• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/pmc.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 #include <asm/dtl.h>
79 
80 #include "book3s.h"
81 
82 #define CREATE_TRACE_POINTS
83 #include "trace_hv.h"
84 
85 /* #define EXIT_DEBUG */
86 /* #define EXIT_DEBUG_SIMPLE */
87 /* #define EXIT_DEBUG_INT */
88 
89 /* Used to indicate that a guest page fault needs to be handled */
90 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
91 /* Used to indicate that a guest passthrough interrupt needs to be handled */
92 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
93 
94 /* Used as a "null" value for timebase values */
95 #define TB_NIL	(~(u64)0)
96 
97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
98 
99 static int dynamic_mt_modes = 6;
100 module_param(dynamic_mt_modes, int, 0644);
101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
102 static int target_smt_mode;
103 module_param(target_smt_mode, int, 0644);
104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
105 
106 static bool indep_threads_mode = true;
107 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
109 
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
113 
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 	.set = param_set_int,
117 	.get = param_get_int,
118 };
119 
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122 
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126 
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131 
nesting_enabled(struct kvm * kvm)132 static inline bool nesting_enabled(struct kvm *kvm)
133 {
134 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
135 }
136 
137 /* If set, the threads on each CPU core have to be in the same MMU mode */
138 static bool no_mixing_hpt_and_radix;
139 
140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141 
142 /*
143  * RWMR values for POWER8.  These control the rate at which PURR
144  * and SPURR count and should be set according to the number of
145  * online threads in the vcore being run.
146  */
147 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
149 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
151 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
154 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
155 
156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_1THREAD,
159 	RWMR_RPA_P8_2THREAD,
160 	RWMR_RPA_P8_3THREAD,
161 	RWMR_RPA_P8_4THREAD,
162 	RWMR_RPA_P8_5THREAD,
163 	RWMR_RPA_P8_6THREAD,
164 	RWMR_RPA_P8_7THREAD,
165 	RWMR_RPA_P8_8THREAD,
166 };
167 
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
169 		int *ip)
170 {
171 	int i = *ip;
172 	struct kvm_vcpu *vcpu;
173 
174 	while (++i < MAX_SMT_THREADS) {
175 		vcpu = READ_ONCE(vc->runnable_threads[i]);
176 		if (vcpu) {
177 			*ip = i;
178 			return vcpu;
179 		}
180 	}
181 	return NULL;
182 }
183 
184 /* Used to traverse the list of runnable threads for a given vcore */
185 #define for_each_runnable_thread(i, vcpu, vc) \
186 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187 
kvmppc_ipi_thread(int cpu)188 static bool kvmppc_ipi_thread(int cpu)
189 {
190 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
191 
192 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
193 	if (kvmhv_on_pseries())
194 		return false;
195 
196 	/* On POWER9 we can use msgsnd to IPI any cpu */
197 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
198 		msg |= get_hard_smp_processor_id(cpu);
199 		smp_mb();
200 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
201 		return true;
202 	}
203 
204 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
205 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
206 		preempt_disable();
207 		if (cpu_first_thread_sibling(cpu) ==
208 		    cpu_first_thread_sibling(smp_processor_id())) {
209 			msg |= cpu_thread_in_core(cpu);
210 			smp_mb();
211 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
212 			preempt_enable();
213 			return true;
214 		}
215 		preempt_enable();
216 	}
217 
218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219 	if (cpu >= 0 && cpu < nr_cpu_ids) {
220 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221 			xics_wake_cpu(cpu);
222 			return true;
223 		}
224 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225 		return true;
226 	}
227 #endif
228 
229 	return false;
230 }
231 
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233 {
234 	int cpu;
235 	struct rcuwait *waitp;
236 
237 	waitp = kvm_arch_vcpu_get_wait(vcpu);
238 	if (rcuwait_wake_up(waitp))
239 		++vcpu->stat.halt_wakeup;
240 
241 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
242 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
243 		return;
244 
245 	/* CPU points to the first thread of the core */
246 	cpu = vcpu->cpu;
247 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248 		smp_send_reschedule(cpu);
249 }
250 
251 /*
252  * We use the vcpu_load/put functions to measure stolen time.
253  * Stolen time is counted as time when either the vcpu is able to
254  * run as part of a virtual core, but the task running the vcore
255  * is preempted or sleeping, or when the vcpu needs something done
256  * in the kernel by the task running the vcpu, but that task is
257  * preempted or sleeping.  Those two things have to be counted
258  * separately, since one of the vcpu tasks will take on the job
259  * of running the core, and the other vcpu tasks in the vcore will
260  * sleep waiting for it to do that, but that sleep shouldn't count
261  * as stolen time.
262  *
263  * Hence we accumulate stolen time when the vcpu can run as part of
264  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265  * needs its task to do other things in the kernel (for example,
266  * service a page fault) in busy_stolen.  We don't accumulate
267  * stolen time for a vcore when it is inactive, or for a vcpu
268  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
269  * a misnomer; it means that the vcpu task is not executing in
270  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271  * the kernel.  We don't have any way of dividing up that time
272  * between time that the vcpu is genuinely stopped, time that
273  * the task is actively working on behalf of the vcpu, and time
274  * that the task is preempted, so we don't count any of it as
275  * stolen.
276  *
277  * Updates to busy_stolen are protected by arch.tbacct_lock;
278  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279  * lock.  The stolen times are measured in units of timebase ticks.
280  * (Note that the != TB_NIL checks below are purely defensive;
281  * they should never fail.)
282  */
283 
kvmppc_core_start_stolen(struct kvmppc_vcore * vc)284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285 {
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&vc->stoltb_lock, flags);
289 	vc->preempt_tb = mftb();
290 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
291 }
292 
kvmppc_core_end_stolen(struct kvmppc_vcore * vc)293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294 {
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&vc->stoltb_lock, flags);
298 	if (vc->preempt_tb != TB_NIL) {
299 		vc->stolen_tb += mftb() - vc->preempt_tb;
300 		vc->preempt_tb = TB_NIL;
301 	}
302 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
303 }
304 
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306 {
307 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
308 	unsigned long flags;
309 
310 	/*
311 	 * We can test vc->runner without taking the vcore lock,
312 	 * because only this task ever sets vc->runner to this
313 	 * vcpu, and once it is set to this vcpu, only this task
314 	 * ever sets it to NULL.
315 	 */
316 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317 		kvmppc_core_end_stolen(vc);
318 
319 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321 	    vcpu->arch.busy_preempt != TB_NIL) {
322 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323 		vcpu->arch.busy_preempt = TB_NIL;
324 	}
325 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
326 }
327 
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329 {
330 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
331 	unsigned long flags;
332 
333 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334 		kvmppc_core_start_stolen(vc);
335 
336 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338 		vcpu->arch.busy_preempt = mftb();
339 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
340 }
341 
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343 {
344 	vcpu->arch.pvr = pvr;
345 }
346 
347 /* Dummy value used in computing PCR value below */
348 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
349 
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351 {
352 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
354 
355 	/* We can (emulate) our own architecture version and anything older */
356 	if (cpu_has_feature(CPU_FTR_ARCH_31))
357 		host_pcr_bit = PCR_ARCH_31;
358 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
359 		host_pcr_bit = PCR_ARCH_300;
360 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
361 		host_pcr_bit = PCR_ARCH_207;
362 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
363 		host_pcr_bit = PCR_ARCH_206;
364 	else
365 		host_pcr_bit = PCR_ARCH_205;
366 
367 	/* Determine lowest PCR bit needed to run guest in given PVR level */
368 	guest_pcr_bit = host_pcr_bit;
369 	if (arch_compat) {
370 		switch (arch_compat) {
371 		case PVR_ARCH_205:
372 			guest_pcr_bit = PCR_ARCH_205;
373 			break;
374 		case PVR_ARCH_206:
375 		case PVR_ARCH_206p:
376 			guest_pcr_bit = PCR_ARCH_206;
377 			break;
378 		case PVR_ARCH_207:
379 			guest_pcr_bit = PCR_ARCH_207;
380 			break;
381 		case PVR_ARCH_300:
382 			guest_pcr_bit = PCR_ARCH_300;
383 			break;
384 		case PVR_ARCH_31:
385 			guest_pcr_bit = PCR_ARCH_31;
386 			break;
387 		default:
388 			return -EINVAL;
389 		}
390 	}
391 
392 	/* Check requested PCR bits don't exceed our capabilities */
393 	if (guest_pcr_bit > host_pcr_bit)
394 		return -EINVAL;
395 
396 	spin_lock(&vc->lock);
397 	vc->arch_compat = arch_compat;
398 	/*
399 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
400 	 * Also set all reserved PCR bits
401 	 */
402 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
403 	spin_unlock(&vc->lock);
404 
405 	return 0;
406 }
407 
kvmppc_dump_regs(struct kvm_vcpu * vcpu)408 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
409 {
410 	int r;
411 
412 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
413 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
414 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
415 	for (r = 0; r < 16; ++r)
416 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
417 		       r, kvmppc_get_gpr(vcpu, r),
418 		       r+16, kvmppc_get_gpr(vcpu, r+16));
419 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
420 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
421 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
422 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
423 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
424 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
425 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
426 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
427 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
428 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
429 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
430 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
431 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
433 	for (r = 0; r < vcpu->arch.slb_max; ++r)
434 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
435 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
436 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
437 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
438 	       vcpu->arch.last_inst);
439 }
440 
kvmppc_find_vcpu(struct kvm * kvm,int id)441 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
442 {
443 	return kvm_get_vcpu_by_id(kvm, id);
444 }
445 
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)446 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
447 {
448 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
449 	vpa->yield_count = cpu_to_be32(1);
450 }
451 
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)452 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
453 		   unsigned long addr, unsigned long len)
454 {
455 	/* check address is cacheline aligned */
456 	if (addr & (L1_CACHE_BYTES - 1))
457 		return -EINVAL;
458 	spin_lock(&vcpu->arch.vpa_update_lock);
459 	if (v->next_gpa != addr || v->len != len) {
460 		v->next_gpa = addr;
461 		v->len = addr ? len : 0;
462 		v->update_pending = 1;
463 	}
464 	spin_unlock(&vcpu->arch.vpa_update_lock);
465 	return 0;
466 }
467 
468 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
469 struct reg_vpa {
470 	u32 dummy;
471 	union {
472 		__be16 hword;
473 		__be32 word;
474 	} length;
475 };
476 
vpa_is_registered(struct kvmppc_vpa * vpap)477 static int vpa_is_registered(struct kvmppc_vpa *vpap)
478 {
479 	if (vpap->update_pending)
480 		return vpap->next_gpa != 0;
481 	return vpap->pinned_addr != NULL;
482 }
483 
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)484 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
485 				       unsigned long flags,
486 				       unsigned long vcpuid, unsigned long vpa)
487 {
488 	struct kvm *kvm = vcpu->kvm;
489 	unsigned long len, nb;
490 	void *va;
491 	struct kvm_vcpu *tvcpu;
492 	int err;
493 	int subfunc;
494 	struct kvmppc_vpa *vpap;
495 
496 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
497 	if (!tvcpu)
498 		return H_PARAMETER;
499 
500 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
501 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
502 	    subfunc == H_VPA_REG_SLB) {
503 		/* Registering new area - address must be cache-line aligned */
504 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
505 			return H_PARAMETER;
506 
507 		/* convert logical addr to kernel addr and read length */
508 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
509 		if (va == NULL)
510 			return H_PARAMETER;
511 		if (subfunc == H_VPA_REG_VPA)
512 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
513 		else
514 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
515 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
516 
517 		/* Check length */
518 		if (len > nb || len < sizeof(struct reg_vpa))
519 			return H_PARAMETER;
520 	} else {
521 		vpa = 0;
522 		len = 0;
523 	}
524 
525 	err = H_PARAMETER;
526 	vpap = NULL;
527 	spin_lock(&tvcpu->arch.vpa_update_lock);
528 
529 	switch (subfunc) {
530 	case H_VPA_REG_VPA:		/* register VPA */
531 		/*
532 		 * The size of our lppaca is 1kB because of the way we align
533 		 * it for the guest to avoid crossing a 4kB boundary. We only
534 		 * use 640 bytes of the structure though, so we should accept
535 		 * clients that set a size of 640.
536 		 */
537 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
538 		if (len < sizeof(struct lppaca))
539 			break;
540 		vpap = &tvcpu->arch.vpa;
541 		err = 0;
542 		break;
543 
544 	case H_VPA_REG_DTL:		/* register DTL */
545 		if (len < sizeof(struct dtl_entry))
546 			break;
547 		len -= len % sizeof(struct dtl_entry);
548 
549 		/* Check that they have previously registered a VPA */
550 		err = H_RESOURCE;
551 		if (!vpa_is_registered(&tvcpu->arch.vpa))
552 			break;
553 
554 		vpap = &tvcpu->arch.dtl;
555 		err = 0;
556 		break;
557 
558 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
559 		/* Check that they have previously registered a VPA */
560 		err = H_RESOURCE;
561 		if (!vpa_is_registered(&tvcpu->arch.vpa))
562 			break;
563 
564 		vpap = &tvcpu->arch.slb_shadow;
565 		err = 0;
566 		break;
567 
568 	case H_VPA_DEREG_VPA:		/* deregister VPA */
569 		/* Check they don't still have a DTL or SLB buf registered */
570 		err = H_RESOURCE;
571 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
572 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
573 			break;
574 
575 		vpap = &tvcpu->arch.vpa;
576 		err = 0;
577 		break;
578 
579 	case H_VPA_DEREG_DTL:		/* deregister DTL */
580 		vpap = &tvcpu->arch.dtl;
581 		err = 0;
582 		break;
583 
584 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
585 		vpap = &tvcpu->arch.slb_shadow;
586 		err = 0;
587 		break;
588 	}
589 
590 	if (vpap) {
591 		vpap->next_gpa = vpa;
592 		vpap->len = len;
593 		vpap->update_pending = 1;
594 	}
595 
596 	spin_unlock(&tvcpu->arch.vpa_update_lock);
597 
598 	return err;
599 }
600 
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)601 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
602 {
603 	struct kvm *kvm = vcpu->kvm;
604 	void *va;
605 	unsigned long nb;
606 	unsigned long gpa;
607 
608 	/*
609 	 * We need to pin the page pointed to by vpap->next_gpa,
610 	 * but we can't call kvmppc_pin_guest_page under the lock
611 	 * as it does get_user_pages() and down_read().  So we
612 	 * have to drop the lock, pin the page, then get the lock
613 	 * again and check that a new area didn't get registered
614 	 * in the meantime.
615 	 */
616 	for (;;) {
617 		gpa = vpap->next_gpa;
618 		spin_unlock(&vcpu->arch.vpa_update_lock);
619 		va = NULL;
620 		nb = 0;
621 		if (gpa)
622 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
623 		spin_lock(&vcpu->arch.vpa_update_lock);
624 		if (gpa == vpap->next_gpa)
625 			break;
626 		/* sigh... unpin that one and try again */
627 		if (va)
628 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
629 	}
630 
631 	vpap->update_pending = 0;
632 	if (va && nb < vpap->len) {
633 		/*
634 		 * If it's now too short, it must be that userspace
635 		 * has changed the mappings underlying guest memory,
636 		 * so unregister the region.
637 		 */
638 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
639 		va = NULL;
640 	}
641 	if (vpap->pinned_addr)
642 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
643 					vpap->dirty);
644 	vpap->gpa = gpa;
645 	vpap->pinned_addr = va;
646 	vpap->dirty = false;
647 	if (va)
648 		vpap->pinned_end = va + vpap->len;
649 }
650 
kvmppc_update_vpas(struct kvm_vcpu * vcpu)651 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
652 {
653 	if (!(vcpu->arch.vpa.update_pending ||
654 	      vcpu->arch.slb_shadow.update_pending ||
655 	      vcpu->arch.dtl.update_pending))
656 		return;
657 
658 	spin_lock(&vcpu->arch.vpa_update_lock);
659 	if (vcpu->arch.vpa.update_pending) {
660 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
661 		if (vcpu->arch.vpa.pinned_addr)
662 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
663 	}
664 	if (vcpu->arch.dtl.update_pending) {
665 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
666 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
667 		vcpu->arch.dtl_index = 0;
668 	}
669 	if (vcpu->arch.slb_shadow.update_pending)
670 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
671 	spin_unlock(&vcpu->arch.vpa_update_lock);
672 }
673 
674 /*
675  * Return the accumulated stolen time for the vcore up until `now'.
676  * The caller should hold the vcore lock.
677  */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)678 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
679 {
680 	u64 p;
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&vc->stoltb_lock, flags);
684 	p = vc->stolen_tb;
685 	if (vc->vcore_state != VCORE_INACTIVE &&
686 	    vc->preempt_tb != TB_NIL)
687 		p += now - vc->preempt_tb;
688 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
689 	return p;
690 }
691 
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)692 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
693 				    struct kvmppc_vcore *vc)
694 {
695 	struct dtl_entry *dt;
696 	struct lppaca *vpa;
697 	unsigned long stolen;
698 	unsigned long core_stolen;
699 	u64 now;
700 	unsigned long flags;
701 
702 	dt = vcpu->arch.dtl_ptr;
703 	vpa = vcpu->arch.vpa.pinned_addr;
704 	now = mftb();
705 	core_stolen = vcore_stolen_time(vc, now);
706 	stolen = core_stolen - vcpu->arch.stolen_logged;
707 	vcpu->arch.stolen_logged = core_stolen;
708 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
709 	stolen += vcpu->arch.busy_stolen;
710 	vcpu->arch.busy_stolen = 0;
711 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
712 	if (!dt || !vpa)
713 		return;
714 	memset(dt, 0, sizeof(struct dtl_entry));
715 	dt->dispatch_reason = 7;
716 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
717 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
718 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
719 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
720 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
721 	++dt;
722 	if (dt == vcpu->arch.dtl.pinned_end)
723 		dt = vcpu->arch.dtl.pinned_addr;
724 	vcpu->arch.dtl_ptr = dt;
725 	/* order writing *dt vs. writing vpa->dtl_idx */
726 	smp_wmb();
727 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
728 	vcpu->arch.dtl.dirty = true;
729 }
730 
731 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)732 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
733 {
734 	int thr;
735 	struct kvmppc_vcore *vc;
736 
737 	if (vcpu->arch.doorbell_request)
738 		return true;
739 	/*
740 	 * Ensure that the read of vcore->dpdes comes after the read
741 	 * of vcpu->doorbell_request.  This barrier matches the
742 	 * smp_wmb() in kvmppc_guest_entry_inject().
743 	 */
744 	smp_rmb();
745 	vc = vcpu->arch.vcore;
746 	thr = vcpu->vcpu_id - vc->first_vcpuid;
747 	return !!(vc->dpdes & (1 << thr));
748 }
749 
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)750 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
751 {
752 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
753 		return true;
754 	if ((!vcpu->arch.vcore->arch_compat) &&
755 	    cpu_has_feature(CPU_FTR_ARCH_207S))
756 		return true;
757 	return false;
758 }
759 
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)760 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
761 			     unsigned long resource, unsigned long value1,
762 			     unsigned long value2)
763 {
764 	switch (resource) {
765 	case H_SET_MODE_RESOURCE_SET_CIABR:
766 		if (!kvmppc_power8_compatible(vcpu))
767 			return H_P2;
768 		if (value2)
769 			return H_P4;
770 		if (mflags)
771 			return H_UNSUPPORTED_FLAG_START;
772 		/* Guests can't breakpoint the hypervisor */
773 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
774 			return H_P3;
775 		vcpu->arch.ciabr  = value1;
776 		return H_SUCCESS;
777 	case H_SET_MODE_RESOURCE_SET_DAWR0:
778 		if (!kvmppc_power8_compatible(vcpu))
779 			return H_P2;
780 		if (!ppc_breakpoint_available())
781 			return H_P2;
782 		if (mflags)
783 			return H_UNSUPPORTED_FLAG_START;
784 		if (value2 & DABRX_HYP)
785 			return H_P4;
786 		vcpu->arch.dawr  = value1;
787 		vcpu->arch.dawrx = value2;
788 		return H_SUCCESS;
789 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
790 		/* KVM does not support mflags=2 (AIL=2) */
791 		if (mflags != 0 && mflags != 3)
792 			return H_UNSUPPORTED_FLAG_START;
793 		return H_TOO_HARD;
794 	default:
795 		return H_TOO_HARD;
796 	}
797 }
798 
799 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)800 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
801 				  unsigned long len)
802 {
803 	struct kvm_memory_slot *to_memslot = NULL;
804 	struct kvm_memory_slot *from_memslot = NULL;
805 	unsigned long to_addr, from_addr;
806 	int r;
807 
808 	/* Get HPA for from address */
809 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
810 	if (!from_memslot)
811 		return -EFAULT;
812 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
813 			     << PAGE_SHIFT))
814 		return -EINVAL;
815 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
816 	if (kvm_is_error_hva(from_addr))
817 		return -EFAULT;
818 	from_addr |= (from & (PAGE_SIZE - 1));
819 
820 	/* Get HPA for to address */
821 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
822 	if (!to_memslot)
823 		return -EFAULT;
824 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
825 			   << PAGE_SHIFT))
826 		return -EINVAL;
827 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
828 	if (kvm_is_error_hva(to_addr))
829 		return -EFAULT;
830 	to_addr |= (to & (PAGE_SIZE - 1));
831 
832 	/* Perform copy */
833 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
834 			     len);
835 	if (r)
836 		return -EFAULT;
837 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
838 	return 0;
839 }
840 
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)841 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
842 			       unsigned long dest, unsigned long src)
843 {
844 	u64 pg_sz = SZ_4K;		/* 4K page size */
845 	u64 pg_mask = SZ_4K - 1;
846 	int ret;
847 
848 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
849 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
850 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
851 		return H_PARAMETER;
852 
853 	/* dest (and src if copy_page flag set) must be page aligned */
854 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
855 		return H_PARAMETER;
856 
857 	/* zero and/or copy the page as determined by the flags */
858 	if (flags & H_COPY_PAGE) {
859 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
860 		if (ret < 0)
861 			return H_PARAMETER;
862 	} else if (flags & H_ZERO_PAGE) {
863 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
864 		if (ret < 0)
865 			return H_PARAMETER;
866 	}
867 
868 	/* We can ignore the remaining flags */
869 
870 	return H_SUCCESS;
871 }
872 
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)873 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
874 {
875 	struct kvmppc_vcore *vcore = target->arch.vcore;
876 
877 	/*
878 	 * We expect to have been called by the real mode handler
879 	 * (kvmppc_rm_h_confer()) which would have directly returned
880 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
881 	 * have useful work to do and should not confer) so we don't
882 	 * recheck that here.
