1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9 /*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12
13 #include <stdarg.h>
14
15 #include <linux/errno.h>
16 #include <linux/export.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/fs.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/compat.h>
31 #include <linux/tick.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/perf_event.h>
35 #include <linux/elfcore.h>
36 #include <linux/sysrq.h>
37 #include <linux/nmi.h>
38 #include <linux/context_tracking.h>
39 #include <linux/signal.h>
40
41 #include <linux/uaccess.h>
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/processor.h>
45 #include <asm/pstate.h>
46 #include <asm/elf.h>
47 #include <asm/fpumacro.h>
48 #include <asm/head.h>
49 #include <asm/cpudata.h>
50 #include <asm/mmu_context.h>
51 #include <asm/unistd.h>
52 #include <asm/hypervisor.h>
53 #include <asm/syscalls.h>
54 #include <asm/irq_regs.h>
55 #include <asm/smp.h>
56 #include <asm/pcr.h>
57
58 #include "kstack.h"
59
60 /* Idle loop support on sparc64. */
arch_cpu_idle(void)61 void arch_cpu_idle(void)
62 {
63 if (tlb_type != hypervisor) {
64 touch_nmi_watchdog();
65 raw_local_irq_enable();
66 } else {
67 unsigned long pstate;
68
69 raw_local_irq_enable();
70
71 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
72 * the cpu sleep hypervisor call.
73 */
74 __asm__ __volatile__(
75 "rdpr %%pstate, %0\n\t"
76 "andn %0, %1, %0\n\t"
77 "wrpr %0, %%g0, %%pstate"
78 : "=&r" (pstate)
79 : "i" (PSTATE_IE));
80
81 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
82 sun4v_cpu_yield();
83 /* If resumed by cpu_poke then we need to explicitly
84 * call scheduler_ipi().
85 */
86 scheduler_poke();
87 }
88
89 /* Re-enable interrupts. */
90 __asm__ __volatile__(
91 "rdpr %%pstate, %0\n\t"
92 "or %0, %1, %0\n\t"
93 "wrpr %0, %%g0, %%pstate"
94 : "=&r" (pstate)
95 : "i" (PSTATE_IE));
96 }
97 }
98
99 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)100 void arch_cpu_idle_dead(void)
101 {
102 sched_preempt_enable_no_resched();
103 cpu_play_dead();
104 }
105 #endif
106
107 #ifdef CONFIG_COMPAT
show_regwindow32(struct pt_regs * regs)108 static void show_regwindow32(struct pt_regs *regs)
109 {
110 struct reg_window32 __user *rw;
111 struct reg_window32 r_w;
112 mm_segment_t old_fs;
113
114 __asm__ __volatile__ ("flushw");
115 rw = compat_ptr((unsigned int)regs->u_regs[14]);
116 old_fs = get_fs();
117 set_fs (USER_DS);
118 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
119 set_fs (old_fs);
120 return;
121 }
122
123 set_fs (old_fs);
124 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
125 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
126 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
127 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
128 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
129 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
130 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
131 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
132 }
133 #else
134 #define show_regwindow32(regs) do { } while (0)
135 #endif
136
show_regwindow(struct pt_regs * regs)137 static void show_regwindow(struct pt_regs *regs)
138 {
139 struct reg_window __user *rw;
140 struct reg_window *rwk;
141 struct reg_window r_w;
142 mm_segment_t old_fs;
143
144 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
145 __asm__ __volatile__ ("flushw");
146 rw = (struct reg_window __user *)
147 (regs->u_regs[14] + STACK_BIAS);
148 rwk = (struct reg_window *)
149 (regs->u_regs[14] + STACK_BIAS);
150 if (!(regs->tstate & TSTATE_PRIV)) {
151 old_fs = get_fs();
152 set_fs (USER_DS);
153 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
154 set_fs (old_fs);
155 return;
156 }
157 rwk = &r_w;
158 set_fs (old_fs);
159 }
160 } else {
161 show_regwindow32(regs);
162 return;
163 }
164 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
165 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
166 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
167 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
