1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11 #include <linux/version.h>
12 #include <linux/memblock.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/netdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/skbuff.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/firmware.h>
25 #include <linux/fs.h>
26 #include <uapi/linux/filter.h>
27 #include <init.h>
28 #include <irq_kern.h>
29 #include <irq_user.h>
30 #include <net_kern.h>
31 #include <os.h>
32 #include "mconsole_kern.h"
33 #include "vector_user.h"
34 #include "vector_kern.h"
35
36 /*
37 * Adapted from network devices with the following major changes:
38 * All transports are static - simplifies the code significantly
39 * Multiple FDs/IRQs per device
40 * Vector IO optionally used for read/write, falling back to legacy
41 * based on configuration and/or availability
42 * Configuration is no longer positional - L2TPv3 and GRE require up to
43 * 10 parameters, passing this as positional is not fit for purpose.
44 * Only socket transports are supported
45 */
46
47
48 #define DRIVER_NAME "uml-vector"
49 struct vector_cmd_line_arg {
50 struct list_head list;
51 int unit;
52 char *arguments;
53 };
54
55 struct vector_device {
56 struct list_head list;
57 struct net_device *dev;
58 struct platform_device pdev;
59 int unit;
60 int opened;
61 };
62
63 static LIST_HEAD(vec_cmd_line);
64
65 static DEFINE_SPINLOCK(vector_devices_lock);
66 static LIST_HEAD(vector_devices);
67
68 static int driver_registered;
69
70 static void vector_eth_configure(int n, struct arglist *def);
71
72 /* Argument accessors to set variables (and/or set default values)
73 * mtu, buffer sizing, default headroom, etc
74 */
75
76 #define DEFAULT_HEADROOM 2
77 #define SAFETY_MARGIN 32
78 #define DEFAULT_VECTOR_SIZE 64
79 #define TX_SMALL_PACKET 128
80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81 #define MAX_ITERATIONS 64
82
83 static const struct {
84 const char string[ETH_GSTRING_LEN];
85 } ethtool_stats_keys[] = {
86 { "rx_queue_max" },
87 { "rx_queue_running_average" },
88 { "tx_queue_max" },
89 { "tx_queue_running_average" },
90 { "rx_encaps_errors" },
91 { "tx_timeout_count" },
92 { "tx_restart_queue" },
93 { "tx_kicks" },
94 { "tx_flow_control_xon" },
95 { "tx_flow_control_xoff" },
96 { "rx_csum_offload_good" },
97 { "rx_csum_offload_errors"},
98 { "sg_ok"},
99 { "sg_linearized"},
100 };
101
102 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
103
vector_reset_stats(struct vector_private * vp)104 static void vector_reset_stats(struct vector_private *vp)
105 {
106 vp->estats.rx_queue_max = 0;
107 vp->estats.rx_queue_running_average = 0;
108 vp->estats.tx_queue_max = 0;
109 vp->estats.tx_queue_running_average = 0;
110 vp->estats.rx_encaps_errors = 0;
111 vp->estats.tx_timeout_count = 0;
112 vp->estats.tx_restart_queue = 0;
113 vp->estats.tx_kicks = 0;
114 vp->estats.tx_flow_control_xon = 0;
115 vp->estats.tx_flow_control_xoff = 0;
116 vp->estats.sg_ok = 0;
117 vp->estats.sg_linearized = 0;
118 }
119
get_mtu(struct arglist * def)120 static int get_mtu(struct arglist *def)
121 {
122 char *mtu = uml_vector_fetch_arg(def, "mtu");
123 long result;
124
125 if (mtu != NULL) {
126 if (kstrtoul(mtu, 10, &result) == 0)
127 if ((result < (1 << 16) - 1) && (result >= 576))
128 return result;
129 }
130 return ETH_MAX_PACKET;
131 }
132
get_bpf_file(struct arglist * def)133 static char *get_bpf_file(struct arglist *def)
134 {
135 return uml_vector_fetch_arg(def, "bpffile");
136 }
137
get_bpf_flash(struct arglist * def)138 static bool get_bpf_flash(struct arglist *def)
139 {
140 char *allow = uml_vector_fetch_arg(def, "bpfflash");
141 long result;
142
143 if (allow != NULL) {
144 if (kstrtoul(allow, 10, &result) == 0)
145 return (allow > 0);
146 }
147 return false;
148 }
149
get_depth(struct arglist * def)150 static int get_depth(struct arglist *def)
151 {
152 char *mtu = uml_vector_fetch_arg(def, "depth");
153 long result;
154
155 if (mtu != NULL) {
156 if (kstrtoul(mtu, 10, &result) == 0)
157 return result;
158 }
159 return DEFAULT_VECTOR_SIZE;
160 }
161
get_headroom(struct arglist * def)162 static int get_headroom(struct arglist *def)
163 {
164 char *mtu = uml_vector_fetch_arg(def, "headroom");
165 long result;
166
167 if (mtu != NULL) {
168 if (kstrtoul(mtu, 10, &result) == 0)
169 return result;
170 }
171 return DEFAULT_HEADROOM;
172 }
173
get_req_size(struct arglist * def)174 static int get_req_size(struct arglist *def)
175 {
176 char *gro = uml_vector_fetch_arg(def, "gro");
177 long result;
178
179 if (gro != NULL) {
180 if (kstrtoul(gro, 10, &result) == 0) {
181 if (result > 0)
182 return 65536;
183 }
184 }
185 return get_mtu(def) + ETH_HEADER_OTHER +
186 get_headroom(def) + SAFETY_MARGIN;
187 }
188
189
get_transport_options(struct arglist * def)190 static int get_transport_options(struct arglist *def)
191 {
192 char *transport = uml_vector_fetch_arg(def, "transport");
193 char *vector = uml_vector_fetch_arg(def, "vec");
194
195 int vec_rx = VECTOR_RX;
196 int vec_tx = VECTOR_TX;
197 long parsed;
198 int result = 0;
199
200 if (transport == NULL)
201 return -EINVAL;
202
203 if (vector != NULL) {
204 if (kstrtoul(vector, 10, &parsed) == 0) {
205 if (parsed == 0) {
206 vec_rx = 0;
207 vec_tx = 0;
208 }
209 }
210 }
211
212 if (get_bpf_flash(def))
213 result = VECTOR_BPF_FLASH;
214
215 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
216 return result;
217 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
218 return (result | vec_rx | VECTOR_BPF);
219 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
220 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
221 return (result | vec_rx | vec_tx);
222 }
223
224
225 /* A mini-buffer for packet drop read
226 * All of our supported transports are datagram oriented and we always
227 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
228 * than the packet size it still counts as full packet read and will
229 * clean the incoming stream to keep sigio/epoll happy
230 */
231
232 #define DROP_BUFFER_SIZE 32
233
234 static char *drop_buffer;
235
236 /* Array backed queues optimized for bulk enqueue/dequeue and
237 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
238 * For more details and full design rationale see
239 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
240 */
241
242
243 /*
244 * Advance the mmsg queue head by n = advance. Resets the queue to
245 * maximum enqueue/dequeue-at-once capacity if possible. Called by
246 * dequeuers. Caller must hold the head_lock!
