1 /*
2 * Common signal handling code for both 32 and 64 bits
3 *
4 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
5 * Extracted from signal_32.c and signal_64.c
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file README.legal in the main directory of
9 * this archive for more details.
10 */
11
12 #include <linux/tracehook.h>
13 #include <linux/signal.h>
14 #include <linux/uprobes.h>
15 #include <linux/key.h>
16 #include <linux/context_tracking.h>
17 #include <linux/livepatch.h>
18 #include <linux/syscalls.h>
19 #include <asm/hw_breakpoint.h>
20 #include <linux/uaccess.h>
21 #include <asm/switch_to.h>
22 #include <asm/unistd.h>
23 #include <asm/debug.h>
24 #include <asm/tm.h>
25
26 #include "signal.h"
27
28 #ifdef CONFIG_VSX
copy_fpr_to_user(void __user * to,struct task_struct * task)29 unsigned long copy_fpr_to_user(void __user *to,
30 struct task_struct *task)
31 {
32 u64 buf[ELF_NFPREG];
33 int i;
34
35 /* save FPR copy to local buffer then write to the thread_struct */
36 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
37 buf[i] = task->thread.TS_FPR(i);
38 buf[i] = task->thread.fp_state.fpscr;
39 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
40 }
41
copy_fpr_from_user(struct task_struct * task,void __user * from)42 unsigned long copy_fpr_from_user(struct task_struct *task,
43 void __user *from)
44 {
45 u64 buf[ELF_NFPREG];
46 int i;
47
48 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
49 return 1;
50 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
51 task->thread.TS_FPR(i) = buf[i];
52 task->thread.fp_state.fpscr = buf[i];
53
54 return 0;
55 }
56
copy_vsx_to_user(void __user * to,struct task_struct * task)57 unsigned long copy_vsx_to_user(void __user *to,
58 struct task_struct *task)
59 {
60 u64 buf[ELF_NVSRHALFREG];
61 int i;
62
63 /* save FPR copy to local buffer then write to the thread_struct */
64 for (i = 0; i < ELF_NVSRHALFREG; i++)
65 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
66 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
67 }
68
copy_vsx_from_user(struct task_struct * task,void __user * from)69 unsigned long copy_vsx_from_user(struct task_struct *task,
70 void __user *from)
71 {
72 u64 buf[ELF_NVSRHALFREG];
73 int i;
74
75 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
76 return 1;
77 for (i = 0; i < ELF_NVSRHALFREG ; i++)
78 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
79 return 0;
80 }
81
82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_ckfpr_to_user(void __user * to,struct task_struct * task)83 unsigned long copy_ckfpr_to_user(void __user *to,
84 struct task_struct *task)
85 {
86 u64 buf[ELF_NFPREG];
87 int i;
88
89 /* save FPR copy to local buffer then write to the thread_struct */
90 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
91 buf[i] = task->thread.TS_CKFPR(i);
92 buf[i] = task->thread.ckfp_state.fpscr;
93 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
94 }
95
copy_ckfpr_from_user(struct task_struct * task,void __user * from)96 unsigned long copy_ckfpr_from_user(struct task_struct *task,
97 void __user *from)
98 {
99 u64 buf[ELF_NFPREG];
100 int i;
101
102 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
103 return 1;
104 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
105 task->thread.TS_CKFPR(i) = buf[i];
106 task->thread.ckfp_state.fpscr = buf[i];
107
108 return 0;
109 }
110
copy_ckvsx_to_user(void __user * to,struct task_struct * task)111 unsigned long copy_ckvsx_to_user(void __user *to,
112 struct task_struct *task)
113 {
114 u64 buf[ELF_NVSRHALFREG];
115 int i;
116
117 /* save FPR copy to local buffer then write to the thread_struct */
118 for (i = 0; i < ELF_NVSRHALFREG; i++)
119 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