883 	 */
884 
885 	spin_lock(&vcore->lock);
886 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
887 	    vcore->vcore_state != VCORE_INACTIVE &&
888 	    vcore->runner)
889 		target = vcore->runner;
890 	spin_unlock(&vcore->lock);
891 
892 	return kvm_vcpu_yield_to(target);
893 }
894 
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)895 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
896 {
897 	int yield_count = 0;
898 	struct lppaca *lppaca;
899 
900 	spin_lock(&vcpu->arch.vpa_update_lock);
901 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
902 	if (lppaca)
903 		yield_count = be32_to_cpu(lppaca->yield_count);
904 	spin_unlock(&vcpu->arch.vpa_update_lock);
905 	return yield_count;
906 }
907 
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)908 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
909 {
910 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
911 	unsigned long target, ret = H_SUCCESS;
912 	int yield_count;
913 	struct kvm_vcpu *tvcpu;
914 	int idx, rc;
915 
916 	if (req <= MAX_HCALL_OPCODE &&
917 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
918 		return RESUME_HOST;
919 
920 	switch (req) {
921 	case H_CEDE:
922 		break;
923 	case H_PROD:
924 		target = kvmppc_get_gpr(vcpu, 4);
925 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
926 		if (!tvcpu) {
927 			ret = H_PARAMETER;
928 			break;
929 		}
930 		tvcpu->arch.prodded = 1;
931 		smp_mb();
932 		if (tvcpu->arch.ceded)
933 			kvmppc_fast_vcpu_kick_hv(tvcpu);
934 		break;
935 	case H_CONFER:
936 		target = kvmppc_get_gpr(vcpu, 4);
937 		if (target == -1)
938 			break;
939 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
940 		if (!tvcpu) {
941 			ret = H_PARAMETER;
942 			break;
943 		}
944 		yield_count = kvmppc_get_gpr(vcpu, 5);
945 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
946 			break;
947 		kvm_arch_vcpu_yield_to(tvcpu);
948 		break;
949 	case H_REGISTER_VPA:
950 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
951 					kvmppc_get_gpr(vcpu, 5),
952 					kvmppc_get_gpr(vcpu, 6));
953 		break;
954 	case H_RTAS:
955 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
956 			return RESUME_HOST;
957 
958 		idx = srcu_read_lock(&vcpu->kvm->srcu);
959 		rc = kvmppc_rtas_hcall(vcpu);
960 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
961 
962 		if (rc == -ENOENT)
963 			return RESUME_HOST;
964 		else if (rc == 0)
965 			break;
966 
967 		/* Send the error out to userspace via KVM_RUN */
968 		return rc;
969 	case H_LOGICAL_CI_LOAD:
970 		ret = kvmppc_h_logical_ci_load(vcpu);
971 		if (ret == H_TOO_HARD)
972 			return RESUME_HOST;
973 		break;
974 	case H_LOGICAL_CI_STORE:
975 		ret = kvmppc_h_logical_ci_store(vcpu);
976 		if (ret == H_TOO_HARD)
977 			return RESUME_HOST;
978 		break;
979 	case H_SET_MODE:
980 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
981 					kvmppc_get_gpr(vcpu, 5),
982 					kvmppc_get_gpr(vcpu, 6),
983 					kvmppc_get_gpr(vcpu, 7));
984 		if (ret == H_TOO_HARD)
985 			return RESUME_HOST;
986 		break;
987 	case H_XIRR:
988 	case H_CPPR:
989 	case H_EOI:
990 	case H_IPI:
991 	case H_IPOLL:
992 	case H_XIRR_X:
993 		if (kvmppc_xics_enabled(vcpu)) {
994 			if (xics_on_xive()) {
995 				ret = H_NOT_AVAILABLE;
996 				return RESUME_GUEST;
997 			}
998 			ret = kvmppc_xics_hcall(vcpu, req);
999 			break;
1000 		}
1001 		return RESUME_HOST;
1002 	case H_SET_DABR:
1003 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1004 		break;
1005 	case H_SET_XDABR:
1006 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1007 						kvmppc_get_gpr(vcpu, 5));
1008 		break;
1009 #ifdef CONFIG_SPAPR_TCE_IOMMU
1010 	case H_GET_TCE:
1011 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1012 						kvmppc_get_gpr(vcpu, 5));
1013 		if (ret == H_TOO_HARD)
1014 			return RESUME_HOST;
1015 		break;
1016 	case H_PUT_TCE:
1017 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1018 						kvmppc_get_gpr(vcpu, 5),
1019 						kvmppc_get_gpr(vcpu, 6));
1020 		if (ret == H_TOO_HARD)
1021 			return RESUME_HOST;
1022 		break;
1023 	case H_PUT_TCE_INDIRECT:
1024 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1025 						kvmppc_get_gpr(vcpu, 5),
1026 						kvmppc_get_gpr(vcpu, 6),
1027 						kvmppc_get_gpr(vcpu, 7));
1028 		if (ret == H_TOO_HARD)
1029 			return RESUME_HOST;
1030 		break;
1031 	case H_STUFF_TCE:
1032 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1033 						kvmppc_get_gpr(vcpu, 5),
1034 						kvmppc_get_gpr(vcpu, 6),
1035 						kvmppc_get_gpr(vcpu, 7));
1036 		if (ret == H_TOO_HARD)
1037 			return RESUME_HOST;
1038 		break;
1039 #endif
1040 	case H_RANDOM:
1041 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1042 			ret = H_HARDWARE;
1043 		break;
1044 
1045 	case H_SET_PARTITION_TABLE:
1046 		ret = H_FUNCTION;
1047 		if (nesting_enabled(vcpu->kvm))
1048 			ret = kvmhv_set_partition_table(vcpu);
1049 		break;
1050 	case H_ENTER_NESTED:
1051 		ret = H_FUNCTION;
1052 		if (!nesting_enabled(vcpu->kvm))
1053 			break;
1054 		ret = kvmhv_enter_nested_guest(vcpu);
1055 		if (ret == H_INTERRUPT) {
1056 			kvmppc_set_gpr(vcpu, 3, 0);
1057 			vcpu->arch.hcall_needed = 0;
1058 			return -EINTR;
1059 		} else if (ret == H_TOO_HARD) {
1060 			kvmppc_set_gpr(vcpu, 3, 0);
1061 			vcpu->arch.hcall_needed = 0;
1062 			return RESUME_HOST;
1063 		}
1064 		break;
1065 	case H_TLB_INVALIDATE:
1066 		ret = H_FUNCTION;
1067 		if (nesting_enabled(vcpu->kvm))
1068 			ret = kvmhv_do_nested_tlbie(vcpu);
1069 		break;
1070 	case H_COPY_TOFROM_GUEST:
1071 		ret = H_FUNCTION;
1072 		if (nesting_enabled(vcpu->kvm))
1073 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1074 		break;
1075 	case H_PAGE_INIT:
1076 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1077 					 kvmppc_get_gpr(vcpu, 5),
1078 					 kvmppc_get_gpr(vcpu, 6));
1079 		break;
1080 	case H_SVM_PAGE_IN:
1081 		ret = H_UNSUPPORTED;
1082 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1083 			ret = kvmppc_h_svm_page_in(vcpu->kvm,
1084 						   kvmppc_get_gpr(vcpu, 4),
1085 						   kvmppc_get_gpr(vcpu, 5),
1086 						   kvmppc_get_gpr(vcpu, 6));
1087 		break;
1088 	case H_SVM_PAGE_OUT:
1089 		ret = H_UNSUPPORTED;
1090 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1091 			ret = kvmppc_h_svm_page_out(vcpu->kvm,
1092 						    kvmppc_get_gpr(vcpu, 4),
1093 						    kvmppc_get_gpr(vcpu, 5),
1094 						    kvmppc_get_gpr(vcpu, 6));
1095 		break;
1096 	case H_SVM_INIT_START:
1097 		ret = H_UNSUPPORTED;
1098 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1099 			ret = kvmppc_h_svm_init_start(vcpu->kvm);
1100 		break;
1101 	case H_SVM_INIT_DONE:
1102 		ret = H_UNSUPPORTED;
1103 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1104 			ret = kvmppc_h_svm_init_done(vcpu->kvm);
1105 		break;
1106 	case H_SVM_INIT_ABORT:
1107 		/*
1108 		 * Even if that call is made by the Ultravisor, the SSR1 value
1109 		 * is the guest context one, with the secure bit clear as it has
1110 		 * not yet been secured. So we can't check it here.
1111 		 * Instead the kvm->arch.secure_guest flag is checked inside
1112 		 * kvmppc_h_svm_init_abort().
1113 		 */
1114 		ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1115 		break;
1116 
1117 	default:
1118 		return RESUME_HOST;
1119 	}
1120 	kvmppc_set_gpr(vcpu, 3, ret);
1121 	vcpu->arch.hcall_needed = 0;
1122 	return RESUME_GUEST;
1123 }
1124 
1125 /*
1126  * Handle H_CEDE in the nested virtualization case where we haven't
1127  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1128  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1129  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1130  */
kvmppc_nested_cede(struct kvm_vcpu * vcpu)1131 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1132 {
1133 	vcpu->arch.shregs.msr |= MSR_EE;
1134 	vcpu->arch.ceded = 1;
1135 	smp_mb();
1136 	if (vcpu->arch.prodded) {
1137 		vcpu->arch.prodded = 0;
1138 		smp_mb();
1139 		vcpu->arch.ceded = 0;
1140 	}
1141 }
1142 
kvmppc_hcall_impl_hv(unsigned long cmd)1143 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1144 {
1145 	switch (cmd) {
1146 	case H_CEDE:
1147 	case H_PROD:
1148 	case H_CONFER:
1149 	case H_REGISTER_VPA:
1150 	case H_SET_MODE:
1151 	case H_LOGICAL_CI_LOAD:
1152 	case H_LOGICAL_CI_STORE:
1153 #ifdef CONFIG_KVM_XICS
1154 	case H_XIRR:
1155 	case H_CPPR:
1156 	case H_EOI:
1157 	case H_IPI:
1158 	case H_IPOLL:
1159 	case H_XIRR_X:
1160 #endif
1161 	case H_PAGE_INIT:
1162 		return 1;
1163 	}
1164 
1165 	/* See if it's in the real-mode table */
1166 	return kvmppc_hcall_impl_hv_realmode(cmd);
1167 }
1168 
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1169 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1170 {
1171 	u32 last_inst;
1172 
1173 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1174 					EMULATE_DONE) {
1175 		/*
1176 		 * Fetch failed, so return to guest and
1177 		 * try executing it again.
1178 		 */
1179 		return RESUME_GUEST;
1180 	}
1181 
1182 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1183 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1184 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1185 		return RESUME_HOST;
1186 	} else {
1187 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1188 		return RESUME_GUEST;
1189 	}
1190 }
1191 
do_nothing(void * x)1192 static void do_nothing(void *x)
1193 {
1194 }
1195 
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1196 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1197 {
1198 	int thr, cpu, pcpu, nthreads;
1199 	struct kvm_vcpu *v;
1200 	unsigned long dpdes;
1201 
1202 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1203 	dpdes = 0;
1204 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1205 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1206 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1207 		if (!v)
1208 			continue;
1209 		/*
1210 		 * If the vcpu is currently running on a physical cpu thread,
1211 		 * interrupt it in order to pull it out of the guest briefly,
1212 		 * which will update its vcore->dpdes value.
1213 		 */
1214 		pcpu = READ_ONCE(v->cpu);
1215 		if (pcpu >= 0)
1216 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1217 		if (kvmppc_doorbell_pending(v))
1218 			dpdes |= 1 << thr;
1219 	}
1220 	return dpdes;
1221 }
1222 
1223 /*
1224  * On POWER9, emulate doorbell-related instructions in order to
1225  * give the guest the illusion of running on a multi-threaded core.
1226  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1227  * and mfspr DPDES.
1228  */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1229 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1230 {
1231 	u32 inst, rb, thr;
1232 	unsigned long arg;
1233 	struct kvm *kvm = vcpu->kvm;
1234 	struct kvm_vcpu *tvcpu;
1235 
1236 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1237 		return RESUME_GUEST;
1238 	if (get_op(inst) != 31)
1239 		return EMULATE_FAIL;
1240 	rb = get_rb(inst);
1241 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1242 	switch (get_xop(inst)) {
1243 	case OP_31_XOP_MSGSNDP:
1244 		arg = kvmppc_get_gpr(vcpu, rb);
1245 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1246 			break;
1247 		arg &= 0x3f;
1248 		if (arg >= kvm->arch.emul_smt_mode)
1249 			break;
1250 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1251 		if (!tvcpu)
1252 			break;
1253 		if (!tvcpu->arch.doorbell_request) {
1254 			tvcpu->arch.doorbell_request = 1;
1255 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1256 		}
1257 		break;
1258 	case OP_31_XOP_MSGCLRP:
1259 		arg = kvmppc_get_gpr(vcpu, rb);
1260 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1261 			break;
1262 		vcpu->arch.vcore->dpdes = 0;
1263 		vcpu->arch.doorbell_request = 0;
1264 		break;
1265 	case OP_31_XOP_MFSPR:
1266 		switch (get_sprn(inst)) {
1267 		case SPRN_TIR:
1268 			arg = thr;
1269 			break;
1270 		case SPRN_DPDES:
1271 			arg = kvmppc_read_dpdes(vcpu);
1272 			break;
1273 		default:
1274 			return EMULATE_FAIL;
1275 		}
1276 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1277 		break;
1278 	default:
1279 		return EMULATE_FAIL;
1280 	}
1281 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1282 	return RESUME_GUEST;
1283 }
1284 
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1285 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1286 				 struct task_struct *tsk)
1287 {
1288 	struct kvm_run *run = vcpu->run;
1289 	int r = RESUME_HOST;
1290 
1291 	vcpu->stat.sum_exits++;
1292 
1293 	/*
1294 	 * This can happen if an interrupt occurs in the last stages
1295 	 * of guest entry or the first stages of guest exit (i.e. after
1296 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1297 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1298 	 * That can happen due to a bug, or due to a machine check
1299 	 * occurring at just the wrong time.
1300 	 */
1301 	if (vcpu->arch.shregs.msr & MSR_HV) {
1302 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1303 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1304 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1305 			vcpu->arch.shregs.msr);
1306 		kvmppc_dump_regs(vcpu);
1307 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1308 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1309 		return RESUME_HOST;
1310 	}
1311 	run->exit_reason = KVM_EXIT_UNKNOWN;
1312 	run->ready_for_interrupt_injection = 1;
1313 	switch (vcpu->arch.trap) {
1314 	/* We're good on these - the host merely wanted to get our attention */
1315 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1316 		vcpu->stat.dec_exits++;
1317 		r = RESUME_GUEST;
1318 		break;
1319 	case BOOK3S_INTERRUPT_EXTERNAL:
1320 	case BOOK3S_INTERRUPT_H_DOORBELL:
1321 	case BOOK3S_INTERRUPT_H_VIRT:
1322 		vcpu->stat.ext_intr_exits++;
1323 		r = RESUME_GUEST;
1324 		break;
1325 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1326 	case BOOK3S_INTERRUPT_HMI:
1327 	case BOOK3S_INTERRUPT_PERFMON:
1328 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1329 		r = RESUME_GUEST;
1330 		break;
1331 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1332 		/* Print the MCE event to host console. */
1333 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1334 
1335 		/*
1336 		 * If the guest can do FWNMI, exit to userspace so it can
1337 		 * deliver a FWNMI to the guest.
1338 		 * Otherwise we synthesize a machine check for the guest
1339 		 * so that it knows that the machine check occurred.
1340 		 */
1341 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1342 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1343 			kvmppc_core_queue_machine_check(vcpu, flags);
1344 			r = RESUME_GUEST;
1345 			break;
1346 		}
1347 
1348 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1349 		run->exit_reason = KVM_EXIT_NMI;
1350 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1351 		/* Clear out the old NMI status from run->flags */
1352 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1353 		/* Now set the NMI status */
1354 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1355 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1356 		else
1357 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1358 
1359 		r = RESUME_HOST;
1360 		break;
1361 	case BOOK3S_INTERRUPT_PROGRAM:
1362 	{
1363 		ulong flags;
1364 		/*
1365 		 * Normally program interrupts are delivered directly
1366 		 * to the guest by the hardware, but we can get here
1367 		 * as a result of a hypervisor emulation interrupt
1368 		 * (e40) getting turned into a 700 by BML RTAS.
1369 		 */
1370 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1371 		kvmppc_core_queue_program(vcpu, flags);
1372 		r = RESUME_GUEST;
1373 		break;
1374 	}
1375 	case BOOK3S_INTERRUPT_SYSCALL:
1376 	{
1377 		/* hcall - punt to userspace */
1378 		int i;
1379 
1380 		/* hypercall with MSR_PR has already been handled in rmode,
1381 		 * and never reaches here.
1382 		 */
1383 
1384 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1385 		for (i = 0; i < 9; ++i)
1386 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1387 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1388 		vcpu->arch.hcall_needed = 1;
1389 		r = RESUME_HOST;
1390 		break;
1391 	}
1392 	/*
1393 	 * We get these next two if the guest accesses a page which it thinks
1394 	 * it has mapped but which is not actually present, either because
1395 	 * it is for an emulated I/O device or because the corresonding
1396 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1397 	 * have been handled already.
1398 	 */
1399 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1400 		r = RESUME_PAGE_FAULT;
1401 		break;
1402 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1403 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1404 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1405 			DSISR_SRR1_MATCH_64S;
1406 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1407 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1408 		r = RESUME_PAGE_FAULT;
1409 		break;
1410 	/*
1411 	 * This occurs if the guest executes an illegal instruction.
1412 	 * If the guest debug is disabled, generate a program interrupt
1413 	 * to the guest. If guest debug is enabled, we need to check
1414 	 * whether the instruction is a software breakpoint instruction.
1415 	 * Accordingly return to Guest or Host.
1416 	 */
1417 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1418 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1419 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1420 				swab32(vcpu->arch.emul_inst) :
1421 				vcpu->arch.emul_inst;
1422 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1423 			r = kvmppc_emulate_debug_inst(vcpu);
1424 		} else {
1425 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1426 			r = RESUME_GUEST;
1427 		}
1428 		break;
1429 	/*
1430 	 * This occurs if the guest (kernel or userspace), does something that
1431 	 * is prohibited by HFSCR.
1432 	 * On POWER9, this could be a doorbell instruction that we need
1433 	 * to emulate.
1434 	 * Otherwise, we just generate a program interrupt to the guest.
1435 	 */
1436 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1437 		r = EMULATE_FAIL;
1438 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1439 		    cpu_has_feature(CPU_FTR_ARCH_300))
1440 			r = kvmppc_emulate_doorbell_instr(vcpu);
1441 		if (r == EMULATE_FAIL) {
1442 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1443 			r = RESUME_GUEST;
1444 		}
1445 		break;
1446 
1447 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1448 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1449 		/*
1450 		 * This occurs for various TM-related instructions that
1451 		 * we need to emulate on POWER9 DD2.2.  We have already
1452 		 * handled the cases where the guest was in real-suspend
1453 		 * mode and was transitioning to transactional state.
1454 		 */
1455 		r = kvmhv_p9_tm_emulation(vcpu);
1456 		break;
1457 #endif
1458 
1459 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1460 		r = RESUME_PASSTHROUGH;
1461 		break;
1462 	default:
1463 		kvmppc_dump_regs(vcpu);
1464 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1465 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1466 			vcpu->arch.shregs.msr);
1467 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1468 		r = RESUME_HOST;
1469 		break;
1470 	}
1471 
1472 	return r;
1473 }
1474 
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1475 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1476 {
1477 	int r;
1478 	int srcu_idx;
1479 
1480 	vcpu->stat.sum_exits++;
1481 
1482 	/*
1483 	 * This can happen if an interrupt occurs in the last stages
1484 	 * of guest entry or the first stages of guest exit (i.e. after
1485 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1486 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1487 	 * That can happen due to a bug, or due to a machine check
1488 	 * occurring at just the wrong time.
1489 	 */
1490 	if (vcpu->arch.shregs.msr & MSR_HV) {
1491 		pr_emerg("KVM trap in HV mode while nested!\n");
1492 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1493 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1494 			 vcpu->arch.shregs.msr);
1495 		kvmppc_dump_regs(vcpu);
1496 		return RESUME_HOST;
1497 	}
1498 	switch (vcpu->arch.trap) {
1499 	/* We're good on these - the host merely wanted to get our attention */
1500 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1501 		vcpu->stat.dec_exits++;
1502 		r = RESUME_GUEST;
1503 		break;
1504 	case BOOK3S_INTERRUPT_EXTERNAL:
1505 		vcpu->stat.ext_intr_exits++;
1506 		r = RESUME_HOST;
1507 		break;
1508 	case BOOK3S_INTERRUPT_H_DOORBELL:
1509 	case BOOK3S_INTERRUPT_H_VIRT:
1510 		vcpu->stat.ext_intr_exits++;
1511 		r = RESUME_GUEST;
1512 		break;
1513 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1514 	case BOOK3S_INTERRUPT_HMI:
1515 	case BOOK3S_INTERRUPT_PERFMON:
1516 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1517 		r = RESUME_GUEST;
1518 		break;
1519 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1520 		/* Pass the machine check to the L1 guest */
1521 		r = RESUME_HOST;
1522 		/* Print the MCE event to host console. */
1523 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1524 		break;
1525 	/*
1526 	 * We get these next two if the guest accesses a page which it thinks
1527 	 * it has mapped but which is not actually present, either because
1528 	 * it is for an emulated I/O device or because the corresonding
1529 	 * host page has been paged out.
1530 	 */
1531 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1532 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1533 		r = kvmhv_nested_page_fault(vcpu);
1534 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1535 		break;
1536 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1537 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1538 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1539 					 DSISR_SRR1_MATCH_64S;
1540 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1541 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1542 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1543 		r = kvmhv_nested_page_fault(vcpu);
1544 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1545 		break;
1546 
1547 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1548 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1549 		/*
1550 		 * This occurs for various TM-related instructions that
1551 		 * we need to emulate on POWER9 DD2.2.  We have already
1552 		 * handled the cases where the guest was in real-suspend
1553 		 * mode and was transitioning to transactional state.