247 */
248
vector_advancehead(struct vector_queue * qi,int advance)249 static int vector_advancehead(struct vector_queue *qi, int advance)
250 {
251 int queue_depth;
252
253 qi->head =
254 (qi->head + advance)
255 % qi->max_depth;
256
257
258 spin_lock(&qi->tail_lock);
259 qi->queue_depth -= advance;
260
261 /* we are at 0, use this to
262 * reset head and tail so we can use max size vectors
263 */
264
265 if (qi->queue_depth == 0) {
266 qi->head = 0;
267 qi->tail = 0;
268 }
269 queue_depth = qi->queue_depth;
270 spin_unlock(&qi->tail_lock);
271 return queue_depth;
272 }
273
274 /* Advance the queue tail by n = advance.
275 * This is called by enqueuers which should hold the
276 * head lock already
277 */
278
vector_advancetail(struct vector_queue * qi,int advance)279 static int vector_advancetail(struct vector_queue *qi, int advance)
280 {
281 int queue_depth;
282
283 qi->tail =
284 (qi->tail + advance)
285 % qi->max_depth;
286 spin_lock(&qi->head_lock);
287 qi->queue_depth += advance;
288 queue_depth = qi->queue_depth;
289 spin_unlock(&qi->head_lock);
290 return queue_depth;
291 }
292
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)293 static int prep_msg(struct vector_private *vp,
294 struct sk_buff *skb,
295 struct iovec *iov)
296 {
297 int iov_index = 0;
298 int nr_frags, frag;
299 skb_frag_t *skb_frag;
300
301 nr_frags = skb_shinfo(skb)->nr_frags;
302 if (nr_frags > MAX_IOV_SIZE) {
303 if (skb_linearize(skb) != 0)
304 goto drop;
305 }
306 if (vp->header_size > 0) {
307 iov[iov_index].iov_len = vp->header_size;
308 vp->form_header(iov[iov_index].iov_base, skb, vp);
309 iov_index++;
310 }
311 iov[iov_index].iov_base = skb->data;
312 if (nr_frags > 0) {
313 iov[iov_index].iov_len = skb->len - skb->data_len;
314 vp->estats.sg_ok++;
315 } else
316 iov[iov_index].iov_len = skb->len;
317 iov_index++;
318 for (frag = 0; frag < nr_frags; frag++) {
319 skb_frag = &skb_shinfo(skb)->frags[frag];
320 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
321 iov[iov_index].iov_len = skb_frag_size(skb_frag);
322 iov_index++;
323 }
324 return iov_index;
325 drop:
326 return -1;
327 }
328 /*
329 * Generic vector enqueue with support for forming headers using transport
330 * specific callback. Allows GRE, L2TPv3, RAW and other transports
331 * to use a common enqueue procedure in vector mode
332 */
333
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)334 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
335 {
336 struct vector_private *vp = netdev_priv(qi->dev);
337 int queue_depth;
338 int packet_len;
339 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
340 int iov_count;
341
342 spin_lock(&qi->tail_lock);
343 spin_lock(&qi->head_lock);
344 queue_depth = qi->queue_depth;
345 spin_unlock(&qi->head_lock);
346
347 if (skb)
348 packet_len = skb->len;
349
350 if (queue_depth < qi->max_depth) {
351
352 *(qi->skbuff_vector + qi->tail) = skb;
353 mmsg_vector += qi->tail;
354 iov_count = prep_msg(
355 vp,
356 skb,
357 mmsg_vector->msg_hdr.msg_iov
358 );
359 if (iov_count < 1)
360 goto drop;
361 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
362 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
363 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
364 queue_depth = vector_advancetail(qi, 1);
365 } else
366 goto drop;
367 spin_unlock(&qi->tail_lock);
368 return queue_depth;
369 drop:
370 qi->dev->stats.tx_dropped++;
371 if (skb != NULL) {
372 packet_len = skb->len;
373 dev_consume_skb_any(skb);
374 netdev_completed_queue(qi->dev, 1, packet_len);
375 }
376 spin_unlock(&qi->tail_lock);
377 return queue_depth;
378 }
379
consume_vector_skbs(struct vector_queue * qi,int count)380 static int consume_vector_skbs(struct vector_queue *qi, int count)
381 {
382 struct sk_buff *skb;
383 int skb_index;
384 int bytes_compl = 0;
385
386 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
387 skb = *(qi->skbuff_vector + skb_index);
388 /* mark as empty to ensure correct destruction if
389 * needed
390 */
391 bytes_compl += skb->len;
392 *(qi->skbuff_vector + skb_index) = NULL;
393 dev_consume_skb_any(skb);
394 }
395 qi->dev->stats.tx_bytes += bytes_compl;
396 qi->dev->stats.tx_packets += count;
397 netdev_completed_queue(qi->dev, count, bytes_compl);
398 return vector_advancehead(qi, count);
399 }
400
401 /*
402 * Generic vector deque via sendmmsg with support for forming headers
403 * using transport specific callback. Allows GRE, L2TPv3, RAW and
404 * other transports to use a common dequeue procedure in vector mode
405 */
406
407
vector_send(struct vector_queue * qi)408 static int vector_send(struct vector_queue *qi)
409 {
410 struct vector_private *vp = netdev_priv(qi->dev);
411 struct mmsghdr *send_from;
412 int result = 0, send_len, queue_depth = qi->max_depth;
413
414 if (spin_trylock(&qi->head_lock)) {
415 if (spin_trylock(&qi->tail_lock)) {
416 /* update queue_depth to current value */
417 queue_depth = qi->queue_depth;
418 spin_unlock(&qi->tail_lock);
419 while (queue_depth > 0) {
420 /* Calculate the start of the vector */
421 send_len = queue_depth;
422 send_from = qi->mmsg_vector;
423 send_from += qi->head;
424 /* Adjust vector size if wraparound */
425 if (send_len + qi->head > qi->max_depth)
426 send_len = qi->max_depth - qi->head;
427 /* Try to TX as many packets as possible */
428 if (send_len > 0) {
429 result = uml_vector_sendmmsg(
430 vp->fds->tx_fd,
431 send_from,
432 send_len,
433 0
434 );
435 vp->in_write_poll =
436 (result != send_len);
437 }
438 /* For some of the sendmmsg error scenarios
439 * we may end being unsure in the TX success
440 * for all packets. It is safer to declare
441 * them all TX-ed and blame the network.
442 */
443 if (result < 0) {
444 if (net_ratelimit())
445 netdev_err(vp->dev, "sendmmsg err=%i\n",
446 result);
447 vp->in_error = true;
448 result = send_len;
449 }
450 if (result > 0) {
451 queue_depth =
452 consume_vector_skbs(qi, result);
453 /* This is equivalent to an TX IRQ.
