• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_32_PGTABLE_H
4 
5 #include <asm-generic/pgtable-nopmd.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/sched.h>
9 #include <linux/threads.h>
10 #include <asm/mmu.h>			/* For sub-arch specific PPC_PIN_SIZE */
11 
12 #ifdef CONFIG_44x
13 extern int icache_44x_need_flush;
14 #endif
15 
16 #endif /* __ASSEMBLY__ */
17 
18 #define PTE_INDEX_SIZE	PTE_SHIFT
19 #define PMD_INDEX_SIZE	0
20 #define PUD_INDEX_SIZE	0
21 #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
22 
23 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
24 #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
25 
26 #ifndef __ASSEMBLY__
27 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
28 #define PMD_TABLE_SIZE	0
29 #define PUD_TABLE_SIZE	0
30 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
31 
32 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
33 #endif	/* __ASSEMBLY__ */
34 
35 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
36 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
37 
38 /*
39  * The normal case is that PTEs are 32-bits and we have a 1-page
40  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
41  *
42  * For any >32-bit physical address platform, we can use the following
43  * two level page table layout where the pgdir is 8KB and the MS 13 bits
44  * are an index to the second level table.  The combined pgdir/pmd first
45  * level has 2048 entries and the second level has 512 64-bit PTE entries.
46  * -Matt
47  */
48 /* PGDIR_SHIFT determines what a top-level page table entry can map */
49 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
50 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
51 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
52 
53 /* Bits to mask out from a PGD to get to the PUD page */
54 #define PGD_MASKED_BITS		0
55 
56 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
57 #define FIRST_USER_ADDRESS	0UL
58 
59 #define pte_ERROR(e) \
60 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
61 		(unsigned long long)pte_val(e))
62 #define pgd_ERROR(e) \
63 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
64 
65 #ifndef __ASSEMBLY__
66 
67 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
68 void unmap_kernel_page(unsigned long va);
69 
70 #endif /* !__ASSEMBLY__ */
71 
72 
73 /*
74  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
75  * value (for now) on others, from where we can start layout kernel
76  * virtual space that goes below PKMAP and FIXMAP
77  */
78 #include <asm/fixmap.h>
79 
80 /*
81  * ioremap_bot starts at that address. Early ioremaps move down from there,
82  * until mem_init() at which point this becomes the top of the vmalloc
83  * and ioremap space
84  */
85 #ifdef CONFIG_HIGHMEM
86 #define IOREMAP_TOP	PKMAP_BASE
87 #else
88 #define IOREMAP_TOP	FIXADDR_START
89 #endif
90 
91 /* PPC32 shares vmalloc area with ioremap */
92 #define IOREMAP_START	VMALLOC_START
93 #define IOREMAP_END	VMALLOC_END
94 
95 /*
96  * Just any arbitrary offset to the start of the vmalloc VM area: the
97  * current 16MB value just means that there will be a 64MB "hole" after the
98  * physical memory until the kernel virtual memory starts.  That means that
99  * any out-of-bounds memory accesses will hopefully be caught.
100  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
101  * area for the same reason. ;)
102  *
103  * We no longer map larger than phys RAM with the BATs so we don't have
104  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
105  * about clashes between our early calls to ioremap() that start growing down
106  * from IOREMAP_TOP being run into the VM area allocations (growing upwards
107  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
108  * we actually run into our mappings setup in the early boot with the VM
109  * system.  This really does become a problem for machines with good amounts
110  * of RAM.  -- Cort
111  */
112 #define VMALLOC_OFFSET (0x1000000) /* 16M */
113 #ifdef PPC_PIN_SIZE
114 #define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
115 #else
116 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
117 #endif
118 
119 #ifdef CONFIG_KASAN_VMALLOC
120 #define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
121 #else
122 #define VMALLOC_END	ioremap_bot
123 #endif
124 
125 /*
126  * Bits in a linux-style PTE.  These match the bits in the
127  * (hardware-defined) PowerPC PTE as closely as possible.