168 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
169 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
170 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
171 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
172 if (regs->tstate & TSTATE_PRIV)
173 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
174 }
175
show_regs(struct pt_regs * regs)176 void show_regs(struct pt_regs *regs)
177 {
178 show_regs_print_info(KERN_DEFAULT);
179
180 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
181 regs->tpc, regs->tnpc, regs->y, print_tainted());
182 printk("TPC: <%pS>\n", (void *) regs->tpc);
183 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
184 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
185 regs->u_regs[3]);
186 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
187 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
188 regs->u_regs[7]);
189 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
190 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
191 regs->u_regs[11]);
192 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
193 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
194 regs->u_regs[15]);
195 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
196 show_regwindow(regs);
197 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
198 }
199
200 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
201 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
202
__global_reg_self(struct thread_info * tp,struct pt_regs * regs,int this_cpu)203 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
204 int this_cpu)
205 {
206 struct global_reg_snapshot *rp;
207
208 flushw_all();
209
210 rp = &global_cpu_snapshot[this_cpu].reg;
211
212 rp->tstate = regs->tstate;
213 rp->tpc = regs->tpc;
214 rp->tnpc = regs->tnpc;
215 rp->o7 = regs->u_regs[UREG_I7];
216
217 if (regs->tstate & TSTATE_PRIV) {
218 struct reg_window *rw;
219
220 rw = (struct reg_window *)
221 (regs->u_regs[UREG_FP] + STACK_BIAS);
222 if (kstack_valid(tp, (unsigned long) rw)) {
223 rp->i7 = rw->ins[7];
224 rw = (struct reg_window *)
225 (rw->ins[6] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw))
227 rp->rpc = rw->ins[7];
228 }
229 } else {
230 rp->i7 = 0;
231 rp->rpc = 0;
232 }
233 rp->thread = tp;
234 }
235
236 /* In order to avoid hangs we do not try to synchronize with the
237 * global register dump client cpus. The last store they make is to
238 * the thread pointer, so do a short poll waiting for that to become
239 * non-NULL.
240 */
__global_reg_poll(struct global_reg_snapshot * gp)241 static void __global_reg_poll(struct global_reg_snapshot *gp)
242 {
243 int limit = 0;
244
245 while (!gp->thread && ++limit < 100) {
246 barrier();
247 udelay(1);
248 }
249 }
250
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)251 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
252 {
253 struct thread_info *tp = current_thread_info();
254 struct pt_regs *regs = get_irq_regs();
255 unsigned long flags;
256 int this_cpu, cpu;
257
258 if (!regs)
259 regs = tp->kregs;
260
261 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
262
263 this_cpu = raw_smp_processor_id();
264
265 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
266
267 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
268 __global_reg_self(tp, regs, this_cpu);
269
270 smp_fetch_global_regs();
271
272 for_each_cpu(cpu, mask) {
273 struct global_reg_snapshot *gp;
274
275 if (exclude_self && cpu == this_cpu)
276 continue;
277
278 gp = &global_cpu_snapshot[cpu].reg;
279
280 __global_reg_poll(gp);
281
282 tp = gp->thread;
283 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284 (cpu == this_cpu ? '*' : ' '), cpu,
285 gp->tstate, gp->tpc, gp->tnpc,
286 ((tp && tp->task) ? tp->task->comm : "NULL"),
287 ((tp && tp->task) ? tp->task->pid : -1));
288
289 if (gp->tstate & TSTATE_PRIV) {
290 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291 (void *) gp->tpc,
292 (void *) gp->o7,
293 (void *) gp->i7,
294 (void *) gp->rpc);
295 } else {
296 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297 gp->tpc, gp->o7, gp->i7, gp->rpc);
