• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kaslr.c
4  *
5  * This contains the routines needed to generate a reasonable level of
6  * entropy to choose a randomized kernel base address offset in support
7  * of Kernel Address Space Layout Randomization (KASLR). Additionally
8  * handles walking the physical memory maps (and tracking memory regions
9  * to avoid) in order to select a physical memory location that can
10  * contain the entire properly aligned running kernel image.
11  *
12  */
13 
14 /*
15  * isspace() in linux/ctype.h is expected by next_args() to filter
16  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17  * since isdigit() is implemented in both of them. Hence disable it
18  * here.
19  */
20 #define BOOT_CTYPE_H
21 
22 #include "misc.h"
23 #include "error.h"
24 #include "../string.h"
25 
26 #include <generated/compile.h>
27 #include <linux/module.h>
28 #include <linux/uts.h>
29 #include <linux/utsname.h>
30 #include <linux/ctype.h>
31 #include <linux/efi.h>
32 #include <generated/utsrelease.h>
33 #include <asm/efi.h>
34 
35 /* Macros used by the included decompressor code below. */
36 #define STATIC
37 #include <linux/decompress/mm.h>
38 
39 #define _SETUP
40 #include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
41 #undef _SETUP
42 
43 extern unsigned long get_cmd_line_ptr(void);
44 
45 /* Simplified build-specific string for starting entropy. */
46 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
47 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
48 
rotate_xor(unsigned long hash,const void * area,size_t size)49 static unsigned long rotate_xor(unsigned long hash, const void *area,
50 				size_t size)
51 {
52 	size_t i;
53 	unsigned long *ptr = (unsigned long *)area;
54 
55 	for (i = 0; i < size / sizeof(hash); i++) {
56 		/* Rotate by odd number of bits and XOR. */
57 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
58 		hash ^= ptr[i];
59 	}
60 
61 	return hash;
62 }
63 
64 /* Attempt to create a simple but unpredictable starting entropy. */
get_boot_seed(void)65 static unsigned long get_boot_seed(void)
66 {
67 	unsigned long hash = 0;
68 
69 	hash = rotate_xor(hash, build_str, sizeof(build_str));
70 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71 
72 	return hash;
73 }
74 
75 #define KASLR_COMPRESSED_BOOT
76 #include "../../lib/kaslr.c"
77 
78 
79 /* Only supporting at most 4 unusable memmap regions with kaslr */
80 #define MAX_MEMMAP_REGIONS	4
81 
82 static bool memmap_too_large;
83 
84 
85 /*
86  * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
87  * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
88  */
89 static u64 mem_limit;
90 
91 /* Number of immovable memory regions */
92 static int num_immovable_mem;
93 
94 enum mem_avoid_index {
95 	MEM_AVOID_ZO_RANGE = 0,
96 	MEM_AVOID_INITRD,
97 	MEM_AVOID_CMDLINE,
98 	MEM_AVOID_BOOTPARAMS,
99 	MEM_AVOID_MEMMAP_BEGIN,
100 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
101 	MEM_AVOID_MAX,
102 };
103 
104 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
105 
mem_overlaps(struct mem_vector * one,struct mem_vector * two)106 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
107 {
108 	/* Item one is entirely before item two. */
109 	if (one->start + one->size <= two->start)
110 		return false;
111 	/* Item one is entirely after item two. */
112 	if (one->start >= two->start + two->size)
113 		return false;
114 	return true;
115 }
116 
skip_spaces(const char * str)117 char *skip_spaces(const char *str)
118 {
119 	while (isspace(*str))
120 		++str;
121 	return (char *)str;
122 }
123 #include "../../../../lib/ctype.c"
124 #include "../../../../lib/cmdline.c"
125 
126 enum parse_mode {
127 	PARSE_MEMMAP,
128 	PARSE_EFI,
129 };
130 
131 static int
parse_memmap(char * p,u64 * start,u64 * size,enum parse_mode mode)132 parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
133 {
134 	char *oldp;
135 
136 	if (!p)
137 		return -EINVAL;
138 
139 	/* We don't care about this option here */
140 	if (!strncmp(p, "exactmap", 8))
141 		return -EINVAL;
142 
143 	oldp = p;
144 	*size = memparse(p, &p);
145 	if (p == oldp)
146 		return -EINVAL;
147 
148 	switch (*p) {
149 	case '#':
150 	case '$':
151 	case '!':
152 		*start = memparse(p + 1, &p);
153 		return 0;
154 	case '@':
155 		if (mode == PARSE_MEMMAP) {
156 			/*
157 			 * memmap=nn@ss specifies usable region, should
158 			 * be skipped
159 			 */
160 			*size = 0;
161 		} else {
162 			u64 flags;
163 
164 			/*
165 			 * efi_fake_mem=nn@ss:attr the attr specifies
166 			 * flags that might imply a soft-reservation.
167 			 */
168 			*start = memparse(p + 1, &p);
169 			if (p && *p == ':') {
170 				p++;
171 				if (kstrtoull(p, 0, &flags) < 0)
172 					*size = 0;
173 				else if (flags & EFI_MEMORY_SP)
174 					return 0;
175 			}
176 			*size = 0;
177 		}
178 		fallthrough;
179 	default:
180 		/*
181 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
182 		 * same behaviour as mem=nn[KMG]. It limits the max address
183 		 * system can use. Region above the limit should be avoided.