454 * Restart the upper layers to feed us
455 * more packets.
456 */
457 if (result > vp->estats.tx_queue_max)
458 vp->estats.tx_queue_max = result;
459 vp->estats.tx_queue_running_average =
460 (vp->estats.tx_queue_running_average + result) >> 1;
461 }
462 netif_trans_update(qi->dev);
463 netif_wake_queue(qi->dev);
464 /* if TX is busy, break out of the send loop,
465 * poll write IRQ will reschedule xmit for us
466 */
467 if (result != send_len) {
468 vp->estats.tx_restart_queue++;
469 break;
470 }
471 }
472 }
473 spin_unlock(&qi->head_lock);
474 } else {
475 tasklet_schedule(&vp->tx_poll);
476 }
477 return queue_depth;
478 }
479
480 /* Queue destructor. Deliberately stateless so we can use
481 * it in queue cleanup if initialization fails.
482 */
483
destroy_queue(struct vector_queue * qi)484 static void destroy_queue(struct vector_queue *qi)
485 {
486 int i;
487 struct iovec *iov;
488 struct vector_private *vp = netdev_priv(qi->dev);
489 struct mmsghdr *mmsg_vector;
490
491 if (qi == NULL)
492 return;
493 /* deallocate any skbuffs - we rely on any unused to be
494 * set to NULL.
495 */
496 if (qi->skbuff_vector != NULL) {
497 for (i = 0; i < qi->max_depth; i++) {
498 if (*(qi->skbuff_vector + i) != NULL)
499 dev_kfree_skb_any(*(qi->skbuff_vector + i));
500 }
501 kfree(qi->skbuff_vector);
502 }
503 /* deallocate matching IOV structures including header buffs */
504 if (qi->mmsg_vector != NULL) {
505 mmsg_vector = qi->mmsg_vector;
506 for (i = 0; i < qi->max_depth; i++) {
507 iov = mmsg_vector->msg_hdr.msg_iov;
508 if (iov != NULL) {
509 if ((vp->header_size > 0) &&
510 (iov->iov_base != NULL))
511 kfree(iov->iov_base);
512 kfree(iov);
513 }
514 mmsg_vector++;
515 }
516 kfree(qi->mmsg_vector);
517 }
518 kfree(qi);
519 }
520
521 /*
522 * Queue constructor. Create a queue with a given side.
523 */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)524 static struct vector_queue *create_queue(
525 struct vector_private *vp,
526 int max_size,
527 int header_size,
528 int num_extra_frags)
529 {
530 struct vector_queue *result;
531 int i;
532 struct iovec *iov;
533 struct mmsghdr *mmsg_vector;
534
535 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
536 if (result == NULL)
537 return NULL;
538 result->max_depth = max_size;
539 result->dev = vp->dev;
540 result->mmsg_vector = kmalloc(
541 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
542 if (result->mmsg_vector == NULL)
543 goto out_mmsg_fail;
544 result->skbuff_vector = kmalloc(
545 (sizeof(void *) * max_size), GFP_KERNEL);
546 if (result->skbuff_vector == NULL)
547 goto out_skb_fail;
548
549 /* further failures can be handled safely by destroy_queue*/
550
551 mmsg_vector = result->mmsg_vector;
552 for (i = 0; i < max_size; i++) {
553 /* Clear all pointers - we use non-NULL as marking on
554 * what to free on destruction
555 */
556 *(result->skbuff_vector + i) = NULL;
557 mmsg_vector->msg_hdr.msg_iov = NULL;
558 mmsg_vector++;
559 }
560 mmsg_vector = result->mmsg_vector;
561 result->max_iov_frags = num_extra_frags;
562 for (i = 0; i < max_size; i++) {
563 if (vp->header_size > 0)
564 iov = kmalloc_array(3 + num_extra_frags,
565 sizeof(struct iovec),
566 GFP_KERNEL
567 );
568 else
569 iov = kmalloc_array(2 + num_extra_frags,
570 sizeof(struct iovec),
571 GFP_KERNEL
572 );
573 if (iov == NULL)
574 goto out_fail;
575 mmsg_vector->msg_hdr.msg_iov = iov;
576 mmsg_vector->msg_hdr.msg_iovlen = 1;
577 mmsg_vector->msg_hdr.msg_control = NULL;
578 mmsg_vector->msg_hdr.msg_controllen = 0;
579 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
580 mmsg_vector->msg_hdr.msg_name = NULL;
581 mmsg_vector->msg_hdr.msg_namelen = 0;
582 if (vp->header_size > 0) {
583 iov->iov_base = kmalloc(header_size, GFP_KERNEL);
584 if (iov->iov_base == NULL)
585 goto out_fail;
586 iov->iov_len = header_size;
587 mmsg_vector->msg_hdr.msg_iovlen = 2;
588 iov++;
589 }
590 iov->iov_base = NULL;
591 iov->iov_len = 0;
592 mmsg_vector++;
593 }
594 spin_lock_init(&result->head_lock);
595 spin_lock_init(&result->tail_lock);
596 result->queue_depth = 0;
597 result->head = 0;
598 result->tail = 0;
599 return result;
600 out_skb_fail:
601 kfree(result->mmsg_vector);
602 out_mmsg_fail:
603 kfree(result);
604 return NULL;
605 out_fail:
606 destroy_queue(result);
607 return NULL;
608 }
609
610 /*
611 * We do not use the RX queue as a proper wraparound queue for now
612 * This is not necessary because the consumption via netif_rx()
613 * happens in-line. While we can try using the return code of
614 * netif_rx() for flow control there are no drivers doing this today.
615 * For this RX specific use we ignore the tail/head locks and
616 * just read into a prepared queue filled with skbuffs.
