• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_PPC_FPU
36 /*
37  * Functions in ldstfp.S
38  */
39 extern void get_fpr(int rn, double *p);
40 extern void put_fpr(int rn, const double *p);
41 extern void get_vr(int rn, __vector128 *p);
42 extern void put_vr(int rn, __vector128 *p);
43 extern void load_vsrn(int vsr, const void *p);
44 extern void store_vsrn(int vsr, void *p);
45 extern void conv_sp_to_dp(const float *sp, double *dp);
46 extern void conv_dp_to_sp(const double *dp, float *sp);
47 #endif
48 
49 #ifdef __powerpc64__
50 /*
51  * Functions in quad.S
52  */
53 extern int do_lq(unsigned long ea, unsigned long *regs);
54 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
55 extern int do_lqarx(unsigned long ea, unsigned long *regs);
56 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
57 		    unsigned int *crp);
58 #endif
59 
60 #ifdef __LITTLE_ENDIAN__
61 #define IS_LE	1
62 #define IS_BE	0
63 #else
64 #define IS_LE	0
65 #define IS_BE	1
66 #endif
67 
68 /*
69  * Emulate the truncation of 64 bit values in 32-bit mode.
70  */
truncate_if_32bit(unsigned long msr,unsigned long val)71 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
72 							unsigned long val)
73 {
74 #ifdef __powerpc64__
75 	if ((msr & MSR_64BIT) == 0)
76 		val &= 0xffffffffUL;
77 #endif
78 	return val;
79 }
80 
81 /*
82  * Determine whether a conditional branch instruction would branch.
83  */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)84 static nokprobe_inline int branch_taken(unsigned int instr,
85 					const struct pt_regs *regs,
86 					struct instruction_op *op)
87 {
88 	unsigned int bo = (instr >> 21) & 0x1f;
89 	unsigned int bi;
90 
91 	if ((bo & 4) == 0) {
92 		/* decrement counter */
93 		op->type |= DECCTR;
94 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
95 			return 0;
96 	}
97 	if ((bo & 0x10) == 0) {
98 		/* check bit from CR */
99 		bi = (instr >> 16) & 0x1f;
100 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
101 			return 0;
102 	}
103 	return 1;
104 }
105 
address_ok(struct pt_regs * regs,unsigned long ea,int nb)106 static nokprobe_inline long address_ok(struct pt_regs *regs,
107 				       unsigned long ea, int nb)
108 {
109 	if (!user_mode(regs))
110 		return 1;
111 	if (access_ok((void __user *)ea, nb))
112 		return 1;
113 	if (access_ok((void __user *)ea, 1))
114 		/* Access overlaps the end of the user region */
115 		regs->dar = TASK_SIZE_MAX - 1;
116 	else
117 		regs->dar = ea;
118 	return 0;
119 }
120 
121 /*
122  * Calculate effective address for a D-form instruction
123  */
dform_ea(unsigned int instr,const struct pt_regs * regs)124 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
125 					      const struct pt_regs *regs)
126 {
127 	int ra;
128 	unsigned long ea;
129 
130 	ra = (instr >> 16) & 0x1f;
131 	ea = (signed short) instr;		/* sign-extend */
132 	if (ra)
133 		ea += regs->gpr[ra];
134 
135 	return ea;
136 }
137 
138 #ifdef __powerpc64__
139 /*
140  * Calculate effective address for a DS-form instruction
141  */
dsform_ea(unsigned int instr,const struct pt_regs * regs)142 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
143 					       const struct pt_regs *regs)
144 {
145 	int ra;
146 	unsigned long ea;
147 
148 	ra = (instr >> 16) & 0x1f;
149 	ea = (signed short) (instr & ~3);	/* sign-extend */
150 	if (ra)
151 		ea += regs->gpr[ra];
152 
153 	return ea;
154 }
155 
156 /*
157  * Calculate effective address for a DQ-form instruction
158  */
dqform_ea(unsigned int instr,const struct pt_regs * regs)159 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
160 					       const struct pt_regs *regs)
161 {
162 	int ra;
163 	unsigned long ea;
164 
165 	ra = (instr >> 16) & 0x1f;
166 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
167 	if (ra)
168 		ea += regs->gpr[ra];
169 
170 	return ea;
171 }
172 #endif /* __powerpc64 */
173 
174 /*
175  * Calculate effective address for an X-form instruction
176  */
xform_ea(unsigned int instr,const struct pt_regs * regs)177 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
178 					      const struct pt_regs *regs)
179 {
180 	int ra, rb;
181 	unsigned long ea;
182 
183 	ra = (instr >> 16) & 0x1f;
184 	rb = (instr >> 11) & 0x1f;
185 	ea = regs->gpr[rb];
186 	if (ra)
187 		ea += regs->gpr[ra];
188 
189 	return ea;
190 }
191 
192 /*
193  * Calculate effective address for a MLS:D-form / 8LS:D-form
194  * prefixed instruction
195  */
mlsd_8lsd_ea(unsigned int instr,unsigned int suffix,const struct pt_regs * regs)196 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
197 						  unsigned int suffix,
198 						  const struct pt_regs *regs)
199 {
200 	int ra, prefix_r;
201 	unsigned int  dd;
202 	unsigned long ea, d0, d1, d;
203 
204 	prefix_r = GET_PREFIX_R(instr);
205 	ra = GET_PREFIX_RA(suffix);
206 
207 	d0 = instr & 0x3ffff;
208 	d1 = suffix & 0xffff;
209 	d = (d0 << 16) | d1;
210 
211 	/*
212 	 * sign extend a 34 bit number
213 	 */
214 	dd = (unsigned int)(d >> 2);
215 	ea = (signed int)dd;
216 	ea = (ea << 2) | (d & 0x3);
217 
218 	if (!prefix_r && ra)
219 		ea += regs->gpr[ra];
220 	else if (!prefix_r && !ra)
221 		; /* Leave ea as is */
222 	else if (prefix_r)
223 		ea += regs->nip;
224 
225 	/*
226 	 * (prefix_r && ra) is an invalid form. Should already be
227 	 * checked for by caller!
228 	 */
229 
230 	return ea;
231 }
232 
233 /*
234  * Return the largest power of 2, not greater than sizeof(unsigned long),
235  * such that x is a multiple of it.
236  */
max_align(unsigned long x)237 static nokprobe_inline unsigned long max_align(unsigned long x)
238 {
239 	x |= sizeof(unsigned long);
240 	return x & -x;		/* isolates rightmost bit */
241 }
242 
byterev_2(unsigned long x)243 static nokprobe_inline unsigned long byterev_2(unsigned long x)
244 {
245 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
246 }
247 
byterev_4(unsigned long x)248 static nokprobe_inline unsigned long byterev_4(unsigned long x)
249 {
250 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
251 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
252 }
253 
254 #ifdef __powerpc64__
byterev_8(unsigned long x)255 static nokprobe_inline unsigned long byterev_8(unsigned long x)
256 {
257 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
258 }
259 #endif
260 
do_byte_reverse(void * ptr,int nb)261 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
262 {
263 	switch (nb) {
264 	case 2:
265 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
266 		break;
267 	case 4:
268 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
269 		break;
270 #ifdef __powerpc64__
271 	case 8:
272 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
273 		break;
274 	case 16: {
275 		unsigned long *up = (unsigned long *)ptr;
276 		unsigned long tmp;
277 		tmp = byterev_8(up[0]);
278 		up[0] = byterev_8(up[1]);
279 		up[1] = tmp;
280 		break;
281 	}
282 #endif
283 	default:
284 		WARN_ON_ONCE(1);
285 	}
286 }
287 
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)288 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
289 					    unsigned long ea, int nb,
290 					    struct pt_regs *regs)
291 {
292 	int err = 0;
293 	unsigned long x = 0;
294 
295 	switch (nb) {
296 	case 1:
297 		err = __get_user(x, (unsigned char __user *) ea);
298 		break;
299 	case 2:
300 		err = __get_user(x, (unsigned short __user *) ea);
301 		break;
302 	case 4:
303 		err = __get_user(x, (unsigned int __user *) ea);
304 		break;
305 #ifdef __powerpc64__
306 	case 8:
307 		err = __get_user(x, (unsigned long __user *) ea);
308 		break;
309 #endif
310 	}
311 	if (!err)
312 		*dest = x;
313 	else
314 		regs->dar = ea;
315 	return err;
316 }
317 
318 /*
319  * Copy from userspace to a buffer, using the largest possible
320  * aligned accesses, up to sizeof(long).
321  */
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)322 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
323 				       struct pt_regs *regs)
324 {
325 	int err = 0;
326 	int c;
327 
328 	for (; nb > 0; nb -= c) {
329 		c = max_align(ea);
330 		if (c > nb)
331 			c = max_align(nb);
332 		switch (c) {
333 		case 1:
334 			err = __get_user(*dest, (unsigned char __user *) ea);
335 			break;
336 		case 2:
337 			err = __get_user(*(u16 *)dest,
338 					 (unsigned short __user *) ea);
339 			break;
340 		case 4:
341 			err = __get_user(*(u32 *)dest,
342 					 (unsigned int __user *) ea);
343 			break;
344 #ifdef __powerpc64__
345 		case 8:
346 			err = __get_user(*(unsigned long *)dest,
347 					 (unsigned long __user *) ea);
348 			break;
349 #endif
350 		}
351 		if (err) {
352 			regs->dar = ea;
353 			return err;
354 		}
355 		dest += c;
356 		ea += c;
357 	}
358 	return 0;
359 }
360 
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)361 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
362 					      unsigned long ea, int nb,
363 					      struct pt_regs *regs)
364 {
365 	union {
366 		unsigned long ul;
367 		u8 b[sizeof(unsigned long)];
368 	} u;
369 	int i;
370 	int err;
371 
372 	u.ul = 0;
373 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
374 	err = copy_mem_in(&u.b[i], ea, nb, regs);
375 	if (!err)
376 		*dest = u.ul;
377 	return err;
378 }
379 
380 /*
381  * Read memory at address ea for nb bytes, return 0 for success
382  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
383  * If nb < sizeof(long), the result is right-justified on BE systems.
384  */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)385 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
386 			      struct pt_regs *regs)
387 {
388 	if (!address_ok(regs, ea, nb))
389 		return -EFAULT;
390 	if ((ea & (nb - 1)) == 0)
391 		return read_mem_aligned(dest, ea, nb, regs);
392 	return read_mem_unaligned(dest, ea, nb, regs);
393 }
394 NOKPROBE_SYMBOL(read_mem);
395 
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)396 static nokprobe_inline int write_mem_aligned(unsigned long val,
397 					     unsigned long ea, int nb,
398 					     struct pt_regs *regs)
399 {
400 	int err = 0;
401 
402 	switch (nb) {
403 	case 1:
404 		err = __put_user(val, (unsigned char __user *) ea);
405 		break;
406 	case 2:
407 		err = __put_user(val, (unsigned short __user *) ea);
408 		break;
409 	case 4:
410 		err = __put_user(val, (unsigned int __user *) ea);
411 		break;
412 #ifdef __powerpc64__
413 	case 8:
414 		err = __put_user(val, (unsigned long __user *) ea);
415 		break;
416 #endif
417 	}
418 	if (err)
419 		regs->dar = ea;
420 	return err;
421 }
422 
423 /*
424  * Copy from a buffer to userspace, using the largest possible
425  * aligned accesses, up to sizeof(long).
426  */
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)427 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
428 					struct pt_regs *regs)
429 {
430 	int err = 0;
431 	int c;
432 
433 	for (; nb > 0; nb -= c) {
434 		c = max_align(ea);
435 		if (c > nb)
436 			c = max_align(nb);
437 		switch (c) {
438 		case 1:
439 			err = __put_user(*dest, (unsigned char __user *) ea);
440 			break;
441 		case 2:
442 			err = __put_user(*(u16 *)dest,
443 					 (unsigned short __user *) ea);
444 			break;
445 		case 4:
446 			err = __put_user(*(u32 *)dest,
447 					 (unsigned int __user *) ea);
448 			break;
449 #ifdef __powerpc64__
450 		case 8:
451 			err = __put_user(*(unsigned long *)dest,
452 					 (unsigned long __user *) ea);
453 			break;
454 #endif
455 		}
456 		if (err) {
457 			regs->dar = ea;
458 			return err;
459 		}
460 		dest += c;
461 		ea += c;
462 	}
463 	return 0;
464 }
465 
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)466 static nokprobe_inline int write_mem_unaligned(unsigned long val,
467 					       unsigned long ea, int nb,
468 					       struct pt_regs *regs)
469 {
470 	union {
471 		unsigned long ul;
472 		u8 b[sizeof(unsigned long)];
473 	} u;
474 	int i;
475 
476 	u.ul = val;
477 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
478 	return copy_mem_out(&u.b[i], ea, nb, regs);
479 }
480 
481 /*
482  * Write memory at address ea for nb bytes, return 0 for success
483  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
484  */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)485 static int write_mem(unsigned long val, unsigned long ea, int nb,
486 			       struct pt_regs *regs)
487 {
488 	if (!address_ok(regs, ea, nb))
489 		return -EFAULT;
490 	if ((ea & (nb - 1)) == 0)
491 		return write_mem_aligned(val, ea, nb, regs);
492 	return write_mem_unaligned(val, ea, nb, regs);
493 }
494 NOKPROBE_SYMBOL(write_mem);
495 
496 #ifdef CONFIG_PPC_FPU
497 /*
498  * These access either the real FP register or the image in the
499  * thread_struct, depending on regs->msr & MSR_FP.