128  */
129 
130 #if defined(CONFIG_40x)
131 #include <asm/nohash/32/pte-40x.h>
132 #elif defined(CONFIG_44x)
133 #include <asm/nohash/32/pte-44x.h>
134 #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
135 #include <asm/nohash/pte-book3e.h>
136 #elif defined(CONFIG_FSL_BOOKE)
137 #include <asm/nohash/32/pte-fsl-booke.h>
138 #elif defined(CONFIG_PPC_8xx)
139 #include <asm/nohash/32/pte-8xx.h>
140 #endif
141 
142 /*
143  * Location of the PFN in the PTE. Most 32-bit platforms use the same
144  * as _PAGE_SHIFT here (ie, naturally aligned).
145  * Platform who don't just pre-define the value so we don't override it here.
146  */
147 #ifndef PTE_RPN_SHIFT
148 #define PTE_RPN_SHIFT	(PAGE_SHIFT)
149 #endif
150 
151 /*
152  * The mask covered by the RPN must be a ULL on 32-bit platforms with
153  * 64-bit PTEs.
154  */
155 #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
156 #define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
157 #define MAX_POSSIBLE_PHYSMEM_BITS 36
158 #else
159 #define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
160 #define MAX_POSSIBLE_PHYSMEM_BITS 32
161 #endif
162 
163 /*
164  * _PAGE_CHG_MASK masks of bits that are to be preserved across
165  * pgprot changes.
166  */
167 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
168 
169 #ifndef __ASSEMBLY__
170 
171 #define pte_clear(mm, addr, ptep) \
172 	do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
173 
174 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte)175 static inline pte_t pte_mkwrite(pte_t pte)
176 {
177 	return __pte(pte_val(pte) | _PAGE_RW);
178 }
179 #endif
180 
pte_mkdirty(pte_t pte)181 static inline pte_t pte_mkdirty(pte_t pte)
182 {
183 	return __pte(pte_val(pte) | _PAGE_DIRTY);
184 }
185 
pte_mkyoung(pte_t pte)186 static inline pte_t pte_mkyoung(pte_t pte)
187 {
188 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
189 }
190 
191 #ifndef pte_wrprotect
pte_wrprotect(pte_t pte)192 static inline pte_t pte_wrprotect(pte_t pte)
193 {
194 	return __pte(pte_val(pte) & ~_PAGE_RW);
195 }
196 #endif
197 
pte_mkexec(pte_t pte)198 static inline pte_t pte_mkexec(pte_t pte)
199 {
200 	return __pte(pte_val(pte) | _PAGE_EXEC);
201 }
202 
203 #define pmd_none(pmd)		(!pmd_val(pmd))
204 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
205 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)206 static inline void pmd_clear(pmd_t *pmdp)
207 {
208 	*pmdp = __pmd(0);
209 }
210 
211 /*
212  * PTE updates. This function is called whenever an existing
213  * valid PTE is updated. This does -not- include set_pte_at()
214  * which nowadays only sets a new PTE.
215  *
216  * Depending on the type of MMU, we may need to use atomic updates
217  * and the PTE may be either 32 or 64 bit wide. In the later case,
218  * when using atomic updates, only the low part of the PTE is
219  * accessed atomically.
220  *
221  * In addition, on 44x, we also maintain a global flag indicating
222  * that an executable user mapping was modified, which is needed
223  * to properly flush the virtually tagged instruction cache of
224  * those implementations.
225  *
226  * On the 8xx, the page tables are a bit special. For 16k pages, we have
227  * 4 identical entries. For 512k pages, we have 128 entries as if it was
228  * 4k pages, but they are flagged as 512k pages for the hardware.
229  * For other page sizes, we have a single entry in the table.