298 }
299
300 touch_nmi_watchdog();
301 }
302
303 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
304
305 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
306 }
307
308 #ifdef CONFIG_MAGIC_SYSRQ
309
sysrq_handle_globreg(int key)310 static void sysrq_handle_globreg(int key)
311 {
312 trigger_all_cpu_backtrace();
313 }
314
315 static const struct sysrq_key_op sparc_globalreg_op = {
316 .handler = sysrq_handle_globreg,
317 .help_msg = "global-regs(y)",
318 .action_msg = "Show Global CPU Regs",
319 };
320
__global_pmu_self(int this_cpu)321 static void __global_pmu_self(int this_cpu)
322 {
323 struct global_pmu_snapshot *pp;
324 int i, num;
325
326 if (!pcr_ops)
327 return;
328
329 pp = &global_cpu_snapshot[this_cpu].pmu;
330
331 num = 1;
332 if (tlb_type == hypervisor &&
333 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
334 num = 4;
335
336 for (i = 0; i < num; i++) {
337 pp->pcr[i] = pcr_ops->read_pcr(i);
338 pp->pic[i] = pcr_ops->read_pic(i);
339 }
340 }
341
__global_pmu_poll(struct global_pmu_snapshot * pp)342 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
343 {
344 int limit = 0;
345
346 while (!pp->pcr[0] && ++limit < 100) {
347 barrier();
348 udelay(1);
349 }
350 }
351
pmu_snapshot_all_cpus(void)352 static void pmu_snapshot_all_cpus(void)
353 {
354 unsigned long flags;
355 int this_cpu, cpu;
356
357 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
358
359 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
360
361 this_cpu = raw_smp_processor_id();
362
363 __global_pmu_self(this_cpu);
364
365 smp_fetch_global_pmu();
366
367 for_each_online_cpu(cpu) {
368 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
369
370 __global_pmu_poll(pp);
371
372 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
373 (cpu == this_cpu ? '*' : ' '), cpu,
374 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
375 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
376
377 touch_nmi_watchdog();
378 }
379
380 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
381
382 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
383 }
384
sysrq_handle_globpmu(int key)385 static void sysrq_handle_globpmu(int key)
386 {
387 pmu_snapshot_all_cpus();
388 }
389
390 static const struct sysrq_key_op sparc_globalpmu_op = {
391 .handler = sysrq_handle_globpmu,
392 .help_msg = "global-pmu(x)",
393 .action_msg = "Show Global PMU Regs",
394 };
395
sparc_sysrq_init(void)396 static int __init sparc_sysrq_init(void)
397 {
398 int ret = register_sysrq_key('y', &sparc_globalreg_op);
399
400 if (!ret)
401 ret = register_sysrq_key('x', &sparc_globalpmu_op);
402 return ret;
403 }
404
405 core_initcall(sparc_sysrq_init);
406
407 #endif
408
409 /* Free current thread data structures etc.. */
exit_thread(struct task_struct * tsk)410 void exit_thread(struct task_struct *tsk)
411 {
412 struct thread_info *t = task_thread_info(tsk);
413
414 if (t->utraps) {
415 if (t->utraps[0] < 2)
416 kfree (t->utraps);
417 else
418 t->utraps[0]--;
419 }
420 }
421
flush_thread(void)422 void flush_thread(void)
423 {
424 struct thread_info *t = current_thread_info();
425 struct mm_struct *mm;
426
427 mm = t->task->mm;
428 if (mm)
429 tsb_context_switch(mm);
430
431 set_thread_wsaved(0);
432
433 /* Clear FPU register state. */
434 t->fpsaved[0] = 0;
435 }
436
437 /* It's a bit more tricky when 64-bit tasks are involved... */
clone_stackframe(unsigned long csp,unsigned long psp)438 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
439 {
440 bool stack_64bit = test_thread_64bit_stack(psp);
441 unsigned long fp, distance, rval;
442
443 if (stack_64bit) {
444 csp += STACK_BIAS;
445 psp += STACK_BIAS;
446 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
447 fp += STACK_BIAS;
448 if (test_thread_flag(TIF_32BIT))
449 fp &= 0xffffffff;
450 } else
451 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
452
453 /* Now align the stack as this is mandatory in the Sparc ABI
454 * due to how register windows work. This hides the
455 * restriction from thread libraries etc.