500  */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)501 static int do_fp_load(struct instruction_op *op, unsigned long ea,
502 		      struct pt_regs *regs, bool cross_endian)
503 {
504 	int err, rn, nb;
505 	union {
506 		int i;
507 		unsigned int u;
508 		float f;
509 		double d[2];
510 		unsigned long l[2];
511 		u8 b[2 * sizeof(double)];
512 	} u;
513 
514 	nb = GETSIZE(op->type);
515 	if (nb > sizeof(u))
516 		return -EINVAL;
517 	if (!address_ok(regs, ea, nb))
518 		return -EFAULT;
519 	rn = op->reg;
520 	err = copy_mem_in(u.b, ea, nb, regs);
521 	if (err)
522 		return err;
523 	if (unlikely(cross_endian)) {
524 		do_byte_reverse(u.b, min(nb, 8));
525 		if (nb == 16)
526 			do_byte_reverse(&u.b[8], 8);
527 	}
528 	preempt_disable();
529 	if (nb == 4) {
530 		if (op->type & FPCONV)
531 			conv_sp_to_dp(&u.f, &u.d[0]);
532 		else if (op->type & SIGNEXT)
533 			u.l[0] = u.i;
534 		else
535 			u.l[0] = u.u;
536 	}
537 	if (regs->msr & MSR_FP)
538 		put_fpr(rn, &u.d[0]);
539 	else
540 		current->thread.TS_FPR(rn) = u.l[0];
541 	if (nb == 16) {
542 		/* lfdp */
543 		rn |= 1;
544 		if (regs->msr & MSR_FP)
545 			put_fpr(rn, &u.d[1]);
546 		else
547 			current->thread.TS_FPR(rn) = u.l[1];
548 	}
549 	preempt_enable();
550 	return 0;
551 }
552 NOKPROBE_SYMBOL(do_fp_load);
553 
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)554 static int do_fp_store(struct instruction_op *op, unsigned long ea,
555 		       struct pt_regs *regs, bool cross_endian)
556 {
557 	int rn, nb;
558 	union {
559 		unsigned int u;
560 		float f;
561 		double d[2];
562 		unsigned long l[2];
563 		u8 b[2 * sizeof(double)];
564 	} u;
565 
566 	nb = GETSIZE(op->type);
567 	if (nb > sizeof(u))
568 		return -EINVAL;
569 	if (!address_ok(regs, ea, nb))
570 		return -EFAULT;
571 	rn = op->reg;
572 	preempt_disable();
573 	if (regs->msr & MSR_FP)
574 		get_fpr(rn, &u.d[0]);
575 	else
576 		u.l[0] = current->thread.TS_FPR(rn);
577 	if (nb == 4) {
578 		if (op->type & FPCONV)
579 			conv_dp_to_sp(&u.d[0], &u.f);
580 		else
581 			u.u = u.l[0];
582 	}
583 	if (nb == 16) {
584 		rn |= 1;
585 		if (regs->msr & MSR_FP)
586 			get_fpr(rn, &u.d[1]);
587 		else
588 			u.l[1] = current->thread.TS_FPR(rn);
589 	}
590 	preempt_enable();
591 	if (unlikely(cross_endian)) {
592 		do_byte_reverse(u.b, min(nb, 8));
593 		if (nb == 16)
594 			do_byte_reverse(&u.b[8], 8);
595 	}
596 	return copy_mem_out(u.b, ea, nb, regs);
597 }
598 NOKPROBE_SYMBOL(do_fp_store);
599 #endif
600 
601 #ifdef CONFIG_ALTIVEC
602 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)603 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
604 				       int size, struct pt_regs *regs,
605 				       bool cross_endian)
606 {
607 	int err;
608 	union {
609 		__vector128 v;
610 		u8 b[sizeof(__vector128)];
611 	} u = {};
612 
613 	if (size > sizeof(u))
614 		return -EINVAL;
615 
616 	if (!address_ok(regs, ea & ~0xfUL, 16))
617 		return -EFAULT;
618 	/* align to multiple of size */
619 	ea &= ~(size - 1);
620 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
621 	if (err)
622 		return err;
623 	if (unlikely(cross_endian))
624 		do_byte_reverse(&u.b[ea & 0xf], size);
625 	preempt_disable();
626 	if (regs->msr & MSR_VEC)
627 		put_vr(rn, &u.v);
628 	else
629 		current->thread.vr_state.vr[rn] = u.v;
630 	preempt_enable();
631 	return 0;
632 }
633 
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)634 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
635 					int size, struct pt_regs *regs,
636 					bool cross_endian)
637 {
638 	union {
639 		__vector128 v;
640 		u8 b[sizeof(__vector128)];
641 	} u;
642 
643 	if (size > sizeof(u))
644 		return -EINVAL;
645 
646 	if (!address_ok(regs, ea & ~0xfUL, 16))
647 		return -EFAULT;
648 	/* align to multiple of size */
649 	ea &= ~(size - 1);
650 
651 	preempt_disable();
652 	if (regs->msr & MSR_VEC)
653 		get_vr(rn, &u.v);
654 	else
655 		u.v = current->thread.vr_state.vr[rn];
656 	preempt_enable();
657 	if (unlikely(cross_endian))
658 		do_byte_reverse(&u.b[ea & 0xf], size);
659 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
660 }
661 #endif /* CONFIG_ALTIVEC */
662 
663 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)664 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
665 				      int reg, bool cross_endian)
666 {
667 	int err;
668 
669 	if (!address_ok(regs, ea, 16))
670 		return -EFAULT;
671 	/* if aligned, should be atomic */
672 	if ((ea & 0xf) == 0) {
673 		err = do_lq(ea, &regs->gpr[reg]);
674 	} else {
675 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
676 		if (!err)
677 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
678 	}
679 	if (!err && unlikely(cross_endian))
680 		do_byte_reverse(&regs->gpr[reg], 16);
681 	return err;
682 }
683 
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)684 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
685 				       int reg, bool cross_endian)
686 {
687 	int err;
688 	unsigned long vals[2];
689 
690 	if (!address_ok(regs, ea, 16))
691 		return -EFAULT;
692 	vals[0] = regs->gpr[reg];
693 	vals[1] = regs->gpr[reg + 1];
694 	if (unlikely(cross_endian))
695 		do_byte_reverse(vals, 16);
696 
697 	/* if aligned, should be atomic */
698 	if ((ea & 0xf) == 0)
699 		return do_stq(ea, vals[0], vals[1]);
700 
701 	err = write_mem(vals[IS_LE], ea, 8, regs);
702 	if (!err)
703 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
704 	return err;
705 }
706 #endif /* __powerpc64 */
707 
708 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)709 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
710 		      const void *mem, bool rev)
711 {
712 	int size, read_size;
713 	int i, j;
714 	const unsigned int *wp;
715 	const unsigned short *hp;
716 	const unsigned char *bp;
717 
718 	size = GETSIZE(op->type);
719 	reg->d[0] = reg->d[1] = 0;
720 
721 	switch (op->element_size) {
722 	case 16:
723 		/* whole vector; lxv[x] or lxvl[l] */
724 		if (size == 0)
725 			break;
726 		memcpy(reg, mem, size);
727 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
728 			rev = !rev;
729 		if (rev)
730 			do_byte_reverse(reg, 16);
731 		break;
732 	case 8:
733 		/* scalar loads, lxvd2x, lxvdsx */
734 		read_size = (size >= 8) ? 8 : size;
735 		i = IS_LE ? 8 : 8 - read_size;
736 		memcpy(&reg->b[i], mem, read_size);
737 		if (rev)
738 			do_byte_reverse(&reg->b[i], 8);
739 		if (size < 8) {
740 			if (op->type & SIGNEXT) {
741 				/* size == 4 is the only case here */
742 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
743 			} else if (op->vsx_flags & VSX_FPCONV) {
744 				preempt_disable();
745 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
746 					      &reg->dp[IS_LE]);
747 				preempt_enable();
748 			}
749 		} else {
750 			if (size == 16) {
751 				unsigned long v = *(unsigned long *)(mem + 8);
752 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
753 			} else if (op->vsx_flags & VSX_SPLAT)
754 				reg->d[IS_BE] = reg->d[IS_LE];
755 		}
756 		break;
757 	case 4:
758 		/* lxvw4x, lxvwsx */
759 		wp = mem;
760 		for (j = 0; j < size / 4; ++j) {
761 			i = IS_LE ? 3 - j : j;
762 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
763 		}
764 		if (op->vsx_flags & VSX_SPLAT) {
765 			u32 val = reg->w[IS_LE ? 3 : 0];
766 			for (; j < 4; ++j) {
767 				i = IS_LE ? 3 - j : j;
768 				reg->w[i] = val;
769 			}
770 		}
771 		break;
772 	case 2:
773 		/* lxvh8x */
774 		hp = mem;
775 		for (j = 0; j < size / 2; ++j) {
776 			i = IS_LE ? 7 - j : j;
777 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
778 		}
779 		break;
780 	case 1:
781 		/* lxvb16x */
782 		bp = mem;
783 		for (j = 0; j < size; ++j) {
784 			i = IS_LE ? 15 - j : j;
785 			reg->b[i] = *bp++;
786 		}
787 		break;
788 	}
789 }
790 EXPORT_SYMBOL_GPL(emulate_vsx_load);
791 NOKPROBE_SYMBOL(emulate_vsx_load);
792 
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)793 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
794 		       void *mem, bool rev)
795 {
796 	int size, write_size;
797 	int i, j;
798 	union vsx_reg buf;
799 	unsigned int *wp;
800 	unsigned short *hp;
801 	unsigned char *bp;
802 
803 	size = GETSIZE(op->type);
804 
805 	switch (op->element_size) {
806 	case 16:
807 		/* stxv, stxvx, stxvl, stxvll */
808 		if (size == 0)
809 			break;
810 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
811 			rev = !rev;
812 		if (rev) {
813 			/* reverse 16 bytes */
814 			buf.d[0] = byterev_8(reg->d[1]);
815 			buf.d[1] = byterev_8(reg->d[0]);
816 			reg = &buf;
817 		}
818 		memcpy(mem, reg, size);
819 		break;
820 	case 8:
821 		/* scalar stores, stxvd2x */
822 		write_size = (size >= 8) ? 8 : size;
823 		i = IS_LE ? 8 : 8 - write_size;
824 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
825 			buf.d[0] = buf.d[1] = 0;
826 			preempt_disable();
827 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
828 			preempt_enable();
829 			reg = &buf;
830 		}
831 		memcpy(mem, &reg->b[i], write_size);
832 		if (size == 16)
833 			memcpy(mem + 8, &reg->d[IS_BE], 8);
834 		if (unlikely(rev)) {
835 			do_byte_reverse(mem, write_size);
836 			if (size == 16)
837 				do_byte_reverse(mem + 8, 8);
838 		}
839 		break;
840 	case 4:
841 		/* stxvw4x */
842 		wp = mem;
843 		for (j = 0; j < size / 4; ++j) {
844 			i = IS_LE ? 3 - j : j;
845 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
846 		}
847 		break;
848 	case 2:
849 		/* stxvh8x */
850 		hp = mem;
851 		for (j = 0; j < size / 2; ++j) {
852 			i = IS_LE ? 7 - j : j;
853 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
854 		}
855 		break;
856 	case 1:
857 		/* stvxb16x */
858 		bp = mem;
859 		for (j = 0; j < size; ++j) {
860 			i = IS_LE ? 15 - j : j;
861 			*bp++ = reg->b[i];
862 		}
863 		break;
864 	}
865 }
866 EXPORT_SYMBOL_GPL(emulate_vsx_store);
867 NOKPROBE_SYMBOL(emulate_vsx_store);
868 
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)869 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
870 				       unsigned long ea, struct pt_regs *regs,
871 				       bool cross_endian)
872 {
873 	int reg = op->reg;
874 	u8 mem[16];
875 	union vsx_reg buf;
876 	int size = GETSIZE(op->type);
877 
878 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
879 		return -EFAULT;
880 
881 	emulate_vsx_load(op, &buf, mem, cross_endian);
882 	preempt_disable();
883 	if (reg < 32) {
884 		/* FP regs + extensions */
885 		if (regs->msr & MSR_FP) {
886 			load_vsrn(reg, &buf);
887 		} else {
888 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
889 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
890 		}
891 	} else {
892 		if (regs->msr & MSR_VEC)
893 			load_vsrn(reg, &buf);
894 		else
895 			current->thread.vr_state.vr[reg - 32] = buf.v;
896 	}
897 	preempt_enable();
898 	return 0;
899 }
900 
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)901 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
902 					unsigned long ea, struct pt_regs *regs,
903 					bool cross_endian)
904 {
905 	int reg = op->reg;
906 	u8 mem[16];
907 	union vsx_reg buf;
908 	int size = GETSIZE(op->type);
909 
910 	if (!address_ok(regs, ea, size))
911 		return -EFAULT;
912 
913 	preempt_disable();
914 	if (reg < 32) {
915 		/* FP regs + extensions */
916 		if (regs->msr & MSR_FP) {
917 			store_vsrn(reg, &buf);
918 		} else {
919 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
920 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
921 		}
922 	} else {
923 		if (regs->msr & MSR_VEC)
924 			store_vsrn(reg, &buf);
925 		else
926 			buf.v = current->thread.vr_state.vr[reg - 32];
927 	}
928 	preempt_enable();
929 	emulate_vsx_store(op, &buf, mem, cross_endian);
930 	return  copy_mem_out(mem, ea, size, regs);
931 }
932 #endif /* CONFIG_VSX */
933 
emulate_dcbz(unsigned long ea,struct pt_regs * regs)934 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
935 {
936 	int err;
937 	unsigned long i, size;
938 
939 #ifdef __powerpc64__
940 	size = ppc64_caches.l1d.block_size;
941 	if (!(regs->msr & MSR_64BIT))
942 		ea &= 0xffffffffUL;
943 #else
944 	size = L1_CACHE_BYTES;
945 #endif
946 	ea &= ~(size - 1);
947 	if (!address_ok(regs, ea, size))
948 		return -EFAULT;
949 	for (i = 0; i < size; i += sizeof(long)) {
950 		err = __put_user(0, (unsigned long __user *) (ea + i));
951 		if (err) {
952 			regs->dar = ea;
953 			return err;
954 		}
955 	}
956 	return 0;
957 }
958 NOKPROBE_SYMBOL(emulate_dcbz);
959 
960 #define __put_user_asmx(x, addr, err, op, cr)		\
961 	__asm__ __volatile__(				\
962 		".machine push\n"			\
963 		".machine power8\n"			\
964 		"1:	" op " %2,0,%3\n"		\
965 		".machine pop\n"			\
966 		"	mfcr	%1\n"			\
967 		"2:\n"					\
968 		".section .fixup,\"ax\"\n"		\
969 		"3:	li	%0,%4\n"		\
970 		"	b	2b\n"			\
971 		".previous\n"				\
972 		EX_TABLE(1b, 3b)			\
973 		: "=r" (err), "=r" (cr)			\
974 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
975 
976 #define __get_user_asmx(x, addr, err, op)		\
977 	__asm__ __volatile__(				\
978 		".machine push\n"			\
979 		".machine power8\n"			\
980 		"1:	"op" %1,0,%2\n"			\
981 		".machine pop\n"			\
982 		"2:\n"					\
983 		".section .fixup,\"ax\"\n"		\
984 		"3:	li	%0,%3\n"		\
985 		"	b	2b\n"			\
986 		".previous\n"				\
987 		EX_TABLE(1b, 3b)			\
988 		: "=r" (err), "=r" (x)			\
989 		: "r" (addr), "i" (-EFAULT), "0" (err))
990 
991 #define __cacheop_user_asmx(addr, err, op)		\