120 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
121 }
122
copy_ckvsx_from_user(struct task_struct * task,void __user * from)123 unsigned long copy_ckvsx_from_user(struct task_struct *task,
124 void __user *from)
125 {
126 u64 buf[ELF_NVSRHALFREG];
127 int i;
128
129 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
130 return 1;
131 for (i = 0; i < ELF_NVSRHALFREG ; i++)
132 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
133 return 0;
134 }
135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
136 #else
copy_fpr_to_user(void __user * to,struct task_struct * task)137 inline unsigned long copy_fpr_to_user(void __user *to,
138 struct task_struct *task)
139 {
140 return __copy_to_user(to, task->thread.fp_state.fpr,
141 ELF_NFPREG * sizeof(double));
142 }
143
copy_fpr_from_user(struct task_struct * task,void __user * from)144 inline unsigned long copy_fpr_from_user(struct task_struct *task,
145 void __user *from)
146 {
147 return __copy_from_user(task->thread.fp_state.fpr, from,
148 ELF_NFPREG * sizeof(double));
149 }
150
151 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_ckfpr_to_user(void __user * to,struct task_struct * task)152 inline unsigned long copy_ckfpr_to_user(void __user *to,
153 struct task_struct *task)
154 {
155 return __copy_to_user(to, task->thread.ckfp_state.fpr,
156 ELF_NFPREG * sizeof(double));
157 }
158
copy_ckfpr_from_user(struct task_struct * task,void __user * from)159 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
160 void __user *from)
161 {
162 return __copy_from_user(task->thread.ckfp_state.fpr, from,
163 ELF_NFPREG * sizeof(double));
164 }
165 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
166 #endif
167
168 /* Log an error when sending an unhandled signal to a process. Controlled
169 * through debug.exception-trace sysctl.
170 */
171
172 int show_unhandled_signals = 1;
173
174 /*
175 * Allocate space for the signal frame
176 */
get_sigframe(struct ksignal * ksig,unsigned long sp,size_t frame_size,int is_32)177 void __user *get_sigframe(struct ksignal *ksig, unsigned long sp,
178 size_t frame_size, int is_32)
179 {
180 unsigned long oldsp, newsp;
181
182 /* Default to using normal stack */
183 oldsp = get_clean_sp(sp, is_32);
184 oldsp = sigsp(oldsp, ksig);
185 newsp = (oldsp - frame_size) & ~0xFUL;
186
187 /* Check access */
188 if (!access_ok((void __user *)newsp, oldsp - newsp))
189 return NULL;
190
191 return (void __user *)newsp;
192 }
193
check_syscall_restart(struct pt_regs * regs,struct k_sigaction * ka,int has_handler)194 static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
195 int has_handler)
196 {
197 unsigned long ret = regs->gpr[3];
198 int restart = 1;
199
200 /* syscall ? */
201 if (!trap_is_syscall(regs))
202 return;
203
204 if (trap_norestart(regs))
205 return;
206
207 /* error signalled ? */
208 if (trap_is_scv(regs)) {
209 /* 32-bit compat mode sign extend? */
210 if (!IS_ERR_VALUE(ret))
211 return;
212 ret = -ret;
213 } else if (!(regs->ccr & 0x10000000)) {
214 return;
215 }
216
217 switch (ret) {
218 case ERESTART_RESTARTBLOCK:
219 case ERESTARTNOHAND:
220 /* ERESTARTNOHAND means that the syscall should only be
221 * restarted if there was no handler for the signal, and since
222 * we only get here if there is a handler, we dont restart.
223 */
224 restart = !has_handler;
225 break;
226 case ERESTARTSYS:
227 /* ERESTARTSYS means to restart the syscall if there is no
228 * handler or the handler was registered with SA_RESTART
229 */
230 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
231 break;
232 case ERESTARTNOINTR:
233 /* ERESTARTNOINTR means that the syscall should be
234 * called again after the signal handler returns.