230  */
231 #ifdef CONFIG_PPC_8xx
232 static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
233 static int hugepd_ok(hugepd_t hpd);
234 
number_of_cells_per_pte(pmd_t * pmd,pte_basic_t val,int huge)235 static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
236 {
237 	if (!huge)
238 		return PAGE_SIZE / SZ_4K;
239 	else if (hugepd_ok(*((hugepd_t *)pmd)))
240 		return 1;
241 	else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
242 		return SZ_16K / SZ_4K;
243 	else
244 		return SZ_512K / SZ_4K;
245 }
246 
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)247 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
248 				     unsigned long clr, unsigned long set, int huge)
249 {
250 	pte_basic_t *entry = &p->pte;
251 	pte_basic_t old = pte_val(*p);
252 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
253 	int num, i;
254 	pmd_t *pmd = pmd_off(mm, addr);
255 
256 	num = number_of_cells_per_pte(pmd, new, huge);
257 
258 	for (i = 0; i < num; i++, entry++, new += SZ_4K)
259 		*entry = new;
260 
261 	return old;
262 }
263 
264 #ifdef CONFIG_PPC_16K_PAGES
265 #define __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)266 static inline pte_t ptep_get(pte_t *ptep)
267 {
268 	pte_basic_t val = READ_ONCE(ptep->pte);
269 	pte_t pte = {val, val, val, val};
270 
271 	return pte;
272 }
273 #endif /* CONFIG_PPC_16K_PAGES */
274 
275 #else
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)276 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
277 				     unsigned long clr, unsigned long set, int huge)
278 {
279 	pte_basic_t old = pte_val(*p);
280 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
281 
282 	*p = __pte(new);
283 
284 #ifdef CONFIG_44x
285 	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
286 		icache_44x_need_flush = 1;
287 #endif
288 	return old;
289 }
290 #endif
291 
292 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)293 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
294 					      unsigned long addr, pte_t *ptep)
295 {
296 	unsigned long old;
297 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
298 	return (old & _PAGE_ACCESSED) != 0;
299 }
300 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
301 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
302 
303 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)304 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
305 				       pte_t *ptep)
306 {
307 	return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
308 }
309 
310 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)311 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
312 				      pte_t *ptep)
313 {
314 	unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
315 	unsigned long set = pte_val(pte_wrprotect(__pte(0)));
316 
317 	pte_update(mm, addr, ptep, clr, set, 0);
318 }
319 
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)320 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
321 					   pte_t *ptep, pte_t entry,
322 					   unsigned long address,
323 					   int psize)
324 {
325 	pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
326 	pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
327 	unsigned long set = pte_val(entry) & pte_val(pte_set);
328 	unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);
329 	int huge = psize > mmu_virtual_psize ? 1 : 0;
330 
331 	pte_update(vma->vm_mm, address, ptep, clr, set, huge);
332 
333 	flush_tlb_page(vma, address);
334 }
335 
pte_young(pte_t pte)336 static inline int pte_young(pte_t pte)
337 {
338 	return pte_val(pte) & _PAGE_ACCESSED;
339 }
340 
341 #define __HAVE_ARCH_PTE_SAME
342 #define pte_same(A,B)	((pte_val(A) ^ pte_val(B)) == 0)
343 
344 /*
345  * Note that on Book E processors, the pmd contains the kernel virtual
346  * (lowmem) address of the pte page.  The physical address is less useful
347  * because everything runs with translation enabled (even the TLB miss
348  * handler).  On everything else the pmd contains the physical address
349  * of the pte page.  -- paulus
350  */
351 #ifndef CONFIG_BOOKE
352 #define pmd_page(pmd)		\
353 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
354 #else
355 #define pmd_page_vaddr(pmd)	\
356 	((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
357 #define pmd_page(pmd)		\
358 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
359 #endif
360 
361 /*
362  * Encode and decode a swap entry.
363  * Note that the bits we use in a PTE for representing a swap entry
364  * must not include the _PAGE_PRESENT bit.
365  *   -- paulus
366  */
367 #define __swp_type(entry)		((entry).val & 0x1f)
368 #define __swp_offset(entry)		((entry).val >> 5)
369 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
370 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
371 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
372 
373 #endif /* !__ASSEMBLY__ */
374 
375 #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
376