617 */
618
prep_skb(struct vector_private * vp,struct user_msghdr * msg)619 static struct sk_buff *prep_skb(
620 struct vector_private *vp,
621 struct user_msghdr *msg)
622 {
623 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
624 struct sk_buff *result;
625 int iov_index = 0, len;
626 struct iovec *iov = msg->msg_iov;
627 int err, nr_frags, frag;
628 skb_frag_t *skb_frag;
629
630 if (vp->req_size <= linear)
631 len = linear;
632 else
633 len = vp->req_size;
634 result = alloc_skb_with_frags(
635 linear,
636 len - vp->max_packet,
637 3,
638 &err,
639 GFP_ATOMIC
640 );
641 if (vp->header_size > 0)
642 iov_index++;
643 if (result == NULL) {
644 iov[iov_index].iov_base = NULL;
645 iov[iov_index].iov_len = 0;
646 goto done;
647 }
648 skb_reserve(result, vp->headroom);
649 result->dev = vp->dev;
650 skb_put(result, vp->max_packet);
651 result->data_len = len - vp->max_packet;
652 result->len += len - vp->max_packet;
653 skb_reset_mac_header(result);
654 result->ip_summed = CHECKSUM_NONE;
655 iov[iov_index].iov_base = result->data;
656 iov[iov_index].iov_len = vp->max_packet;
657 iov_index++;
658
659 nr_frags = skb_shinfo(result)->nr_frags;
660 for (frag = 0; frag < nr_frags; frag++) {
661 skb_frag = &skb_shinfo(result)->frags[frag];
662 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
663 if (iov[iov_index].iov_base != NULL)
664 iov[iov_index].iov_len = skb_frag_size(skb_frag);
665 else
666 iov[iov_index].iov_len = 0;
667 iov_index++;
668 }
669 done:
670 msg->msg_iovlen = iov_index;
671 return result;
672 }
673
674
675 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
676
prep_queue_for_rx(struct vector_queue * qi)677 static void prep_queue_for_rx(struct vector_queue *qi)
678 {
679 struct vector_private *vp = netdev_priv(qi->dev);
680 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
681 void **skbuff_vector = qi->skbuff_vector;
682 int i;
683
684 if (qi->queue_depth == 0)
685 return;
686 for (i = 0; i < qi->queue_depth; i++) {
687 /* it is OK if allocation fails - recvmmsg with NULL data in
688 * iov argument still performs an RX, just drops the packet
689 * This allows us stop faffing around with a "drop buffer"
690 */
691
692 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
693 skbuff_vector++;
694 mmsg_vector++;
695 }
696 qi->queue_depth = 0;
697 }
698
find_device(int n)699 static struct vector_device *find_device(int n)
700 {
701 struct vector_device *device;
702 struct list_head *ele;
703
704 spin_lock(&vector_devices_lock);
705 list_for_each(ele, &vector_devices) {
706 device = list_entry(ele, struct vector_device, list);
707 if (device->unit == n)
708 goto out;
709 }
710 device = NULL;
711 out:
712 spin_unlock(&vector_devices_lock);
713 return device;
714 }
715
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)716 static int vector_parse(char *str, int *index_out, char **str_out,
717 char **error_out)
718 {
719 int n, len, err;
720 char *start = str;
721
722 len = strlen(str);
723
724 while ((*str != ':') && (strlen(str) > 1))
725 str++;
726 if (*str != ':') {
727 *error_out = "Expected ':' after device number";
728 return -EINVAL;
729 }
730 *str = '\0';
731
732 err = kstrtouint(start, 0, &n);
733 if (err < 0) {
734 *error_out = "Bad device number";
735 return err;
736 }
737
738 str++;
739 if (find_device(n)) {
740 *error_out = "Device already configured";
741 return -EINVAL;
742 }
743
744 *index_out = n;
745 *str_out = str;
746 return 0;
747 }
748
vector_config(char * str,char ** error_out)749 static int vector_config(char *str, char **error_out)
750 {
751 int err, n;
752 char *params;
753 struct arglist *parsed;
754
755 err = vector_parse(str, &n, ¶ms, error_out);
756 if (err != 0)
757 return err;
758
759 /* This string is broken up and the pieces used by the underlying
760 * driver. We should copy it to make sure things do not go wrong
761 * later.
762 */
763
764 params = kstrdup(params, GFP_KERNEL);
765 if (params == NULL) {
766 *error_out = "vector_config failed to strdup string";
767 return -ENOMEM;
768 }
769
770 parsed = uml_parse_vector_ifspec(params);
771
772 if (parsed == NULL) {
773 *error_out = "vector_config failed to parse parameters";
774 kfree(params);
775 return -EINVAL;
776 }
777
778 vector_eth_configure(n, parsed);
779 return 0;
780 }
781
vector_id(char ** str,int * start_out,int * end_out)782 static int vector_id(char **str, int *start_out, int *end_out)
783 {
784 char *end;
785 int n;
786
787 n = simple_strtoul(*str, &end, 0);
788 if ((*end != '\0') || (end == *str))
789 return -1;
790
791 *start_out = n;
792 *end_out = n;
793 *str = end;
794 return n;
795 }
796
vector_remove(int n,char ** error_out)797 static int vector_remove(int n, char **error_out)
798 {
799 struct vector_device *vec_d;
800 struct net_device *dev;
801 struct vector_private *vp;
802
803 vec_d = find_device(n);
804 if (vec_d == NULL)
805 return -ENODEV;
806 dev = vec_d->dev;
807 vp = netdev_priv(dev);
808 if (vp->fds != NULL)
809 return -EBUSY;
810 unregister_netdev(dev);
811 platform_device_unregister(&vec_d->pdev);
812 return 0;
813 }
814
815 /*
816 * There is no shared per-transport initialization code, so
817 * we will just initialize each interface one by one and
818 * add them to a list
819 */
820
821 static struct platform_driver uml_net_driver = {
822 .driver = {
823 .name = DRIVER_NAME,
824 },
825 };
826
827
vector_device_release(struct device * dev)828 static void vector_device_release(struct device *dev)
829 {
830 struct vector_device *device = dev_get_drvdata(dev);
831 struct net_device *netdev = device->dev;
832
833 list_del(&device->list);
834 kfree(device);
835 free_netdev(netdev);
836 }
837
838 /* Bog standard recv using recvmsg - not used normally unless the user
839 * explicitly specifies not to use recvmmsg vector RX.
840 */
841
vector_legacy_rx(struct vector_private * vp)842 static int vector_legacy_rx(struct vector_private *vp)
843 {
844 int pkt_len;
845 struct user_msghdr hdr;
846 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
847 int iovpos = 0;
848 struct sk_buff *skb;
849 int header_check;
850
851 hdr.msg_name = NULL;
852 hdr.msg_namelen = 0;
853 hdr.msg_iov = (struct iovec *) &iov;
854 hdr.msg_control = NULL;
855 hdr.msg_controllen = 0;
856 hdr.msg_flags = 0;
857
858 if (vp->header_size > 0) {
859 iov[0].iov_base = vp->header_rxbuffer;
860 iov[0].iov_len = vp->header_size;
861 }
862
863 skb = prep_skb(vp, &hdr);
864
865 if (skb == NULL) {
866 /* Read a packet into drop_buffer and don't do
867 * anything with it.
868 */
869 iov[iovpos].iov_base = drop_buffer;
870 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
871 hdr.msg_iovlen = 1;
872 vp->dev->stats.rx_dropped++;
873 }
874
875 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
876 if (pkt_len < 0) {
877 vp->in_error = true;
878 return pkt_len;
879 }
880
881 if (skb != NULL) {
882 if (pkt_len > vp->header_size) {
883 if (vp->header_size > 0) {
884 header_check = vp->verify_header(
885 vp->header_rxbuffer, skb, vp);
886 if (header_check < 0) {
887 dev_kfree_skb_irq(skb);
888 vp->dev->stats.rx_dropped++;
889 vp->estats.rx_encaps_errors++;
890 return 0;
891 }
892 if (header_check > 0) {
893 vp->estats.rx_csum_offload_good++;
894 skb->ip_summed = CHECKSUM_UNNECESSARY;
895 }
896 }
897 pskb_trim(skb, pkt_len - vp->rx_header_size);
898 skb->protocol = eth_type_trans(skb, skb->dev);
899 vp->dev->stats.rx_bytes += skb->len;
900 vp->dev->stats.rx_packets++;
901 netif_rx(skb);
902 } else {
903 dev_kfree_skb_irq(skb);
904 }
905 }
906 return pkt_len;
907 }
908
909 /*
910 * Packet at a time TX which falls back to vector TX if the
911 * underlying transport is busy.