456 */
457 csp &= ~15UL;
458
459 distance = fp - psp;
460 rval = (csp - distance);
461 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
462 rval = 0;
463 else if (!stack_64bit) {
464 if (put_user(((u32)csp),
465 &(((struct reg_window32 __user *)rval)->ins[6])))
466 rval = 0;
467 } else {
468 if (put_user(((u64)csp - STACK_BIAS),
469 &(((struct reg_window __user *)rval)->ins[6])))
470 rval = 0;
471 else
472 rval = rval - STACK_BIAS;
473 }
474
475 return rval;
476 }
477
478 /* Standard stuff. */
shift_window_buffer(int first_win,int last_win,struct thread_info * t)479 static inline void shift_window_buffer(int first_win, int last_win,
480 struct thread_info *t)
481 {
482 int i;
483
484 for (i = first_win; i < last_win; i++) {
485 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
486 memcpy(&t->reg_window[i], &t->reg_window[i+1],
487 sizeof(struct reg_window));
488 }
489 }
490
synchronize_user_stack(void)491 void synchronize_user_stack(void)
492 {
493 struct thread_info *t = current_thread_info();
494 unsigned long window;
495
496 flush_user_windows();
497 if ((window = get_thread_wsaved()) != 0) {
498 window -= 1;
499 do {
500 struct reg_window *rwin = &t->reg_window[window];
501 int winsize = sizeof(struct reg_window);
502 unsigned long sp;
503
504 sp = t->rwbuf_stkptrs[window];
505
506 if (test_thread_64bit_stack(sp))
507 sp += STACK_BIAS;
508 else
509 winsize = sizeof(struct reg_window32);
510
511 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
512 shift_window_buffer(window, get_thread_wsaved() - 1, t);
513 set_thread_wsaved(get_thread_wsaved() - 1);
514 }
515 } while (window--);
516 }
517 }
518
stack_unaligned(unsigned long sp)519 static void stack_unaligned(unsigned long sp)
520 {
521 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
522 }
523
524 static const char uwfault32[] = KERN_INFO \
525 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
526 static const char uwfault64[] = KERN_INFO \
527 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
528
fault_in_user_windows(struct pt_regs * regs)529 void fault_in_user_windows(struct pt_regs *regs)
530 {
531 struct thread_info *t = current_thread_info();
532 unsigned long window;
533
534 flush_user_windows();
535 window = get_thread_wsaved();
536
537 if (likely(window != 0)) {
538 window -= 1;
539 do {
540 struct reg_window *rwin = &t->reg_window[window];
541 int winsize = sizeof(struct reg_window);
542 unsigned long sp, orig_sp;
543
544 orig_sp = sp = t->rwbuf_stkptrs[window];
545
546 if (test_thread_64bit_stack(sp))
547 sp += STACK_BIAS;
548 else
549 winsize = sizeof(struct reg_window32);
550
551 if (unlikely(sp & 0x7UL))
552 stack_unaligned(sp);
553
554 if (unlikely(copy_to_user((char __user *)sp,
555 rwin, winsize))) {
556 if (show_unhandled_signals)
557 printk_ratelimited(is_compat_task() ?