992 	__asm__ __volatile__(				\
993 		"1:	"op" 0,%1\n"			\
994 		"2:\n"					\
995 		".section .fixup,\"ax\"\n"		\
996 		"3:	li	%0,%3\n"		\
997 		"	b	2b\n"			\
998 		".previous\n"				\
999 		EX_TABLE(1b, 3b)			\
1000 		: "=r" (err)				\
1001 		: "r" (addr), "i" (-EFAULT), "0" (err))
1002 
set_cr0(const struct pt_regs * regs,struct instruction_op * op)1003 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1004 				    struct instruction_op *op)
1005 {
1006 	long val = op->val;
1007 
1008 	op->type |= SETCC;
1009 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1010 #ifdef __powerpc64__
1011 	if (!(regs->msr & MSR_64BIT))
1012 		val = (int) val;
1013 #endif
1014 	if (val < 0)
1015 		op->ccval |= 0x80000000;
1016 	else if (val > 0)
1017 		op->ccval |= 0x40000000;
1018 	else
1019 		op->ccval |= 0x20000000;
1020 }
1021 
set_ca32(struct instruction_op * op,bool val)1022 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1023 {
1024 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1025 		if (val)
1026 			op->xerval |= XER_CA32;
1027 		else
1028 			op->xerval &= ~XER_CA32;
1029 	}
1030 }
1031 
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)1032 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1033 				     struct instruction_op *op, int rd,
1034 				     unsigned long val1, unsigned long val2,
1035 				     unsigned long carry_in)
1036 {
1037 	unsigned long val = val1 + val2;
1038 
1039 	if (carry_in)
1040 		++val;
1041 	op->type = COMPUTE + SETREG + SETXER;
1042 	op->reg = rd;
1043 	op->val = val;
1044 #ifdef __powerpc64__
1045 	if (!(regs->msr & MSR_64BIT)) {
1046 		val = (unsigned int) val;
1047 		val1 = (unsigned int) val1;
1048 	}
1049 #endif
1050 	op->xerval = regs->xer;
1051 	if (val < val1 || (carry_in && val == val1))
1052 		op->xerval |= XER_CA;
1053 	else
1054 		op->xerval &= ~XER_CA;
1055 
1056 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1057 			(carry_in && (unsigned int)val == (unsigned int)val1));
1058 }
1059 
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1060 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1061 					  struct instruction_op *op,
1062 					  long v1, long v2, int crfld)
1063 {
1064 	unsigned int crval, shift;
1065 
1066 	op->type = COMPUTE + SETCC;
1067 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1068 	if (v1 < v2)
1069 		crval |= 8;
1070 	else if (v1 > v2)
1071 		crval |= 4;
1072 	else
1073 		crval |= 2;
1074 	shift = (7 - crfld) * 4;
1075 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1076 }
1077 
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1078 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1079 					    struct instruction_op *op,
1080 					    unsigned long v1,
1081 					    unsigned long v2, int crfld)
1082 {
1083 	unsigned int crval, shift;
1084 
1085 	op->type = COMPUTE + SETCC;
1086 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1087 	if (v1 < v2)
1088 		crval |= 8;
1089 	else if (v1 > v2)
1090 		crval |= 4;
1091 	else
1092 		crval |= 2;
1093 	shift = (7 - crfld) * 4;
1094 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1095 }
1096 
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1097 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1098 				    struct instruction_op *op,
1099 				    unsigned long v1, unsigned long v2)
1100 {
1101 	unsigned long long out_val, mask;
1102 	int i;
1103 
1104 	out_val = 0;
1105 	for (i = 0; i < 8; i++) {
1106 		mask = 0xffUL << (i * 8);
1107 		if ((v1 & mask) == (v2 & mask))
1108 			out_val |= mask;
1109 	}
1110 	op->val = out_val;
1111 }
1112 
1113 /*
1114  * The size parameter is used to adjust the equivalent popcnt instruction.
1115  * popcntb = 8, popcntw = 32, popcntd = 64
1116  */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1117 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1118 				      struct instruction_op *op,
1119 				      unsigned long v1, int size)
1120 {
1121 	unsigned long long out = v1;
1122 
1123 	out -= (out >> 1) & 0x5555555555555555ULL;
1124 	out = (0x3333333333333333ULL & out) +
1125 	      (0x3333333333333333ULL & (out >> 2));
1126 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1127 
1128 	if (size == 8) {	/* popcntb */
1129 		op->val = out;
1130 		return;
1131 	}
1132 	out += out >> 8;
1133 	out += out >> 16;
1134 	if (size == 32) {	/* popcntw */
1135 		op->val = out & 0x0000003f0000003fULL;
1136 		return;
1137 	}
1138 
1139 	out = (out + (out >> 32)) & 0x7f;
1140 	op->val = out;	/* popcntd */
1141 }
1142 
1143 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1144 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1145 				      struct instruction_op *op,
1146 				      unsigned long v1, unsigned long v2)
1147 {
1148 	unsigned char perm, idx;
1149 	unsigned int i;
1150 
1151 	perm = 0;
1152 	for (i = 0; i < 8; i++) {
1153 		idx = (v1 >> (i * 8)) & 0xff;
1154 		if (idx < 64)
1155 			if (v2 & PPC_BIT(idx))
1156 				perm |= 1 << i;
1157 	}
1158 	op->val = perm;
1159 }
1160 #endif /* CONFIG_PPC64 */
1161 /*
1162  * The size parameter adjusts the equivalent prty instruction.
1163  * prtyw = 32, prtyd = 64
1164  */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1165 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1166 				    struct instruction_op *op,
1167 				    unsigned long v, int size)
1168 {
1169 	unsigned long long res = v ^ (v >> 8);
1170 
1171 	res ^= res >> 16;
1172 	if (size == 32) {		/* prtyw */
1173 		op->val = res & 0x0000000100000001ULL;
1174 		return;
1175 	}
1176 
1177 	res ^= res >> 32;
1178 	op->val = res & 1;	/*prtyd */
1179 }
1180 
trap_compare(long v1,long v2)1181 static nokprobe_inline int trap_compare(long v1, long v2)
1182 {
1183 	int ret = 0;
1184 
1185 	if (v1 < v2)
1186 		ret |= 0x10;
1187 	else if (v1 > v2)
1188 		ret |= 0x08;
1189 	else
1190 		ret |= 0x04;
1191 	if ((unsigned long)v1 < (unsigned long)v2)
1192 		ret |= 0x02;
1193 	else if ((unsigned long)v1 > (unsigned long)v2)
1194 		ret |= 0x01;
1195 	return ret;
1196 }
1197 
1198 /*
1199  * Elements of 32-bit rotate and mask instructions.
1200  */
1201 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1202 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1203 #ifdef __powerpc64__
1204 #define MASK64_L(mb)	(~0UL >> (mb))
1205 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1206 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1207 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1208 #else
1209 #define DATA32(x)	(x)
1210 #endif
1211 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1212 
1213 /*
1214  * Decode an instruction, and return information about it in *op
1215  * without changing *regs.
1216  * Integer arithmetic and logical instructions, branches, and barrier
1217  * instructions can be emulated just using the information in *op.
1218  *
1219  * Return value is 1 if the instruction can be emulated just by
1220  * updating *regs with the information in *op, -1 if we need the
1221  * GPRs but *regs doesn't contain the full register set, or 0
1222  * otherwise.
1223  */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,struct ppc_inst instr)1224 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1225 		  struct ppc_inst instr)
1226 {
1227 #ifdef CONFIG_PPC64
1228 	unsigned int suffixopcode, prefixtype, prefix_r;
1229 #endif
1230 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1231 	unsigned long int imm;
1232 	unsigned long int val, val2;
1233 	unsigned int mb, me, sh;
1234 	unsigned int word, suffix;
1235 	long ival;
1236 
1237 	word = ppc_inst_val(instr);
1238 	suffix = ppc_inst_suffix(instr);
1239 
1240 	op->type = COMPUTE;
1241 
1242 	opcode = ppc_inst_primary_opcode(instr);
1243 	switch (opcode) {
1244 	case 16:	/* bc */
1245 		op->type = BRANCH;
1246 		imm = (signed short)(word & 0xfffc);
1247 		if ((word & 2) == 0)
1248 			imm += regs->nip;
1249 		op->val = truncate_if_32bit(regs->msr, imm);
1250 		if (word & 1)
1251 			op->type |= SETLK;
1252 		if (branch_taken(word, regs, op))
1253 			op->type |= BRTAKEN;
1254 		return 1;
1255 #ifdef CONFIG_PPC64
1256 	case 17:	/* sc */
1257 		if ((word & 0xfe2) == 2)
1258 			op->type = SYSCALL;
1259 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1260 				(word & 0xfe3) == 1) {	/* scv */
1261 			op->type = SYSCALL_VECTORED_0;
1262 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1263 				goto unknown_opcode;
1264 		} else
1265 			op->type = UNKNOWN;
1266 		return 0;
1267 #endif
1268 	case 18:	/* b */
1269 		op->type = BRANCH | BRTAKEN;
1270 		imm = word & 0x03fffffc;
1271 		if (imm & 0x02000000)
1272 			imm -= 0x04000000;
1273 		if ((word & 2) == 0)
1274 			imm += regs->nip;
1275 		op->val = truncate_if_32bit(regs->msr, imm);
1276 		if (word & 1)
1277 			op->type |= SETLK;
1278 		return 1;
1279 	case 19:
1280 		switch ((word >> 1) & 0x3ff) {
1281 		case 0:		/* mcrf */
1282 			op->type = COMPUTE + SETCC;
1283 			rd = 7 - ((word >> 23) & 0x7);
1284 			ra = 7 - ((word >> 18) & 0x7);
1285 			rd *= 4;
1286 			ra *= 4;
1287 			val = (regs->ccr >> ra) & 0xf;
1288 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1289 			return 1;
1290 
1291 		case 16:	/* bclr */
1292 		case 528:	/* bcctr */
1293 			op->type = BRANCH;
1294 			imm = (word & 0x400)? regs->ctr: regs->link;
1295 			op->val = truncate_if_32bit(regs->msr, imm);
1296 			if (word & 1)
1297 				op->type |= SETLK;
1298 			if (branch_taken(word, regs, op))
1299 				op->type |= BRTAKEN;
1300 			return 1;
1301 
1302 		case 18:	/* rfid, scary */
1303 			if (regs->msr & MSR_PR)
1304 				goto priv;
1305 			op->type = RFI;
1306 			return 0;
1307 
1308 		case 150:	/* isync */
1309 			op->type = BARRIER | BARRIER_ISYNC;
1310 			return 1;
1311 
1312 		case 33:	/* crnor */
1313 		case 129:	/* crandc */
1314 		case 193:	/* crxor */
1315 		case 225:	/* crnand */
1316 		case 257:	/* crand */
1317 		case 289:	/* creqv */
1318 		case 417:	/* crorc */
1319 		case 449:	/* cror */
1320 			op->type = COMPUTE + SETCC;
1321 			ra = (word >> 16) & 0x1f;
1322 			rb = (word >> 11) & 0x1f;
1323 			rd = (word >> 21) & 0x1f;
1324 			ra = (regs->ccr >> (31 - ra)) & 1;
1325 			rb = (regs->ccr >> (31 - rb)) & 1;
1326 			val = (word >> (6 + ra * 2 + rb)) & 1;
1327 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1328 				(val << (31 - rd));
1329 			return 1;
1330 		}
1331 		break;
1332 	case 31:
1333 		switch ((word >> 1) & 0x3ff) {
1334 		case 598:	/* sync */
1335 			op->type = BARRIER + BARRIER_SYNC;
1336 #ifdef __powerpc64__
1337 			switch ((word >> 21) & 3) {
1338 			case 1:		/* lwsync */
1339 				op->type = BARRIER + BARRIER_LWSYNC;
1340 				break;
1341 			case 2:		/* ptesync */
1342 				op->type = BARRIER + BARRIER_PTESYNC;
1343 				break;
1344 			}
1345 #endif
1346 			return 1;
1347 
1348 		case 854:	/* eieio */
1349 			op->type = BARRIER + BARRIER_EIEIO;
1350 			return 1;
1351 		}
1352 		break;
1353 	}
1354 
1355 	/* Following cases refer to regs->gpr[], so we need all regs */
1356 	if (!FULL_REGS(regs))
1357 		return -1;
1358 
1359 	rd = (word >> 21) & 0x1f;
1360 	ra = (word >> 16) & 0x1f;
1361 	rb = (word >> 11) & 0x1f;
1362 	rc = (word >> 6) & 0x1f;
1363 
1364 	switch (opcode) {
1365 #ifdef __powerpc64__
1366 	case 1:
1367 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1368 			goto unknown_opcode;
1369 
1370 		prefix_r = GET_PREFIX_R(word);
1371 		ra = GET_PREFIX_RA(suffix);
1372 		rd = (suffix >> 21) & 0x1f;
1373 		op->reg = rd;
1374 		op->val = regs->gpr[rd];
1375 		suffixopcode = get_op(suffix);
1376 		prefixtype = (word >> 24) & 0x3;
1377 		switch (prefixtype) {
1378 		case 2:
1379 			if (prefix_r && ra)
1380 				return 0;
1381 			switch (suffixopcode) {
1382 			case 14:	/* paddi */
1383 				op->type = COMPUTE | PREFIXED;
1384 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1385 				goto compute_done;
1386 			}
1387 		}
1388 		break;
1389 	case 2:		/* tdi */
1390 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1391 			goto trap;
1392 		return 1;
1393 #endif
1394 	case 3:		/* twi */
1395 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1396 			goto trap;
1397 		return 1;
1398 
1399 #ifdef __powerpc64__
1400 	case 4:
1401 		/*
1402 		 * There are very many instructions with this primary opcode
1403 		 * introduced in the ISA as early as v2.03. However, the ones
1404 		 * we currently emulate were all introduced with ISA 3.0
1405 		 */
1406 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1407 			goto unknown_opcode;
1408 
1409 		switch (word & 0x3f) {
1410 		case 48:	/* maddhd */
1411 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1412 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1413 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1414 			goto compute_done;
1415 
1416 		case 49:	/* maddhdu */
1417 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1418 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1419 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1420 			goto compute_done;
1421 
1422 		case 51:	/* maddld */
1423 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1424 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1425 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1426 			goto compute_done;
1427 		}
1428 
1429 		/*
1430 		 * There are other instructions from ISA 3.0 with the same
1431 		 * primary opcode which do not have emulation support yet.