912 */
913
914
915
writev_tx(struct vector_private * vp,struct sk_buff * skb)916 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
917 {
918 struct iovec iov[3 + MAX_IOV_SIZE];
919 int iov_count, pkt_len = 0;
920
921 iov[0].iov_base = vp->header_txbuffer;
922 iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
923
924 if (iov_count < 1)
925 goto drop;
926
927 pkt_len = uml_vector_writev(
928 vp->fds->tx_fd,
929 (struct iovec *) &iov,
930 iov_count
931 );
932
933 if (pkt_len < 0)
934 goto drop;
935
936 netif_trans_update(vp->dev);
937 netif_wake_queue(vp->dev);
938
939 if (pkt_len > 0) {
940 vp->dev->stats.tx_bytes += skb->len;
941 vp->dev->stats.tx_packets++;
942 } else {
943 vp->dev->stats.tx_dropped++;
944 }
945 consume_skb(skb);
946 return pkt_len;
947 drop:
948 vp->dev->stats.tx_dropped++;
949 consume_skb(skb);
950 if (pkt_len < 0)
951 vp->in_error = true;
952 return pkt_len;
953 }
954
955 /*
956 * Receive as many messages as we can in one call using the special
957 * mmsg vector matched to an skb vector which we prepared earlier.
958 */
959
vector_mmsg_rx(struct vector_private * vp)960 static int vector_mmsg_rx(struct vector_private *vp)
961 {
962 int packet_count, i;
963 struct vector_queue *qi = vp->rx_queue;
964 struct sk_buff *skb;
965 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
966 void **skbuff_vector = qi->skbuff_vector;
967 int header_check;
968
969 /* Refresh the vector and make sure it is with new skbs and the
970 * iovs are updated to point to them.
971 */
972
973 prep_queue_for_rx(qi);
974
975 /* Fire the Lazy Gun - get as many packets as we can in one go. */
976
977 packet_count = uml_vector_recvmmsg(
978 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
979
980 if (packet_count < 0)
981 vp->in_error = true;
982
983 if (packet_count <= 0)
984 return packet_count;
985
986 /* We treat packet processing as enqueue, buffer refresh as dequeue
987 * The queue_depth tells us how many buffers have been used and how
988 * many do we need to prep the next time prep_queue_for_rx() is called.
989 */
990
991 qi->queue_depth = packet_count;
992
993 for (i = 0; i < packet_count; i++) {
994 skb = (*skbuff_vector);
995 if (mmsg_vector->msg_len > vp->header_size) {
996 if (vp->header_size > 0) {
997 header_check = vp->verify_header(
998 mmsg_vector->msg_hdr.msg_iov->iov_base,
999 skb,
1000 vp
1001 );
1002 if (header_check < 0) {
1003 /* Overlay header failed to verify - discard.
1004 * We can actually keep this skb and reuse it,
1005 * but that will make the prep logic too
1006 * complex.
1007 */
1008 dev_kfree_skb_irq(skb);
1009 vp->estats.rx_encaps_errors++;
1010 continue;
1011 }
1012 if (header_check > 0) {
1013 vp->estats.rx_csum_offload_good++;
1014 skb->ip_summed = CHECKSUM_UNNECESSARY;
1015 }
1016 }
1017 pskb_trim(skb,
1018 mmsg_vector->msg_len - vp->rx_header_size);
1019 skb->protocol = eth_type_trans(skb, skb->dev);
1020 /*
1021 * We do not need to lock on updating stats here
1022 * The interrupt loop is non-reentrant.
1023 */
1024 vp->dev->stats.rx_bytes += skb->len;
1025 vp->dev->stats.rx_packets++;
1026 netif_rx(skb);
1027 } else {
1028 /* Overlay header too short to do anything - discard.
1029 * We can actually keep this skb and reuse it,
1030 * but that will make the prep logic too complex.
1031 */
1032 if (skb != NULL)
1033 dev_kfree_skb_irq(skb);
1034 }
1035 (*skbuff_vector) = NULL;
1036 /* Move to the next buffer element */
1037 mmsg_vector++;
1038 skbuff_vector++;
1039 }
1040 if (packet_count > 0) {
1041 if (vp->estats.rx_queue_max < packet_count)
1042 vp->estats.rx_queue_max = packet_count;
1043 vp->estats.rx_queue_running_average =
1044 (vp->estats.rx_queue_running_average + packet_count) >> 1;
1045 }
1046 return packet_count;
1047 }
1048
vector_rx(struct vector_private * vp)1049 static void vector_rx(struct vector_private *vp)
1050 {
1051 int err;
1052 int iter = 0;
1053
1054 if ((vp->options & VECTOR_RX) > 0)
1055 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1056 iter++;
1057 else
1058 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1059 iter++;
1060 if ((err != 0) && net_ratelimit())
1061 netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1062 if (iter == MAX_ITERATIONS)
1063 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1064 }
1065
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1066 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1067 {
1068 struct vector_private *vp = netdev_priv(dev);
1069 int queue_depth = 0;
1070
1071 if (vp->in_error) {
1072 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1073 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1074 deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1075 return NETDEV_TX_BUSY;
1076 }
1077
1078 if ((vp->options & VECTOR_TX) == 0) {
1079 writev_tx(vp, skb);
1080 return NETDEV_TX_OK;
1081 }
1082
1083 /* We do BQL only in the vector path, no point doing it in
1084 * packet at a time mode as there is no device queue
1085 */
1086
1087 netdev_sent_queue(vp->dev, skb->len);
1088 queue_depth = vector_enqueue(vp->tx_queue, skb);
1089
1090 /* if the device queue is full, stop the upper layers and
1091 * flush it.