1554 		 */
1555 		r = kvmhv_p9_tm_emulation(vcpu);
1556 		break;
1557 #endif
1558 
1559 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1560 		vcpu->arch.trap = 0;
1561 		r = RESUME_GUEST;
1562 		if (!xics_on_xive())
1563 			kvmppc_xics_rm_complete(vcpu, 0);
1564 		break;
1565 	default:
1566 		r = RESUME_HOST;
1567 		break;
1568 	}
1569 
1570 	return r;
1571 }
1572 
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1573 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1574 					    struct kvm_sregs *sregs)
1575 {
1576 	int i;
1577 
1578 	memset(sregs, 0, sizeof(struct kvm_sregs));
1579 	sregs->pvr = vcpu->arch.pvr;
1580 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1581 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1582 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1588 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1589 					    struct kvm_sregs *sregs)
1590 {
1591 	int i, j;
1592 
1593 	/* Only accept the same PVR as the host's, since we can't spoof it */
1594 	if (sregs->pvr != vcpu->arch.pvr)
1595 		return -EINVAL;
1596 
1597 	j = 0;
1598 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1599 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1600 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1601 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1602 			++j;
1603 		}
1604 	}
1605 	vcpu->arch.slb_max = j;
1606 
1607 	return 0;
1608 }
1609 
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)1610 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1611 		bool preserve_top32)
1612 {
1613 	struct kvm *kvm = vcpu->kvm;
1614 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1615 	u64 mask;
1616 
1617 	spin_lock(&vc->lock);
1618 	/*
1619 	 * If ILE (interrupt little-endian) has changed, update the
1620 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1621 	 */
1622 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1623 		struct kvm_vcpu *vcpu;
1624 		int i;
1625 
1626 		kvm_for_each_vcpu(i, vcpu, kvm) {
1627 			if (vcpu->arch.vcore != vc)
1628 				continue;
1629 			if (new_lpcr & LPCR_ILE)
1630 				vcpu->arch.intr_msr |= MSR_LE;
1631 			else
1632 				vcpu->arch.intr_msr &= ~MSR_LE;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * Userspace can only modify DPFD (default prefetch depth),
1638 	 * ILE (interrupt little-endian) and TC (translation control).
1639 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1640 	 */
1641 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1642 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1643 		mask |= LPCR_AIL;
1644 	/*
1645 	 * On POWER9, allow userspace to enable large decrementer for the
1646 	 * guest, whether or not the host has it enabled.
1647 	 */
1648 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1649 		mask |= LPCR_LD;
1650 
1651 	/* Broken 32-bit version of LPCR must not clear top bits */
1652 	if (preserve_top32)
1653 		mask &= 0xFFFFFFFF;
1654 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1655 	spin_unlock(&vc->lock);
1656 }
1657 
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1658 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1659 				 union kvmppc_one_reg *val)
1660 {
1661 	int r = 0;
1662 	long int i;
1663 
1664 	switch (id) {
1665 	case KVM_REG_PPC_DEBUG_INST:
1666 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1667 		break;
1668 	case KVM_REG_PPC_HIOR:
1669 		*val = get_reg_val(id, 0);
1670 		break;
1671 	case KVM_REG_PPC_DABR:
1672 		*val = get_reg_val(id, vcpu->arch.dabr);
1673 		break;
1674 	case KVM_REG_PPC_DABRX:
1675 		*val = get_reg_val(id, vcpu->arch.dabrx);
1676 		break;
1677 	case KVM_REG_PPC_DSCR:
1678 		*val = get_reg_val(id, vcpu->arch.dscr);
1679 		break;
1680 	case KVM_REG_PPC_PURR:
1681 		*val = get_reg_val(id, vcpu->arch.purr);
1682 		break;
1683 	case KVM_REG_PPC_SPURR:
1684 		*val = get_reg_val(id, vcpu->arch.spurr);
1685 		break;
1686 	case KVM_REG_PPC_AMR:
1687 		*val = get_reg_val(id, vcpu->arch.amr);
1688 		break;
1689 	case KVM_REG_PPC_UAMOR:
1690 		*val = get_reg_val(id, vcpu->arch.uamor);
1691 		break;
1692 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1693 		i = id - KVM_REG_PPC_MMCR0;
1694 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1695 		break;
1696 	case KVM_REG_PPC_MMCR2:
1697 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
1698 		break;
1699 	case KVM_REG_PPC_MMCRA:
1700 		*val = get_reg_val(id, vcpu->arch.mmcra);
1701 		break;
1702 	case KVM_REG_PPC_MMCRS:
1703 		*val = get_reg_val(id, vcpu->arch.mmcrs);
1704 		break;
1705 	case KVM_REG_PPC_MMCR3:
1706 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1707 		break;
1708 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1709 		i = id - KVM_REG_PPC_PMC1;
1710 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1711 		break;
1712 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1713 		i = id - KVM_REG_PPC_SPMC1;
1714 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1715 		break;
1716 	case KVM_REG_PPC_SIAR:
1717 		*val = get_reg_val(id, vcpu->arch.siar);
1718 		break;
1719 	case KVM_REG_PPC_SDAR:
1720 		*val = get_reg_val(id, vcpu->arch.sdar);
1721 		break;
1722 	case KVM_REG_PPC_SIER:
1723 		*val = get_reg_val(id, vcpu->arch.sier[0]);
1724 		break;
1725 	case KVM_REG_PPC_SIER2:
1726 		*val = get_reg_val(id, vcpu->arch.sier[1]);
1727 		break;
1728 	case KVM_REG_PPC_SIER3:
1729 		*val = get_reg_val(id, vcpu->arch.sier[2]);
1730 		break;
1731 	case KVM_REG_PPC_IAMR:
1732 		*val = get_reg_val(id, vcpu->arch.iamr);
1733 		break;
1734 	case KVM_REG_PPC_PSPB:
1735 		*val = get_reg_val(id, vcpu->arch.pspb);
1736 		break;
1737 	case KVM_REG_PPC_DPDES:
1738 		/*
1739 		 * On POWER9, where we are emulating msgsndp etc.,
1740 		 * we return 1 bit for each vcpu, which can come from
1741 		 * either vcore->dpdes or doorbell_request.
1742 		 * On POWER8, doorbell_request is 0.
1743 		 */
1744 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1745 				   vcpu->arch.doorbell_request);
1746 		break;
1747 	case KVM_REG_PPC_VTB:
1748 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1749 		break;
1750 	case KVM_REG_PPC_DAWR:
1751 		*val = get_reg_val(id, vcpu->arch.dawr);
1752 		break;
1753 	case KVM_REG_PPC_DAWRX:
1754 		*val = get_reg_val(id, vcpu->arch.dawrx);
1755 		break;
1756 	case KVM_REG_PPC_CIABR:
1757 		*val = get_reg_val(id, vcpu->arch.ciabr);
1758 		break;
1759 	case KVM_REG_PPC_CSIGR:
1760 		*val = get_reg_val(id, vcpu->arch.csigr);
1761 		break;
1762 	case KVM_REG_PPC_TACR:
1763 		*val = get_reg_val(id, vcpu->arch.tacr);
1764 		break;
1765 	case KVM_REG_PPC_TCSCR:
1766 		*val = get_reg_val(id, vcpu->arch.tcscr);
1767 		break;
1768 	case KVM_REG_PPC_PID:
1769 		*val = get_reg_val(id, vcpu->arch.pid);
1770 		break;
1771 	case KVM_REG_PPC_ACOP:
1772 		*val = get_reg_val(id, vcpu->arch.acop);
1773 		break;
1774 	case KVM_REG_PPC_WORT:
1775 		*val = get_reg_val(id, vcpu->arch.wort);
1776 		break;
1777 	case KVM_REG_PPC_TIDR:
1778 		*val = get_reg_val(id, vcpu->arch.tid);
1779 		break;
1780 	case KVM_REG_PPC_PSSCR:
1781 		*val = get_reg_val(id, vcpu->arch.psscr);
1782 		break;
1783 	case KVM_REG_PPC_VPA_ADDR:
1784 		spin_lock(&vcpu->arch.vpa_update_lock);
1785 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1786 		spin_unlock(&vcpu->arch.vpa_update_lock);
1787 		break;
1788 	case KVM_REG_PPC_VPA_SLB:
1789 		spin_lock(&vcpu->arch.vpa_update_lock);
1790 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1791 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1792 		spin_unlock(&vcpu->arch.vpa_update_lock);
1793 		break;
1794 	case KVM_REG_PPC_VPA_DTL:
1795 		spin_lock(&vcpu->arch.vpa_update_lock);
1796 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1797 		val->vpaval.length = vcpu->arch.dtl.len;
1798 		spin_unlock(&vcpu->arch.vpa_update_lock);
1799 		break;
1800 	case KVM_REG_PPC_TB_OFFSET:
1801 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1802 		break;
1803 	case KVM_REG_PPC_LPCR:
1804 	case KVM_REG_PPC_LPCR_64:
1805 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1806 		break;
1807 	case KVM_REG_PPC_PPR:
1808 		*val = get_reg_val(id, vcpu->arch.ppr);
1809 		break;
1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811 	case KVM_REG_PPC_TFHAR:
1812 		*val = get_reg_val(id, vcpu->arch.tfhar);
1813 		break;
1814 	case KVM_REG_PPC_TFIAR:
1815 		*val = get_reg_val(id, vcpu->arch.tfiar);
1816 		break;
1817 	case KVM_REG_PPC_TEXASR:
1818 		*val = get_reg_val(id, vcpu->arch.texasr);
1819 		break;
1820 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1821 		i = id - KVM_REG_PPC_TM_GPR0;
1822 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1823 		break;
1824 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1825 	{
1826 		int j;
1827 		i = id - KVM_REG_PPC_TM_VSR0;
1828 		if (i < 32)
1829 			for (j = 0; j < TS_FPRWIDTH; j++)
1830 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1831 		else {
1832 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1833 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1834 			else
1835 				r = -ENXIO;
1836 		}
1837 		break;
1838 	}
1839 	case KVM_REG_PPC_TM_CR:
1840 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1841 		break;
1842 	case KVM_REG_PPC_TM_XER:
1843 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1844 		break;
1845 	case KVM_REG_PPC_TM_LR:
1846 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1847 		break;
1848 	case KVM_REG_PPC_TM_CTR:
1849 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1850 		break;
1851 	case KVM_REG_PPC_TM_FPSCR:
1852 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1853 		break;
1854 	case KVM_REG_PPC_TM_AMR:
1855 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1856 		break;
1857 	case KVM_REG_PPC_TM_PPR:
1858 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1859 		break;
1860 	case KVM_REG_PPC_TM_VRSAVE:
1861 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1862 		break;
1863 	case KVM_REG_PPC_TM_VSCR:
1864 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1865 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1866 		else
1867 			r = -ENXIO;
1868 		break;
1869 	case KVM_REG_PPC_TM_DSCR:
1870 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1871 		break;
1872 	case KVM_REG_PPC_TM_TAR:
1873 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1874 		break;
1875 #endif
1876 	case KVM_REG_PPC_ARCH_COMPAT:
1877 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1878 		break;
1879 	case KVM_REG_PPC_DEC_EXPIRY:
1880 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1881 				   vcpu->arch.vcore->tb_offset);
1882 		break;
1883 	case KVM_REG_PPC_ONLINE:
1884 		*val = get_reg_val(id, vcpu->arch.online);
1885 		break;
1886 	case KVM_REG_PPC_PTCR:
1887 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1888 		break;
1889 	default:
1890 		r = -EINVAL;
1891 		break;
1892 	}
1893 
1894 	return r;
1895 }
1896 
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1897 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1898 				 union kvmppc_one_reg *val)
1899 {
1900 	int r = 0;
1901 	long int i;
1902 	unsigned long addr, len;
1903 
1904 	switch (id) {
1905 	case KVM_REG_PPC_HIOR:
1906 		/* Only allow this to be set to zero */
1907 		if (set_reg_val(id, *val))
1908 			r = -EINVAL;
1909 		break;
1910 	case KVM_REG_PPC_DABR:
1911 		vcpu->arch.dabr = set_reg_val(id, *val);
1912 		break;
1913 	case KVM_REG_PPC_DABRX:
1914 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1915 		break;
1916 	case KVM_REG_PPC_DSCR:
1917 		vcpu->arch.dscr = set_reg_val(id, *val);
1918 		break;
1919 	case KVM_REG_PPC_PURR:
1920 		vcpu->arch.purr = set_reg_val(id, *val);
1921 		break;
1922 	case KVM_REG_PPC_SPURR:
1923 		vcpu->arch.spurr = set_reg_val(id, *val);
1924 		break;
1925 	case KVM_REG_PPC_AMR:
1926 		vcpu->arch.amr = set_reg_val(id, *val);
1927 		break;
1928 	case KVM_REG_PPC_UAMOR:
1929 		vcpu->arch.uamor = set_reg_val(id, *val);
1930 		break;
1931 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1932 		i = id - KVM_REG_PPC_MMCR0;
1933 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1934 		break;
1935 	case KVM_REG_PPC_MMCR2:
1936 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1937 		break;
1938 	case KVM_REG_PPC_MMCRA:
1939 		vcpu->arch.mmcra = set_reg_val(id, *val);
1940 		break;
1941 	case KVM_REG_PPC_MMCRS:
1942 		vcpu->arch.mmcrs = set_reg_val(id, *val);
1943 		break;
1944 	case KVM_REG_PPC_MMCR3:
1945 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1946 		break;
1947 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1948 		i = id - KVM_REG_PPC_PMC1;
1949 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1950 		break;
1951 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1952 		i = id - KVM_REG_PPC_SPMC1;
1953 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1954 		break;
1955 	case KVM_REG_PPC_SIAR:
1956 		vcpu->arch.siar = set_reg_val(id, *val);
1957 		break;
1958 	case KVM_REG_PPC_SDAR:
1959 		vcpu->arch.sdar = set_reg_val(id, *val);
1960 		break;
1961 	case KVM_REG_PPC_SIER:
1962 		vcpu->arch.sier[0] = set_reg_val(id, *val);
1963 		break;
1964 	case KVM_REG_PPC_SIER2:
1965 		vcpu->arch.sier[1] = set_reg_val(id, *val);
1966 		break;
1967 	case KVM_REG_PPC_SIER3:
1968 		vcpu->arch.sier[2] = set_reg_val(id, *val);
1969 		break;
1970 	case KVM_REG_PPC_IAMR:
1971 		vcpu->arch.iamr = set_reg_val(id, *val);
1972 		break;
1973 	case KVM_REG_PPC_PSPB:
1974 		vcpu->arch.pspb = set_reg_val(id, *val);
1975 		break;
1976 	case KVM_REG_PPC_DPDES:
1977 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1978 		break;
1979 	case KVM_REG_PPC_VTB:
1980 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1981 		break;
1982 	case KVM_REG_PPC_DAWR:
1983 		vcpu->arch.dawr = set_reg_val(id, *val);
1984 		break;
1985 	case KVM_REG_PPC_DAWRX:
1986 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1987 		break;
1988 	case KVM_REG_PPC_CIABR:
1989 		vcpu->arch.ciabr = set_reg_val(id, *val);
1990 		/* Don't allow setting breakpoints in hypervisor code */
1991 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1992 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1993 		break;
1994 	case KVM_REG_PPC_CSIGR:
1995 		vcpu->arch.csigr = set_reg_val(id, *val);
1996 		break;
1997 	case KVM_REG_PPC_TACR:
1998 		vcpu->arch.tacr = set_reg_val(id, *val);
1999 		break;
2000 	case KVM_REG_PPC_TCSCR:
2001 		vcpu->arch.tcscr = set_reg_val(id, *val);
2002 		break;
2003 	case KVM_REG_PPC_PID:
2004 		vcpu->arch.pid = set_reg_val(id, *val);
2005 		break;
2006 	case KVM_REG_PPC_ACOP:
2007 		vcpu->arch.acop = set_reg_val(id, *val);
2008 		break;
2009 	case KVM_REG_PPC_WORT:
2010 		vcpu->arch.wort = set_reg_val(id, *val);
2011 		break;
2012 	case KVM_REG_PPC_TIDR:
2013 		vcpu->arch.tid = set_reg_val(id, *val);
2014 		break;
2015 	case KVM_REG_PPC_PSSCR:
2016 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2017 		break;
2018 	case KVM_REG_PPC_VPA_ADDR:
2019 		addr = set_reg_val(id, *val);
2020 		r = -EINVAL;
2021 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2022 			      vcpu->arch.dtl.next_gpa))
2023 			break;
2024 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2025 		break;
2026 	case KVM_REG_PPC_VPA_SLB:
2027 		addr = val->vpaval.addr;
2028 		len = val->vpaval.length;
2029 		r = -EINVAL;
2030 		if (addr && !vcpu->arch.vpa.next_gpa)
2031 			break;
2032 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2033 		break;
2034 	case KVM_REG_PPC_VPA_DTL:
2035 		addr = val->vpaval.addr;
2036 		len = val->vpaval.length;
2037 		r = -EINVAL;
2038 		if (addr && (len < sizeof(struct dtl_entry) ||
2039 			     !vcpu->arch.vpa.next_gpa))
2040 			break;
2041 		len -= len % sizeof(struct dtl_entry);
2042 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2043 		break;
2044 	case KVM_REG_PPC_TB_OFFSET:
2045 		/* round up to multiple of 2^24 */
2046 		vcpu->arch.vcore->tb_offset =
2047 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2048 		break;
2049 	case KVM_REG_PPC_LPCR:
2050 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2051 		break;
2052 	case KVM_REG_PPC_LPCR_64:
2053 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2054 		break;
2055 	case KVM_REG_PPC_PPR:
2056 		vcpu->arch.ppr = set_reg_val(id, *val);
2057 		break;
2058 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2059 	case KVM_REG_PPC_TFHAR:
2060 		vcpu->arch.tfhar = set_reg_val(id, *val);
2061 		break;
2062 	case KVM_REG_PPC_TFIAR:
2063 		vcpu->arch.tfiar = set_reg_val(id, *val);
2064 		break;
2065 	case KVM_REG_PPC_TEXASR:
2066 		vcpu->arch.texasr = set_reg_val(id, *val);
2067 		break;
2068 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2069 		i = id - KVM_REG_PPC_TM_GPR0;
2070 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2071 		break;
2072 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2073 	{
2074 		int j;
2075 		i = id - KVM_REG_PPC_TM_VSR0;
2076 		if (i < 32)
2077 			for (j = 0; j < TS_FPRWIDTH; j++)
2078 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2079 		else
2080 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2081 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2082 			else
2083 				r = -ENXIO;
2084 		break;
2085 	}
2086 	case KVM_REG_PPC_TM_CR:
2087 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2088 		break;
2089 	case KVM_REG_PPC_TM_XER:
2090 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2091 		break;
2092 	case KVM_REG_PPC_TM_LR:
2093 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2094 		break;
2095 	case KVM_REG_PPC_TM_CTR:
2096 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2097 		break;
2098 	case KVM_REG_PPC_TM_FPSCR:
2099 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2100 		break;
2101 	case KVM_REG_PPC_TM_AMR:
2102 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2103 		break;
2104 	case KVM_REG_PPC_TM_PPR:
2105 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2106 		break;
2107 	case KVM_REG_PPC_TM_VRSAVE:
2108 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2109 		break;
2110 	case KVM_REG_PPC_TM_VSCR:
2111 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2112 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2113 		else
2114 			r = - ENXIO;
2115 		break;
2116 	case KVM_REG_PPC_TM_DSCR:
2117 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2118 		break;
2119 	case KVM_REG_PPC_TM_TAR:
2120 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2121 		break;
2122 #endif
2123 	case KVM_REG_PPC_ARCH_COMPAT:
2124 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2125 		break;
2126 	case KVM_REG_PPC_DEC_EXPIRY:
2127 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2128 			vcpu->arch.vcore->tb_offset;
2129 		break;
2130 	case KVM_REG_PPC_ONLINE:
2131 		i = set_reg_val(id, *val);
2132 		if (i && !vcpu->arch.online)
2133 			atomic_inc(&vcpu->arch.vcore->online_count);
2134 		else if (!i && vcpu->arch.online)
2135 			atomic_dec(&vcpu->arch.vcore->online_count);
2136 		vcpu->arch.online = i;
2137 		break;
2138 	case KVM_REG_PPC_PTCR:
2139 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2140 		break;
2141 	default:
2142 		r = -EINVAL;
2143 		break;
2144 	}
2145 
2146 	return r;
2147 }
2148 
2149 /*
2150  * On POWER9, threads are independent and can be in different partitions.
2151  * Therefore we consider each thread to be a subcore.
2152  * There is a restriction that all threads have to be in the same
2153  * MMU mode (radix or HPT), unfortunately, but since we only support
2154  * HPT guests on a HPT host so far, that isn't an impediment yet.