1432 		 */
1433 		goto unknown_opcode;
1434 #endif
1435 
1436 	case 7:		/* mulli */
1437 		op->val = regs->gpr[ra] * (short) word;
1438 		goto compute_done;
1439 
1440 	case 8:		/* subfic */
1441 		imm = (short) word;
1442 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1443 		return 1;
1444 
1445 	case 10:	/* cmpli */
1446 		imm = (unsigned short) word;
1447 		val = regs->gpr[ra];
1448 #ifdef __powerpc64__
1449 		if ((rd & 1) == 0)
1450 			val = (unsigned int) val;
1451 #endif
1452 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1453 		return 1;
1454 
1455 	case 11:	/* cmpi */
1456 		imm = (short) word;
1457 		val = regs->gpr[ra];
1458 #ifdef __powerpc64__
1459 		if ((rd & 1) == 0)
1460 			val = (int) val;
1461 #endif
1462 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1463 		return 1;
1464 
1465 	case 12:	/* addic */
1466 		imm = (short) word;
1467 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1468 		return 1;
1469 
1470 	case 13:	/* addic. */
1471 		imm = (short) word;
1472 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1473 		set_cr0(regs, op);
1474 		return 1;
1475 
1476 	case 14:	/* addi */
1477 		imm = (short) word;
1478 		if (ra)
1479 			imm += regs->gpr[ra];
1480 		op->val = imm;
1481 		goto compute_done;
1482 
1483 	case 15:	/* addis */
1484 		imm = ((short) word) << 16;
1485 		if (ra)
1486 			imm += regs->gpr[ra];
1487 		op->val = imm;
1488 		goto compute_done;
1489 
1490 	case 19:
1491 		if (((word >> 1) & 0x1f) == 2) {
1492 			/* addpcis */
1493 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1494 				goto unknown_opcode;
1495 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1496 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1497 			op->val = regs->nip + (imm << 16) + 4;
1498 			goto compute_done;
1499 		}
1500 		op->type = UNKNOWN;
1501 		return 0;
1502 
1503 	case 20:	/* rlwimi */
1504 		mb = (word >> 6) & 0x1f;
1505 		me = (word >> 1) & 0x1f;
1506 		val = DATA32(regs->gpr[rd]);
1507 		imm = MASK32(mb, me);
1508 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1509 		goto logical_done;
1510 
1511 	case 21:	/* rlwinm */
1512 		mb = (word >> 6) & 0x1f;
1513 		me = (word >> 1) & 0x1f;
1514 		val = DATA32(regs->gpr[rd]);
1515 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1516 		goto logical_done;
1517 
1518 	case 23:	/* rlwnm */
1519 		mb = (word >> 6) & 0x1f;
1520 		me = (word >> 1) & 0x1f;
1521 		rb = regs->gpr[rb] & 0x1f;
1522 		val = DATA32(regs->gpr[rd]);
1523 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1524 		goto logical_done;
1525 
1526 	case 24:	/* ori */
1527 		op->val = regs->gpr[rd] | (unsigned short) word;
1528 		goto logical_done_nocc;
1529 
1530 	case 25:	/* oris */
1531 		imm = (unsigned short) word;
1532 		op->val = regs->gpr[rd] | (imm << 16);
1533 		goto logical_done_nocc;
1534 
1535 	case 26:	/* xori */
1536 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1537 		goto logical_done_nocc;
1538 
1539 	case 27:	/* xoris */
1540 		imm = (unsigned short) word;
1541 		op->val = regs->gpr[rd] ^ (imm << 16);
1542 		goto logical_done_nocc;
1543 
1544 	case 28:	/* andi. */
1545 		op->val = regs->gpr[rd] & (unsigned short) word;
1546 		set_cr0(regs, op);
1547 		goto logical_done_nocc;
1548 
1549 	case 29:	/* andis. */
1550 		imm = (unsigned short) word;
1551 		op->val = regs->gpr[rd] & (imm << 16);
1552 		set_cr0(regs, op);
1553 		goto logical_done_nocc;
1554 
1555 #ifdef __powerpc64__
1556 	case 30:	/* rld* */
1557 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1558 		val = regs->gpr[rd];
1559 		if ((word & 0x10) == 0) {
1560 			sh = rb | ((word & 2) << 4);
1561 			val = ROTATE(val, sh);
1562 			switch ((word >> 2) & 3) {
1563 			case 0:		/* rldicl */
1564 				val &= MASK64_L(mb);
1565 				break;
1566 			case 1:		/* rldicr */
1567 				val &= MASK64_R(mb);
1568 				break;
1569 			case 2:		/* rldic */
1570 				val &= MASK64(mb, 63 - sh);
1571 				break;
1572 			case 3:		/* rldimi */
1573 				imm = MASK64(mb, 63 - sh);
1574 				val = (regs->gpr[ra] & ~imm) |
1575 					(val & imm);
1576 			}
1577 			op->val = val;
1578 			goto logical_done;
1579 		} else {
1580 			sh = regs->gpr[rb] & 0x3f;
1581 			val = ROTATE(val, sh);
1582 			switch ((word >> 1) & 7) {
1583 			case 0:		/* rldcl */
1584 				op->val = val & MASK64_L(mb);
1585 				goto logical_done;
1586 			case 1:		/* rldcr */
1587 				op->val = val & MASK64_R(mb);
1588 				goto logical_done;
1589 			}
1590 		}
1591 #endif
1592 		op->type = UNKNOWN;	/* illegal instruction */
1593 		return 0;
1594 
1595 	case 31:
1596 		/* isel occupies 32 minor opcodes */
1597 		if (((word >> 1) & 0x1f) == 15) {
1598 			mb = (word >> 6) & 0x1f; /* bc field */
1599 			val = (regs->ccr >> (31 - mb)) & 1;
1600 			val2 = (ra) ? regs->gpr[ra] : 0;
1601 
1602 			op->val = (val) ? val2 : regs->gpr[rb];
1603 			goto compute_done;
1604 		}
1605 
1606 		switch ((word >> 1) & 0x3ff) {
1607 		case 4:		/* tw */
1608 			if (rd == 0x1f ||
1609 			    (rd & trap_compare((int)regs->gpr[ra],
1610 					       (int)regs->gpr[rb])))
1611 				goto trap;
1612 			return 1;
1613 #ifdef __powerpc64__
1614 		case 68:	/* td */
1615 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1616 				goto trap;
1617 			return 1;
1618 #endif
1619 		case 83:	/* mfmsr */
1620 			if (regs->msr & MSR_PR)
1621 				goto priv;
1622 			op->type = MFMSR;
1623 			op->reg = rd;
1624 			return 0;
1625 		case 146:	/* mtmsr */
1626 			if (regs->msr & MSR_PR)
1627 				goto priv;
1628 			op->type = MTMSR;
1629 			op->reg = rd;
1630 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1631 			return 0;
1632 #ifdef CONFIG_PPC64
1633 		case 178:	/* mtmsrd */
1634 			if (regs->msr & MSR_PR)
1635 				goto priv;
1636 			op->type = MTMSR;
1637 			op->reg = rd;
1638 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1639 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1640 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1641 			op->val = imm;
1642 			return 0;
1643 #endif
1644 
1645 		case 19:	/* mfcr */
1646 			imm = 0xffffffffUL;
1647 			if ((word >> 20) & 1) {
1648 				imm = 0xf0000000UL;
1649 				for (sh = 0; sh < 8; ++sh) {
1650 					if (word & (0x80000 >> sh))
1651 						break;
1652 					imm >>= 4;
1653 				}
1654 			}
1655 			op->val = regs->ccr & imm;
1656 			goto compute_done;
1657 
1658 		case 144:	/* mtcrf */
1659 			op->type = COMPUTE + SETCC;
1660 			imm = 0xf0000000UL;
1661 			val = regs->gpr[rd];
1662 			op->ccval = regs->ccr;
1663 			for (sh = 0; sh < 8; ++sh) {
1664 				if (word & (0x80000 >> sh))
1665 					op->ccval = (op->ccval & ~imm) |
1666 						(val & imm);
1667 				imm >>= 4;
1668 			}
1669 			return 1;
1670 
1671 		case 339:	/* mfspr */
1672 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1673 			op->type = MFSPR;
1674 			op->reg = rd;
1675 			op->spr = spr;
1676 			if (spr == SPRN_XER || spr == SPRN_LR ||
1677 			    spr == SPRN_CTR)
1678 				return 1;
1679 			return 0;
1680 
1681 		case 467:	/* mtspr */
1682 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1683 			op->type = MTSPR;
1684 			op->val = regs->gpr[rd];
1685 			op->spr = spr;
1686 			if (spr == SPRN_XER || spr == SPRN_LR ||
1687 			    spr == SPRN_CTR)
1688 				return 1;
1689 			return 0;
1690 
1691 /*
1692  * Compare instructions
1693  */
1694 		case 0:	/* cmp */
1695 			val = regs->gpr[ra];
1696 			val2 = regs->gpr[rb];
1697 #ifdef __powerpc64__
1698 			if ((rd & 1) == 0) {
1699 				/* word (32-bit) compare */
1700 				val = (int) val;
1701 				val2 = (int) val2;
1702 			}
1703 #endif
1704 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1705 			return 1;
1706 
1707 		case 32:	/* cmpl */
1708 			val = regs->gpr[ra];
1709 			val2 = regs->gpr[rb];
1710 #ifdef __powerpc64__
1711 			if ((rd & 1) == 0) {
1712 				/* word (32-bit) compare */
1713 				val = (unsigned int) val;
1714 				val2 = (unsigned int) val2;
1715 			}
1716 #endif
1717 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1718 			return 1;
1719 
1720 		case 508: /* cmpb */
1721 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1722 			goto logical_done_nocc;
1723 
1724 /*
1725  * Arithmetic instructions
1726  */
1727 		case 8:	/* subfc */
1728 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1729 				       regs->gpr[rb], 1);
1730 			goto arith_done;
1731 #ifdef __powerpc64__
1732 		case 9:	/* mulhdu */
1733 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1734 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1735 			goto arith_done;
1736 #endif
1737 		case 10:	/* addc */
1738 			add_with_carry(regs, op, rd, regs->gpr[ra],
1739 				       regs->gpr[rb], 0);
1740 			goto arith_done;
1741 
1742 		case 11:	/* mulhwu */
1743 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1744 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1745 			goto arith_done;
1746 
1747 		case 40:	/* subf */
1748 			op->val = regs->gpr[rb] - regs->gpr[ra];
1749 			goto arith_done;
1750 #ifdef __powerpc64__
1751 		case 73:	/* mulhd */
1752 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1753 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1754 			goto arith_done;
1755 #endif
1756 		case 75:	/* mulhw */
1757 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1758 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1759 			goto arith_done;
1760 
1761 		case 104:	/* neg */
1762 			op->val = -regs->gpr[ra];
1763 			goto arith_done;
1764 
1765 		case 136:	/* subfe */
1766 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1767 				       regs->gpr[rb], regs->xer & XER_CA);
1768 			goto arith_done;
1769 
1770 		case 138:	/* adde */
1771 			add_with_carry(regs, op, rd, regs->gpr[ra],
1772 				       regs->gpr[rb], regs->xer & XER_CA);
1773 			goto arith_done;
1774 
1775 		case 200:	/* subfze */
1776 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1777 				       regs->xer & XER_CA);
1778 			goto arith_done;
1779 
1780 		case 202:	/* addze */
1781 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1782 				       regs->xer & XER_CA);
1783 			goto arith_done;
1784 
1785 		case 232:	/* subfme */
1786 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1787 				       regs->xer & XER_CA);
1788 			goto arith_done;
1789 #ifdef __powerpc64__
1790 		case 233:	/* mulld */
1791 			op->val = regs->gpr[ra] * regs->gpr[rb];
1792 			goto arith_done;
1793 #endif
1794 		case 234:	/* addme */
1795 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1796 				       regs->xer & XER_CA);
1797 			goto arith_done;
1798 
1799 		case 235:	/* mullw */
1800 			op->val = (long)(int) regs->gpr[ra] *
1801 				(int) regs->gpr[rb];
1802 
1803 			goto arith_done;
1804 #ifdef __powerpc64__
1805 		case 265:	/* modud */
1806 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1807 				goto unknown_opcode;
1808 			op->val = regs->gpr[ra] % regs->gpr[rb];
1809 			goto compute_done;
1810 #endif
1811 		case 266:	/* add */
1812 			op->val = regs->gpr[ra] + regs->gpr[rb];
1813 			goto arith_done;
1814 
1815 		case 267:	/* moduw */