1092 */
1093
1094 if (queue_depth >= vp->tx_queue->max_depth - 1) {
1095 vp->estats.tx_kicks++;
1096 netif_stop_queue(dev);
1097 vector_send(vp->tx_queue);
1098 return NETDEV_TX_OK;
1099 }
1100 if (netdev_xmit_more()) {
1101 mod_timer(&vp->tl, vp->coalesce);
1102 return NETDEV_TX_OK;
1103 }
1104 if (skb->len < TX_SMALL_PACKET) {
1105 vp->estats.tx_kicks++;
1106 vector_send(vp->tx_queue);
1107 } else
1108 tasklet_schedule(&vp->tx_poll);
1109 return NETDEV_TX_OK;
1110 }
1111
vector_rx_interrupt(int irq,void * dev_id)1112 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1113 {
1114 struct net_device *dev = dev_id;
1115 struct vector_private *vp = netdev_priv(dev);
1116
1117 if (!netif_running(dev))
1118 return IRQ_NONE;
1119 vector_rx(vp);
1120 return IRQ_HANDLED;
1121
1122 }
1123
vector_tx_interrupt(int irq,void * dev_id)1124 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1125 {
1126 struct net_device *dev = dev_id;
1127 struct vector_private *vp = netdev_priv(dev);
1128
1129 if (!netif_running(dev))
1130 return IRQ_NONE;
1131 /* We need to pay attention to it only if we got
1132 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1133 * we ignore it. In the future, it may be worth
1134 * it to improve the IRQ controller a bit to make
1135 * tweaking the IRQ mask less costly
1136 */
1137
1138 if (vp->in_write_poll)
1139 tasklet_schedule(&vp->tx_poll);
1140 return IRQ_HANDLED;
1141
1142 }
1143
1144 static int irq_rr;
1145
vector_net_close(struct net_device * dev)1146 static int vector_net_close(struct net_device *dev)
1147 {
1148 struct vector_private *vp = netdev_priv(dev);
1149 unsigned long flags;
1150
1151 netif_stop_queue(dev);
1152 del_timer(&vp->tl);
1153
1154 if (vp->fds == NULL)
1155 return 0;
1156
1157 /* Disable and free all IRQS */
1158 if (vp->rx_irq > 0) {
1159 um_free_irq(vp->rx_irq, dev);
1160 vp->rx_irq = 0;
1161 }
1162 if (vp->tx_irq > 0) {
1163 um_free_irq(vp->tx_irq, dev);
1164 vp->tx_irq = 0;
1165 }
1166 tasklet_kill(&vp->tx_poll);
1167 if (vp->fds->rx_fd > 0) {
1168 if (vp->bpf)
1169 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1170 os_close_file(vp->fds->rx_fd);
1171 vp->fds->rx_fd = -1;
1172 }
1173 if (vp->fds->tx_fd > 0) {
1174 os_close_file(vp->fds->tx_fd);
1175 vp->fds->tx_fd = -1;
1176 }
1177 if (vp->bpf != NULL)
1178 kfree(vp->bpf->filter);
1179 kfree(vp->bpf);
1180 vp->bpf = NULL;
1181 kfree(vp->fds->remote_addr);
1182 kfree(vp->transport_data);
1183 kfree(vp->header_rxbuffer);
1184 kfree(vp->header_txbuffer);
1185 if (vp->rx_queue != NULL)
1186 destroy_queue(vp->rx_queue);
1187 if (vp->tx_queue != NULL)
1188 destroy_queue(vp->tx_queue);
1189 kfree(vp->fds);
1190 vp->fds = NULL;
1191 spin_lock_irqsave(&vp->lock, flags);
1192 vp->opened = false;
1193 vp->in_error = false;
1194 spin_unlock_irqrestore(&vp->lock, flags);
1195 return 0;
1196 }
1197
1198 /* TX tasklet */
1199
vector_tx_poll(unsigned long data)1200 static void vector_tx_poll(unsigned long data)
1201 {
1202 struct vector_private *vp = (struct vector_private *)data;
1203
1204 vp->estats.tx_kicks++;
1205 vector_send(vp->tx_queue);
1206 }
vector_reset_tx(struct work_struct * work)1207 static void vector_reset_tx(struct work_struct *work)
1208 {
1209 struct vector_private *vp =
1210 container_of(work, struct vector_private, reset_tx);
1211 netdev_reset_queue(vp->dev);
1212 netif_start_queue(vp->dev);
1213 netif_wake_queue(vp->dev);
1214 }
1215
vector_net_open(struct net_device * dev)1216 static int vector_net_open(struct net_device *dev)
1217 {
1218 struct vector_private *vp = netdev_priv(dev);
1219 unsigned long flags;
1220 int err = -EINVAL;
1221 struct vector_device *vdevice;
1222
1223 spin_lock_irqsave(&vp->lock, flags);
1224 if (vp->opened) {
1225 spin_unlock_irqrestore(&vp->lock, flags);
1226 return -ENXIO;
1227 }
1228 vp->opened = true;
1229 spin_unlock_irqrestore(&vp->lock, flags);
1230
1231 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1232
1233 vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1234
1235 if (vp->fds == NULL)
1236 goto out_close;
1237
1238 if (build_transport_data(vp) < 0)
1239 goto out_close;
1240
1241 if ((vp->options & VECTOR_RX) > 0) {
1242 vp->rx_queue = create_queue(
1243 vp,
1244 get_depth(vp->parsed),
1245 vp->rx_header_size,
1246 MAX_IOV_SIZE
1247 );
1248 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1249 } else {
1250 vp->header_rxbuffer = kmalloc(
1251 vp->rx_header_size,
1252 GFP_KERNEL
1253 );
1254 if (vp->header_rxbuffer == NULL)
1255 goto out_close;
1256 }
1257 if ((vp->options & VECTOR_TX) > 0) {
1258 vp->tx_queue = create_queue(
1259 vp,
1260 get_depth(vp->parsed),
1261 vp->header_size,
1262 MAX_IOV_SIZE
1263 );
1264 } else {
1265 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1266 if (vp->header_txbuffer == NULL)
1267 goto out_close;
1268 }
1269
1270 /* READ IRQ */
1271 err = um_request_irq(
1272 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1273 IRQ_READ, vector_rx_interrupt,
1274 IRQF_SHARED, dev->name, dev);
1275 if (err != 0) {
1276 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1277 err = -ENETUNREACH;
1278 goto out_close;
1279 }
1280 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1281 dev->irq = irq_rr + VECTOR_BASE_IRQ;
1282 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1283
1284 /* WRITE IRQ - we need it only if we have vector TX */
1285 if ((vp->options & VECTOR_TX) > 0) {
1286 err = um_request_irq(
1287 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1288 IRQ_WRITE, vector_tx_interrupt,
1289 IRQF_SHARED, dev->name, dev);
1290 if (err != 0) {
1291 netdev_err(dev,
1292 "vector_open: failed to get tx irq(%d)\n", err);
1293 err = -ENETUNREACH;
1294 goto out_close;
1295 }
1296 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1297 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1298 }
1299
1300 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1301 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1302 vp->options |= VECTOR_BPF;
1303 }
1304 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1305 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1306
1307 if (vp->bpf != NULL)
1308 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1309
1310 netif_start_queue(dev);
1311
1312 /* clear buffer - it can happen that the host side of the interface
1313 * is full when we get here. In this case, new data is never queued,
1314 * SIGIOs never arrive, and the net never works.