558 uwfault32 : uwfault64,
559 current->comm, current->pid,
560 sp, orig_sp,
561 regs->tpc,
562 regs->u_regs[UREG_I7]);
563 goto barf;
564 }
565 } while (window--);
566 }
567 set_thread_wsaved(0);
568 return;
569
570 barf:
571 set_thread_wsaved(window + 1);
572 force_sig(SIGSEGV);
573 }
574
575 /* Copy a Sparc thread. The fork() return value conventions
576 * under SunOS are nothing short of bletcherous:
577 * Parent --> %o0 == childs pid, %o1 == 0
578 * Child --> %o0 == parents pid, %o1 == 1
579 */
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)580 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
581 struct task_struct *p, unsigned long tls)
582 {
583 struct thread_info *t = task_thread_info(p);
584 struct pt_regs *regs = current_pt_regs();
585 struct sparc_stackf *parent_sf;
586 unsigned long child_stack_sz;
587 char *child_trap_frame;
588
589 /* Calculate offset to stack_frame & pt_regs */
590 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
591 child_trap_frame = (task_stack_page(p) +
592 (THREAD_SIZE - child_stack_sz));
593
594 t->new_child = 1;
595 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
596 t->kregs = (struct pt_regs *) (child_trap_frame +
597 sizeof(struct sparc_stackf));
598 t->fpsaved[0] = 0;
599
600 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
601 memset(child_trap_frame, 0, child_stack_sz);
602 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
603 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
604 t->current_ds = ASI_P;
605 t->kregs->u_regs[UREG_G1] = sp; /* function */
606 t->kregs->u_regs[UREG_G2] = arg;
607 return 0;
608 }
609
610 parent_sf = ((struct sparc_stackf *) regs) - 1;
611 memcpy(child_trap_frame, parent_sf, child_stack_sz);
612 if (t->flags & _TIF_32BIT) {
613 sp &= 0x00000000ffffffffUL;
614 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
615 }
616 t->kregs->u_regs[UREG_FP] = sp;
617 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
618 (regs->tstate + 1) & TSTATE_CWP;
619 t->current_ds = ASI_AIUS;
620 if (sp != regs->u_regs[UREG_FP]) {
621 unsigned long csp;
622
623 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
624 if (!csp)
625 return -EFAULT;
626 t->kregs->u_regs[UREG_FP] = csp;
627 }
628 if (t->utraps)
629 t->utraps[0]++;
630
631 /* Set the return value for the child. */
632 t->kregs->u_regs[UREG_I0] = current->pid;
633 t->kregs->u_regs[UREG_I1] = 1;
634
635 /* Set the second return value for the parent. */
636 regs->u_regs[UREG_I1] = 0;
637
638 if (clone_flags & CLONE_SETTLS)
639 t->kregs->u_regs[UREG_G7] = tls;
640
641 return 0;
642 }
643
644 /* TIF_MCDPER in thread info flags for current task is updated lazily upon
645 * a context switch. Update this flag in current task's thread flags
646 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
647 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)648 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
649 {
650 if (adi_capable()) {
651 register unsigned long tmp_mcdper;
652
653 __asm__ __volatile__(
654 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
655 "mov %%g1, %0\n\t"
656 : "=r" (tmp_mcdper)
657 :
658 : "g1");
659 if (tmp_mcdper)
660 set_thread_flag(TIF_MCDPER);
661 else
662 clear_thread_flag(TIF_MCDPER);
663 }
664
665 *dst = *src;
666 return 0;
667 }
668
get_wchan(struct task_struct * task)669 unsigned long get_wchan(struct task_struct *task)
670 {
671 unsigned long pc, fp, bias = 0;
672 struct thread_info *tp;
673 struct reg_window *rw;
674 unsigned long ret = 0;
675 int count = 0;
676
677 if (!task || task == current ||
678 task->state == TASK_RUNNING)
679 goto out;
680
681 tp = task_thread_info(task);
682 bias = STACK_BIAS;
683 fp = task_thread_info(task)->ksp + bias;
684
685 do {
686 if (!kstack_valid(tp, fp))
687 break;
688 rw = (struct reg_window *) fp;
689 pc = rw->ins[7];
690 if (!in_sched_functions(pc)) {
691 ret = pc;
692 goto out;
693 }
694 fp = rw->ins[6] + bias;
695 } while (++count < 16);
696
697 out:
698 return ret;
699 }
700