1816 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1817 				goto unknown_opcode;
1818 			op->val = (unsigned int) regs->gpr[ra] %
1819 				(unsigned int) regs->gpr[rb];
1820 			goto compute_done;
1821 #ifdef __powerpc64__
1822 		case 457:	/* divdu */
1823 			op->val = regs->gpr[ra] / regs->gpr[rb];
1824 			goto arith_done;
1825 #endif
1826 		case 459:	/* divwu */
1827 			op->val = (unsigned int) regs->gpr[ra] /
1828 				(unsigned int) regs->gpr[rb];
1829 			goto arith_done;
1830 #ifdef __powerpc64__
1831 		case 489:	/* divd */
1832 			op->val = (long int) regs->gpr[ra] /
1833 				(long int) regs->gpr[rb];
1834 			goto arith_done;
1835 #endif
1836 		case 491:	/* divw */
1837 			op->val = (int) regs->gpr[ra] /
1838 				(int) regs->gpr[rb];
1839 			goto arith_done;
1840 #ifdef __powerpc64__
1841 		case 425:	/* divde[.] */
1842 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1843 				"=r" (op->val) : "r" (regs->gpr[ra]),
1844 				"r" (regs->gpr[rb]));
1845 			goto arith_done;
1846 		case 393:	/* divdeu[.] */
1847 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1848 				"=r" (op->val) : "r" (regs->gpr[ra]),
1849 				"r" (regs->gpr[rb]));
1850 			goto arith_done;
1851 #endif
1852 		case 755:	/* darn */
1853 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1854 				goto unknown_opcode;
1855 			switch (ra & 0x3) {
1856 			case 0:
1857 				/* 32-bit conditioned */
1858 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1859 				goto compute_done;
1860 
1861 			case 1:
1862 				/* 64-bit conditioned */
1863 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1864 				goto compute_done;
1865 
1866 			case 2:
1867 				/* 64-bit raw */
1868 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1869 				goto compute_done;
1870 			}
1871 
1872 			goto unknown_opcode;
1873 #ifdef __powerpc64__
1874 		case 777:	/* modsd */
1875 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1876 				goto unknown_opcode;
1877 			op->val = (long int) regs->gpr[ra] %
1878 				(long int) regs->gpr[rb];
1879 			goto compute_done;
1880 #endif
1881 		case 779:	/* modsw */
1882 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1883 				goto unknown_opcode;
1884 			op->val = (int) regs->gpr[ra] %
1885 				(int) regs->gpr[rb];
1886 			goto compute_done;
1887 
1888 
1889 /*
1890  * Logical instructions
1891  */
1892 		case 26:	/* cntlzw */
1893 			val = (unsigned int) regs->gpr[rd];
1894 			op->val = ( val ? __builtin_clz(val) : 32 );
1895 			goto logical_done;
1896 #ifdef __powerpc64__
1897 		case 58:	/* cntlzd */
1898 			val = regs->gpr[rd];
1899 			op->val = ( val ? __builtin_clzl(val) : 64 );
1900 			goto logical_done;
1901 #endif
1902 		case 28:	/* and */
1903 			op->val = regs->gpr[rd] & regs->gpr[rb];
1904 			goto logical_done;
1905 
1906 		case 60:	/* andc */
1907 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1908 			goto logical_done;
1909 
1910 		case 122:	/* popcntb */
1911 			do_popcnt(regs, op, regs->gpr[rd], 8);
1912 			goto logical_done_nocc;
1913 
1914 		case 124:	/* nor */
1915 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1916 			goto logical_done;
1917 
1918 		case 154:	/* prtyw */
1919 			do_prty(regs, op, regs->gpr[rd], 32);
1920 			goto logical_done_nocc;
1921 
1922 		case 186:	/* prtyd */
1923 			do_prty(regs, op, regs->gpr[rd], 64);
1924 			goto logical_done_nocc;
1925 #ifdef CONFIG_PPC64
1926 		case 252:	/* bpermd */
1927 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1928 			goto logical_done_nocc;
1929 #endif
1930 		case 284:	/* xor */
1931 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1932 			goto logical_done;
1933 
1934 		case 316:	/* xor */
1935 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1936 			goto logical_done;
1937 
1938 		case 378:	/* popcntw */
1939 			do_popcnt(regs, op, regs->gpr[rd], 32);
1940 			goto logical_done_nocc;
1941 
1942 		case 412:	/* orc */
1943 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1944 			goto logical_done;
1945 
1946 		case 444:	/* or */
1947 			op->val = regs->gpr[rd] | regs->gpr[rb];
1948 			goto logical_done;
1949 
1950 		case 476:	/* nand */
1951 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1952 			goto logical_done;
1953 #ifdef CONFIG_PPC64
1954 		case 506:	/* popcntd */
1955 			do_popcnt(regs, op, regs->gpr[rd], 64);
1956 			goto logical_done_nocc;
1957 #endif
1958 		case 538:	/* cnttzw */
1959 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1960 				goto unknown_opcode;
1961 			val = (unsigned int) regs->gpr[rd];
1962 			op->val = (val ? __builtin_ctz(val) : 32);
1963 			goto logical_done;
1964 #ifdef __powerpc64__
1965 		case 570:	/* cnttzd */
1966 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1967 				goto unknown_opcode;
1968 			val = regs->gpr[rd];
1969 			op->val = (val ? __builtin_ctzl(val) : 64);
1970 			goto logical_done;
1971 #endif
1972 		case 922:	/* extsh */
1973 			op->val = (signed short) regs->gpr[rd];
1974 			goto logical_done;
1975 
1976 		case 954:	/* extsb */
1977 			op->val = (signed char) regs->gpr[rd];
1978 			goto logical_done;
1979 #ifdef __powerpc64__
1980 		case 986:	/* extsw */
1981 			op->val = (signed int) regs->gpr[rd];
1982 			goto logical_done;
1983 #endif
1984 
1985 /*
1986  * Shift instructions
1987  */
1988 		case 24:	/* slw */
1989 			sh = regs->gpr[rb] & 0x3f;
1990 			if (sh < 32)
1991 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1992 			else
1993 				op->val = 0;
1994 			goto logical_done;
1995 
1996 		case 536:	/* srw */
1997 			sh = regs->gpr[rb] & 0x3f;
1998 			if (sh < 32)
1999 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2000 			else
2001 				op->val = 0;
2002 			goto logical_done;
2003 
2004 		case 792:	/* sraw */
2005 			op->type = COMPUTE + SETREG + SETXER;
2006 			sh = regs->gpr[rb] & 0x3f;
2007 			ival = (signed int) regs->gpr[rd];
2008 			op->val = ival >> (sh < 32 ? sh : 31);
2009 			op->xerval = regs->xer;
2010 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2011 				op->xerval |= XER_CA;
2012 			else
2013 				op->xerval &= ~XER_CA;
2014 			set_ca32(op, op->xerval & XER_CA);
2015 			goto logical_done;
2016 
2017 		case 824:	/* srawi */
2018 			op->type = COMPUTE + SETREG + SETXER;
2019 			sh = rb;
2020 			ival = (signed int) regs->gpr[rd];
2021 			op->val = ival >> sh;
2022 			op->xerval = regs->xer;
2023 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2024 				op->xerval |= XER_CA;
2025 			else
2026 				op->xerval &= ~XER_CA;
2027 			set_ca32(op, op->xerval & XER_CA);
2028 			goto logical_done;
2029 
2030 #ifdef __powerpc64__
2031 		case 27:	/* sld */
2032 			sh = regs->gpr[rb] & 0x7f;
2033 			if (sh < 64)
2034 				op->val = regs->gpr[rd] << sh;
2035 			else
2036 				op->val = 0;
2037 			goto logical_done;
2038 
2039 		case 539:	/* srd */
2040 			sh = regs->gpr[rb] & 0x7f;
2041 			if (sh < 64)
2042 				op->val = regs->gpr[rd] >> sh;
2043 			else
2044 				op->val = 0;
2045 			goto logical_done;
2046 
2047 		case 794:	/* srad */
2048 			op->type = COMPUTE + SETREG + SETXER;
2049 			sh = regs->gpr[rb] & 0x7f;
2050 			ival = (signed long int) regs->gpr[rd];
2051 			op->val = ival >> (sh < 64 ? sh : 63);
2052 			op->xerval = regs->xer;
2053 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2054 				op->xerval |= XER_CA;
2055 			else
2056 				op->xerval &= ~XER_CA;
2057 			set_ca32(op, op->xerval & XER_CA);
2058 			goto logical_done;
2059 
2060 		case 826:	/* sradi with sh_5 = 0 */
2061 		case 827:	/* sradi with sh_5 = 1 */
2062 			op->type = COMPUTE + SETREG + SETXER;
2063 			sh = rb | ((word & 2) << 4);
2064 			ival = (signed long int) regs->gpr[rd];
2065 			op->val = ival >> sh;
2066 			op->xerval = regs->xer;
2067 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2068 				op->xerval |= XER_CA;
2069 			else
2070 				op->xerval &= ~XER_CA;
2071 			set_ca32(op, op->xerval & XER_CA);
2072 			goto logical_done;
2073 
2074 		case 890:	/* extswsli with sh_5 = 0 */
2075 		case 891:	/* extswsli with sh_5 = 1 */
2076 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2077 				goto unknown_opcode;
2078 			op->type = COMPUTE + SETREG;
2079 			sh = rb | ((word & 2) << 4);
2080 			val = (signed int) regs->gpr[rd];
2081 			if (sh)
2082 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2083 			else
2084 				op->val = val;
2085 			goto logical_done;
2086 
2087 #endif /* __powerpc64__ */
2088 
2089 /*
2090  * Cache instructions
2091  */
2092 		case 54:	/* dcbst */
2093 			op->type = MKOP(CACHEOP, DCBST, 0);
2094 			op->ea = xform_ea(word, regs);
2095 			return 0;
2096 
2097 		case 86:	/* dcbf */
2098 			op->type = MKOP(CACHEOP, DCBF, 0);
2099 			op->ea = xform_ea(word, regs);
2100 			return 0;
2101 
2102 		case 246:	/* dcbtst */
2103 			op->type = MKOP(CACHEOP, DCBTST, 0);
2104 			op->ea = xform_ea(word, regs);
2105 			op->reg = rd;
2106 			return 0;
2107 
2108 		case 278:	/* dcbt */
2109 			op->type = MKOP(CACHEOP, DCBTST, 0);
2110 			op->ea = xform_ea(word, regs);
2111 			op->reg = rd;
2112 			return 0;
2113 
2114 		case 982:	/* icbi */
2115 			op->type = MKOP(CACHEOP, ICBI, 0);
2116 			op->ea = xform_ea(word, regs);
2117 			return 0;
2118 
2119 		case 1014:	/* dcbz */
2120 			op->type = MKOP(CACHEOP, DCBZ, 0);
2121 			op->ea = xform_ea(word, regs);
2122 			return 0;
2123 		}
2124 		break;
2125 	}
2126 
2127 /*
2128  * Loads and stores.
2129  */
2130 	op->type = UNKNOWN;
2131 	op->update_reg = ra;
2132 	op->reg = rd;
2133 	op->val = regs->gpr[rd];
2134 	u = (word >> 20) & UPDATE;
2135 	op->vsx_flags = 0;
2136 
2137 	switch (opcode) {
2138 	case 31:
2139 		u = word & UPDATE;
2140 		op->ea = xform_ea(word, regs);
2141 		switch ((word >> 1) & 0x3ff) {
2142 		case 20:	/* lwarx */
2143 			op->type = MKOP(LARX, 0, 4);
2144 			break;
2145 
2146 		case 150:	/* stwcx. */
2147 			op->type = MKOP(STCX, 0, 4);
2148 			break;
2149 
2150 #ifdef __powerpc64__
2151 		case 84:	/* ldarx */
2152 			op->type = MKOP(LARX, 0, 8);
2153 			break;
2154 
2155 		case 214:	/* stdcx. */
2156 			op->type = MKOP(STCX, 0, 8);
2157 			break;
2158 
2159 		case 52:	/* lbarx */
2160 			op->type = MKOP(LARX, 0, 1);
2161 			break;
2162 
2163 		case 694:	/* stbcx. */
2164 			op->type = MKOP(STCX, 0, 1);
2165 			break;
2166 
2167 		case 116:	/* lharx */
2168 			op->type = MKOP(LARX, 0, 2);
2169 			break;
2170 
2171 		case 726:	/* sthcx. */
2172 			op->type = MKOP(STCX, 0, 2);
2173 			break;
2174 
2175 		case 276:	/* lqarx */
2176 			if (!((rd & 1) || rd == ra || rd == rb))
2177 				op->type = MKOP(LARX, 0, 16);
2178 			break;
2179 
2180 		case 182:	/* stqcx. */
2181 			if (!(rd & 1))
2182 				op->type = MKOP(STCX, 0, 16);
2183 			break;
2184 #endif
2185 
2186 		case 23:	/* lwzx */
2187 		case 55:	/* lwzux */
2188 			op->type = MKOP(LOAD, u, 4);
2189 			break;
2190 
2191 		case 87:	/* lbzx */
2192 		case 119:	/* lbzux */
2193 			op->type = MKOP(LOAD, u, 1);
2194 			break;
2195 
2196 #ifdef CONFIG_ALTIVEC
2197 		/*
2198 		 * Note: for the load/store vector element instructions,
2199 		 * bits of the EA say which field of the VMX register to use.