1315 */
1316
1317 vector_rx(vp);
1318
1319 vector_reset_stats(vp);
1320 vdevice = find_device(vp->unit);
1321 vdevice->opened = 1;
1322
1323 if ((vp->options & VECTOR_TX) != 0)
1324 add_timer(&vp->tl);
1325 return 0;
1326 out_close:
1327 vector_net_close(dev);
1328 return err;
1329 }
1330
1331
vector_net_set_multicast_list(struct net_device * dev)1332 static void vector_net_set_multicast_list(struct net_device *dev)
1333 {
1334 /* TODO: - we can do some BPF games here */
1335 return;
1336 }
1337
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1338 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1339 {
1340 struct vector_private *vp = netdev_priv(dev);
1341
1342 vp->estats.tx_timeout_count++;
1343 netif_trans_update(dev);
1344 schedule_work(&vp->reset_tx);
1345 }
1346
vector_fix_features(struct net_device * dev,netdev_features_t features)1347 static netdev_features_t vector_fix_features(struct net_device *dev,
1348 netdev_features_t features)
1349 {
1350 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1351 return features;
1352 }
1353
vector_set_features(struct net_device * dev,netdev_features_t features)1354 static int vector_set_features(struct net_device *dev,
1355 netdev_features_t features)
1356 {
1357 struct vector_private *vp = netdev_priv(dev);
1358 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1359 * no way to negotiate it on raw sockets, so we can change
1360 * only our side.
1361 */
1362 if (features & NETIF_F_GRO)
1363 /* All new frame buffers will be GRO-sized */
1364 vp->req_size = 65536;
1365 else
1366 /* All new frame buffers will be normal sized */
1367 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1368 return 0;
1369 }
1370
1371 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1372 static void vector_net_poll_controller(struct net_device *dev)
1373 {
1374 disable_irq(dev->irq);
1375 vector_rx_interrupt(dev->irq, dev);
1376 enable_irq(dev->irq);
1377 }
1378 #endif
1379
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1380 static void vector_net_get_drvinfo(struct net_device *dev,
1381 struct ethtool_drvinfo *info)
1382 {
1383 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1384 }
1385
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1386 static int vector_net_load_bpf_flash(struct net_device *dev,
1387 struct ethtool_flash *efl)
1388 {
1389 struct vector_private *vp = netdev_priv(dev);
1390 struct vector_device *vdevice;
1391 const struct firmware *fw;
1392 int result = 0;
1393
1394 if (!(vp->options & VECTOR_BPF_FLASH)) {
1395 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1396 return -1;
1397 }
1398
1399 spin_lock(&vp->lock);
1400
1401 if (vp->bpf != NULL) {
1402 if (vp->opened)
1403 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1404 kfree(vp->bpf->filter);
1405 vp->bpf->filter = NULL;
1406 } else {
1407 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1408 if (vp->bpf == NULL) {
1409 netdev_err(dev, "failed to allocate memory for firmware\n");
1410 goto flash_fail;
1411 }
1412 }
1413
1414 vdevice = find_device(vp->unit);
1415
1416 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1417 goto flash_fail;
1418
1419 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1420 if (!vp->bpf->filter)
1421 goto free_buffer;
1422
1423 vp->bpf->len = fw->size / sizeof(struct sock_filter);
1424 release_firmware(fw);
1425
1426 if (vp->opened)
1427 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1428
1429 spin_unlock(&vp->lock);
1430
1431 return result;
1432
1433 free_buffer:
1434 release_firmware(fw);
1435
1436 flash_fail:
1437 spin_unlock(&vp->lock);
1438 if (vp->bpf != NULL)
1439 kfree(vp->bpf->filter);
1440 kfree(vp->bpf);
1441 vp->bpf = NULL;
1442 return -1;
1443 }
1444
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)1445 static void vector_get_ringparam(struct net_device *netdev,
1446 struct ethtool_ringparam *ring)
1447 {
1448 struct vector_private *vp = netdev_priv(netdev);
1449
1450 ring->rx_max_pending = vp->rx_queue->max_depth;
1451 ring->tx_max_pending = vp->tx_queue->max_depth;
1452 ring->rx_pending = vp->rx_queue->max_depth;
1453 ring->tx_pending = vp->tx_queue->max_depth;
1454 }
1455
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1456 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1457 {
1458 switch (stringset) {
1459 case ETH_SS_TEST:
1460 *buf = '\0';
1461 break;
1462 case ETH_SS_STATS:
1463 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1464 break;
1465 default:
1466 WARN_ON(1);
1467 break;
1468 }
1469 }
1470
vector_get_sset_count(struct net_device * dev,int sset)1471 static int vector_get_sset_count(struct net_device *dev, int sset)
1472 {
1473 switch (sset) {
1474 case ETH_SS_TEST:
1475 return 0;
1476 case ETH_SS_STATS:
1477 return VECTOR_NUM_STATS;
1478 default:
1479 return -EOPNOTSUPP;
1480 }
1481 }
1482
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1483 static void vector_get_ethtool_stats(struct net_device *dev,
1484 struct ethtool_stats *estats,
1485 u64 *tmp_stats)
1486 {
1487 struct vector_private *vp = netdev_priv(dev);
1488
1489 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1490 }
1491
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1492 static int vector_get_coalesce(struct net_device *netdev,
1493 struct ethtool_coalesce *ec)
1494 {
1495 struct vector_private *vp = netdev_priv(netdev);
1496
1497 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1498 return 0;
1499 }
1500
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1501 static int vector_set_coalesce(struct net_device *netdev,
1502 struct ethtool_coalesce *ec)
1503 {
1504 struct vector_private *vp = netdev_priv(netdev);
1505
1506 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1507 if (vp->coalesce == 0)
1508 vp->coalesce = 1;
1509 return 0;
1510 }
1511
1512 static const struct ethtool_ops vector_net_ethtool_ops = {
1513 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1514 .get_drvinfo = vector_net_get_drvinfo,
1515 .get_link = ethtool_op_get_link,
1516 .get_ts_info = ethtool_op_get_ts_info,
1517 .get_ringparam = vector_get_ringparam,
1518 .get_strings = vector_get_strings,
1519 .get_sset_count = vector_get_sset_count,
1520 .get_ethtool_stats = vector_get_ethtool_stats,
1521 .get_coalesce = vector_get_coalesce,
1522 .set_coalesce = vector_set_coalesce,
1523 .flash_device = vector_net_load_bpf_flash,
1524 };
1525
1526
1527 static const struct net_device_ops vector_netdev_ops = {
1528 .ndo_open = vector_net_open,
1529 .ndo_stop = vector_net_close,
1530 .ndo_start_xmit = vector_net_start_xmit,
1531 .ndo_set_rx_mode = vector_net_set_multicast_list,
1532 .ndo_tx_timeout = vector_net_tx_timeout,
1533 .ndo_set_mac_address = eth_mac_addr,
1534 .ndo_validate_addr = eth_validate_addr,
1535 .ndo_fix_features = vector_fix_features,
1536 .ndo_set_features = vector_set_features,
1537 #ifdef CONFIG_NET_POLL_CONTROLLER
1538 .ndo_poll_controller = vector_net_poll_controller,
1539 #endif
1540 };
1541
1542
vector_timer_expire(struct timer_list * t)1543 static void vector_timer_expire(struct timer_list *t)
1544 {
1545 struct vector_private *vp = from_timer(vp, t, tl);
1546
1547 vp->estats.tx_kicks++;
1548 vector_send(vp->tx_queue);
1549 }
1550
vector_eth_configure(int n,struct arglist * def)1551 static void vector_eth_configure(
1552 int n,
1553 struct arglist *def
1554 )
1555 {
1556 struct vector_device *device;
1557 struct net_device *dev;
1558 struct vector_private *vp;
1559 int err;
1560
1561 device = kzalloc(sizeof(*device), GFP_KERNEL);
1562 if (device == NULL) {
1563 printk(KERN_ERR "eth_configure failed to allocate struct "
1564 "vector_device\n");
1565 return;
1566 }
1567 dev = alloc_etherdev(sizeof(struct vector_private));
1568 if (dev == NULL) {
1569 printk(KERN_ERR "eth_configure: failed to allocate struct "
1570 "net_device for vec%d\n", n);
1571 goto out_free_device;
1572 }
1573
1574 dev->mtu = get_mtu(def);
1575
1576 INIT_LIST_HEAD(&device->list);
1577 device->unit = n;
1578
1579 /* If this name ends up conflicting with an existing registered
1580 * netdevice, that is OK, register_netdev{,ice}() will notice this
1581 * and fail.