2155  */
threads_per_vcore(struct kvm * kvm)2156 static int threads_per_vcore(struct kvm *kvm)
2157 {
2158 	if (kvm->arch.threads_indep)
2159 		return 1;
2160 	return threads_per_subcore;
2161 }
2162 
kvmppc_vcore_create(struct kvm * kvm,int id)2163 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2164 {
2165 	struct kvmppc_vcore *vcore;
2166 
2167 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2168 
2169 	if (vcore == NULL)
2170 		return NULL;
2171 
2172 	spin_lock_init(&vcore->lock);
2173 	spin_lock_init(&vcore->stoltb_lock);
2174 	rcuwait_init(&vcore->wait);
2175 	vcore->preempt_tb = TB_NIL;
2176 	vcore->lpcr = kvm->arch.lpcr;
2177 	vcore->first_vcpuid = id;
2178 	vcore->kvm = kvm;
2179 	INIT_LIST_HEAD(&vcore->preempt_list);
2180 
2181 	return vcore;
2182 }
2183 
2184 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2185 static struct debugfs_timings_element {
2186 	const char *name;
2187 	size_t offset;
2188 } timings[] = {
2189 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2190 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2191 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2192 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2193 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2194 };
2195 
2196 #define N_TIMINGS	(ARRAY_SIZE(timings))
2197 
2198 struct debugfs_timings_state {
2199 	struct kvm_vcpu	*vcpu;
2200 	unsigned int	buflen;
2201 	char		buf[N_TIMINGS * 100];
2202 };
2203 
debugfs_timings_open(struct inode * inode,struct file * file)2204 static int debugfs_timings_open(struct inode *inode, struct file *file)
2205 {
2206 	struct kvm_vcpu *vcpu = inode->i_private;
2207 	struct debugfs_timings_state *p;
2208 
2209 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2210 	if (!p)
2211 		return -ENOMEM;
2212 
2213 	kvm_get_kvm(vcpu->kvm);
2214 	p->vcpu = vcpu;
2215 	file->private_data = p;
2216 
2217 	return nonseekable_open(inode, file);
2218 }
2219 
debugfs_timings_release(struct inode * inode,struct file * file)2220 static int debugfs_timings_release(struct inode *inode, struct file *file)
2221 {
2222 	struct debugfs_timings_state *p = file->private_data;
2223 
2224 	kvm_put_kvm(p->vcpu->kvm);
2225 	kfree(p);
2226 	return 0;
2227 }
2228 
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2229 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2230 				    size_t len, loff_t *ppos)
2231 {
2232 	struct debugfs_timings_state *p = file->private_data;
2233 	struct kvm_vcpu *vcpu = p->vcpu;
2234 	char *s, *buf_end;
2235 	struct kvmhv_tb_accumulator tb;
2236 	u64 count;
2237 	loff_t pos;
2238 	ssize_t n;
2239 	int i, loops;
2240 	bool ok;
2241 
2242 	if (!p->buflen) {
2243 		s = p->buf;
2244 		buf_end = s + sizeof(p->buf);
2245 		for (i = 0; i < N_TIMINGS; ++i) {
2246 			struct kvmhv_tb_accumulator *acc;
2247 
2248 			acc = (struct kvmhv_tb_accumulator *)
2249 				((unsigned long)vcpu + timings[i].offset);
2250 			ok = false;
2251 			for (loops = 0; loops < 1000; ++loops) {
2252 				count = acc->seqcount;
2253 				if (!(count & 1)) {
2254 					smp_rmb();
2255 					tb = *acc;
2256 					smp_rmb();
2257 					if (count == acc->seqcount) {
2258 						ok = true;
2259 						break;
2260 					}
2261 				}
2262 				udelay(1);
2263 			}
2264 			if (!ok)
2265 				snprintf(s, buf_end - s, "%s: stuck\n",
2266 					timings[i].name);
2267 			else
2268 				snprintf(s, buf_end - s,
2269 					"%s: %llu %llu %llu %llu\n",
2270 					timings[i].name, count / 2,
2271 					tb_to_ns(tb.tb_total),
2272 					tb_to_ns(tb.tb_min),
2273 					tb_to_ns(tb.tb_max));
2274 			s += strlen(s);
2275 		}
2276 		p->buflen = s - p->buf;
2277 	}
2278 
2279 	pos = *ppos;
2280 	if (pos >= p->buflen)
2281 		return 0;
2282 	if (len > p->buflen - pos)
2283 		len = p->buflen - pos;
2284 	n = copy_to_user(buf, p->buf + pos, len);
2285 	if (n) {
2286 		if (n == len)
2287 			return -EFAULT;
2288 		len -= n;
2289 	}
2290 	*ppos = pos + len;
2291 	return len;
2292 }
2293 
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2294 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2295 				     size_t len, loff_t *ppos)
2296 {
2297 	return -EACCES;
2298 }
2299 
2300 static const struct file_operations debugfs_timings_ops = {
2301 	.owner	 = THIS_MODULE,
2302 	.open	 = debugfs_timings_open,
2303 	.release = debugfs_timings_release,
2304 	.read	 = debugfs_timings_read,
2305 	.write	 = debugfs_timings_write,
2306 	.llseek	 = generic_file_llseek,
2307 };
2308 
2309 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)2310 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2311 {
2312 	char buf[16];
2313 	struct kvm *kvm = vcpu->kvm;
2314 
2315 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2316 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2317 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2318 			    &debugfs_timings_ops);
2319 }
2320 
2321 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)2322 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2323 {
2324 }
2325 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2326 
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2327 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2328 {
2329 	int err;
2330 	int core;
2331 	struct kvmppc_vcore *vcore;
2332 	struct kvm *kvm;
2333 	unsigned int id;
2334 
2335 	kvm = vcpu->kvm;
2336 	id = vcpu->vcpu_id;
2337 
2338 	vcpu->arch.shared = &vcpu->arch.shregs;
2339 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2340 	/*
2341 	 * The shared struct is never shared on HV,
2342 	 * so we can always use host endianness
2343 	 */
2344 #ifdef __BIG_ENDIAN__
2345 	vcpu->arch.shared_big_endian = true;
2346 #else
2347 	vcpu->arch.shared_big_endian = false;
2348 #endif
2349 #endif
2350 	vcpu->arch.mmcr[0] = MMCR0_FC;
2351 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2352 	/* default to host PVR, since we can't spoof it */
2353 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2354 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2355 	spin_lock_init(&vcpu->arch.tbacct_lock);
2356 	vcpu->arch.busy_preempt = TB_NIL;
2357 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2358 
2359 	/*
2360 	 * Set the default HFSCR for the guest from the host value.
2361 	 * This value is only used on POWER9.
2362 	 * On POWER9, we want to virtualize the doorbell facility, so we
2363 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2364 	 * to trap and then we emulate them.
2365 	 */
2366 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2367 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2368 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2369 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2370 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2371 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2372 			vcpu->arch.hfscr |= HFSCR_TM;
2373 #endif
2374 	}
2375 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2376 		vcpu->arch.hfscr |= HFSCR_TM;
2377 
2378 	kvmppc_mmu_book3s_hv_init(vcpu);
2379 
2380 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2381 
2382 	init_waitqueue_head(&vcpu->arch.cpu_run);
2383 
2384 	mutex_lock(&kvm->lock);
2385 	vcore = NULL;
2386 	err = -EINVAL;
2387 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2388 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2389 			pr_devel("KVM: VCPU ID too high\n");
2390 			core = KVM_MAX_VCORES;
2391 		} else {
2392 			BUG_ON(kvm->arch.smt_mode != 1);
2393 			core = kvmppc_pack_vcpu_id(kvm, id);
2394 		}
2395 	} else {
2396 		core = id / kvm->arch.smt_mode;
2397 	}
2398 	if (core < KVM_MAX_VCORES) {
2399 		vcore = kvm->arch.vcores[core];
2400 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2401 			pr_devel("KVM: collision on id %u", id);
2402 			vcore = NULL;
2403 		} else if (!vcore) {
2404 			/*
2405 			 * Take mmu_setup_lock for mutual exclusion
2406 			 * with kvmppc_update_lpcr().
2407 			 */
2408 			err = -ENOMEM;
2409 			vcore = kvmppc_vcore_create(kvm,
2410 					id & ~(kvm->arch.smt_mode - 1));
2411 			mutex_lock(&kvm->arch.mmu_setup_lock);
2412 			kvm->arch.vcores[core] = vcore;
2413 			kvm->arch.online_vcores++;
2414 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2415 		}
2416 	}
2417 	mutex_unlock(&kvm->lock);
2418 
2419 	if (!vcore)
2420 		return err;
2421 
2422 	spin_lock(&vcore->lock);
2423 	++vcore->num_threads;
2424 	spin_unlock(&vcore->lock);
2425 	vcpu->arch.vcore = vcore;
2426 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2427 	vcpu->arch.thread_cpu = -1;
2428 	vcpu->arch.prev_cpu = -1;
2429 
2430 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2431 	kvmppc_sanity_check(vcpu);
2432 
2433 	debugfs_vcpu_init(vcpu, id);
2434 
2435 	return 0;
2436 }
2437 
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2438 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2439 			      unsigned long flags)
2440 {
2441 	int err;
2442 	int esmt = 0;
2443 
2444 	if (flags)
2445 		return -EINVAL;
2446 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2447 		return -EINVAL;
2448 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2449 		/*
2450 		 * On POWER8 (or POWER7), the threading mode is "strict",
2451 		 * so we pack smt_mode vcpus per vcore.
2452 		 */
2453 		if (smt_mode > threads_per_subcore)
2454 			return -EINVAL;
2455 	} else {
2456 		/*
2457 		 * On POWER9, the threading mode is "loose",
2458 		 * so each vcpu gets its own vcore.
2459 		 */
2460 		esmt = smt_mode;
2461 		smt_mode = 1;
2462 	}
2463 	mutex_lock(&kvm->lock);
2464 	err = -EBUSY;
2465 	if (!kvm->arch.online_vcores) {
2466 		kvm->arch.smt_mode = smt_mode;
2467 		kvm->arch.emul_smt_mode = esmt;
2468 		err = 0;
2469 	}
2470 	mutex_unlock(&kvm->lock);
2471 
2472 	return err;
2473 }
2474 
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2475 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2476 {
2477 	if (vpa->pinned_addr)
2478 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2479 					vpa->dirty);
2480 }
2481 
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2482 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2483 {
2484 	spin_lock(&vcpu->arch.vpa_update_lock);
2485 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2486 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2487 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2488 	spin_unlock(&vcpu->arch.vpa_update_lock);
2489 }
2490 
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2491 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2492 {
2493 	/* Indicate we want to get back into the guest */
2494 	return 1;
2495 }
2496 
kvmppc_set_timer(struct kvm_vcpu * vcpu)2497 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2498 {
2499 	unsigned long dec_nsec, now;
2500 
2501 	now = get_tb();
2502 	if (now > vcpu->arch.dec_expires) {
2503 		/* decrementer has already gone negative */
2504 		kvmppc_core_queue_dec(vcpu);
2505 		kvmppc_core_prepare_to_enter(vcpu);
2506 		return;
2507 	}
2508 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2509 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2510 	vcpu->arch.timer_running = 1;
2511 }
2512 
2513 extern int __kvmppc_vcore_entry(void);
2514 
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)2515 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2516 				   struct kvm_vcpu *vcpu)
2517 {
2518 	u64 now;
2519 
2520 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2521 		return;
2522 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2523 	now = mftb();
2524 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2525 		vcpu->arch.stolen_logged;
2526 	vcpu->arch.busy_preempt = now;
2527 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2528 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2529 	--vc->n_runnable;
2530 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2531 }
2532 
kvmppc_grab_hwthread(int cpu)2533 static int kvmppc_grab_hwthread(int cpu)
2534 {
2535 	struct paca_struct *tpaca;
2536 	long timeout = 10000;
2537 
2538 	tpaca = paca_ptrs[cpu];
2539 
2540 	/* Ensure the thread won't go into the kernel if it wakes */
2541 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2542 	tpaca->kvm_hstate.kvm_vcore = NULL;
2543 	tpaca->kvm_hstate.napping = 0;
2544 	smp_wmb();
2545 	tpaca->kvm_hstate.hwthread_req = 1;
2546 
2547 	/*
2548 	 * If the thread is already executing in the kernel (e.g. handling
2549 	 * a stray interrupt), wait for it to get back to nap mode.
2550 	 * The smp_mb() is to ensure that our setting of hwthread_req
2551 	 * is visible before we look at hwthread_state, so if this
2552 	 * races with the code at system_reset_pSeries and the thread
2553 	 * misses our setting of hwthread_req, we are sure to see its
2554 	 * setting of hwthread_state, and vice versa.
2555 	 */
2556 	smp_mb();
2557 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2558 		if (--timeout <= 0) {
2559 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2560 			return -EBUSY;
2561 		}
2562 		udelay(1);
2563 	}
2564 	return 0;
2565 }
2566 
kvmppc_release_hwthread(int cpu)2567 static void kvmppc_release_hwthread(int cpu)
2568 {
2569 	struct paca_struct *tpaca;
2570 
2571 	tpaca = paca_ptrs[cpu];
2572 	tpaca->kvm_hstate.hwthread_req = 0;
2573 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2574 	tpaca->kvm_hstate.kvm_vcore = NULL;
2575 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2576 }
2577 
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)2578 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2579 {
2580 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2581 	cpumask_t *cpu_in_guest;
2582 	int i;
2583 
2584 	cpu = cpu_first_tlb_thread_sibling(cpu);
2585 	if (nested) {
2586 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2587 		cpu_in_guest = &nested->cpu_in_guest;
2588 	} else {
2589 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2590 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2591 	}
2592 	/*
2593 	 * Make sure setting of bit in need_tlb_flush precedes
2594 	 * testing of cpu_in_guest bits.  The matching barrier on
2595 	 * the other side is the first smp_mb() in kvmppc_run_core().
2596 	 */
2597 	smp_mb();
2598 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2599 					i += cpu_tlb_thread_sibling_step())
2600 		if (cpumask_test_cpu(i, cpu_in_guest))
2601 			smp_call_function_single(i, do_nothing, NULL, 1);
2602 }
2603 
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)2604 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2605 {
2606 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2607 	struct kvm *kvm = vcpu->kvm;
2608 	int prev_cpu;
2609 
2610 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2611 		return;
2612 
2613 	if (nested)
2614 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2615 	else
2616 		prev_cpu = vcpu->arch.prev_cpu;
2617 
2618 	/*
2619 	 * With radix, the guest can do TLB invalidations itself,
2620 	 * and it could choose to use the local form (tlbiel) if
2621 	 * it is invalidating a translation that has only ever been
2622 	 * used on one vcpu.  However, that doesn't mean it has
2623 	 * only ever been used on one physical cpu, since vcpus
2624 	 * can move around between pcpus.  To cope with this, when
2625 	 * a vcpu moves from one pcpu to another, we need to tell
2626 	 * any vcpus running on the same core as this vcpu previously
2627 	 * ran to flush the TLB.  The TLB is shared between threads,
2628 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2629 	 */
2630 	if (prev_cpu != pcpu) {
2631 		if (prev_cpu >= 0 &&
2632 		    cpu_first_tlb_thread_sibling(prev_cpu) !=
2633 		    cpu_first_tlb_thread_sibling(pcpu))
2634 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2635 		if (nested)
2636 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2637 		else
2638 			vcpu->arch.prev_cpu = pcpu;
2639 	}
2640 }
2641 
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)2642 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2643 {
2644 	int cpu;
2645 	struct paca_struct *tpaca;
2646 	struct kvm *kvm = vc->kvm;
2647 
2648 	cpu = vc->pcpu;
2649 	if (vcpu) {
2650 		if (vcpu->arch.timer_running) {
2651 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2652 			vcpu->arch.timer_running = 0;
2653 		}
2654 		cpu += vcpu->arch.ptid;
2655 		vcpu->cpu = vc->pcpu;
2656 		vcpu->arch.thread_cpu = cpu;
2657 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2658 	}
2659 	tpaca = paca_ptrs[cpu];
2660 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2661 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2662 	tpaca->kvm_hstate.fake_suspend = 0;
2663 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2664 	smp_wmb();
2665 	tpaca->kvm_hstate.kvm_vcore = vc;
2666 	if (cpu != smp_processor_id())
2667 		kvmppc_ipi_thread(cpu);
2668 }
2669 
kvmppc_wait_for_nap(int n_threads)2670 static void kvmppc_wait_for_nap(int n_threads)
2671 {
2672 	int cpu = smp_processor_id();
2673 	int i, loops;
2674 
2675 	if (n_threads <= 1)
2676 		return;
2677 	for (loops = 0; loops < 1000000; ++loops) {
2678 		/*
2679 		 * Check if all threads are finished.
2680 		 * We set the vcore pointer when starting a thread
2681 		 * and the thread clears it when finished, so we look
2682 		 * for any threads that still have a non-NULL vcore ptr.
2683 		 */
2684 		for (i = 1; i < n_threads; ++i)
2685 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2686 				break;
2687 		if (i == n_threads) {
2688 			HMT_medium();
2689 			return;
2690 		}
2691 		HMT_low();
2692 	}
2693 	HMT_medium();
2694 	for (i = 1; i < n_threads; ++i)
2695 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2696 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2697 }
2698 
2699 /*
2700  * Check that we are on thread 0 and that any other threads in
2701  * this core are off-line.  Then grab the threads so they can't
2702  * enter the kernel.
2703  */
on_primary_thread(void)2704 static int on_primary_thread(void)
2705 {
2706 	int cpu = smp_processor_id();
2707 	int thr;
2708 
2709 	/* Are we on a primary subcore? */
2710 	if (cpu_thread_in_subcore(cpu))
2711 		return 0;
2712 
2713 	thr = 0;
2714 	while (++thr < threads_per_subcore)
2715 		if (cpu_online(cpu + thr))
2716 			return 0;
2717 
2718 	/* Grab all hw threads so they can't go into the kernel */
2719 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2720 		if (kvmppc_grab_hwthread(cpu + thr)) {
2721 			/* Couldn't grab one; let the others go */
2722 			do {
2723 				kvmppc_release_hwthread(cpu + thr);
2724 			} while (--thr > 0);
2725 			return 0;
2726 		}
2727 	}
2728 	return 1;
2729 }
2730 
2731 /*
2732  * A list of virtual cores for each physical CPU.
2733  * These are vcores that could run but their runner VCPU tasks are
2734  * (or may be) preempted.
2735  */
2736 struct preempted_vcore_list {
2737 	struct list_head	list;
2738 	spinlock_t		lock;
2739 };
2740 
2741 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2742 
init_vcore_lists(void)2743 static void init_vcore_lists(void)
2744 {
2745 	int cpu;
2746 
2747 	for_each_possible_cpu(cpu) {
2748 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2749 		spin_lock_init(&lp->lock);
2750 		INIT_LIST_HEAD(&lp->list);
2751 	}
2752 }
2753 
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)2754 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2755 {
2756 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2757 
2758 	vc->vcore_state = VCORE_PREEMPT;
2759 	vc->pcpu = smp_processor_id();
2760 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2761 		spin_lock(&lp->lock);
2762 		list_add_tail(&vc->preempt_list, &lp->list);
2763 		spin_unlock(&lp->lock);
2764 	}
2765 
2766 	/* Start accumulating stolen time */
2767 	kvmppc_core_start_stolen(vc);
2768 }
2769 
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)2770 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2771 {
2772 	struct preempted_vcore_list *lp;
2773 
2774 	kvmppc_core_end_stolen(vc);
2775 	if (!list_empty(&vc->preempt_list)) {
2776 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2777 		spin_lock(&lp->lock);
2778 		list_del_init(&vc->preempt_list);
2779 		spin_unlock(&lp->lock);
2780 	}
2781 	vc->vcore_state = VCORE_INACTIVE;
2782 }
2783 
2784 /*
2785  * This stores information about the virtual cores currently
2786  * assigned to a physical core.
2787  */
2788 struct core_info {
2789 	int		n_subcores;
2790 	int		max_subcore_threads;
2791 	int		total_threads;
2792 	int		subcore_threads[MAX_SUBCORES];
2793 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2794 };
2795 
2796 /*
2797  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2798  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2799  */
2800 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2801 
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)2802 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2803 {
2804 	memset(cip, 0, sizeof(*cip));
2805 	cip->n_subcores = 1;
2806 	cip->max_subcore_threads = vc->num_threads;
2807 	cip->total_threads = vc->num_threads;
2808 	cip->subcore_threads[0] = vc->num_threads;
2809 	cip->vc[0] = vc;
2810 }
2811 
subcore_config_ok(int n_subcores,int n_threads)2812 static bool subcore_config_ok(int n_subcores, int n_threads)
2813 {
2814 	/*
2815 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2816 	 * split-core mode, with one thread per subcore.
2817 	 */
2818 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2819 		return n_subcores <= 4 && n_threads == 1;
2820 
2821 	/* On POWER8, can only dynamically split if unsplit to begin with */
2822 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2823 		return false;
2824 	if (n_subcores > MAX_SUBCORES)
2825 		return false;
2826 	if (n_subcores > 1) {
2827 		if (!(dynamic_mt_modes & 2))
2828 			n_subcores = 4;
2829 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2830 			return false;
2831 	}
2832 
2833 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2834 }
2835 
init_vcore_to_run(struct kvmppc_vcore * vc)2836 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2837 {
2838 	vc->entry_exit_map = 0;
2839 	vc->in_guest = 0;
2840 	vc->napping_threads = 0;
2841 	vc->conferring_threads = 0;
2842 	vc->tb_offset_applied = 0;
2843 }
2844 
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)2845 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2846 {
2847 	int n_threads = vc->num_threads;
2848 	int sub;
2849 
2850 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2851 		return false;
2852 
2853 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2854 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2855 		return false;
2856 
2857 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2858 	if (no_mixing_hpt_and_radix &&
2859 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2860 		return false;
2861 
2862 	if (n_threads < cip->max_subcore_threads)
2863 		n_threads = cip->max_subcore_threads;
2864 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2865 		return false;
2866 	cip->max_subcore_threads = n_threads;
2867 
2868 	sub = cip->n_subcores;
2869 	++cip->n_subcores;
2870 	cip->total_threads += vc->num_threads;
2871 	cip->subcore_threads[sub] = vc->num_threads;
2872 	cip->vc[sub] = vc;
2873 	init_vcore_to_run(vc);
2874 	list_del_init(&vc->preempt_list);
2875 
2876 	return true;
2877 }
2878 
2879 /*
2880  * Work out whether it is possible to piggyback the execution of
2881  * vcore *pvc onto the execution of the other vcores described in *cip.
2882  */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)2883 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2884 			  int target_threads)
2885 {
2886 	if (cip->total_threads + pvc->num_threads > target_threads)
2887 		return false;
2888 
2889 	return can_dynamic_split(pvc, cip);
2890 }
2891 
prepare_threads(struct kvmppc_vcore * vc)2892 static void prepare_threads(struct kvmppc_vcore *vc)
2893 {
2894 	int i;
2895 	struct kvm_vcpu *vcpu;
2896 
2897 	for_each_runnable_thread(i, vcpu, vc) {
2898 		if (signal_pending(vcpu->arch.run_task))
2899 			vcpu->arch.ret = -EINTR;
2900 		else if (vcpu->arch.vpa.update_pending ||
2901 			 vcpu->arch.slb_shadow.update_pending ||
2902 			 vcpu->arch.dtl.update_pending)
2903 			vcpu->arch.ret = RESUME_GUEST;
2904 		else
2905 			continue;
2906 		kvmppc_remove_runnable(vc, vcpu);
2907 		wake_up(&vcpu->arch.cpu_run);
2908 	}
2909 }
2910 
collect_piggybacks(struct core_info * cip,int target_threads)2911 static void collect_piggybacks(struct core_info *cip, int target_threads)
2912 {
2913 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2914 	struct kvmppc_vcore *pvc, *vcnext;
2915 
2916 	spin_lock(&lp->lock);
2917 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2918 		if (!spin_trylock(&pvc->lock))
2919 			continue;
2920 		prepare_threads(pvc);
2921 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2922 			list_del_init(&pvc->preempt_list);
2923 			if (pvc->runner == NULL) {
2924 				pvc->vcore_state = VCORE_INACTIVE;
2925 				kvmppc_core_end_stolen(pvc);
2926 			}
2927 			spin_unlock(&pvc->lock);
2928 			continue;
2929 		}
2930 		if (!can_piggyback(pvc, cip, target_threads)) {
2931 			spin_unlock(&pvc->lock);
2932 			continue;
2933 		}
2934 		kvmppc_core_end_stolen(pvc);
2935 		pvc->vcore_state = VCORE_PIGGYBACK;
2936 		if (cip->total_threads >= target_threads)
2937 			break;
2938 	}
2939 	spin_unlock(&lp->lock);
2940 }
2941 
recheck_signals_and_mmu(struct core_info * cip)2942 static bool recheck_signals_and_mmu(struct core_info *cip)
2943 {
2944 	int sub, i;
2945 	struct kvm_vcpu *vcpu;
2946 	struct kvmppc_vcore *vc;
2947 
2948 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2949 		vc = cip->vc[sub];
2950 		if (!vc->kvm->arch.mmu_ready)
2951 			return true;
2952 		for_each_runnable_thread(i, vcpu, vc)
2953 			if (signal_pending(vcpu->arch.run_task))
2954 				return true;
2955 	}
2956 	return false;
2957 }
2958 
post_guest_process(struct kvmppc_vcore * vc,bool is_master)2959 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2960 {
2961 	int still_running = 0, i;
2962 	u64 now;
2963 	long ret;
2964 	struct kvm_vcpu *vcpu;
2965 
2966 	spin_lock(&vc->lock);
2967 	now = get_tb();
2968 	for_each_runnable_thread(i, vcpu, vc) {
2969 		/*
2970 		 * It's safe to unlock the vcore in the loop here, because
2971 		 * for_each_runnable_thread() is safe against removal of
2972 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2973 		 * so any vcpus becoming runnable will have their arch.trap
2974 		 * set to zero and can't actually run in the guest.