2200 		 */
2201 		case 7:		/* lvebx */
2202 			op->type = MKOP(LOAD_VMX, 0, 1);
2203 			op->element_size = 1;
2204 			break;
2205 
2206 		case 39:	/* lvehx */
2207 			op->type = MKOP(LOAD_VMX, 0, 2);
2208 			op->element_size = 2;
2209 			break;
2210 
2211 		case 71:	/* lvewx */
2212 			op->type = MKOP(LOAD_VMX, 0, 4);
2213 			op->element_size = 4;
2214 			break;
2215 
2216 		case 103:	/* lvx */
2217 		case 359:	/* lvxl */
2218 			op->type = MKOP(LOAD_VMX, 0, 16);
2219 			op->element_size = 16;
2220 			break;
2221 
2222 		case 135:	/* stvebx */
2223 			op->type = MKOP(STORE_VMX, 0, 1);
2224 			op->element_size = 1;
2225 			break;
2226 
2227 		case 167:	/* stvehx */
2228 			op->type = MKOP(STORE_VMX, 0, 2);
2229 			op->element_size = 2;
2230 			break;
2231 
2232 		case 199:	/* stvewx */
2233 			op->type = MKOP(STORE_VMX, 0, 4);
2234 			op->element_size = 4;
2235 			break;
2236 
2237 		case 231:	/* stvx */
2238 		case 487:	/* stvxl */
2239 			op->type = MKOP(STORE_VMX, 0, 16);
2240 			break;
2241 #endif /* CONFIG_ALTIVEC */
2242 
2243 #ifdef __powerpc64__
2244 		case 21:	/* ldx */
2245 		case 53:	/* ldux */
2246 			op->type = MKOP(LOAD, u, 8);
2247 			break;
2248 
2249 		case 149:	/* stdx */
2250 		case 181:	/* stdux */
2251 			op->type = MKOP(STORE, u, 8);
2252 			break;
2253 #endif
2254 
2255 		case 151:	/* stwx */
2256 		case 183:	/* stwux */
2257 			op->type = MKOP(STORE, u, 4);
2258 			break;
2259 
2260 		case 215:	/* stbx */
2261 		case 247:	/* stbux */
2262 			op->type = MKOP(STORE, u, 1);
2263 			break;
2264 
2265 		case 279:	/* lhzx */
2266 		case 311:	/* lhzux */
2267 			op->type = MKOP(LOAD, u, 2);
2268 			break;
2269 
2270 #ifdef __powerpc64__
2271 		case 341:	/* lwax */
2272 		case 373:	/* lwaux */
2273 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2274 			break;
2275 #endif
2276 
2277 		case 343:	/* lhax */
2278 		case 375:	/* lhaux */
2279 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2280 			break;
2281 
2282 		case 407:	/* sthx */
2283 		case 439:	/* sthux */
2284 			op->type = MKOP(STORE, u, 2);
2285 			break;
2286 
2287 #ifdef __powerpc64__
2288 		case 532:	/* ldbrx */
2289 			op->type = MKOP(LOAD, BYTEREV, 8);
2290 			break;
2291 
2292 #endif
2293 		case 533:	/* lswx */
2294 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2295 			break;
2296 
2297 		case 534:	/* lwbrx */
2298 			op->type = MKOP(LOAD, BYTEREV, 4);
2299 			break;
2300 
2301 		case 597:	/* lswi */
2302 			if (rb == 0)
2303 				rb = 32;	/* # bytes to load */
2304 			op->type = MKOP(LOAD_MULTI, 0, rb);
2305 			op->ea = ra ? regs->gpr[ra] : 0;
2306 			break;
2307 
2308 #ifdef CONFIG_PPC_FPU
2309 		case 535:	/* lfsx */
2310 		case 567:	/* lfsux */
2311 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2312 			break;
2313 
2314 		case 599:	/* lfdx */
2315 		case 631:	/* lfdux */
2316 			op->type = MKOP(LOAD_FP, u, 8);
2317 			break;
2318 
2319 		case 663:	/* stfsx */
2320 		case 695:	/* stfsux */
2321 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2322 			break;
2323 
2324 		case 727:	/* stfdx */
2325 		case 759:	/* stfdux */
2326 			op->type = MKOP(STORE_FP, u, 8);
2327 			break;
2328 
2329 #ifdef __powerpc64__
2330 		case 791:	/* lfdpx */
2331 			op->type = MKOP(LOAD_FP, 0, 16);
2332 			break;
2333 
2334 		case 855:	/* lfiwax */
2335 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2336 			break;
2337 
2338 		case 887:	/* lfiwzx */
2339 			op->type = MKOP(LOAD_FP, 0, 4);
2340 			break;
2341 
2342 		case 919:	/* stfdpx */
2343 			op->type = MKOP(STORE_FP, 0, 16);
2344 			break;
2345 
2346 		case 983:	/* stfiwx */
2347 			op->type = MKOP(STORE_FP, 0, 4);
2348 			break;
2349 #endif /* __powerpc64 */
2350 #endif /* CONFIG_PPC_FPU */
2351 
2352 #ifdef __powerpc64__
2353 		case 660:	/* stdbrx */
2354 			op->type = MKOP(STORE, BYTEREV, 8);
2355 			op->val = byterev_8(regs->gpr[rd]);
2356 			break;
2357 
2358 #endif
2359 		case 661:	/* stswx */
2360 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2361 			break;
2362 
2363 		case 662:	/* stwbrx */
2364 			op->type = MKOP(STORE, BYTEREV, 4);
2365 			op->val = byterev_4(regs->gpr[rd]);
2366 			break;
2367 
2368 		case 725:	/* stswi */
2369 			if (rb == 0)
2370 				rb = 32;	/* # bytes to store */
2371 			op->type = MKOP(STORE_MULTI, 0, rb);
2372 			op->ea = ra ? regs->gpr[ra] : 0;
2373 			break;
2374 
2375 		case 790:	/* lhbrx */
2376 			op->type = MKOP(LOAD, BYTEREV, 2);
2377 			break;
2378 
2379 		case 918:	/* sthbrx */
2380 			op->type = MKOP(STORE, BYTEREV, 2);
2381 			op->val = byterev_2(regs->gpr[rd]);
2382 			break;
2383 
2384 #ifdef CONFIG_VSX
2385 		case 12:	/* lxsiwzx */
2386 			op->reg = rd | ((word & 1) << 5);
2387 			op->type = MKOP(LOAD_VSX, 0, 4);
2388 			op->element_size = 8;
2389 			break;
2390 
2391 		case 76:	/* lxsiwax */
2392 			op->reg = rd | ((word & 1) << 5);
2393 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2394 			op->element_size = 8;
2395 			break;
2396 
2397 		case 140:	/* stxsiwx */
2398 			op->reg = rd | ((word & 1) << 5);
2399 			op->type = MKOP(STORE_VSX, 0, 4);
2400 			op->element_size = 8;
2401 			break;
2402 
2403 		case 268:	/* lxvx */
2404 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2405 				goto unknown_opcode;
2406 			op->reg = rd | ((word & 1) << 5);
2407 			op->type = MKOP(LOAD_VSX, 0, 16);
2408 			op->element_size = 16;
2409 			op->vsx_flags = VSX_CHECK_VEC;
2410 			break;
2411 
2412 		case 269:	/* lxvl */
2413 		case 301: {	/* lxvll */
2414 			int nb;
2415 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2416 				goto unknown_opcode;
2417 			op->reg = rd | ((word & 1) << 5);
2418 			op->ea = ra ? regs->gpr[ra] : 0;
2419 			nb = regs->gpr[rb] & 0xff;
2420 			if (nb > 16)
2421 				nb = 16;
2422 			op->type = MKOP(LOAD_VSX, 0, nb);
2423 			op->element_size = 16;
2424 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2425 				VSX_CHECK_VEC;
2426 			break;
2427 		}
2428 		case 332:	/* lxvdsx */
2429 			op->reg = rd | ((word & 1) << 5);
2430 			op->type = MKOP(LOAD_VSX, 0, 8);
2431 			op->element_size = 8;
2432 			op->vsx_flags = VSX_SPLAT;
2433 			break;
2434 
2435 		case 364:	/* lxvwsx */
2436 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2437 				goto unknown_opcode;
2438 			op->reg = rd | ((word & 1) << 5);
2439 			op->type = MKOP(LOAD_VSX, 0, 4);
2440 			op->element_size = 4;
2441 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2442 			break;
2443 
2444 		case 396:	/* stxvx */
2445 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2446 				goto unknown_opcode;
2447 			op->reg = rd | ((word & 1) << 5);
2448 			op->type = MKOP(STORE_VSX, 0, 16);
2449 			op->element_size = 16;
2450 			op->vsx_flags = VSX_CHECK_VEC;
2451 			break;
2452 
2453 		case 397:	/* stxvl */
2454 		case 429: {	/* stxvll */
2455 			int nb;
2456 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2457 				goto unknown_opcode;
2458 			op->reg = rd | ((word & 1) << 5);
2459 			op->ea = ra ? regs->gpr[ra] : 0;
2460 			nb = regs->gpr[rb] & 0xff;
2461 			if (nb > 16)
2462 				nb = 16;
2463 			op->type = MKOP(STORE_VSX, 0, nb);
2464 			op->element_size = 16;
2465 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2466 				VSX_CHECK_VEC;
2467 			break;
2468 		}
2469 		case 524:	/* lxsspx */
2470 			op->reg = rd | ((word & 1) << 5);
2471 			op->type = MKOP(LOAD_VSX, 0, 4);
2472 			op->element_size = 8;
2473 			op->vsx_flags = VSX_FPCONV;
2474 			break;
2475 
2476 		case 588:	/* lxsdx */
2477 			op->reg = rd | ((word & 1) << 5);
2478 			op->type = MKOP(LOAD_VSX, 0, 8);
2479 			op->element_size = 8;
2480 			break;
2481 
2482 		case 652:	/* stxsspx */
2483 			op->reg = rd | ((word & 1) << 5);
2484 			op->type = MKOP(STORE_VSX, 0, 4);
2485 			op->element_size = 8;
2486 			op->vsx_flags = VSX_FPCONV;
2487 			break;
2488 
2489 		case 716:	/* stxsdx */
2490 			op->reg = rd | ((word & 1) << 5);
2491 			op->type = MKOP(STORE_VSX, 0, 8);
2492 			op->element_size = 8;
2493 			break;
2494 
2495 		case 780:	/* lxvw4x */
2496 			op->reg = rd | ((word & 1) << 5);
2497 			op->type = MKOP(LOAD_VSX, 0, 16);
2498 			op->element_size = 4;
2499 			break;
2500 
2501 		case 781:	/* lxsibzx */
2502 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2503 				goto unknown_opcode;
2504 			op->reg = rd | ((word & 1) << 5);
2505 			op->type = MKOP(LOAD_VSX, 0, 1);
2506 			op->element_size = 8;
2507 			op->vsx_flags = VSX_CHECK_VEC;
2508 			break;
2509 
2510 		case 812:	/* lxvh8x */
2511 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2512 				goto unknown_opcode;
2513 			op->reg = rd | ((word & 1) << 5);
2514 			op->type = MKOP(LOAD_VSX, 0, 16);
2515 			op->element_size = 2;
2516 			op->vsx_flags = VSX_CHECK_VEC;
2517 			break;
2518 
2519 		case 813:	/* lxsihzx */
2520 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2521 				goto unknown_opcode;
2522 			op->reg = rd | ((word & 1) << 5);
2523 			op->type = MKOP(LOAD_VSX, 0, 2);
2524 			op->element_size = 8;
2525 			op->vsx_flags = VSX_CHECK_VEC;
2526 			break;
2527 
2528 		case 844:	/* lxvd2x */
2529 			op->reg = rd | ((word & 1) << 5);
2530 			op->type = MKOP(LOAD_VSX, 0, 16);
2531 			op->element_size = 8;
2532 			break;
2533 
2534 		case 876:	/* lxvb16x */
2535 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2536 				goto unknown_opcode;
2537 			op->reg = rd | ((word & 1) << 5);
2538 			op->type = MKOP(LOAD_VSX, 0, 16);
2539 			op->element_size = 1;
2540 			op->vsx_flags = VSX_CHECK_VEC;
2541 			break;
2542 
2543 		case 908:	/* stxvw4x */
2544 			op->reg = rd | ((word & 1) << 5);
2545 			op->type = MKOP(STORE_VSX, 0, 16);
2546 			op->element_size = 4;
2547 			break;
2548 
2549 		case 909:	/* stxsibx */
2550 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2551 				goto unknown_opcode;
2552 			op->reg = rd | ((word & 1) << 5);
2553 			op->type = MKOP(STORE_VSX, 0, 1);
2554 			op->element_size = 8;
2555 			op->vsx_flags = VSX_CHECK_VEC;
2556 			break;
2557 
2558 		case 940:	/* stxvh8x */
2559 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2560 				goto unknown_opcode;
2561 			op->reg = rd | ((word & 1) << 5);
2562 			op->type = MKOP(STORE_VSX, 0, 16);
2563 			op->element_size = 2;
2564 			op->vsx_flags = VSX_CHECK_VEC;
2565 			break;
2566 
2567 		case 941:	/* stxsihx */
2568 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2569 				goto unknown_opcode;
2570 			op->reg = rd | ((word & 1) << 5);
2571 			op->type = MKOP(STORE_VSX, 0, 2);
2572 			op->element_size = 8;
2573 			op->vsx_flags = VSX_CHECK_VEC;
2574 			break;
2575 
2576 		case 972:	/* stxvd2x */
2577 			op->reg = rd | ((word & 1) << 5);
2578 			op->type = MKOP(STORE_VSX, 0, 16);
2579 			op->element_size = 8;
2580 			break;
2581 
2582 		case 1004:	/* stxvb16x */
2583 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2584 				goto unknown_opcode;
2585 			op->reg = rd | ((word & 1) << 5);
2586 			op->type = MKOP(STORE_VSX, 0, 16);
2587 			op->element_size = 1;
2588 			op->vsx_flags = VSX_CHECK_VEC;
2589 			break;
2590 
2591 #endif /* CONFIG_VSX */
2592 		}
2593 		break;
2594 
2595 	case 32:	/* lwz */
2596 	case 33:	/* lwzu */
2597 		op->type = MKOP(LOAD, u, 4);
2598 		op->ea = dform_ea(word, regs);
2599 		break;
2600 
2601 	case 34:	/* lbz */
2602 	case 35:	/* lbzu */
2603 		op->type = MKOP(LOAD, u, 1);
2604 		op->ea = dform_ea(word, regs);
2605 		break;
2606 
2607 	case 36:	/* stw */
2608 	case 37:	/* stwu */
2609 		op->type = MKOP(STORE, u, 4);
2610 		op->ea = dform_ea(word, regs);
2611 		break;
2612 
2613 	case 38:	/* stb */
2614 	case 39:	/* stbu */
2615 		op->type = MKOP(STORE, u, 1);
2616 		op->ea = dform_ea(word, regs);
2617 		break;
2618 
2619 	case 40:	/* lhz */
2620 	case 41:	/* lhzu */
2621 		op->type = MKOP(LOAD, u, 2);
2622 		op->ea = dform_ea(word, regs);
2623 		break;
2624 
2625 	case 42:	/* lha */
2626 	case 43:	/* lhau */
2627 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2628 		op->ea = dform_ea(word, regs);
2629 		break;
2630 
2631 	case 44:	/* sth */
2632 	case 45:	/* sthu */
2633 		op->type = MKOP(STORE, u, 2);