1582 */
1583 snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1584 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1585 vp = netdev_priv(dev);
1586
1587 /* sysfs register */
1588 if (!driver_registered) {
1589 platform_driver_register(¨_net_driver);
1590 driver_registered = 1;
1591 }
1592 device->pdev.id = n;
1593 device->pdev.name = DRIVER_NAME;
1594 device->pdev.dev.release = vector_device_release;
1595 dev_set_drvdata(&device->pdev.dev, device);
1596 if (platform_device_register(&device->pdev))
1597 goto out_free_netdev;
1598 SET_NETDEV_DEV(dev, &device->pdev.dev);
1599
1600 device->dev = dev;
1601
1602 *vp = ((struct vector_private)
1603 {
1604 .list = LIST_HEAD_INIT(vp->list),
1605 .dev = dev,
1606 .unit = n,
1607 .options = get_transport_options(def),
1608 .rx_irq = 0,
1609 .tx_irq = 0,
1610 .parsed = def,
1611 .max_packet = get_mtu(def) + ETH_HEADER_OTHER,
1612 /* TODO - we need to calculate headroom so that ip header
1613 * is 16 byte aligned all the time
1614 */
1615 .headroom = get_headroom(def),
1616 .form_header = NULL,
1617 .verify_header = NULL,
1618 .header_rxbuffer = NULL,
1619 .header_txbuffer = NULL,
1620 .header_size = 0,
1621 .rx_header_size = 0,
1622 .rexmit_scheduled = false,
1623 .opened = false,
1624 .transport_data = NULL,
1625 .in_write_poll = false,
1626 .coalesce = 2,
1627 .req_size = get_req_size(def),
1628 .in_error = false,
1629 .bpf = NULL
1630 });
1631
1632 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1633 tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1634 INIT_WORK(&vp->reset_tx, vector_reset_tx);
1635
1636 timer_setup(&vp->tl, vector_timer_expire, 0);
1637 spin_lock_init(&vp->lock);
1638
1639 /* FIXME */
1640 dev->netdev_ops = &vector_netdev_ops;
1641 dev->ethtool_ops = &vector_net_ethtool_ops;
1642 dev->watchdog_timeo = (HZ >> 1);
1643 /* primary IRQ - fixme */
1644 dev->irq = 0; /* we will adjust this once opened */
1645
1646 rtnl_lock();
1647 err = register_netdevice(dev);
1648 rtnl_unlock();
1649 if (err)
1650 goto out_undo_user_init;
1651
1652 spin_lock(&vector_devices_lock);
1653 list_add(&device->list, &vector_devices);
1654 spin_unlock(&vector_devices_lock);
1655
1656 return;
1657
1658 out_undo_user_init:
1659 return;
1660 out_free_netdev:
1661 free_netdev(dev);
1662 out_free_device:
1663 kfree(device);
1664 }
1665
1666
1667
1668
1669 /*
1670 * Invoked late in the init
1671 */
1672
vector_init(void)1673 static int __init vector_init(void)
1674 {
1675 struct list_head *ele;
1676 struct vector_cmd_line_arg *def;
1677 struct arglist *parsed;
1678
1679 list_for_each(ele, &vec_cmd_line) {
1680 def = list_entry(ele, struct vector_cmd_line_arg, list);
1681 parsed = uml_parse_vector_ifspec(def->arguments);
1682 if (parsed != NULL)
1683 vector_eth_configure(def->unit, parsed);
1684 }
1685 return 0;
1686 }
1687
1688
1689 /* Invoked at initial argument parsing, only stores
1690 * arguments until a proper vector_init is called
1691 * later
1692 */
1693
vector_setup(char * str)1694 static int __init vector_setup(char *str)
1695 {
1696 char *error;
1697 int n, err;
1698 struct vector_cmd_line_arg *new;
1699
1700 err = vector_parse(str, &n, &str, &error);
1701 if (err) {
1702 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1703 str, error);
1704 return 1;
1705 }
1706 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1707 if (!new)
1708 panic("%s: Failed to allocate %zu bytes\n", __func__,
1709 sizeof(*new));
1710 INIT_LIST_HEAD(&new->list);
1711 new->unit = n;
1712 new->arguments = str;
1713 list_add_tail(&new->list, &vec_cmd_line);
1714 return 1;
1715 }
1716
1717 __setup("vec", vector_setup);
1718 __uml_help(vector_setup,
1719 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1720 " Configure a vector io network device.\n\n"
1721 );
1722
1723 late_initcall(vector_init);
1724
1725 static struct mc_device vector_mc = {
1726 .list = LIST_HEAD_INIT(vector_mc.list),
1727 .name = "vec",
1728 .config = vector_config,
1729 .get_config = NULL,
1730 .id = vector_id,
1731 .remove = vector_remove,
1732 };
1733
1734 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1735 static int vector_inetaddr_event(
1736 struct notifier_block *this,
1737 unsigned long event,
1738 void *ptr)
1739 {
1740 return NOTIFY_DONE;
1741 }
1742
1743 static struct notifier_block vector_inetaddr_notifier = {
1744 .notifier_call = vector_inetaddr_event,
1745 };
1746
inet_register(void)1747 static void inet_register(void)
1748 {
1749 register_inetaddr_notifier(&vector_inetaddr_notifier);
1750 }
1751 #else
inet_register(void)1752 static inline void inet_register(void)
1753 {
1754 }
1755 #endif
1756
vector_net_init(void)1757 static int vector_net_init(void)
1758 {
1759 mconsole_register_dev(&vector_mc);
1760 inet_register();
1761 return 0;
1762 }
1763
1764 __initcall(vector_net_init);
1765
1766
1767
1768