2975 		 */
2976 		spin_unlock(&vc->lock);
2977 		/* cancel pending dec exception if dec is positive */
2978 		if (now < vcpu->arch.dec_expires &&
2979 		    kvmppc_core_pending_dec(vcpu))
2980 			kvmppc_core_dequeue_dec(vcpu);
2981 
2982 		trace_kvm_guest_exit(vcpu);
2983 
2984 		ret = RESUME_GUEST;
2985 		if (vcpu->arch.trap)
2986 			ret = kvmppc_handle_exit_hv(vcpu,
2987 						    vcpu->arch.run_task);
2988 
2989 		vcpu->arch.ret = ret;
2990 		vcpu->arch.trap = 0;
2991 
2992 		spin_lock(&vc->lock);
2993 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2994 			if (vcpu->arch.pending_exceptions)
2995 				kvmppc_core_prepare_to_enter(vcpu);
2996 			if (vcpu->arch.ceded)
2997 				kvmppc_set_timer(vcpu);
2998 			else
2999 				++still_running;
3000 		} else {
3001 			kvmppc_remove_runnable(vc, vcpu);
3002 			wake_up(&vcpu->arch.cpu_run);
3003 		}
3004 	}
3005 	if (!is_master) {
3006 		if (still_running > 0) {
3007 			kvmppc_vcore_preempt(vc);
3008 		} else if (vc->runner) {
3009 			vc->vcore_state = VCORE_PREEMPT;
3010 			kvmppc_core_start_stolen(vc);
3011 		} else {
3012 			vc->vcore_state = VCORE_INACTIVE;
3013 		}
3014 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3015 			/* make sure there's a candidate runner awake */
3016 			i = -1;
3017 			vcpu = next_runnable_thread(vc, &i);
3018 			wake_up(&vcpu->arch.cpu_run);
3019 		}
3020 	}
3021 	spin_unlock(&vc->lock);
3022 }
3023 
3024 /*
3025  * Clear core from the list of active host cores as we are about to
3026  * enter the guest. Only do this if it is the primary thread of the
3027  * core (not if a subcore) that is entering the guest.
3028  */
kvmppc_clear_host_core(unsigned int cpu)3029 static inline int kvmppc_clear_host_core(unsigned int cpu)
3030 {
3031 	int core;
3032 
3033 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3034 		return 0;
3035 	/*
3036 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3037 	 * later in kvmppc_start_thread and we need ensure that state is
3038 	 * visible to other CPUs only after we enter guest.
3039 	 */
3040 	core = cpu >> threads_shift;
3041 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3042 	return 0;
3043 }
3044 
3045 /*
3046  * Advertise this core as an active host core since we exited the guest
3047  * Only need to do this if it is the primary thread of the core that is
3048  * exiting.
3049  */
kvmppc_set_host_core(unsigned int cpu)3050 static inline int kvmppc_set_host_core(unsigned int cpu)
3051 {
3052 	int core;
3053 
3054 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3055 		return 0;
3056 
3057 	/*
3058 	 * Memory barrier can be omitted here because we do a spin_unlock
3059 	 * immediately after this which provides the memory barrier.
3060 	 */
3061 	core = cpu >> threads_shift;
3062 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3063 	return 0;
3064 }
3065 
set_irq_happened(int trap)3066 static void set_irq_happened(int trap)
3067 {
3068 	switch (trap) {
3069 	case BOOK3S_INTERRUPT_EXTERNAL:
3070 		local_paca->irq_happened |= PACA_IRQ_EE;
3071 		break;
3072 	case BOOK3S_INTERRUPT_H_DOORBELL:
3073 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3074 		break;
3075 	case BOOK3S_INTERRUPT_HMI:
3076 		local_paca->irq_happened |= PACA_IRQ_HMI;
3077 		break;
3078 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3079 		replay_system_reset();
3080 		break;
3081 	}
3082 }
3083 
3084 /*
3085  * Run a set of guest threads on a physical core.
3086  * Called with vc->lock held.
3087  */
kvmppc_run_core(struct kvmppc_vcore * vc)3088 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3089 {
3090 	struct kvm_vcpu *vcpu;
3091 	int i;
3092 	int srcu_idx;
3093 	struct core_info core_info;
3094 	struct kvmppc_vcore *pvc;
3095 	struct kvm_split_mode split_info, *sip;
3096 	int split, subcore_size, active;
3097 	int sub;
3098 	bool thr0_done;
3099 	unsigned long cmd_bit, stat_bit;
3100 	int pcpu, thr;
3101 	int target_threads;
3102 	int controlled_threads;
3103 	int trap;
3104 	bool is_power8;
3105 	bool hpt_on_radix;
3106 
3107 	/*
3108 	 * Remove from the list any threads that have a signal pending
3109 	 * or need a VPA update done
3110 	 */
3111 	prepare_threads(vc);
3112 
3113 	/* if the runner is no longer runnable, let the caller pick a new one */
3114 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3115 		return;
3116 
3117 	/*
3118 	 * Initialize *vc.
3119 	 */
3120 	init_vcore_to_run(vc);
3121 	vc->preempt_tb = TB_NIL;
3122 
3123 	/*
3124 	 * Number of threads that we will be controlling: the same as
3125 	 * the number of threads per subcore, except on POWER9,
3126 	 * where it's 1 because the threads are (mostly) independent.
3127 	 */
3128 	controlled_threads = threads_per_vcore(vc->kvm);
3129 
3130 	/*
3131 	 * Make sure we are running on primary threads, and that secondary
3132 	 * threads are offline.  Also check if the number of threads in this
3133 	 * guest are greater than the current system threads per guest.
3134 	 * On POWER9, we need to be not in independent-threads mode if
3135 	 * this is a HPT guest on a radix host machine where the
3136 	 * CPU threads may not be in different MMU modes.
3137 	 */
3138 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3139 		!kvm_is_radix(vc->kvm);
3140 	if (((controlled_threads > 1) &&
3141 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3142 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3143 		for_each_runnable_thread(i, vcpu, vc) {
3144 			vcpu->arch.ret = -EBUSY;
3145 			kvmppc_remove_runnable(vc, vcpu);
3146 			wake_up(&vcpu->arch.cpu_run);
3147 		}
3148 		goto out;
3149 	}
3150 
3151 	/*
3152 	 * See if we could run any other vcores on the physical core
3153 	 * along with this one.
3154 	 */
3155 	init_core_info(&core_info, vc);
3156 	pcpu = smp_processor_id();
3157 	target_threads = controlled_threads;
3158 	if (target_smt_mode && target_smt_mode < target_threads)
3159 		target_threads = target_smt_mode;
3160 	if (vc->num_threads < target_threads)
3161 		collect_piggybacks(&core_info, target_threads);
3162 
3163 	/*
3164 	 * On radix, arrange for TLB flushing if necessary.
3165 	 * This has to be done before disabling interrupts since
3166 	 * it uses smp_call_function().
3167 	 */
3168 	pcpu = smp_processor_id();
3169 	if (kvm_is_radix(vc->kvm)) {
3170 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3171 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3172 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3173 	}
3174 
3175 	/*
3176 	 * Hard-disable interrupts, and check resched flag and signals.
3177 	 * If we need to reschedule or deliver a signal, clean up
3178 	 * and return without going into the guest(s).
3179 	 * If the mmu_ready flag has been cleared, don't go into the
3180 	 * guest because that means a HPT resize operation is in progress.
3181 	 */
3182 	local_irq_disable();
3183 	hard_irq_disable();
3184 	if (lazy_irq_pending() || need_resched() ||
3185 	    recheck_signals_and_mmu(&core_info)) {
3186 		local_irq_enable();
3187 		vc->vcore_state = VCORE_INACTIVE;
3188 		/* Unlock all except the primary vcore */
3189 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3190 			pvc = core_info.vc[sub];
3191 			/* Put back on to the preempted vcores list */
3192 			kvmppc_vcore_preempt(pvc);
3193 			spin_unlock(&pvc->lock);
3194 		}
3195 		for (i = 0; i < controlled_threads; ++i)
3196 			kvmppc_release_hwthread(pcpu + i);
3197 		return;
3198 	}
3199 
3200 	kvmppc_clear_host_core(pcpu);
3201 
3202 	/* Decide on micro-threading (split-core) mode */
3203 	subcore_size = threads_per_subcore;
3204 	cmd_bit = stat_bit = 0;
3205 	split = core_info.n_subcores;
3206 	sip = NULL;
3207 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3208 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3209 
3210 	if (split > 1 || hpt_on_radix) {
3211 		sip = &split_info;
3212 		memset(&split_info, 0, sizeof(split_info));
3213 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3214 			split_info.vc[sub] = core_info.vc[sub];
3215 
3216 		if (is_power8) {
3217 			if (split == 2 && (dynamic_mt_modes & 2)) {
3218 				cmd_bit = HID0_POWER8_1TO2LPAR;
3219 				stat_bit = HID0_POWER8_2LPARMODE;
3220 			} else {
3221 				split = 4;
3222 				cmd_bit = HID0_POWER8_1TO4LPAR;
3223 				stat_bit = HID0_POWER8_4LPARMODE;
3224 			}
3225 			subcore_size = MAX_SMT_THREADS / split;
3226 			split_info.rpr = mfspr(SPRN_RPR);
3227 			split_info.pmmar = mfspr(SPRN_PMMAR);
3228 			split_info.ldbar = mfspr(SPRN_LDBAR);
3229 			split_info.subcore_size = subcore_size;
3230 		} else {
3231 			split_info.subcore_size = 1;
3232 			if (hpt_on_radix) {
3233 				/* Use the split_info for LPCR/LPIDR changes */
3234 				split_info.lpcr_req = vc->lpcr;
3235 				split_info.lpidr_req = vc->kvm->arch.lpid;
3236 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3237 				split_info.do_set = 1;
3238 			}
3239 		}
3240 
3241 		/* order writes to split_info before kvm_split_mode pointer */
3242 		smp_wmb();
3243 	}
3244 
3245 	for (thr = 0; thr < controlled_threads; ++thr) {
3246 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3247 
3248 		paca->kvm_hstate.tid = thr;
3249 		paca->kvm_hstate.napping = 0;
3250 		paca->kvm_hstate.kvm_split_mode = sip;
3251 	}
3252 
3253 	/* Initiate micro-threading (split-core) on POWER8 if required */
3254 	if (cmd_bit) {
3255 		unsigned long hid0 = mfspr(SPRN_HID0);
3256 
3257 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3258 		mb();
3259 		mtspr(SPRN_HID0, hid0);
3260 		isync();
3261 		for (;;) {
3262 			hid0 = mfspr(SPRN_HID0);
3263 			if (hid0 & stat_bit)
3264 				break;
3265 			cpu_relax();
3266 		}
3267 	}
3268 
3269 	/*
3270 	 * On POWER8, set RWMR register.
3271 	 * Since it only affects PURR and SPURR, it doesn't affect
3272 	 * the host, so we don't save/restore the host value.
3273 	 */
3274 	if (is_power8) {
3275 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3276 		int n_online = atomic_read(&vc->online_count);
3277 
3278 		/*
3279 		 * Use the 8-thread value if we're doing split-core
3280 		 * or if the vcore's online count looks bogus.
3281 		 */
3282 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3283 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3284 			rwmr_val = p8_rwmr_values[n_online];
3285 		mtspr(SPRN_RWMR, rwmr_val);
3286 	}
3287 
3288 	/* Start all the threads */
3289 	active = 0;
3290 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3291 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3292 		thr0_done = false;
3293 		active |= 1 << thr;
3294 		pvc = core_info.vc[sub];
3295 		pvc->pcpu = pcpu + thr;
3296 		for_each_runnable_thread(i, vcpu, pvc) {
3297 			kvmppc_start_thread(vcpu, pvc);
3298 			kvmppc_create_dtl_entry(vcpu, pvc);
3299 			trace_kvm_guest_enter(vcpu);
3300 			if (!vcpu->arch.ptid)
3301 				thr0_done = true;
3302 			active |= 1 << (thr + vcpu->arch.ptid);
3303 		}
3304 		/*
3305 		 * We need to start the first thread of each subcore
3306 		 * even if it doesn't have a vcpu.
3307 		 */
3308 		if (!thr0_done)
3309 			kvmppc_start_thread(NULL, pvc);
3310 	}
3311 
3312 	/*
3313 	 * Ensure that split_info.do_nap is set after setting
3314 	 * the vcore pointer in the PACA of the secondaries.
3315 	 */
3316 	smp_mb();
3317 
3318 	/*
3319 	 * When doing micro-threading, poke the inactive threads as well.
3320 	 * This gets them to the nap instruction after kvm_do_nap,
3321 	 * which reduces the time taken to unsplit later.
3322 	 * For POWER9 HPT guest on radix host, we need all the secondary
3323 	 * threads woken up so they can do the LPCR/LPIDR change.
3324 	 */
3325 	if (cmd_bit || hpt_on_radix) {
3326 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3327 		for (thr = 1; thr < threads_per_subcore; ++thr)
3328 			if (!(active & (1 << thr)))
3329 				kvmppc_ipi_thread(pcpu + thr);
3330 	}
3331 
3332 	vc->vcore_state = VCORE_RUNNING;
3333 	preempt_disable();
3334 
3335 	trace_kvmppc_run_core(vc, 0);
3336 
3337 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3338 		spin_unlock(&core_info.vc[sub]->lock);
3339 
3340 	guest_enter_irqoff();
3341 
3342 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3343 
3344 	this_cpu_disable_ftrace();
3345 
3346 	/*
3347 	 * Interrupts will be enabled once we get into the guest,
3348 	 * so tell lockdep that we're about to enable interrupts.
3349 	 */
3350 	trace_hardirqs_on();
3351 
3352 	trap = __kvmppc_vcore_entry();
3353 
3354 	trace_hardirqs_off();
3355 
3356 	this_cpu_enable_ftrace();
3357 
3358 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3359 
3360 	set_irq_happened(trap);
3361 
3362 	spin_lock(&vc->lock);
3363 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3364 	vc->vcore_state = VCORE_EXITING;
3365 
3366 	/* wait for secondary threads to finish writing their state to memory */
3367 	kvmppc_wait_for_nap(controlled_threads);
3368 
3369 	/* Return to whole-core mode if we split the core earlier */
3370 	if (cmd_bit) {
3371 		unsigned long hid0 = mfspr(SPRN_HID0);
3372 		unsigned long loops = 0;
3373 
3374 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3375 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3376 		mb();
3377 		mtspr(SPRN_HID0, hid0);
3378 		isync();
3379 		for (;;) {
3380 			hid0 = mfspr(SPRN_HID0);
3381 			if (!(hid0 & stat_bit))
3382 				break;
3383 			cpu_relax();
3384 			++loops;
3385 		}
3386 	} else if (hpt_on_radix) {
3387 		/* Wait for all threads to have seen final sync */
3388 		for (thr = 1; thr < controlled_threads; ++thr) {
3389 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3390 
3391 			while (paca->kvm_hstate.kvm_split_mode) {
3392 				HMT_low();
3393 				barrier();
3394 			}
3395 			HMT_medium();
3396 		}
3397 	}
3398 	split_info.do_nap = 0;
3399 
3400 	kvmppc_set_host_core(pcpu);
3401 
3402 	context_tracking_guest_exit();
3403 	if (!vtime_accounting_enabled_this_cpu()) {
3404 		local_irq_enable();
3405 		/*
3406 		 * Service IRQs here before vtime_account_guest_exit() so any
3407 		 * ticks that occurred while running the guest are accounted to
3408 		 * the guest. If vtime accounting is enabled, accounting uses
3409 		 * TB rather than ticks, so it can be done without enabling
3410 		 * interrupts here, which has the problem that it accounts
3411 		 * interrupt processing overhead to the host.
3412 		 */
3413 		local_irq_disable();
3414 	}
3415 	vtime_account_guest_exit();
3416 
3417 	local_irq_enable();
3418 
3419 	/* Let secondaries go back to the offline loop */
3420 	for (i = 0; i < controlled_threads; ++i) {
3421 		kvmppc_release_hwthread(pcpu + i);
3422 		if (sip && sip->napped[i])
3423 			kvmppc_ipi_thread(pcpu + i);
3424 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3425 	}
3426 
3427 	spin_unlock(&vc->lock);
3428 
3429 	/* make sure updates to secondary vcpu structs are visible now */
3430 	smp_mb();
3431 
3432 	preempt_enable();
3433 
3434 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3435 		pvc = core_info.vc[sub];
3436 		post_guest_process(pvc, pvc == vc);
3437 	}
3438 
3439 	spin_lock(&vc->lock);
3440 
3441  out:
3442 	vc->vcore_state = VCORE_INACTIVE;
3443 	trace_kvmppc_run_core(vc, 1);
3444 }
3445 
3446 /*
3447  * Load up hypervisor-mode registers on P9.
3448  */
kvmhv_load_hv_regs_and_go(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)3449 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3450 				     unsigned long lpcr)
3451 {
3452 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3453 	s64 hdec;
3454 	u64 tb, purr, spurr;
3455 	int trap;
3456 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3457 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3458 	unsigned long host_dawr = mfspr(SPRN_DAWR0);
3459 	unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3460 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3461 	unsigned long host_pidr = mfspr(SPRN_PID);
3462 
3463 	/*
3464 	 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3465 	 * so set HDICE before writing HDEC.
3466 	 */
3467 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3468 	isync();
3469 
3470 	hdec = time_limit - mftb();
3471 	if (hdec < 0) {
3472 		mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3473 		isync();
3474 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3475 	}
3476 	mtspr(SPRN_HDEC, hdec);
3477 
3478 	if (vc->tb_offset) {
3479 		u64 new_tb = mftb() + vc->tb_offset;
3480 		mtspr(SPRN_TBU40, new_tb);
3481 		tb = mftb();
3482 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3483 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3484 		vc->tb_offset_applied = vc->tb_offset;
3485 	}
3486 
3487 	if (vc->pcr)
3488 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3489 	mtspr(SPRN_DPDES, vc->dpdes);
3490 	mtspr(SPRN_VTB, vc->vtb);
3491 
3492 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3493 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3494 	mtspr(SPRN_PURR, vcpu->arch.purr);
3495 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3496 
3497 	if (dawr_enabled()) {
3498 		mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3499 		mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3500 	}
3501 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3502 	mtspr(SPRN_IC, vcpu->arch.ic);
3503 	mtspr(SPRN_PID, vcpu->arch.pid);
3504 
3505 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3506 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3507 
3508 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3509 
3510 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3511 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3512 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3513 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3514 
3515 	mtspr(SPRN_AMOR, ~0UL);
3516 
3517 	mtspr(SPRN_LPCR, lpcr);
3518 	isync();
3519 
3520 	kvmppc_xive_push_vcpu(vcpu);
3521 
3522 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3523 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3524 
3525 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3526 
3527 	/* Advance host PURR/SPURR by the amount used by guest */
3528 	purr = mfspr(SPRN_PURR);
3529 	spurr = mfspr(SPRN_SPURR);
3530 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3531 	      purr - vcpu->arch.purr);
3532 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3533 	      spurr - vcpu->arch.spurr);
3534 	vcpu->arch.purr = purr;
3535 	vcpu->arch.spurr = spurr;
3536 
3537 	vcpu->arch.ic = mfspr(SPRN_IC);
3538 	vcpu->arch.pid = mfspr(SPRN_PID);
3539 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3540 
3541 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3542 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3543 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3544 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3545 
3546 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3547 	mtspr(SPRN_PSSCR, host_psscr |
3548 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3549 	mtspr(SPRN_HFSCR, host_hfscr);
3550 	mtspr(SPRN_CIABR, host_ciabr);
3551 	mtspr(SPRN_DAWR0, host_dawr);
3552 	mtspr(SPRN_DAWRX0, host_dawrx);
3553 	mtspr(SPRN_PID, host_pidr);
3554 
3555 	/*
3556 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3557 	 * case we interrupted the guest between a tlbie and a ptesync.
3558 	 */
3559 	asm volatile("eieio; tlbsync; ptesync");
3560 
3561 	/*
3562 	 * cp_abort is required if the processor supports local copy-paste
3563 	 * to clear the copy buffer that was under control of the guest.
3564 	 */
3565 	if (cpu_has_feature(CPU_FTR_ARCH_31))
3566 		asm volatile(PPC_CP_ABORT);
3567 
3568 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3569 	isync();
3570 
3571 	vc->dpdes = mfspr(SPRN_DPDES);
3572 	vc->vtb = mfspr(SPRN_VTB);
3573 	mtspr(SPRN_DPDES, 0);
3574 	if (vc->pcr)
3575 		mtspr(SPRN_PCR, PCR_MASK);
3576 
3577 	if (vc->tb_offset_applied) {
3578 		u64 new_tb = mftb() - vc->tb_offset_applied;
3579 		mtspr(SPRN_TBU40, new_tb);
3580 		tb = mftb();
3581 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3582 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3583 		vc->tb_offset_applied = 0;
3584 	}
3585 
3586 	mtspr(SPRN_HDEC, 0x7fffffff);
3587 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3588 
3589 	return trap;
3590 }
3591 
3592 /*
3593  * Virtual-mode guest entry for POWER9 and later when the host and
3594  * guest are both using the radix MMU.  The LPIDR has already been set.