235 */
236 break;
237 default:
238 return;
239 }
240 if (restart) {
241 if (ret == ERESTART_RESTARTBLOCK)
242 regs->gpr[0] = __NR_restart_syscall;
243 else
244 regs->gpr[3] = regs->orig_gpr3;
245 regs->nip -= 4;
246 regs->result = 0;
247 } else {
248 if (trap_is_scv(regs)) {
249 regs->result = -EINTR;
250 regs->gpr[3] = -EINTR;
251 } else {
252 regs->result = -EINTR;
253 regs->gpr[3] = EINTR;
254 regs->ccr |= 0x10000000;
255 }
256 }
257 }
258
do_signal(struct task_struct * tsk)259 static void do_signal(struct task_struct *tsk)
260 {
261 sigset_t *oldset = sigmask_to_save();
262 struct ksignal ksig = { .sig = 0 };
263 int ret;
264
265 BUG_ON(tsk != current);
266
267 get_signal(&ksig);
268
269 /* Is there any syscall restart business here ? */
270 check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
271
272 if (ksig.sig <= 0) {
273 /* No signal to deliver -- put the saved sigmask back */
274 restore_saved_sigmask();
275 set_trap_norestart(tsk->thread.regs);
276 return; /* no signals delivered */
277 }
278
279 /*
280 * Reenable the DABR before delivering the signal to
281 * user space. The DABR will have been cleared if it
282 * triggered inside the kernel.
283 */
284 if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
285 int i;
286
287 for (i = 0; i < nr_wp_slots(); i++) {
288 if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
289 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
290 }
291 }
292
293 /* Re-enable the breakpoints for the signal stack */
294 thread_change_pc(tsk, tsk->thread.regs);
295
296 rseq_signal_deliver(&ksig, tsk->thread.regs);
297
298 if (is_32bit_task()) {
299 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
300 ret = handle_rt_signal32(&ksig, oldset, tsk);
301 else
302 ret = handle_signal32(&ksig, oldset, tsk);
303 } else {
304 ret = handle_rt_signal64(&ksig, oldset, tsk);
305 }
306
307 set_trap_norestart(tsk->thread.regs);
308 signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
309 }
310
do_notify_resume(struct pt_regs * regs,unsigned long thread_info_flags)311 void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
312 {
313 user_exit();
314
315 if (thread_info_flags & _TIF_UPROBE)
316 uprobe_notify_resume(regs);
317
318 if (thread_info_flags & _TIF_PATCH_PENDING)
319 klp_update_patch_state(current);
320
321 if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
322 BUG_ON(regs != current->thread.regs);
323 do_signal(current);
324 }
325
326 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
327 tracehook_notify_resume(regs);
328 rseq_handle_notify_resume(NULL, regs);
329 }
330
331 user_enter();
332 }
333
get_tm_stackpointer(struct task_struct * tsk)334 unsigned long get_tm_stackpointer(struct task_struct *tsk)
335 {
336 /* When in an active transaction that takes a signal, we need to be
337 * careful with the stack. It's possible that the stack has moved back
338 * up after the tbegin. The obvious case here is when the tbegin is
339 * called inside a function that returns before a tend. In this case,
340 * the stack is part of the checkpointed transactional memory state.
341 * If we write over this non transactionally or in suspend, we are in
342 * trouble because if we get a tm abort, the program counter and stack
343 * pointer will be back at the tbegin but our in memory stack won't be
344 * valid anymore.
345 *
346 * To avoid this, when taking a signal in an active transaction, we
347 * need to use the stack pointer from the checkpointed state, rather
348 * than the speculated state. This ensures that the signal context
349 * (written tm suspended) will be written below the stack required for
350 * the rollback. The transaction is aborted because of the treclaim,
351 * so any memory written between the tbegin and the signal will be
352 * rolled back anyway.
353 *
354 * For signals taken in non-TM or suspended mode, we use the
355 * normal/non-checkpointed stack pointer.
356 */
357
358 unsigned long ret = tsk->thread.regs->gpr[1];
359
360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
361 BUG_ON(tsk != current);
362
363 if (MSR_TM_ACTIVE(tsk->thread.regs->msr)) {
364 preempt_disable();
365 tm_reclaim_current(TM_CAUSE_SIGNAL);
366 if (MSR_TM_TRANSACTIONAL(tsk->thread.regs->msr))
367 ret = tsk->thread.ckpt_regs.gpr[1];
368
369 /*
370 * If we treclaim, we must clear the current thread's TM bits
371 * before re-enabling preemption. Otherwise we might be
372 * preempted and have the live MSR[TS] changed behind our back
373 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
374 * enter the signal handler in non-transactional state.
375 */
376 tsk->thread.regs->msr &= ~MSR_TS_MASK;
377 preempt_enable();
378 }
379 #endif
380 return ret;
381 }
382