2634 		op->ea = dform_ea(word, regs);
2635 		break;
2636 
2637 	case 46:	/* lmw */
2638 		if (ra >= rd)
2639 			break;		/* invalid form, ra in range to load */
2640 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2641 		op->ea = dform_ea(word, regs);
2642 		break;
2643 
2644 	case 47:	/* stmw */
2645 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2646 		op->ea = dform_ea(word, regs);
2647 		break;
2648 
2649 #ifdef CONFIG_PPC_FPU
2650 	case 48:	/* lfs */
2651 	case 49:	/* lfsu */
2652 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2653 		op->ea = dform_ea(word, regs);
2654 		break;
2655 
2656 	case 50:	/* lfd */
2657 	case 51:	/* lfdu */
2658 		op->type = MKOP(LOAD_FP, u, 8);
2659 		op->ea = dform_ea(word, regs);
2660 		break;
2661 
2662 	case 52:	/* stfs */
2663 	case 53:	/* stfsu */
2664 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2665 		op->ea = dform_ea(word, regs);
2666 		break;
2667 
2668 	case 54:	/* stfd */
2669 	case 55:	/* stfdu */
2670 		op->type = MKOP(STORE_FP, u, 8);
2671 		op->ea = dform_ea(word, regs);
2672 		break;
2673 #endif
2674 
2675 #ifdef __powerpc64__
2676 	case 56:	/* lq */
2677 		if (!((rd & 1) || (rd == ra)))
2678 			op->type = MKOP(LOAD, 0, 16);
2679 		op->ea = dqform_ea(word, regs);
2680 		break;
2681 #endif
2682 
2683 #ifdef CONFIG_VSX
2684 	case 57:	/* lfdp, lxsd, lxssp */
2685 		op->ea = dsform_ea(word, regs);
2686 		switch (word & 3) {
2687 		case 0:		/* lfdp */
2688 			if (rd & 1)
2689 				break;		/* reg must be even */
2690 			op->type = MKOP(LOAD_FP, 0, 16);
2691 			break;
2692 		case 2:		/* lxsd */
2693 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2694 				goto unknown_opcode;
2695 			op->reg = rd + 32;
2696 			op->type = MKOP(LOAD_VSX, 0, 8);
2697 			op->element_size = 8;
2698 			op->vsx_flags = VSX_CHECK_VEC;
2699 			break;
2700 		case 3:		/* lxssp */
2701 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2702 				goto unknown_opcode;
2703 			op->reg = rd + 32;
2704 			op->type = MKOP(LOAD_VSX, 0, 4);
2705 			op->element_size = 8;
2706 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2707 			break;
2708 		}
2709 		break;
2710 #endif /* CONFIG_VSX */
2711 
2712 #ifdef __powerpc64__
2713 	case 58:	/* ld[u], lwa */
2714 		op->ea = dsform_ea(word, regs);
2715 		switch (word & 3) {
2716 		case 0:		/* ld */
2717 			op->type = MKOP(LOAD, 0, 8);
2718 			break;
2719 		case 1:		/* ldu */
2720 			op->type = MKOP(LOAD, UPDATE, 8);
2721 			break;
2722 		case 2:		/* lwa */
2723 			op->type = MKOP(LOAD, SIGNEXT, 4);
2724 			break;
2725 		}
2726 		break;
2727 #endif
2728 
2729 #ifdef CONFIG_VSX
2730 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2731 		switch (word & 7) {
2732 		case 0:		/* stfdp with LSB of DS field = 0 */
2733 		case 4:		/* stfdp with LSB of DS field = 1 */
2734 			op->ea = dsform_ea(word, regs);
2735 			op->type = MKOP(STORE_FP, 0, 16);
2736 			break;
2737 
2738 		case 1:		/* lxv */
2739 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2740 				goto unknown_opcode;
2741 			op->ea = dqform_ea(word, regs);
2742 			if (word & 8)
2743 				op->reg = rd + 32;
2744 			op->type = MKOP(LOAD_VSX, 0, 16);
2745 			op->element_size = 16;
2746 			op->vsx_flags = VSX_CHECK_VEC;
2747 			break;
2748 
2749 		case 2:		/* stxsd with LSB of DS field = 0 */
2750 		case 6:		/* stxsd with LSB of DS field = 1 */
2751 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2752 				goto unknown_opcode;
2753 			op->ea = dsform_ea(word, regs);
2754 			op->reg = rd + 32;
2755 			op->type = MKOP(STORE_VSX, 0, 8);
2756 			op->element_size = 8;
2757 			op->vsx_flags = VSX_CHECK_VEC;
2758 			break;
2759 
2760 		case 3:		/* stxssp with LSB of DS field = 0 */
2761 		case 7:		/* stxssp with LSB of DS field = 1 */
2762 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2763 				goto unknown_opcode;
2764 			op->ea = dsform_ea(word, regs);
2765 			op->reg = rd + 32;
2766 			op->type = MKOP(STORE_VSX, 0, 4);
2767 			op->element_size = 8;
2768 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2769 			break;
2770 
2771 		case 5:		/* stxv */
2772 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2773 				goto unknown_opcode;
2774 			op->ea = dqform_ea(word, regs);
2775 			if (word & 8)
2776 				op->reg = rd + 32;
2777 			op->type = MKOP(STORE_VSX, 0, 16);
2778 			op->element_size = 16;
2779 			op->vsx_flags = VSX_CHECK_VEC;
2780 			break;
2781 		}
2782 		break;
2783 #endif /* CONFIG_VSX */
2784 
2785 #ifdef __powerpc64__
2786 	case 62:	/* std[u] */
2787 		op->ea = dsform_ea(word, regs);
2788 		switch (word & 3) {
2789 		case 0:		/* std */
2790 			op->type = MKOP(STORE, 0, 8);
2791 			break;
2792 		case 1:		/* stdu */
2793 			op->type = MKOP(STORE, UPDATE, 8);
2794 			break;
2795 		case 2:		/* stq */
2796 			if (!(rd & 1))
2797 				op->type = MKOP(STORE, 0, 16);
2798 			break;
2799 		}
2800 		break;
2801 	case 1: /* Prefixed instructions */
2802 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2803 			goto unknown_opcode;
2804 
2805 		prefix_r = GET_PREFIX_R(word);
2806 		ra = GET_PREFIX_RA(suffix);
2807 		op->update_reg = ra;
2808 		rd = (suffix >> 21) & 0x1f;
2809 		op->reg = rd;
2810 		op->val = regs->gpr[rd];
2811 
2812 		suffixopcode = get_op(suffix);
2813 		prefixtype = (word >> 24) & 0x3;
2814 		switch (prefixtype) {
2815 		case 0: /* Type 00  Eight-Byte Load/Store */
2816 			if (prefix_r && ra)
2817 				break;
2818 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2819 			switch (suffixopcode) {
2820 			case 41:	/* plwa */
2821 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2822 				break;
2823 #ifdef CONFIG_VSX
2824 			case 42:        /* plxsd */
2825 				op->reg = rd + 32;
2826 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2827 				op->element_size = 8;
2828 				op->vsx_flags = VSX_CHECK_VEC;
2829 				break;
2830 			case 43:	/* plxssp */
2831 				op->reg = rd + 32;
2832 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2833 				op->element_size = 8;
2834 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2835 				break;
2836 			case 46:	/* pstxsd */
2837 				op->reg = rd + 32;
2838 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
2839 				op->element_size = 8;
2840 				op->vsx_flags = VSX_CHECK_VEC;
2841 				break;
2842 			case 47:	/* pstxssp */
2843 				op->reg = rd + 32;
2844 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
2845 				op->element_size = 8;
2846 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2847 				break;
2848 			case 51:	/* plxv1 */
2849 				op->reg += 32;
2850 				fallthrough;
2851 			case 50:	/* plxv0 */
2852 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2853 				op->element_size = 16;
2854 				op->vsx_flags = VSX_CHECK_VEC;
2855 				break;
2856 			case 55:	/* pstxv1 */
2857 				op->reg = rd + 32;
2858 				fallthrough;
2859 			case 54:	/* pstxv0 */
2860 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
2861 				op->element_size = 16;
2862 				op->vsx_flags = VSX_CHECK_VEC;
2863 				break;
2864 #endif /* CONFIG_VSX */
2865 			case 56:        /* plq */
2866 				op->type = MKOP(LOAD, PREFIXED, 16);
2867 				break;
2868 			case 57:	/* pld */
2869 				op->type = MKOP(LOAD, PREFIXED, 8);
2870 				break;
2871 			case 60:        /* pstq */
2872 				op->type = MKOP(STORE, PREFIXED, 16);
2873 				break;
2874 			case 61:	/* pstd */
2875 				op->type = MKOP(STORE, PREFIXED, 8);
2876 				break;
2877 			}
2878 			break;
2879 		case 1: /* Type 01 Eight-Byte Register-to-Register */
2880 			break;
2881 		case 2: /* Type 10 Modified Load/Store */
2882 			if (prefix_r && ra)
2883 				break;
2884 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2885 			switch (suffixopcode) {
2886 			case 32:	/* plwz */
2887 				op->type = MKOP(LOAD, PREFIXED, 4);
2888 				break;
2889 			case 34:	/* plbz */
2890 				op->type = MKOP(LOAD, PREFIXED, 1);
2891 				break;
2892 			case 36:	/* pstw */
2893 				op->type = MKOP(STORE, PREFIXED, 4);
2894 				break;
2895 			case 38:	/* pstb */
2896 				op->type = MKOP(STORE, PREFIXED, 1);
2897 				break;
2898 			case 40:	/* plhz */
2899 				op->type = MKOP(LOAD, PREFIXED, 2);
2900 				break;
2901 			case 42:	/* plha */
2902 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2903 				break;
2904 			case 44:	/* psth */
2905 				op->type = MKOP(STORE, PREFIXED, 2);
2906 				break;
2907 			case 48:        /* plfs */
2908 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
2909 				break;
2910 			case 50:        /* plfd */
2911 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
2912 				break;
2913 			case 52:        /* pstfs */
2914 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
2915 				break;
2916 			case 54:        /* pstfd */
2917 				op->type = MKOP(STORE_FP, PREFIXED, 8);
2918 				break;
2919 			}
2920 			break;
2921 		case 3: /* Type 11 Modified Register-to-Register */
2922 			break;
2923 		}
2924 #endif /* __powerpc64__ */
2925 
2926 	}
2927 
2928 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
2929 		switch (GETTYPE(op->type)) {
2930 		case LOAD:
2931 			if (ra == rd)
2932 				goto unknown_opcode;
2933 			fallthrough;
2934 		case STORE:
2935 		case LOAD_FP:
2936 		case STORE_FP:
2937 			if (ra == 0)
2938 				goto unknown_opcode;
2939 		}
2940 	}
2941 
2942 #ifdef CONFIG_VSX
2943 	if ((GETTYPE(op->type) == LOAD_VSX ||
2944 	     GETTYPE(op->type) == STORE_VSX) &&
2945 	    !cpu_has_feature(CPU_FTR_VSX)) {
2946 		return -1;
2947 	}
2948 #endif /* CONFIG_VSX */
2949 
2950 	return 0;
2951 
2952  unknown_opcode:
2953 	op->type = UNKNOWN;
2954 	return 0;
2955 
2956  logical_done:
2957 	if (word & 1)
2958 		set_cr0(regs, op);
2959  logical_done_nocc:
2960 	op->reg = ra;
2961 	op->type |= SETREG;
2962 	return 1;
2963 
2964  arith_done:
2965 	if (word & 1)
2966 		set_cr0(regs, op);
2967  compute_done:
2968 	op->reg = rd;
2969 	op->type |= SETREG;
2970 	return 1;
2971 
2972  priv:
2973 	op->type = INTERRUPT | 0x700;
2974 	op->val = SRR1_PROGPRIV;
2975 	return 0;
2976 
2977  trap:
2978 	op->type = INTERRUPT | 0x700;
2979 	op->val = SRR1_PROGTRAP;
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL_GPL(analyse_instr);
2983 NOKPROBE_SYMBOL(analyse_instr);
2984 
2985 /*
2986  * For PPC32 we always use stwu with r1 to change the stack pointer.
2987  * So this emulated store may corrupt the exception frame, now we
2988  * have to provide the exception frame trampoline, which is pushed
2989  * below the kprobed function stack. So we only update gpr[1] but
2990  * don't emulate the real store operation. We will do real store
2991  * operation safely in exception return code by checking this flag.
2992  */
handle_stack_update(unsigned long ea,struct pt_regs * regs)2993 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2994 {
2995 #ifdef CONFIG_PPC32
2996 	/*
2997 	 * Check if we will touch kernel stack overflow
2998 	 */
2999 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
3000 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
3001 		return -EINVAL;
3002 	}
3003 #endif /* CONFIG_PPC32 */
3004 	/*
3005 	 * Check if we already set since that means we'll
3006 	 * lose the previous value.
3007 	 */
3008 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3009 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3010 	return 0;
3011 }
3012 
do_signext(unsigned long * valp,int size)3013 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3014 {
3015 	switch (size) {
3016 	case 2:
3017 		*valp = (signed short) *valp;
3018 		break;
3019 	case 4:
3020 		*valp = (signed int) *valp;
3021 		break;
3022 	}
3023 }
3024 
do_byterev(unsigned long * valp,int size)3025 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3026 {
3027 	switch (size) {
3028 	case 2:
3029 		*valp = byterev_2(*valp);
3030 		break;
3031 	case 4:
3032 		*valp = byterev_4(*valp);
3033 		break;
3034 #ifdef __powerpc64__
3035 	case 8:
3036 		*valp = byterev_8(*valp);
3037 		break;
3038 #endif
3039 	}
3040 }
3041 
3042 /*
3043  * Emulate an instruction that can be executed just by updating
3044  * fields in *regs.