3595  */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)3596 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3597 			 unsigned long lpcr)
3598 {
3599 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3600 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3601 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3602 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3603 	unsigned long host_amr = mfspr(SPRN_AMR);
3604 	unsigned long host_fscr = mfspr(SPRN_FSCR);
3605 	s64 dec;
3606 	u64 tb;
3607 	int trap, save_pmu;
3608 
3609 	dec = mfspr(SPRN_DEC);
3610 	tb = mftb();
3611 	if (dec < 0)
3612 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3613 	local_paca->kvm_hstate.dec_expires = dec + tb;
3614 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3615 		time_limit = local_paca->kvm_hstate.dec_expires;
3616 
3617 	vcpu->arch.ceded = 0;
3618 
3619 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3620 
3621 	kvmppc_subcore_enter_guest();
3622 
3623 	vc->entry_exit_map = 1;
3624 	vc->in_guest = 1;
3625 
3626 	if (vcpu->arch.vpa.pinned_addr) {
3627 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3628 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3629 		lp->yield_count = cpu_to_be32(yield_count);
3630 		vcpu->arch.vpa.dirty = 1;
3631 	}
3632 
3633 	if (cpu_has_feature(CPU_FTR_TM) ||
3634 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3635 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3636 
3637 #ifdef CONFIG_PPC_PSERIES
3638 	if (kvmhv_on_pseries()) {
3639 		barrier();
3640 		if (vcpu->arch.vpa.pinned_addr) {
3641 			struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3642 			get_lppaca()->pmcregs_in_use = lp->pmcregs_in_use;
3643 		} else {
3644 			get_lppaca()->pmcregs_in_use = 1;
3645 		}
3646 		barrier();
3647 	}
3648 #endif
3649 	kvmhv_load_guest_pmu(vcpu);
3650 
3651 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3652 	load_fp_state(&vcpu->arch.fp);
3653 #ifdef CONFIG_ALTIVEC
3654 	load_vr_state(&vcpu->arch.vr);
3655 #endif
3656 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3657 
3658 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3659 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3660 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3661 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3662 	mtspr(SPRN_TAR, vcpu->arch.tar);
3663 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3664 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3665 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3666 	mtspr(SPRN_WORT, vcpu->arch.wort);
3667 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3668 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3669 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3670 	mtspr(SPRN_AMR, vcpu->arch.amr);
3671 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3672 
3673 	if (!(vcpu->arch.ctrl & 1))
3674 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3675 
3676 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3677 
3678 	if (kvmhv_on_pseries()) {
3679 		/*
3680 		 * We need to save and restore the guest visible part of the
3681 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3682 		 * doesn't do this for us. Note only required if pseries since
3683 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3684 		 */
3685 		unsigned long host_psscr;
3686 		/* call our hypervisor to load up HV regs and go */
3687 		struct hv_guest_state hvregs;
3688 
3689 		host_psscr = mfspr(SPRN_PSSCR_PR);
3690 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3691 		kvmhv_save_hv_regs(vcpu, &hvregs);
3692 		hvregs.lpcr = lpcr;
3693 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3694 		hvregs.version = HV_GUEST_STATE_VERSION;
3695 		if (vcpu->arch.nested) {
3696 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3697 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3698 		} else {
3699 			hvregs.lpid = vcpu->kvm->arch.lpid;
3700 			hvregs.vcpu_token = vcpu->vcpu_id;
3701 		}
3702 		hvregs.hdec_expiry = time_limit;
3703 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3704 					  __pa(&vcpu->arch.regs));
3705 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3706 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3707 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3708 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3709 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3710 		mtspr(SPRN_PSSCR_PR, host_psscr);
3711 
3712 		/* H_CEDE has to be handled now, not later */
3713 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3714 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3715 			kvmppc_nested_cede(vcpu);
3716 			kvmppc_set_gpr(vcpu, 3, 0);
3717 			trap = 0;
3718 		}
3719 	} else {
3720 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3721 	}
3722 
3723 	vcpu->arch.slb_max = 0;
3724 	dec = mfspr(SPRN_DEC);
3725 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3726 		dec = (s32) dec;
3727 	tb = mftb();
3728 	vcpu->arch.dec_expires = dec + tb;
3729 	vcpu->cpu = -1;
3730 	vcpu->arch.thread_cpu = -1;
3731 	/* Save guest CTRL register, set runlatch to 1 */
3732 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3733 	if (!(vcpu->arch.ctrl & 1))
3734 		mtspr(SPRN_CTRLT, vcpu->arch.ctrl | 1);
3735 
3736 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3737 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3738 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3739 	vcpu->arch.tar = mfspr(SPRN_TAR);
3740 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3741 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3742 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3743 	vcpu->arch.wort = mfspr(SPRN_WORT);
3744 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3745 	vcpu->arch.amr = mfspr(SPRN_AMR);
3746 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3747 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3748 
3749 	mtspr(SPRN_PSPB, 0);
3750 	mtspr(SPRN_WORT, 0);
3751 	mtspr(SPRN_UAMOR, 0);
3752 	mtspr(SPRN_DSCR, host_dscr);
3753 	mtspr(SPRN_TIDR, host_tidr);
3754 	mtspr(SPRN_IAMR, host_iamr);
3755 	mtspr(SPRN_PSPB, 0);
3756 
3757 	if (host_amr != vcpu->arch.amr)
3758 		mtspr(SPRN_AMR, host_amr);
3759 
3760 	if (host_fscr != vcpu->arch.fscr)
3761 		mtspr(SPRN_FSCR, host_fscr);
3762 
3763 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3764 	store_fp_state(&vcpu->arch.fp);
3765 #ifdef CONFIG_ALTIVEC
3766 	store_vr_state(&vcpu->arch.vr);
3767 #endif
3768 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3769 
3770 	if (cpu_has_feature(CPU_FTR_TM) ||
3771 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3772 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3773 
3774 	save_pmu = 1;
3775 	if (vcpu->arch.vpa.pinned_addr) {
3776 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3777 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3778 		lp->yield_count = cpu_to_be32(yield_count);
3779 		vcpu->arch.vpa.dirty = 1;
3780 		save_pmu = lp->pmcregs_in_use;
3781 	}
3782 	/* Must save pmu if this guest is capable of running nested guests */
3783 	save_pmu |= nesting_enabled(vcpu->kvm);
3784 
3785 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3786 #ifdef CONFIG_PPC_PSERIES
3787 	if (kvmhv_on_pseries()) {
3788 		barrier();
3789 		get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse();
3790 		barrier();
3791 	}
3792 #endif
3793 
3794 	vc->entry_exit_map = 0x101;
3795 	vc->in_guest = 0;
3796 
3797 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3798 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3799 
3800 	kvmhv_load_host_pmu();
3801 
3802 	kvmppc_subcore_exit_guest();
3803 
3804 	return trap;
3805 }
3806 
3807 /*
3808  * Wait for some other vcpu thread to execute us, and
3809  * wake us up when we need to handle something in the host.
3810  */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)3811 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3812 				 struct kvm_vcpu *vcpu, int wait_state)
3813 {
3814 	DEFINE_WAIT(wait);
3815 
3816 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3817 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3818 		spin_unlock(&vc->lock);
3819 		schedule();
3820 		spin_lock(&vc->lock);
3821 	}
3822 	finish_wait(&vcpu->arch.cpu_run, &wait);
3823 }
3824 
grow_halt_poll_ns(struct kvmppc_vcore * vc)3825 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3826 {
3827 	if (!halt_poll_ns_grow)
3828 		return;
3829 
3830 	vc->halt_poll_ns *= halt_poll_ns_grow;
3831 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3832 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3833 }
3834 
shrink_halt_poll_ns(struct kvmppc_vcore * vc)3835 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3836 {
3837 	if (halt_poll_ns_shrink == 0)
3838 		vc->halt_poll_ns = 0;
3839 	else
3840 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3841 }
3842 
3843 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)3844 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3845 {
3846 	if (!xics_on_xive())
3847 		return false;
3848 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3849 		vcpu->arch.xive_saved_state.cppr;
3850 }
3851 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)3852 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3853 {
3854 	return false;
3855 }
3856 #endif /* CONFIG_KVM_XICS */
3857 
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)3858 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3859 {
3860 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3861 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3862 		return true;
3863 
3864 	return false;
3865 }
3866 
3867 /*
3868  * Check to see if any of the runnable vcpus on the vcore have pending
3869  * exceptions or are no longer ceded
3870  */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)3871 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3872 {
3873 	struct kvm_vcpu *vcpu;
3874 	int i;
3875 
3876 	for_each_runnable_thread(i, vcpu, vc) {
3877 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3878 			return 1;
3879 	}
3880 
3881 	return 0;
3882 }
3883 
3884 /*
3885  * All the vcpus in this vcore are idle, so wait for a decrementer
3886  * or external interrupt to one of the vcpus.  vc->lock is held.
3887  */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)3888 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3889 {
3890 	ktime_t cur, start_poll, start_wait;
3891 	int do_sleep = 1;
3892 	u64 block_ns;
3893 
3894 	/* Poll for pending exceptions and ceded state */
3895 	cur = start_poll = ktime_get();
3896 	if (vc->halt_poll_ns) {
3897 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3898 		++vc->runner->stat.halt_attempted_poll;
3899 
3900 		vc->vcore_state = VCORE_POLLING;
3901 		spin_unlock(&vc->lock);
3902 
3903 		do {
3904 			if (kvmppc_vcore_check_block(vc)) {
3905 				do_sleep = 0;
3906 				break;
3907 			}
3908 			cur = ktime_get();
3909 		} while (single_task_running() && ktime_before(cur, stop));
3910 
3911 		spin_lock(&vc->lock);
3912 		vc->vcore_state = VCORE_INACTIVE;
3913 
3914 		if (!do_sleep) {
3915 			++vc->runner->stat.halt_successful_poll;
3916 			goto out;
3917 		}
3918 	}
3919 
3920 	prepare_to_rcuwait(&vc->wait);
3921 	set_current_state(TASK_INTERRUPTIBLE);
3922 	if (kvmppc_vcore_check_block(vc)) {
3923 		finish_rcuwait(&vc->wait);
3924 		do_sleep = 0;
3925 		/* If we polled, count this as a successful poll */
3926 		if (vc->halt_poll_ns)
3927 			++vc->runner->stat.halt_successful_poll;
3928 		goto out;
3929 	}
3930 
3931 	start_wait = ktime_get();
3932 
3933 	vc->vcore_state = VCORE_SLEEPING;
3934 	trace_kvmppc_vcore_blocked(vc, 0);
3935 	spin_unlock(&vc->lock);
3936 	schedule();
3937 	finish_rcuwait(&vc->wait);
3938 	spin_lock(&vc->lock);
3939 	vc->vcore_state = VCORE_INACTIVE;
3940 	trace_kvmppc_vcore_blocked(vc, 1);
3941 	++vc->runner->stat.halt_successful_wait;
3942 
3943 	cur = ktime_get();
3944 
3945 out:
3946 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3947 
3948 	/* Attribute wait time */
3949 	if (do_sleep) {
3950 		vc->runner->stat.halt_wait_ns +=
3951 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3952 		/* Attribute failed poll time */
3953 		if (vc->halt_poll_ns)
3954 			vc->runner->stat.halt_poll_fail_ns +=
3955 				ktime_to_ns(start_wait) -
3956 				ktime_to_ns(start_poll);
3957 	} else {
3958 		/* Attribute successful poll time */
3959 		if (vc->halt_poll_ns)
3960 			vc->runner->stat.halt_poll_success_ns +=
3961 				ktime_to_ns(cur) -
3962 				ktime_to_ns(start_poll);
3963 	}
3964 
3965 	/* Adjust poll time */
3966 	if (halt_poll_ns) {
3967 		if (block_ns <= vc->halt_poll_ns)
3968 			;
3969 		/* We slept and blocked for longer than the max halt time */
3970 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3971 			shrink_halt_poll_ns(vc);
3972 		/* We slept and our poll time is too small */
3973 		else if (vc->halt_poll_ns < halt_poll_ns &&
3974 				block_ns < halt_poll_ns)
3975 			grow_halt_poll_ns(vc);
3976 		if (vc->halt_poll_ns > halt_poll_ns)
3977 			vc->halt_poll_ns = halt_poll_ns;
3978 	} else
3979 		vc->halt_poll_ns = 0;
3980 
3981 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3982 }
3983 
3984 /*
3985  * This never fails for a radix guest, as none of the operations it does
3986  * for a radix guest can fail or have a way to report failure.
3987  * kvmhv_run_single_vcpu() relies on this fact.
3988  */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)3989 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3990 {
3991 	int r = 0;
3992 	struct kvm *kvm = vcpu->kvm;
3993 
3994 	mutex_lock(&kvm->arch.mmu_setup_lock);
3995 	if (!kvm->arch.mmu_ready) {
3996 		if (!kvm_is_radix(kvm))
3997 			r = kvmppc_hv_setup_htab_rma(vcpu);
3998 		if (!r) {
3999 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4000 				kvmppc_setup_partition_table(kvm);
4001 			kvm->arch.mmu_ready = 1;
4002 		}
4003 	}
4004 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4005 	return r;
4006 }
4007 
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)4008 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4009 {
4010 	struct kvm_run *run = vcpu->run;
4011 	int n_ceded, i, r;
4012 	struct kvmppc_vcore *vc;
4013 	struct kvm_vcpu *v;
4014 
4015 	trace_kvmppc_run_vcpu_enter(vcpu);
4016 
4017 	run->exit_reason = 0;
4018 	vcpu->arch.ret = RESUME_GUEST;
4019 	vcpu->arch.trap = 0;
4020 	kvmppc_update_vpas(vcpu);
4021 
4022 	/*
4023 	 * Synchronize with other threads in this virtual core
4024 	 */
4025 	vc = vcpu->arch.vcore;
4026 	spin_lock(&vc->lock);
4027 	vcpu->arch.ceded = 0;
4028 	vcpu->arch.run_task = current;
4029 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4030 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4031 	vcpu->arch.busy_preempt = TB_NIL;
4032 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4033 	++vc->n_runnable;
4034 
4035 	/*
4036 	 * This happens the first time this is called for a vcpu.
4037 	 * If the vcore is already running, we may be able to start
4038 	 * this thread straight away and have it join in.
4039 	 */
4040 	if (!signal_pending(current)) {
4041 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4042 		     vc->vcore_state == VCORE_RUNNING) &&
4043 			   !VCORE_IS_EXITING(vc)) {
4044 			kvmppc_create_dtl_entry(vcpu, vc);
4045 			kvmppc_start_thread(vcpu, vc);
4046 			trace_kvm_guest_enter(vcpu);
4047 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4048 		        rcuwait_wake_up(&vc->wait);
4049 		}
4050 
4051 	}
4052 
4053 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4054 	       !signal_pending(current)) {
4055 		/* See if the MMU is ready to go */
4056 		if (!vcpu->kvm->arch.mmu_ready) {
4057 			spin_unlock(&vc->lock);
4058 			r = kvmhv_setup_mmu(vcpu);
4059 			spin_lock(&vc->lock);
4060 			if (r) {
4061 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4062 				run->fail_entry.
4063 					hardware_entry_failure_reason = 0;
4064 				vcpu->arch.ret = r;
4065 				break;
4066 			}
4067 		}
4068 
4069 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4070 			kvmppc_vcore_end_preempt(vc);
4071 
4072 		if (vc->vcore_state != VCORE_INACTIVE) {
4073 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4074 			continue;
4075 		}
4076 		for_each_runnable_thread(i, v, vc) {
4077 			kvmppc_core_prepare_to_enter(v);
4078 			if (signal_pending(v->arch.run_task)) {
4079 				kvmppc_remove_runnable(vc, v);
4080 				v->stat.signal_exits++;
4081 				v->run->exit_reason = KVM_EXIT_INTR;
4082 				v->arch.ret = -EINTR;
4083 				wake_up(&v->arch.cpu_run);
4084 			}
4085 		}
4086 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4087 			break;
4088 		n_ceded = 0;
4089 		for_each_runnable_thread(i, v, vc) {
4090 			if (!kvmppc_vcpu_woken(v))
4091 				n_ceded += v->arch.ceded;
4092 			else
4093 				v->arch.ceded = 0;
4094 		}
4095 		vc->runner = vcpu;
4096 		if (n_ceded == vc->n_runnable) {
4097 			kvmppc_vcore_blocked(vc);
4098 		} else if (need_resched()) {
4099 			kvmppc_vcore_preempt(vc);
4100 			/* Let something else run */
4101 			cond_resched_lock(&vc->lock);
4102 			if (vc->vcore_state == VCORE_PREEMPT)
4103 				kvmppc_vcore_end_preempt(vc);
4104 		} else {
4105 			kvmppc_run_core(vc);
4106 		}
4107 		vc->runner = NULL;
4108 	}
4109 
4110 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4111 	       (vc->vcore_state == VCORE_RUNNING ||
4112 		vc->vcore_state == VCORE_EXITING ||
4113 		vc->vcore_state == VCORE_PIGGYBACK))
4114 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4115 
4116 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4117 		kvmppc_vcore_end_preempt(vc);
4118 
4119 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4120 		kvmppc_remove_runnable(vc, vcpu);
4121 		vcpu->stat.signal_exits++;
4122 		run->exit_reason = KVM_EXIT_INTR;
4123 		vcpu->arch.ret = -EINTR;
4124 	}
4125 
4126 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4127 		/* Wake up some vcpu to run the core */
4128 		i = -1;
4129 		v = next_runnable_thread(vc, &i);
4130 		wake_up(&v->arch.cpu_run);
4131 	}
4132 
4133 	trace_kvmppc_run_vcpu_exit(vcpu);
4134 	spin_unlock(&vc->lock);
4135 	return vcpu->arch.ret;
4136 }
4137 
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4138 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4139 			  unsigned long lpcr)
4140 {
4141 	struct kvm_run *run = vcpu->run;
4142 	int trap, r, pcpu;
4143 	int srcu_idx, lpid;
4144 	struct kvmppc_vcore *vc;
4145 	struct kvm *kvm = vcpu->kvm;
4146 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4147 
4148 	trace_kvmppc_run_vcpu_enter(vcpu);
4149 
4150 	run->exit_reason = 0;
4151 	vcpu->arch.ret = RESUME_GUEST;
4152 	vcpu->arch.trap = 0;
4153 
4154 	vc = vcpu->arch.vcore;
4155 	vcpu->arch.ceded = 0;
4156 	vcpu->arch.run_task = current;
4157 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4158 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4159 	vcpu->arch.busy_preempt = TB_NIL;
4160 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4161 	vc->runnable_threads[0] = vcpu;
4162 	vc->n_runnable = 1;
4163 	vc->runner = vcpu;
4164 
4165 	/* See if the MMU is ready to go */
4166 	if (!kvm->arch.mmu_ready)
4167 		kvmhv_setup_mmu(vcpu);
4168 
4169 	if (need_resched())
4170 		cond_resched();
4171 
4172 	kvmppc_update_vpas(vcpu);
4173 
4174 	init_vcore_to_run(vc);
4175 	vc->preempt_tb = TB_NIL;
4176 
4177 	preempt_disable();
4178 	pcpu = smp_processor_id();
4179 	vc->pcpu = pcpu;
4180 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4181 
4182 	local_irq_disable();
4183 	hard_irq_disable();
4184 	if (signal_pending(current))
4185 		goto sigpend;
4186 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4187 		goto out;
4188 
4189 	if (!nested) {
4190 		kvmppc_core_prepare_to_enter(vcpu);
4191 		if (vcpu->arch.doorbell_request) {
4192 			vc->dpdes = 1;
4193 			smp_wmb();
4194 			vcpu->arch.doorbell_request = 0;
4195 		}
4196 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4197 			     &vcpu->arch.pending_exceptions))
4198 			lpcr |= LPCR_MER;
4199 	} else if (vcpu->arch.pending_exceptions ||
4200 		   vcpu->arch.doorbell_request ||
4201 		   xive_interrupt_pending(vcpu)) {
4202 		vcpu->arch.ret = RESUME_HOST;
4203 		goto out;
4204 	}
4205 
4206 	kvmppc_clear_host_core(pcpu);
4207 
4208 	local_paca->kvm_hstate.tid = 0;
4209 	local_paca->kvm_hstate.napping = 0;
4210 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4211 	kvmppc_start_thread(vcpu, vc);
4212 	kvmppc_create_dtl_entry(vcpu, vc);
4213 	trace_kvm_guest_enter(vcpu);
4214 
4215 	vc->vcore_state = VCORE_RUNNING;
4216 	trace_kvmppc_run_core(vc, 0);
4217 
4218 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4219 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4220 		mtspr(SPRN_LPID, lpid);
4221 		isync();
4222 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4223 	}
4224 
4225 	guest_enter_irqoff();
4226 
4227 	srcu_idx = srcu_read_lock(&kvm->srcu);
4228 
4229 	this_cpu_disable_ftrace();
4230 
4231 	/* Tell lockdep that we're about to enable interrupts */
4232 	trace_hardirqs_on();
4233 
4234 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4235 	vcpu->arch.trap = trap;
4236 
4237 	trace_hardirqs_off();
4238 
4239 	this_cpu_enable_ftrace();
4240 
4241 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4242 
4243 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4244 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4245 		isync();
4246 	}
4247 
4248 	set_irq_happened(trap);
4249 
4250 	kvmppc_set_host_core(pcpu);
4251 
4252 	context_tracking_guest_exit();
4253 	if (!vtime_accounting_enabled_this_cpu()) {
4254 		local_irq_enable();
4255 		/*
4256 		 * Service IRQs here before vtime_account_guest_exit() so any
4257 		 * ticks that occurred while running the guest are accounted to
4258 		 * the guest. If vtime accounting is enabled, accounting uses
4259 		 * TB rather than ticks, so it can be done without enabling
4260 		 * interrupts here, which has the problem that it accounts
4261 		 * interrupt processing overhead to the host.
4262 		 */
4263 		local_irq_disable();
4264 	}
4265 	vtime_account_guest_exit();
4266 
4267 	local_irq_enable();
4268 
4269 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4270 
4271 	preempt_enable();
4272 
4273 	/*
4274 	 * cancel pending decrementer exception if DEC is now positive, or if
4275 	 * entering a nested guest in which case the decrementer is now owned
4276 	 * by L2 and the L1 decrementer is provided in hdec_expires
4277 	 */
4278 	if (kvmppc_core_pending_dec(vcpu) &&
4279 			((get_tb() < vcpu->arch.dec_expires) ||
4280 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4281 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4282 		kvmppc_core_dequeue_dec(vcpu);
4283 
4284 	trace_kvm_guest_exit(vcpu);
4285 	r = RESUME_GUEST;
4286 	if (trap) {
4287 		if (!nested)
4288 			r = kvmppc_handle_exit_hv(vcpu, current);
4289 		else
4290 			r = kvmppc_handle_nested_exit(vcpu);
4291 	}
4292 	vcpu->arch.ret = r;
4293 
4294 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4295 	    !kvmppc_vcpu_woken(vcpu)) {
4296 		kvmppc_set_timer(vcpu);
4297 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4298 			if (signal_pending(current)) {
4299 				vcpu->stat.signal_exits++;
4300 				run->exit_reason = KVM_EXIT_INTR;
4301 				vcpu->arch.ret = -EINTR;
4302 				break;
4303 			}
4304 			spin_lock(&vc->lock);
4305 			kvmppc_vcore_blocked(vc);
4306 			spin_unlock(&vc->lock);
4307 		}
4308 	}
4309 	vcpu->arch.ceded = 0;
4310 
4311 	vc->vcore_state = VCORE_INACTIVE;
4312 	trace_kvmppc_run_core(vc, 1);
4313 
4314  done:
4315 	kvmppc_remove_runnable(vc, vcpu);
4316 	trace_kvmppc_run_vcpu_exit(vcpu);
4317 
4318 	return vcpu->arch.ret;
4319 
4320  sigpend:
4321 	vcpu->stat.signal_exits++;
4322 	run->exit_reason = KVM_EXIT_INTR;
4323 	vcpu->arch.ret = -EINTR;
4324  out:
4325 	local_irq_enable();
4326 	preempt_enable();
4327 	goto done;
4328 }
4329 
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4330 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4331 {
4332 	struct kvm_run *run = vcpu->run;
4333 	int r;
4334 	int srcu_idx;
4335 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4336 	unsigned long user_tar = 0;
4337 	unsigned int user_vrsave;
4338 	struct kvm *kvm;
4339 
4340 	if (!vcpu->arch.sane) {
4341 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4342 		return -EINVAL;
4343 	}
4344 
4345 	/*
4346 	 * Don't allow entry with a suspended transaction, because
4347 	 * the guest entry/exit code will lose it.
4348 	 * If the guest has TM enabled, save away their TM-related SPRs
4349 	 * (they will get restored by the TM unavailable interrupt).
