pci));
3284 }
3285
3286
3287 #ifdef CONFIG_PM_SLEEP
3288 /*
3289 * power management
3290 */
3291 static const unsigned char saved_regs[] = {
3292 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3293 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3294 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3295 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3296 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3297 };
3298
3299 static const unsigned char saved_mixers[] = {
3300 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3301 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3302 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3303 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3304 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3305 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3306 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3307 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3308 };
3309
snd_cmipci_suspend(struct device * dev)3310 static int snd_cmipci_suspend(struct device *dev)
3311 {
3312 struct snd_card *card = dev_get_drvdata(dev);
3313 struct cmipci *cm = card->private_data;
3314 int i;
3315
3316 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3317
3318 /* save registers */
3319 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3320 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3321 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3322 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3323
3324 /* disable ints */
3325 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3326 return 0;
3327 }
3328
snd_cmipci_resume(struct device * dev)3329 static int snd_cmipci_resume(struct device *dev)
3330 {
3331 struct snd_card *card = dev_get_drvdata(dev);
3332 struct cmipci *cm = card->private_data;
3333 int i;
3334
3335 /* reset / initialize to a sane state */
3336 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3337 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3338 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3339 snd_cmipci_mixer_write(cm, 0, 0);
3340
3341 /* restore registers */
3342 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3343 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3344 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3345 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3346
3347 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3348 return 0;
3349 }
3350
3351 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3352 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3353 #else
3354 #define SND_CMIPCI_PM_OPS NULL
3355 #endif /* CONFIG_PM_SLEEP */
3356
3357 static struct pci_driver cmipci_driver = {
3358 .name = KBUILD_MODNAME,
3359 .id_table = snd_cmipci_ids,
3360 .probe = snd_cmipci_probe,
3361 .remove = snd_cmipci_remove,
3362 .driver = {
3363 .pm = SND_CMIPCI_PM_OPS,
3364 },
3365 };
3366
3367 module_pci_driver(cmipci_driver);
3368