3045  */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)3046 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3047 {
3048 	unsigned long next_pc;
3049 
3050 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3051 	switch (GETTYPE(op->type)) {
3052 	case COMPUTE:
3053 		if (op->type & SETREG)
3054 			regs->gpr[op->reg] = op->val;
3055 		if (op->type & SETCC)
3056 			regs->ccr = op->ccval;
3057 		if (op->type & SETXER)
3058 			regs->xer = op->xerval;
3059 		break;
3060 
3061 	case BRANCH:
3062 		if (op->type & SETLK)
3063 			regs->link = next_pc;
3064 		if (op->type & BRTAKEN)
3065 			next_pc = op->val;
3066 		if (op->type & DECCTR)
3067 			--regs->ctr;
3068 		break;
3069 
3070 	case BARRIER:
3071 		switch (op->type & BARRIER_MASK) {
3072 		case BARRIER_SYNC:
3073 			mb();
3074 			break;
3075 		case BARRIER_ISYNC:
3076 			isync();
3077 			break;
3078 		case BARRIER_EIEIO:
3079 			eieio();
3080 			break;
3081 #ifdef CONFIG_PPC64
3082 		case BARRIER_LWSYNC:
3083 			asm volatile("lwsync" : : : "memory");
3084 			break;
3085 		case BARRIER_PTESYNC:
3086 			asm volatile("ptesync" : : : "memory");
3087 			break;
3088 #endif
3089 		}
3090 		break;
3091 
3092 	case MFSPR:
3093 		switch (op->spr) {
3094 		case SPRN_XER:
3095 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3096 			break;
3097 		case SPRN_LR:
3098 			regs->gpr[op->reg] = regs->link;
3099 			break;
3100 		case SPRN_CTR:
3101 			regs->gpr[op->reg] = regs->ctr;
3102 			break;
3103 		default:
3104 			WARN_ON_ONCE(1);
3105 		}
3106 		break;
3107 
3108 	case MTSPR:
3109 		switch (op->spr) {
3110 		case SPRN_XER:
3111 			regs->xer = op->val & 0xffffffffUL;
3112 			break;
3113 		case SPRN_LR:
3114 			regs->link = op->val;
3115 			break;
3116 		case SPRN_CTR:
3117 			regs->ctr = op->val;
3118 			break;
3119 		default:
3120 			WARN_ON_ONCE(1);
3121 		}
3122 		break;
3123 
3124 	default:
3125 		WARN_ON_ONCE(1);
3126 	}
3127 	regs->nip = next_pc;
3128 }
3129 NOKPROBE_SYMBOL(emulate_update_regs);
3130 
3131 /*
3132  * Emulate a previously-analysed load or store instruction.
3133  * Return values are:
3134  * 0 = instruction emulated successfully
3135  * -EFAULT = address out of range or access faulted (regs->dar
3136  *	     contains the faulting address)
3137  * -EACCES = misaligned access, instruction requires alignment
3138  * -EINVAL = unknown operation in *op
3139  */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)3140 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3141 {
3142 	int err, size, type;
3143 	int i, rd, nb;
3144 	unsigned int cr;
3145 	unsigned long val;
3146 	unsigned long ea;
3147 	bool cross_endian;
3148 
3149 	err = 0;
3150 	size = GETSIZE(op->type);
3151 	type = GETTYPE(op->type);
3152 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3153 	ea = truncate_if_32bit(regs->msr, op->ea);
3154 
3155 	switch (type) {
3156 	case LARX:
3157 		if (ea & (size - 1))
3158 			return -EACCES;		/* can't handle misaligned */
3159 		if (!address_ok(regs, ea, size))
3160 			return -EFAULT;
3161 		err = 0;
3162 		val = 0;
3163 		switch (size) {
3164 #ifdef __powerpc64__
3165 		case 1:
3166 			__get_user_asmx(val, ea, err, "lbarx");
3167 			break;
3168 		case 2:
3169 			__get_user_asmx(val, ea, err, "lharx");
3170 			break;
3171 #endif
3172 		case 4:
3173 			__get_user_asmx(val, ea, err, "lwarx");
3174 			break;
3175 #ifdef __powerpc64__
3176 		case 8:
3177 			__get_user_asmx(val, ea, err, "ldarx");
3178 			break;
3179 		case 16:
3180 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3181 			break;
3182 #endif
3183 		default:
3184 			return -EINVAL;
3185 		}
3186 		if (err) {
3187 			regs->dar = ea;
3188 			break;
3189 		}
3190 		if (size < 16)
3191 			regs->gpr[op->reg] = val;
3192 		break;
3193 
3194 	case STCX:
3195 		if (ea & (size - 1))
3196 			return -EACCES;		/* can't handle misaligned */
3197 		if (!address_ok(regs, ea, size))
3198 			return -EFAULT;
3199 		err = 0;
3200 		switch (size) {
3201 #ifdef __powerpc64__
3202 		case 1:
3203 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3204 			break;
3205 		case 2:
3206 			__put_user_asmx(op->val, ea, err, "sthcx.", cr);
3207 			break;
3208 #endif
3209 		case 4:
3210 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3211 			break;
3212 #ifdef __powerpc64__
3213 		case 8:
3214 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3215 			break;
3216 		case 16:
3217 			err = do_stqcx(ea, regs->gpr[op->reg],
3218 				       regs->gpr[op->reg + 1], &cr);
3219 			break;
3220 #endif
3221 		default:
3222 			return -EINVAL;
3223 		}
3224 		if (!err)
3225 			regs->ccr = (regs->ccr & 0x0fffffff) |
3226 				(cr & 0xe0000000) |
3227 				((regs->xer >> 3) & 0x10000000);
3228 		else
3229 			regs->dar = ea;
3230 		break;
3231 
3232 	case LOAD:
3233 #ifdef __powerpc64__
3234 		if (size == 16) {
3235 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3236 			break;
3237 		}
3238 #endif
3239 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3240 		if (!err) {
3241 			if (op->type & SIGNEXT)
3242 				do_signext(&regs->gpr[op->reg], size);
3243 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3244 				do_byterev(&regs->gpr[op->reg], size);
3245 		}
3246 		break;
3247 
3248 #ifdef CONFIG_PPC_FPU
3249 	case LOAD_FP:
3250 		/*
3251 		 * If the instruction is in userspace, we can emulate it even
3252 		 * if the VMX state is not live, because we have the state
3253 		 * stored in the thread_struct.  If the instruction is in
3254 		 * the kernel, we must not touch the state in the thread_struct.
3255 		 */
3256 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3257 			return 0;
3258 		err = do_fp_load(op, ea, regs, cross_endian);
3259 		break;
3260 #endif
3261 #ifdef CONFIG_ALTIVEC
3262 	case LOAD_VMX:
3263 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3264 			return 0;
3265 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3266 		break;
3267 #endif
3268 #ifdef CONFIG_VSX
3269 	case LOAD_VSX: {
3270 		unsigned long msrbit = MSR_VSX;
3271 
3272 		/*
3273 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3274 		 * when the target of the instruction is a vector register.
3275 		 */
3276 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3277 			msrbit = MSR_VEC;
3278 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3279 			return 0;
3280 		err = do_vsx_load(op, ea, regs, cross_endian);
3281 		break;
3282 	}
3283 #endif
3284 	case LOAD_MULTI:
3285 		if (!address_ok(regs, ea, size))
3286 			return -EFAULT;
3287 		rd = op->reg;
3288 		for (i = 0; i < size; i += 4) {
3289 			unsigned int v32 = 0;
3290 
3291 			nb = size - i;
3292 			if (nb > 4)
3293 				nb = 4;
3294 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3295 			if (err)
3296 				break;
3297 			if (unlikely(cross_endian))
3298 				v32 = byterev_4(v32);
3299 			regs->gpr[rd] = v32;
3300 			ea += 4;
3301 			/* reg number wraps from 31 to 0 for lsw[ix] */
3302 			rd = (rd + 1) & 0x1f;
3303 		}
3304 		break;
3305 
3306 	case STORE:
3307 #ifdef __powerpc64__
3308 		if (size == 16) {
3309 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3310 			break;
3311 		}
3312 #endif
3313 		if ((op->type & UPDATE) && size == sizeof(long) &&
3314 		    op->reg == 1 && op->update_reg == 1 &&
3315 		    !(regs->msr & MSR_PR) &&
3316 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3317 			err = handle_stack_update(ea, regs);
3318 			break;
3319 		}
3320 		if (unlikely(cross_endian))
3321 			do_byterev(&op->val, size);
3322 		err = write_mem(op->val, ea, size, regs);
3323 		break;
3324 
3325 #ifdef CONFIG_PPC_FPU
3326 	case STORE_FP:
3327 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3328 			return 0;
3329 		err = do_fp_store(op, ea, regs, cross_endian);
3330 		break;
3331 #endif
3332 #ifdef CONFIG_ALTIVEC
3333 	case STORE_VMX:
3334 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3335 			return 0;
3336 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3337 		break;
3338 #endif
3339 #ifdef CONFIG_VSX
3340 	case STORE_VSX: {
3341 		unsigned long msrbit = MSR_VSX;
3342 
3343 		/*
3344 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3345 		 * when the target of the instruction is a vector register.
3346 		 */
3347 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3348 			msrbit = MSR_VEC;
3349 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3350 			return 0;
3351 		err = do_vsx_store(op, ea, regs, cross_endian);
3352 		break;
3353 	}
3354 #endif
3355 	case STORE_MULTI:
3356 		if (!address_ok(regs, ea, size))
3357 			return -EFAULT;
3358 		rd = op->reg;
3359 		for (i = 0; i < size; i += 4) {
3360 			unsigned int v32 = regs->gpr[rd];
3361 
3362 			nb = size - i;
3363 			if (nb > 4)
3364 				nb = 4;
3365 			if (unlikely(cross_endian))
3366 				v32 = byterev_4(v32);
3367 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3368 			if (err)
3369 				break;
3370 			ea += 4;
3371 			/* reg number wraps from 31 to 0 for stsw[ix] */
3372 			rd = (rd + 1) & 0x1f;
3373 		}
3374 		break;
3375 
3376 	default:
3377 		return -EINVAL;
3378 	}
3379 
3380 	if (err)
3381 		return err;
3382 
3383 	if (op->type & UPDATE)
3384 		regs->gpr[op->update_reg] = op->ea;
3385 
3386 	return 0;
3387 }
3388 NOKPROBE_SYMBOL(emulate_loadstore);
3389 
3390 /*
3391  * Emulate instructions that cause a transfer of control,
3392  * loads and stores, and a few other instructions.
3393  * Returns 1 if the step was emulated, 0 if not,
3394  * or -1 if the instruction is one that should not be stepped,
3395  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3396  */
emulate_step(struct pt_regs * regs,struct ppc_inst instr)3397 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3398 {
3399 	struct instruction_op op;
3400 	int r, err, type;
3401 	unsigned long val;
3402 	unsigned long ea;
3403 
3404 	r = analyse_instr(&op, regs, instr);
3405 	if (r < 0)
3406 		return r;
3407 	if (r > 0) {
3408 		emulate_update_regs(regs, &op);
3409 		return 1;
3410 	}
3411 
3412 	err = 0;
3413 	type = GETTYPE(op.type);
3414 
3415 	if (OP_IS_LOAD_STORE(type)) {
3416 		err = emulate_loadstore(regs, &op);
3417 		if (err)
3418 			return 0;
3419 		goto instr_done;
3420 	}
3421 
3422 	switch (type) {
3423 	case CACHEOP:
3424 		ea = truncate_if_32bit(regs->msr, op.ea);
3425 		if (!address_ok(regs, ea, 8))
3426 			return 0;
3427 		switch (op.type & CACHEOP_MASK) {
3428 		case DCBST:
3429 			__cacheop_user_asmx(ea, err, "dcbst");
3430 			break;
3431 		case DCBF:
3432 			__cacheop_user_asmx(ea, err, "dcbf");
3433 			break;
3434 		case DCBTST:
3435 			if (op.reg == 0)
3436 				prefetchw((void *) ea);
3437 			break;
3438 		case DCBT:
3439 			if (op.reg == 0)
3440 				prefetch((void *) ea);
3441 			break;
3442 		case ICBI:
3443 			__cacheop_user_asmx(ea, err, "icbi");
3444 			break;
3445 		case DCBZ:
3446 			err = emulate_dcbz(ea, regs);
3447 			break;
3448 		}
3449 		if (err) {
3450 			regs->dar = ea;
3451 			return 0;
3452 		}
3453 		goto instr_done;
3454 
3455 	case MFMSR:
3456 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3457 		goto instr_done;
3458 
3459 	case MTMSR:
3460 		val = regs->gpr[op.reg];
3461 		if ((val & MSR_RI) == 0)
3462 			/* can't step mtmsr[d] that would clear MSR_RI */
3463 			return -1;
3464 		/* here op.val is the mask of bits to change */
3465 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3466 		goto instr_done;
3467 
3468 #ifdef CONFIG_PPC64
3469 	case SYSCALL:	/* sc */
3470 		/*
3471 		 * N.B. this uses knowledge about how the syscall
3472 		 * entry code works.  If that is changed, this will
3473 		 * need to be changed also.
3474 		 */
3475 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3476 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3477 				regs->gpr[0] == 0x1ebe) {
3478 			regs->msr ^= MSR_LE;
3479 			goto instr_done;
3480 		}
3481 		regs->gpr[9] = regs->gpr[13];
3482 		regs->gpr[10] = MSR_KERNEL;
3483 		regs->gpr[11] = regs->nip + 4;
3484 		regs->gpr[12] = regs->msr & MSR_MASK;
3485 		regs->gpr[13] = (unsigned long) get_paca();
3486 		regs->nip = (unsigned long) &system_call_common;
3487 		regs->msr = MSR_KERNEL;
3488 		return 1;
3489 
3490 #ifdef CONFIG_PPC_BOOK3S_64
3491 	case SYSCALL_VECTORED_0:	/* scv 0 */
3492 		regs->gpr[9] = regs->gpr[13];
3493 		regs->gpr[10] = MSR_KERNEL;
3494 		regs->gpr[11] = regs->nip + 4;
3495 		regs->gpr[12] = regs->msr & MSR_MASK;
3496 		regs->gpr[13] = (unsigned long) get_paca();
3497 		regs->nip = (unsigned long) &system_call_vectored_emulate;
3498 		regs->msr = MSR_KERNEL;
3499 		return 1;
3500 #endif
3501 
3502 	case RFI:
3503 		return -1;
3504 #endif
3505 	}
3506 	return 0;
3507 
3508  instr_done:
3509 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3510 	return 1;
3511 }
3512 NOKPROBE_SYMBOL(emulate_step);
3513