4350 	 */
4351 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4352 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4353 	    (current->thread.regs->msr & MSR_TM)) {
4354 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4355 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4356 			run->fail_entry.hardware_entry_failure_reason = 0;
4357 			return -EINVAL;
4358 		}
4359 		/* Enable TM so we can read the TM SPRs */
4360 		mtmsr(mfmsr() | MSR_TM);
4361 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4362 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4363 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4364 		current->thread.regs->msr &= ~MSR_TM;
4365 	}
4366 #endif
4367 
4368 	/*
4369 	 * Force online to 1 for the sake of old userspace which doesn't
4370 	 * set it.
4371 	 */
4372 	if (!vcpu->arch.online) {
4373 		atomic_inc(&vcpu->arch.vcore->online_count);
4374 		vcpu->arch.online = 1;
4375 	}
4376 
4377 	kvmppc_core_prepare_to_enter(vcpu);
4378 
4379 	/* No need to go into the guest when all we'll do is come back out */
4380 	if (signal_pending(current)) {
4381 		run->exit_reason = KVM_EXIT_INTR;
4382 		return -EINTR;
4383 	}
4384 
4385 	kvm = vcpu->kvm;
4386 	atomic_inc(&kvm->arch.vcpus_running);
4387 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4388 	smp_mb();
4389 
4390 	flush_all_to_thread(current);
4391 
4392 	/* Save userspace EBB and other register values */
4393 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4394 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4395 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4396 		ebb_regs[2] = mfspr(SPRN_BESCR);
4397 		user_tar = mfspr(SPRN_TAR);
4398 	}
4399 	user_vrsave = mfspr(SPRN_VRSAVE);
4400 
4401 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4402 	vcpu->arch.pgdir = kvm->mm->pgd;
4403 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4404 
4405 	do {
4406 		/*
4407 		 * The early POWER9 chips that can't mix radix and HPT threads
4408 		 * on the same core also need the workaround for the problem
4409 		 * where the TLB would prefetch entries in the guest exit path
4410 		 * for radix guests using the guest PIDR value and LPID 0.
4411 		 * The workaround is in the old path (kvmppc_run_vcpu())
4412 		 * but not the new path (kvmhv_run_single_vcpu()).
4413 		 */
4414 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4415 		    !no_mixing_hpt_and_radix)
4416 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4417 						  vcpu->arch.vcore->lpcr);
4418 		else
4419 			r = kvmppc_run_vcpu(vcpu);
4420 
4421 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4422 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4423 			trace_kvm_hcall_enter(vcpu);
4424 			r = kvmppc_pseries_do_hcall(vcpu);
4425 			trace_kvm_hcall_exit(vcpu, r);
4426 			kvmppc_core_prepare_to_enter(vcpu);
4427 		} else if (r == RESUME_PAGE_FAULT) {
4428 			srcu_idx = srcu_read_lock(&kvm->srcu);
4429 			r = kvmppc_book3s_hv_page_fault(vcpu,
4430 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4431 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4432 		} else if (r == RESUME_PASSTHROUGH) {
4433 			if (WARN_ON(xics_on_xive()))
4434 				r = H_SUCCESS;
4435 			else
4436 				r = kvmppc_xics_rm_complete(vcpu, 0);
4437 		}
4438 	} while (is_kvmppc_resume_guest(r));
4439 
4440 	/* Restore userspace EBB and other register values */
4441 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4442 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4443 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4444 		mtspr(SPRN_BESCR, ebb_regs[2]);
4445 		mtspr(SPRN_TAR, user_tar);
4446 		mtspr(SPRN_FSCR, current->thread.fscr);
4447 	}
4448 	mtspr(SPRN_VRSAVE, user_vrsave);
4449 
4450 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4451 	atomic_dec(&kvm->arch.vcpus_running);
4452 	return r;
4453 }
4454 
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)4455 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4456 				     int shift, int sllp)
4457 {
4458 	(*sps)->page_shift = shift;
4459 	(*sps)->slb_enc = sllp;
4460 	(*sps)->enc[0].page_shift = shift;
4461 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4462 	/*
4463 	 * Add 16MB MPSS support (may get filtered out by userspace)
4464 	 */
4465 	if (shift != 24) {
4466 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4467 		if (penc != -1) {
4468 			(*sps)->enc[1].page_shift = 24;
4469 			(*sps)->enc[1].pte_enc = penc;
4470 		}
4471 	}
4472 	(*sps)++;
4473 }
4474 
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)4475 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4476 					 struct kvm_ppc_smmu_info *info)
4477 {
4478 	struct kvm_ppc_one_seg_page_size *sps;
4479 
4480 	/*
4481 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4482 	 * POWER7 doesn't support keys for instruction accesses,
4483 	 * POWER8 and POWER9 do.
4484 	 */
4485 	info->data_keys = 32;
4486 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4487 
4488 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4489 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4490 	info->slb_size = 32;
4491 
4492 	/* We only support these sizes for now, and no muti-size segments */
4493 	sps = &info->sps[0];
4494 	kvmppc_add_seg_page_size(&sps, 12, 0);
4495 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4496 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4497 
4498 	/* If running as a nested hypervisor, we don't support HPT guests */
4499 	if (kvmhv_on_pseries())
4500 		info->flags |= KVM_PPC_NO_HASH;
4501 
4502 	return 0;
4503 }
4504 
4505 /*
4506  * Get (and clear) the dirty memory log for a memory slot.
4507  */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)4508 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4509 					 struct kvm_dirty_log *log)
4510 {
4511 	struct kvm_memslots *slots;
4512 	struct kvm_memory_slot *memslot;
4513 	int i, r;
4514 	unsigned long n;
4515 	unsigned long *buf, *p;
4516 	struct kvm_vcpu *vcpu;
4517 
4518 	mutex_lock(&kvm->slots_lock);
4519 
4520 	r = -EINVAL;
4521 	if (log->slot >= KVM_USER_MEM_SLOTS)
4522 		goto out;
4523 
4524 	slots = kvm_memslots(kvm);
4525 	memslot = id_to_memslot(slots, log->slot);
4526 	r = -ENOENT;
4527 	if (!memslot || !memslot->dirty_bitmap)
4528 		goto out;
4529 
4530 	/*
4531 	 * Use second half of bitmap area because both HPT and radix
4532 	 * accumulate bits in the first half.
4533 	 */
4534 	n = kvm_dirty_bitmap_bytes(memslot);
4535 	buf = memslot->dirty_bitmap + n / sizeof(long);
4536 	memset(buf, 0, n);
4537 
4538 	if (kvm_is_radix(kvm))
4539 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4540 	else
4541 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4542 	if (r)
4543 		goto out;
4544 
4545 	/*
4546 	 * We accumulate dirty bits in the first half of the
4547 	 * memslot's dirty_bitmap area, for when pages are paged
4548 	 * out or modified by the host directly.  Pick up these
4549 	 * bits and add them to the map.
4550 	 */
4551 	p = memslot->dirty_bitmap;
4552 	for (i = 0; i < n / sizeof(long); ++i)
4553 		buf[i] |= xchg(&p[i], 0);
4554 
4555 	/* Harvest dirty bits from VPA and DTL updates */
4556 	/* Note: we never modify the SLB shadow buffer areas */
4557 	kvm_for_each_vcpu(i, vcpu, kvm) {
4558 		spin_lock(&vcpu->arch.vpa_update_lock);
4559 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4560 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4561 		spin_unlock(&vcpu->arch.vpa_update_lock);
4562 	}
4563 
4564 	r = -EFAULT;
4565 	if (copy_to_user(log->dirty_bitmap, buf, n))
4566 		goto out;
4567 
4568 	r = 0;
4569 out:
4570 	mutex_unlock(&kvm->slots_lock);
4571 	return r;
4572 }
4573 
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)4574 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4575 {
4576 	vfree(slot->arch.rmap);
4577 	slot->arch.rmap = NULL;
4578 }
4579 
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * slot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)4580 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4581 					struct kvm_memory_slot *slot,
4582 					const struct kvm_userspace_memory_region *mem,
4583 					enum kvm_mr_change change)
4584 {
4585 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4586 
4587 	if (change == KVM_MR_CREATE) {
4588 		unsigned long size = array_size(npages, sizeof(*slot->arch.rmap));
4589 
4590 		if ((size >> PAGE_SHIFT) > totalram_pages())
4591 			return -ENOMEM;
4592 
4593 		slot->arch.rmap = vzalloc(size);
4594 		if (!slot->arch.rmap)
4595 			return -ENOMEM;
4596 	}
4597 
4598 	return 0;
4599 }
4600 
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)4601 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4602 				const struct kvm_userspace_memory_region *mem,
4603 				const struct kvm_memory_slot *old,
4604 				const struct kvm_memory_slot *new,
4605 				enum kvm_mr_change change)
4606 {
4607 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4608 
4609 	/*
4610 	 * If we are making a new memslot, it might make
4611 	 * some address that was previously cached as emulated
4612 	 * MMIO be no longer emulated MMIO, so invalidate
4613 	 * all the caches of emulated MMIO translations.
4614 	 */
4615 	if (npages)
4616 		atomic64_inc(&kvm->arch.mmio_update);
4617 
4618 	/*
4619 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4620 	 * have already called kvm_arch_flush_shadow_memslot() to
4621 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4622 	 * previous mappings.  So the only case to handle is
4623 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4624 	 * has been changed.
4625 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4626 	 * to get rid of any THP PTEs in the partition-scoped page tables
4627 	 * so we can track dirtiness at the page level; we flush when
4628 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4629 	 * using THP PTEs.
4630 	 */
4631 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4632 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4633 		kvmppc_radix_flush_memslot(kvm, old);
4634 	/*
4635 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4636 	 */
4637 	if (!kvm->arch.secure_guest)
4638 		return;
4639 
4640 	switch (change) {
4641 	case KVM_MR_CREATE:
4642 		/*
4643 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4644 		 * return error. Fix this.
4645 		 */
4646 		kvmppc_uvmem_memslot_create(kvm, new);
4647 		break;
4648 	case KVM_MR_DELETE:
4649 		kvmppc_uvmem_memslot_delete(kvm, old);
4650 		break;
4651 	default:
4652 		/* TODO: Handle KVM_MR_MOVE */
4653 		break;
4654 	}
4655 }
4656 
4657 /*
4658  * Update LPCR values in kvm->arch and in vcores.
4659  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4660  * of kvm->arch.lpcr update).
4661  */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)4662 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4663 {
4664 	long int i;
4665 	u32 cores_done = 0;
4666 
4667 	if ((kvm->arch.lpcr & mask) == lpcr)
4668 		return;
4669 
4670 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4671 
4672 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4673 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4674 		if (!vc)
4675 			continue;
4676 		spin_lock(&vc->lock);
4677 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4678 		spin_unlock(&vc->lock);
4679 		if (++cores_done >= kvm->arch.online_vcores)
4680 			break;
4681 	}
4682 }
4683 
kvmppc_setup_partition_table(struct kvm * kvm)4684 void kvmppc_setup_partition_table(struct kvm *kvm)
4685 {
4686 	unsigned long dw0, dw1;
4687 
4688 	if (!kvm_is_radix(kvm)) {
4689 		/* PS field - page size for VRMA */
4690 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4691 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4692 		/* HTABSIZE and HTABORG fields */
4693 		dw0 |= kvm->arch.sdr1;
4694 
4695 		/* Second dword as set by userspace */
4696 		dw1 = kvm->arch.process_table;
4697 	} else {
4698 		dw0 = PATB_HR | radix__get_tree_size() |
4699 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4700 		dw1 = PATB_GR | kvm->arch.process_table;
4701 	}
4702 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4703 }
4704 
4705 /*
4706  * Set up HPT (hashed page table) and RMA (real-mode area).
4707  * Must be called with kvm->arch.mmu_setup_lock held.
4708  */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)4709 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4710 {
4711 	int err = 0;
4712 	struct kvm *kvm = vcpu->kvm;
4713 	unsigned long hva;
4714 	struct kvm_memory_slot *memslot;
4715 	struct vm_area_struct *vma;
4716 	unsigned long lpcr = 0, senc;
4717 	unsigned long psize, porder;
4718 	int srcu_idx;
4719 
4720 	/* Allocate hashed page table (if not done already) and reset it */
4721 	if (!kvm->arch.hpt.virt) {
4722 		int order = KVM_DEFAULT_HPT_ORDER;
4723 		struct kvm_hpt_info info;
4724 
4725 		err = kvmppc_allocate_hpt(&info, order);
4726 		/* If we get here, it means userspace didn't specify a
4727 		 * size explicitly.  So, try successively smaller
4728 		 * sizes if the default failed. */
4729 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4730 			err  = kvmppc_allocate_hpt(&info, order);
4731 
4732 		if (err < 0) {
4733 			pr_err("KVM: Couldn't alloc HPT\n");
4734 			goto out;
4735 		}
4736 
4737 		kvmppc_set_hpt(kvm, &info);
4738 	}
4739 
4740 	/* Look up the memslot for guest physical address 0 */
4741 	srcu_idx = srcu_read_lock(&kvm->srcu);
4742 	memslot = gfn_to_memslot(kvm, 0);
4743 
4744 	/* We must have some memory at 0 by now */
4745 	err = -EINVAL;
4746 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4747 		goto out_srcu;
4748 
4749 	/* Look up the VMA for the start of this memory slot */
4750 	hva = memslot->userspace_addr;
4751 	mmap_read_lock(kvm->mm);
4752 	vma = find_vma(kvm->mm, hva);
4753 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4754 		goto up_out;
4755 
4756 	psize = vma_kernel_pagesize(vma);
4757 
4758 	mmap_read_unlock(kvm->mm);
4759 
4760 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4761 	if (psize >= 0x1000000)
4762 		psize = 0x1000000;
4763 	else if (psize >= 0x10000)
4764 		psize = 0x10000;
4765 	else
4766 		psize = 0x1000;
4767 	porder = __ilog2(psize);
4768 
4769 	senc = slb_pgsize_encoding(psize);
4770 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4771 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4772 	/* Create HPTEs in the hash page table for the VRMA */
4773 	kvmppc_map_vrma(vcpu, memslot, porder);
4774 
4775 	/* Update VRMASD field in the LPCR */
4776 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4777 		/* the -4 is to account for senc values starting at 0x10 */
4778 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4779 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4780 	}
4781 
4782 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4783 	smp_wmb();
4784 	err = 0;
4785  out_srcu:
4786 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4787  out:
4788 	return err;
4789 
4790  up_out:
4791 	mmap_read_unlock(kvm->mm);
4792 	goto out_srcu;
4793 }
4794 
4795 /*
4796  * Must be called with kvm->arch.mmu_setup_lock held and
4797  * mmu_ready = 0 and no vcpus running.
4798  */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)4799 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4800 {
4801 	if (nesting_enabled(kvm))
4802 		kvmhv_release_all_nested(kvm);
4803 	kvmppc_rmap_reset(kvm);
4804 	kvm->arch.process_table = 0;
4805 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4806 	spin_lock(&kvm->mmu_lock);
4807 	kvm->arch.radix = 0;
4808 	spin_unlock(&kvm->mmu_lock);
4809 	kvmppc_free_radix(kvm);
4810 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4811 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4812 	return 0;
4813 }
4814 
4815 /*
4816  * Must be called with kvm->arch.mmu_setup_lock held and
4817  * mmu_ready = 0 and no vcpus running.
4818  */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)4819 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4820 {
4821 	int err;
4822 
4823 	err = kvmppc_init_vm_radix(kvm);
4824 	if (err)
4825 		return err;
4826 	kvmppc_rmap_reset(kvm);
4827 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4828 	spin_lock(&kvm->mmu_lock);
4829 	kvm->arch.radix = 1;
4830 	spin_unlock(&kvm->mmu_lock);
4831 	kvmppc_free_hpt(&kvm->arch.hpt);
4832 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4833 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4834 	return 0;
4835 }
4836 
4837 #ifdef CONFIG_KVM_XICS
4838 /*
4839  * Allocate a per-core structure for managing state about which cores are
4840  * running in the host versus the guest and for exchanging data between
4841  * real mode KVM and CPU running in the host.
4842  * This is only done for the first VM.
4843  * The allocated structure stays even if all VMs have stopped.
4844  * It is only freed when the kvm-hv module is unloaded.
4845  * It's OK for this routine to fail, we just don't support host
4846  * core operations like redirecting H_IPI wakeups.
4847  */
kvmppc_alloc_host_rm_ops(void)4848 void kvmppc_alloc_host_rm_ops(void)
4849 {
4850 	struct kvmppc_host_rm_ops *ops;
4851 	unsigned long l_ops;
4852 	int cpu, core;
4853 	int size;
4854 
4855 	/* Not the first time here ? */
4856 	if (kvmppc_host_rm_ops_hv != NULL)
4857 		return;
4858 
4859 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4860 	if (!ops)
4861 		return;
4862 
4863 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4864 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4865 
4866 	if (!ops->rm_core) {
4867 		kfree(ops);
4868 		return;
4869 	}
4870 
4871 	cpus_read_lock();
4872 
4873 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4874 		if (!cpu_online(cpu))
4875 			continue;
4876 
4877 		core = cpu >> threads_shift;
4878 		ops->rm_core[core].rm_state.in_host = 1;
4879 	}
4880 
4881 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4882 
4883 	/*
4884 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4885 	 * to other CPUs before we assign it to the global variable.
4886 	 * Do an atomic assignment (no locks used here), but if someone
4887 	 * beats us to it, just free our copy and return.
4888 	 */
4889 	smp_wmb();
4890 	l_ops = (unsigned long) ops;
4891 
4892 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4893 		cpus_read_unlock();
4894 		kfree(ops->rm_core);
4895 		kfree(ops);
4896 		return;
4897 	}
4898 
4899 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4900 					     "ppc/kvm_book3s:prepare",
4901 					     kvmppc_set_host_core,
4902 					     kvmppc_clear_host_core);
4903 	cpus_read_unlock();
4904 }
4905 
kvmppc_free_host_rm_ops(void)4906 void kvmppc_free_host_rm_ops(void)
4907 {
4908 	if (kvmppc_host_rm_ops_hv) {
4909 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4910 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4911 		kfree(kvmppc_host_rm_ops_hv);
4912 		kvmppc_host_rm_ops_hv = NULL;
4913 	}
4914 }
4915 #endif
4916 
kvmppc_core_init_vm_hv(struct kvm * kvm)4917 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4918 {
4919 	unsigned long lpcr, lpid;
4920 	char buf[32];
4921 	int ret;
4922 
4923 	mutex_init(&kvm->arch.uvmem_lock);
4924 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4925 	mutex_init(&kvm->arch.mmu_setup_lock);
4926 
4927 	/* Allocate the guest's logical partition ID */
4928 
4929 	lpid = kvmppc_alloc_lpid();
4930 	if ((long)lpid < 0)
4931 		return -ENOMEM;
4932 	kvm->arch.lpid = lpid;
4933 
4934 	kvmppc_alloc_host_rm_ops();
4935 
4936 	kvmhv_vm_nested_init(kvm);
4937 
4938 	/*
4939 	 * Since we don't flush the TLB when tearing down a VM,
4940 	 * and this lpid might have previously been used,
4941 	 * make sure we flush on each core before running the new VM.
4942 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4943 	 * does this flush for us.
4944 	 */
4945 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4946 		cpumask_setall(&kvm->arch.need_tlb_flush);
4947 
4948 	/* Start out with the default set of hcalls enabled */
4949 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4950 	       sizeof(kvm->arch.enabled_hcalls));
4951 
4952 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4953 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4954 
4955 	/* Init LPCR for virtual RMA mode */
4956 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4957 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4958 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4959 		lpcr &= LPCR_PECE | LPCR_LPES;
4960 	} else {
4961 		lpcr = 0;
4962 	}
4963 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4964 		LPCR_VPM0 | LPCR_VPM1;
4965 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4966 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4967 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4968 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4969 		lpcr |= LPCR_ONL;
4970 	/*
4971 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4972 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4973 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4974 	 * be unnecessary but better safe than sorry in case we re-enable
4975 	 * EE in HV mode with this LPCR still set)
4976 	 */
4977 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4978 		lpcr &= ~LPCR_VPM0;
4979 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4980 
4981 		/*
4982 		 * If xive is enabled, we route 0x500 interrupts directly
4983 		 * to the guest.
4984 		 */
4985 		if (xics_on_xive())
4986 			lpcr |= LPCR_LPES;
4987 	}
4988 
4989 	/*
4990 	 * If the host uses radix, the guest starts out as radix.
4991 	 */
4992 	if (radix_enabled()) {
4993 		kvm->arch.radix = 1;
4994 		kvm->arch.mmu_ready = 1;
4995 		lpcr &= ~LPCR_VPM1;
4996 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4997 		ret = kvmppc_init_vm_radix(kvm);
4998 		if (ret) {
4999 			kvmppc_free_lpid(kvm->arch.lpid);
5000 			return ret;
5001 		}
5002 		kvmppc_setup_partition_table(kvm);
5003 	}
5004 
5005 	kvm->arch.lpcr = lpcr;
5006 
5007 	/* Initialization for future HPT resizes */
5008 	kvm->arch.resize_hpt = NULL;
5009 
5010 	/*
5011 	 * Work out how many sets the TLB has, for the use of
5012 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5013 	 */
5014 	if (radix_enabled())
5015 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5016 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5017 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5018 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5019 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5020 	else
5021 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5022 
5023 	/*
5024 	 * Track that we now have a HV mode VM active. This blocks secondary
5025 	 * CPU threads from coming online.
5026 	 * On POWER9, we only need to do this if the "indep_threads_mode"
5027 	 * module parameter has been set to N.
5028 	 */
5029 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5030 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5031 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5032 			kvm->arch.threads_indep = true;
5033 		} else {
5034 			kvm->arch.threads_indep = indep_threads_mode;
5035 		}
5036 	}
5037 	if (!kvm->arch.threads_indep)
5038 		kvm_hv_vm_activated();
5039 
5040 	/*
5041 	 * Initialize smt_mode depending on processor.
5042 	 * POWER8 and earlier have to use "strict" threading, where
5043 	 * all vCPUs in a vcore have to run on the same (sub)core,
5044 	 * whereas on POWER9 the threads can each run a different
5045 	 * guest.
5046 	 */
5047 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5048 		kvm->arch.smt_mode = threads_per_subcore;
5049 	else
5050 		kvm->arch.smt_mode = 1;
5051 	kvm->arch.emul_smt_mode = 1;
5052 
5053 	/*
5054 	 * Create a debugfs directory for the VM
5055 	 */
5056 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5057 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5058 	kvmppc_mmu_debugfs_init(kvm);
5059 	if (radix_enabled())
5060 		kvmhv_radix_debugfs_init(kvm);
5061 
5062 	return 0;
5063 }
5064 
kvmppc_free_vcores(struct kvm * kvm)5065 static void kvmppc_free_vcores(struct kvm *kvm)
5066 {
5067 	long int i;
5068 
5069 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5070 		kfree(kvm->arch.vcores[i]);
5071 	kvm->arch.online_vcores = 0;
5072 }
5073 
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5074 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5075 {
5076 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5077 
5078 	if (!kvm->arch.threads_indep)
5079 		kvm_hv_vm_deactivated();
5080 
5081 	kvmppc_free_vcores(kvm);
5082 
5083 
5084 	if (kvm_is_radix(kvm))
5085 		kvmppc_free_radix(kvm);
5086 	else
5087 		kvmppc_free_hpt(&kvm->arch.hpt);
5088 
5089 	/* Perform global invalidation and return lpid to the pool */
5090 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5091 		if (nesting_enabled(kvm))
5092 			kvmhv_release_all_nested(kvm);
5093 		kvm->arch.process_table = 0;
5094 		if (kvm->arch.secure_guest)
5095 			uv_svm_terminate(kvm->arch.lpid);
5096 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5097 	}
5098 
5099 	kvmppc_free_lpid(kvm->arch.lpid);
5100 
5101 	kvmppc_free_pimap(kvm);
5102 }
5103 
5104 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5105 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5106 				     unsigned int inst, int *advance)
5107 {
5108 	return EMULATE_FAIL;
5109 }
5110 
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5111 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5112 					ulong spr_val)
5113 {
5114 	return EMULATE_FAIL;
5115 }
5116 
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5117 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5118 					ulong *spr_val)
5119 {
5120 	return EMULATE_FAIL;
5121 }
5122 
kvmppc_core_check_processor_compat_hv(void)5123 static int kvmppc_core_check_processor_compat_hv(void)
5124 {
5125 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5126 	    cpu_has_feature(CPU_FTR_ARCH_206))
5127 		return 0;
5128 
5129 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5130 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5131 		return 0;
5132 
5133 	return -EIO;
5134 }
5135 
5136 #ifdef CONFIG_KVM_XICS
5137 
kvmppc_free_pimap(struct kvm * kvm)5138 void kvmppc_free_pimap(struct kvm *kvm)
5139 {
5140 	kfree(kvm->arch.pimap);
5141 }
5142 
kvmppc_alloc_pimap(void)5143 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5144 {
5145 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5146 }
5147 
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5148 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5149 {
5150 	struct irq_desc *desc;
5151 	struct kvmppc_irq_map *irq_map;
5152 	struct kvmppc_passthru_irqmap *pimap;
5153 	struct irq_chip *chip;
5154 	int i, rc = 0;
5155 
5156 	if (!kvm_irq_bypass)
5157 		return 1;
5158 
5159 	desc = irq_to_desc(host_irq);
5160 	if (!desc)
5161 		return -EIO;
5162 
5163 	mutex_lock(&kvm->lock);
5164 
5165 	pimap = kvm->arch.pimap;
5166 	if (pimap == NULL) {
5167 		/* First call, allocate structure to hold IRQ map */
5168 		pimap = kvmppc_alloc_pimap();
5169 		if (pimap == NULL) {
5170 			mutex_unlock(&kvm->lock);
5171 			return -ENOMEM;
5172 		}
5173 		kvm->arch.pimap = pimap;
5174 	}
5175 
5176 	/*
5177 	 * For now, we only support interrupts for which the EOI operation
5178 	 * is an OPAL call followed by a write to XIRR, since that's
5179 	 * what our real-mode EOI code does, or a XIVE interrupt
5180 	 */
5181 	chip = irq_data_get_irq_chip(&desc->irq_data);
5182 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5183 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5184 			host_irq, guest_gsi);
5185 		mutex_unlock(&kvm->lock);
5186 		return -ENOENT;
5187 	}
5188 
5189 	/*
5190 	 * See if we already have an entry for this guest IRQ number.
5191 	 * If it's mapped to a hardware IRQ number, that's an error,
5192 	 * otherwise re-use this entry.
5193 	 */
5194 	for (i = 0; i < pimap->n_mapped; i++) {
5195 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5196 			if (pimap->mapped[i].r_hwirq) {
5197 				mutex_unlock(&kvm->lock);
5198 				return -EINVAL;
5199 			}
5200 			break;
5201 		}
5202 	}
5203 
5204 	if (i == KVMPPC_PIRQ_MAPPED) {
5205 		mutex_unlock(&kvm->lock);
5206 		return -EAGAIN;		/* table is full */
5207 	}
5208 
5209 	irq_map = &pimap->mapped[i];
5210 
5211 	irq_map->v_hwirq = guest_gsi;
5212 	irq_map->desc = desc;
5213 
5214 	/*
5215 	 * Order the above two stores before the next to serialize with
5216 	 * the KVM real mode handler.
5217 	 */
5218 	smp_wmb();
5219 	irq_map->r_hwirq = desc->irq_data.hwirq;
5220 
5221 	if (i == pimap->n_mapped)
5222 		pimap->n_mapped++;
5223 
5224 	if (xics_on_xive())
5225 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5226 	else
5227 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5228 	if (rc)
5229 		irq_map->r_hwirq = 0;
5230 
5231 	mutex_unlock(&kvm->lock);
5232 
5233 	return 0;
5234 }
5235 
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5236 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5237 {
5238 	struct irq_desc *desc;
5239 	struct kvmppc_passthru_irqmap *pimap;
5240 	int i, rc = 0;
5241 
5242 	if (!kvm_irq_bypass)
5243 		return 0;
5244 
5245 	desc = irq_to_desc(host_irq);
5246 	if (!desc)
5247 		return -EIO;
5248 
5249 	mutex_lock(&kvm->lock);
5250 	if (!kvm->arch.pimap)
5251 		goto unlock;
5252 
5253 	pimap = kvm->arch.pimap;
5254 
5255 	for (i = 0; i < pimap->n_mapped; i++) {
5256 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5257 			break;
5258 	}
5259 
5260 	if (i == pimap->n_mapped) {
5261 		mutex_unlock(&kvm->lock);
5262 		return -ENODEV;
5263 	}
5264 
5265 	if (xics_on_xive())
5266 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5267 	else
5268 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5269 
5270 	/* invalidate the entry (what do do on error from the above ?) */
5271 	pimap->mapped[i].r_hwirq = 0;
5272 
5273 	/*
5274 	 * We don't free this structure even when the count goes to
5275 	 * zero. The structure is freed when we destroy the VM.
5276 	 */
5277  unlock:
5278 	mutex_unlock(&kvm->lock);
5279 	return rc;
5280 }
5281 
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5282 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5283 					     struct irq_bypass_producer *prod)
5284 {
5285 	int ret = 0;
5286 	struct kvm_kernel_irqfd *irqfd =
5287 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5288 
5289 	irqfd->producer = prod;
5290 
5291 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5292 	if (ret)
5293 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5294 			prod->irq, irqfd->gsi, ret);
5295 
5296 	return ret;
5297 }
5298 
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5299 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5300 					      struct irq_bypass_producer *prod)
5301 {
5302 	int ret;
5303 	struct kvm_kernel_irqfd *irqfd =
5304 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5305 
5306 	irqfd->producer = NULL;
5307 
5308 	/*
5309 	 * When producer of consumer is unregistered, we change back to
5310 	 * default external interrupt handling mode - KVM real mode
5311 	 * will switch back to host.
5312 	 */
5313 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5314 	if (ret)
5315 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5316 			prod->irq, irqfd->gsi, ret);
5317 }
5318 #endif
5319 
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5320 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5321 				 unsigned int ioctl, unsigned long arg)
5322 {
5323 	struct kvm *kvm __maybe_unused = filp->private_data;
5324 	void __user *argp = (void __user *)arg;
5325 	long r;
5326 
5327 	switch (ioctl) {
5328 
5329 	case KVM_PPC_ALLOCATE_HTAB: {
5330 		u32 htab_order;
5331 
5332 		/* If we're a nested hypervisor, we currently only support radix */
5333 		if (kvmhv_on_pseries()) {
5334 			r = -EOPNOTSUPP;
5335 			break;
5336 		}
5337 
5338 		r = -EFAULT;
5339 		if (get_user(htab_order, (u32 __user *)argp))
5340 			break;
5341 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5342 		if (r)
5343 			break;
5344 		r = 0;
5345 		break;
5346 	}
5347 
5348 	case KVM_PPC_GET_HTAB_FD: {
5349 		struct kvm_get_htab_fd ghf;
5350 
5351 		r = -EFAULT;
5352 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5353 			break;
5354 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5355 		break;
5356 	}
5357 
5358 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5359 		struct kvm_ppc_resize_hpt rhpt;
5360 
5361 		r = -EFAULT;
5362 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5363 			break;
5364 
5365 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5366 		break;
5367 	}
5368 
5369 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5370 		struct kvm_ppc_resize_hpt rhpt;
5371 
5372 		r = -EFAULT;
5373 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5374 			break;
5375 
5376 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5377 		break;
5378 	}
5379 
5380 	default:
5381 		r = -ENOTTY;
5382 	}
5383 
5384 	return r;
5385 }
5386 
5387 /*
5388  * List of hcall numbers to enable by default.
5389  * For compatibility with old userspace, we enable by default
5390  * all hcalls that were implemented before the hcall-enabling
5391  * facility was added.  Note this list should not include H_RTAS.
5392  */
5393 static unsigned int default_hcall_list[] = {
5394 	H_REMOVE,
5395 	H_ENTER,
5396 	H_READ,
5397 	H_PROTECT,
5398 	H_BULK_REMOVE,
5399 	H_GET_TCE,
5400 	H_PUT_TCE,
5401 	H_SET_DABR,
5402 	H_SET_XDABR,
5403 	H_CEDE,
5404 	H_PROD,
5405 	H_CONFER,
5406 	H_REGISTER_VPA,
5407 #ifdef CONFIG_KVM_XICS
5408 	H_EOI,
5409 	H_CPPR,
5410 	H_IPI,
5411 	H_IPOLL,
5412 	H_XIRR,
5413 	H_XIRR_X,
5414 #endif
5415 	0
5416 };
5417 
init_default_hcalls(void)5418 static void init_default_hcalls(void)
5419 {
5420 	int i;
5421 	unsigned int hcall;
5422 
5423 	for (i = 0; default_hcall_list[i]; ++i) {
5424 		hcall = default_hcall_list[i];
5425 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5426 		__set_bit(hcall / 4, default_enabled_hcalls);
5427 	}
5428 }
5429 
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)5430 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5431 {
5432 	unsigned long lpcr;
5433 	int radix;
5434 	int err;
5435 
5436 	/* If not on a POWER9, reject it */
5437 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5438 		return -ENODEV;
5439 
5440 	/* If any unknown flags set, reject it */
5441 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5442 		return -EINVAL;
5443 
5444 	/* GR (guest radix) bit in process_table field must match */
5445 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5446 	if (!!(cfg->process_table & PATB_GR) != radix)
5447 		return -EINVAL;
5448 
5449 	/* Process table size field must be reasonable, i.e. <= 24 */
5450 	if ((cfg->process_table & PRTS_MASK) > 24)
5451 		return -EINVAL;
5452 
5453 	/* We can change a guest to/from radix now, if the host is radix */
5454 	if (radix && !radix_enabled())
5455 		return -EINVAL;
5456 
5457 	/* If we're a nested hypervisor, we currently only support radix */
5458 	if (kvmhv_on_pseries() && !radix)
5459 		return -EINVAL;
5460 
5461 	mutex_lock(&kvm->arch.mmu_setup_lock);
5462 	if (radix != kvm_is_radix(kvm)) {
5463 		if (kvm->arch.mmu_ready) {
5464 			kvm->arch.mmu_ready = 0;
5465 			/* order mmu_ready vs. vcpus_running */
5466 			smp_mb();
5467 			if (atomic_read(&kvm->arch.vcpus_running)) {
5468 				kvm->arch.mmu_ready = 1;
5469 				err = -EBUSY;
5470 				goto out_unlock;
5471 			}
5472 		}
5473 		if (radix)
5474 			err = kvmppc_switch_mmu_to_radix(kvm);
5475 		else
5476 			err = kvmppc_switch_mmu_to_hpt(kvm);
5477 		if (err)
5478 			goto out_unlock;
5479 	}
5480 
5481 	kvm->arch.process_table = cfg->process_table;
5482 	kvmppc_setup_partition_table(kvm);
5483 
5484 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5485 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5486 	err = 0;
5487 
5488  out_unlock:
5489 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5490 	return err;
5491 }
5492 
kvmhv_enable_nested(struct kvm * kvm)5493 static int kvmhv_enable_nested(struct kvm *kvm)
5494 {
5495 	if (!nested)
5496 		return -EPERM;
5497 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5498 		return -ENODEV;
5499 
5500 	/* kvm == NULL means the caller is testing if the capability exists */
5501 	if (kvm)
5502 		kvm->arch.nested_enable = true;
5503 	return 0;
5504 }
5505 
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5506 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5507 				 int size)
5508 {
5509 	int rc = -EINVAL;
5510 
5511 	if (kvmhv_vcpu_is_radix(vcpu)) {
5512 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5513 
5514 		if (rc > 0)
5515 			rc = -EINVAL;
5516 	}
5517 
5518 	/* For now quadrants are the only way to access nested guest memory */
5519 	if (rc && vcpu->arch.nested)
5520 		rc = -EAGAIN;
5521 
5522 	return rc;
5523 }
5524 
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5525 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5526 				int size)
5527 {
5528 	int rc = -EINVAL;
5529 
5530 	if (kvmhv_vcpu_is_radix(vcpu)) {
5531 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5532 
5533 		if (rc > 0)
5534 			rc = -EINVAL;
5535 	}
5536 
5537 	/* For now quadrants are the only way to access nested guest memory */
5538 	if (rc && vcpu->arch.nested)
5539 		rc = -EAGAIN;
5540 
5541 	return rc;
5542 }
5543 
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)5544 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5545 {
5546 	unpin_vpa(kvm, vpa);
5547 	vpa->gpa = 0;
5548 	vpa->pinned_addr = NULL;
5549 	vpa->dirty = false;
5550 	vpa->update_pending = 0;
5551 }
5552 
5553 /*
5554  * Enable a guest to become a secure VM, or test whether
5555  * that could be enabled.
5556  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5557  * tested (kvm == NULL) or enabled (kvm != NULL).
5558  */
kvmhv_enable_svm(struct kvm * kvm)5559 static int kvmhv_enable_svm(struct kvm *kvm)
5560 {
5561 	if (!kvmppc_uvmem_available())
5562 		return -EINVAL;
5563 	if (kvm)
5564 		kvm->arch.svm_enabled = 1;
5565 	return 0;
5566 }
5567 
5568 /*
5569  *  IOCTL handler to turn off secure mode of guest
5570  *
5571  * - Release all device pages
5572  * - Issue ucall to terminate the guest on the UV side
5573  * - Unpin the VPA pages.
5574  * - Reinit the partition scoped page tables
5575  */
kvmhv_svm_off(struct kvm * kvm)5576 static int kvmhv_svm_off(struct kvm *kvm)
5577 {
5578 	struct kvm_vcpu *vcpu;
5579 	int mmu_was_ready;
5580 	int srcu_idx;
5581 	int ret = 0;
5582 	int i;
5583 
5584 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5585 		return ret;
5586 
5587 	mutex_lock(&kvm->arch.mmu_setup_lock);
5588 	mmu_was_ready = kvm->arch.mmu_ready;
5589 	if (kvm->arch.mmu_ready) {
5590 		kvm->arch.mmu_ready = 0;
5591 		/* order mmu_ready vs. vcpus_running */
5592 		smp_mb();
5593 		if (atomic_read(&kvm->arch.vcpus_running)) {
5594 			kvm->arch.mmu_ready = 1;
5595 			ret = -EBUSY;
5596 			goto out;
5597 		}
5598 	}
5599 
5600 	srcu_idx = srcu_read_lock(&kvm->srcu);
5601 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5602 		struct kvm_memory_slot *memslot;
5603 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5604 
5605 		if (!slots)
5606 			continue;
5607 
5608 		kvm_for_each_memslot(memslot, slots) {
5609 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5610 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5611 		}
5612 	}
5613 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5614 
5615 	ret = uv_svm_terminate(kvm->arch.lpid);
5616 	if (ret != U_SUCCESS) {
5617 		ret = -EINVAL;
5618 		goto out;
5619 	}
5620 
5621 	/*
5622 	 * When secure guest is reset, all the guest pages are sent
5623 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5624 	 * chance to run and unpin their VPA pages. Unpinning of all
5625 	 * VPA pages is done here explicitly so that VPA pages
5626 	 * can be migrated to the secure side.
5627 	 *
5628 	 * This is required to for the secure SMP guest to reboot
5629 	 * correctly.
5630 	 */
5631 	kvm_for_each_vcpu(i, vcpu, kvm) {
5632 		spin_lock(&vcpu->arch.vpa_update_lock);
5633 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5634 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5635 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5636 		spin_unlock(&vcpu->arch.vpa_update_lock);
5637 	}
5638 
5639 	kvmppc_setup_partition_table(kvm);
5640 	kvm->arch.secure_guest = 0;
5641 	kvm->arch.mmu_ready = mmu_was_ready;
5642 out:
5643 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5644 	return ret;
5645 }
5646 
5647 static struct kvmppc_ops kvm_ops_hv = {
5648 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5649 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5650 	.get_one_reg = kvmppc_get_one_reg_hv,
5651 	.set_one_reg = kvmppc_set_one_reg_hv,
5652 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5653 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5654 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5655 	.set_msr     = kvmppc_set_msr_hv,
5656 	.vcpu_run    = kvmppc_vcpu_run_hv,
5657 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5658 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5659 	.check_requests = kvmppc_core_check_requests_hv,
5660 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5661 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5662 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5663 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5664 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5665 	.age_hva  = kvm_age_hva_hv,
5666 	.test_age_hva = kvm_test_age_hva_hv,
5667 	.set_spte_hva = kvm_set_spte_hva_hv,
5668 	.free_memslot = kvmppc_core_free_memslot_hv,
5669 	.init_vm =  kvmppc_core_init_vm_hv,
5670 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5671 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5672 	.emulate_op = kvmppc_core_emulate_op_hv,
5673 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5674 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5675 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5676 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5677 	.hcall_implemented = kvmppc_hcall_impl_hv,
5678 #ifdef CONFIG_KVM_XICS
5679 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5680 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5681 #endif
5682 	.configure_mmu = kvmhv_configure_mmu,
5683 	.get_rmmu_info = kvmhv_get_rmmu_info,
5684 	.set_smt_mode = kvmhv_set_smt_mode,
5685 	.enable_nested = kvmhv_enable_nested,
5686 	.load_from_eaddr = kvmhv_load_from_eaddr,
5687 	.store_to_eaddr = kvmhv_store_to_eaddr,
5688 	.enable_svm = kvmhv_enable_svm,
5689 	.svm_off = kvmhv_svm_off,
5690 };
5691 
kvm_init_subcore_bitmap(void)5692 static int kvm_init_subcore_bitmap(void)
5693 {
5694 	int i, j;
5695 	int nr_cores = cpu_nr_cores();
5696 	struct sibling_subcore_state *sibling_subcore_state;
5697 
5698 	for (i = 0; i < nr_cores; i++) {
5699 		int first_cpu = i * threads_per_core;
5700 		int node = cpu_to_node(first_cpu);
5701 
5702 		/* Ignore if it is already allocated. */
5703 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5704 			continue;
5705 
5706 		sibling_subcore_state =
5707 			kzalloc_node(sizeof(struct sibling_subcore_state),
5708 							GFP_KERNEL, node);
5709 		if (!sibling_subcore_state)
5710 			return -ENOMEM;
5711 
5712 
5713 		for (j = 0; j < threads_per_core; j++) {
5714 			int cpu = first_cpu + j;
5715 
5716 			paca_ptrs[cpu]->sibling_subcore_state =
5717 						sibling_subcore_state;
5718 		}
5719 	}
5720 	return 0;
5721 }
5722 
kvmppc_radix_possible(void)5723 static int kvmppc_radix_possible(void)
5724 {
5725 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5726 }
5727 
kvmppc_book3s_init_hv(void)5728 static int kvmppc_book3s_init_hv(void)
5729 {
5730 	int r;
5731 
5732 	if (!tlbie_capable) {
5733 		pr_err("KVM-HV: Host does not support TLBIE\n");
5734 		return -ENODEV;
5735 	}
5736 
5737 	/*
5738 	 * FIXME!! Do we need to check on all cpus ?
5739 	 */
5740 	r = kvmppc_core_check_processor_compat_hv();
5741 	if (r < 0)
5742 		return -ENODEV;
5743 
5744 	r = kvmhv_nested_init();
5745 	if (r)
5746 		return r;
5747 
5748 	r = kvm_init_subcore_bitmap();
5749 	if (r)
5750 		return r;
5751 
5752 	/*
5753 	 * We need a way of accessing the XICS interrupt controller,
5754 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5755 	 * indirectly, via OPAL.
5756 	 */
5757 #ifdef CONFIG_SMP
5758 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5759 	    !local_paca->kvm_hstate.xics_phys) {
5760 		struct device_node *np;
5761 
5762 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5763 		if (!np) {
5764 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5765 			return -ENODEV;
5766 		}
5767 		/* presence of intc confirmed - node can be dropped again */
5768 		of_node_put(np);
5769 	}
5770 #endif
5771 
5772 	kvm_ops_hv.owner = THIS_MODULE;
5773 	kvmppc_hv_ops = &kvm_ops_hv;
5774 
5775 	init_default_hcalls();
5776 
5777 	init_vcore_lists();
5778 
5779 	r = kvmppc_mmu_hv_init();
5780 	if (r)
5781 		return r;
5782 
5783 	if (kvmppc_radix_possible()) {
5784 		r = kvmppc_radix_init();
5785 		if (r)
5786 			return r;
5787 	}
5788 
5789 	/*
5790 	 * POWER9 chips before version 2.02 can't have some threads in
5791 	 * HPT mode and some in radix mode on the same core.
5792 	 */
5793 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5794 		unsigned int pvr = mfspr(SPRN_PVR);
5795 		if ((pvr >> 16) == PVR_POWER9 &&
5796 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5797 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5798 			no_mixing_hpt_and_radix = true;
5799 	}
5800 
5801 	r = kvmppc_uvmem_init();
5802 	if (r < 0)
5803 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5804 
5805 	return r;
5806 }
5807 
kvmppc_book3s_exit_hv(void)5808 static void kvmppc_book3s_exit_hv(void)
5809 {
5810 	kvmppc_uvmem_free();
5811 	kvmppc_free_host_rm_ops();
5812 	if (kvmppc_radix_possible())
5813 		kvmppc_radix_exit();
5814 	kvmppc_hv_ops = NULL;
5815 	kvmhv_nested_exit();
5816 }
5817 
5818 module_init(kvmppc_book3s_init_hv);
5819 module_exit(kvmppc_book3s_exit_hv);
5820 MODULE_LICENSE("GPL");
5821 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5822 MODULE_ALIAS("devname:kvm");
5823