184 		 */
185 		*start = 0;
186 		return 0;
187 	}
188 
189 	return -EINVAL;
190 }
191 
mem_avoid_memmap(enum parse_mode mode,char * str)192 static void mem_avoid_memmap(enum parse_mode mode, char *str)
193 {
194 	static int i;
195 
196 	if (i >= MAX_MEMMAP_REGIONS)
197 		return;
198 
199 	while (str && (i < MAX_MEMMAP_REGIONS)) {
200 		int rc;
201 		u64 start, size;
202 		char *k = strchr(str, ',');
203 
204 		if (k)
205 			*k++ = 0;
206 
207 		rc = parse_memmap(str, &start, &size, mode);
208 		if (rc < 0)
209 			break;
210 		str = k;
211 
212 		if (start == 0) {
213 			/* Store the specified memory limit if size > 0 */
214 			if (size > 0 && size < mem_limit)
215 				mem_limit = size;
216 
217 			continue;
218 		}
219 
220 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
221 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
222 		i++;
223 	}
224 
225 	/* More than 4 memmaps, fail kaslr */
226 	if ((i >= MAX_MEMMAP_REGIONS) && str)
227 		memmap_too_large = true;
228 }
229 
230 /* Store the number of 1GB huge pages which users specified: */
231 static unsigned long max_gb_huge_pages;
232 
parse_gb_huge_pages(char * param,char * val)233 static void parse_gb_huge_pages(char *param, char *val)
234 {
235 	static bool gbpage_sz;
236 	char *p;
237 
238 	if (!strcmp(param, "hugepagesz")) {
239 		p = val;
240 		if (memparse(p, &p) != PUD_SIZE) {
241 			gbpage_sz = false;
242 			return;
243 		}
244 
245 		if (gbpage_sz)
246 			warn("Repeatedly set hugeTLB page size of 1G!\n");
247 		gbpage_sz = true;
248 		return;
249 	}
250 
251 	if (!strcmp(param, "hugepages") && gbpage_sz) {
252 		p = val;
253 		max_gb_huge_pages = simple_strtoull(p, &p, 0);
254 		return;
255 	}
256 }
257 
handle_mem_options(void)258 static void handle_mem_options(void)
259 {
260 	char *args = (char *)get_cmd_line_ptr();
261 	size_t len;
262 	char *tmp_cmdline;
263 	char *param, *val;
264 	u64 mem_size;
265 
266 	if (!args)
267 		return;
268 
269 	len = strnlen(args, COMMAND_LINE_SIZE-1);
270 	tmp_cmdline = malloc(len + 1);
271 	if (!tmp_cmdline)
272 		error("Failed to allocate space for tmp_cmdline");
273 
274 	memcpy(tmp_cmdline, args, len);
275 	tmp_cmdline[len] = 0;
276 	args = tmp_cmdline;
277 
278 	/* Chew leading spaces */
279 	args = skip_spaces(args);
280 
281 	while (*args) {
282 		args = next_arg(args, &param, &val);
283 		/* Stop at -- */
284 		if (!val && strcmp(param, "--") == 0)
285 			break;
286 
287 		if (!strcmp(param, "memmap")) {
288 			mem_avoid_memmap(PARSE_MEMMAP, val);
289 		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
290 			parse_gb_huge_pages(param, val);
291 		} else if (!strcmp(param, "mem")) {
292 			char *p = val;
293 
294 			if (!strcmp(p, "nopentium"))
295 				continue;
296 			mem_size = memparse(p, &p);
297 			if (mem_size == 0)
298 				break;
299 
300 			if (mem_size < mem_limit)
301 				mem_limit = mem_size;
302 		} else if (!strcmp(param, "efi_fake_mem")) {
303 			mem_avoid_memmap(PARSE_EFI, val);
304 		}
305 	}
306 
307 	free(tmp_cmdline);
308 	return;
309 }
310 
311 /*
312  * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
313  * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
314  *
315  * The mem_avoid array is used to store the ranges that need to be avoided
316  * when KASLR searches for an appropriate random address. We must avoid any
317  * regions that are unsafe to overlap with during decompression, and other
318  * things like the initrd, cmdline and boot_params. This comment seeks to
319  * explain mem_avoid as clearly as possible since incorrect mem_avoid
320  * memory ranges lead to really hard to debug boot failures.
321  *
322  * The initrd, cmdline, and boot_params are trivial to identify for
323  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
324  * MEM_AVOID_BOOTPARAMS respectively below.
325  *
326  * What is not obvious how to avoid is the range of memory that is used
327  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
328  * the compressed kernel (ZO) and its run space, which is used to extract
329  * the uncompressed kernel (VO) and relocs.
330  *
331  * ZO's full run size sits against the end of the decompression buffer, so
332  * we can calculate where text, data, bss, etc of ZO are positioned more
333  * easily.
334  *
335  * For additional background, the decompression calculations can be found
336  * in header.S, and the memory diagram is based on the one found in misc.c.
337  *
338  * The following conditions are already enforced by the image layouts and
339  * associated code:
340  *  - input + input_size >= output + output_size
341  *  - kernel_total_size <= init_size
342  *  - kernel_total_size <= output_size (see Note below)
343  *  - output + init_size >= output + output_size
344  *
345  * (Note that kernel_total_size and output_size have no fundamental
346  * relationship, but output_size is passed to choose_random_location
347  * as a maximum of the two. The diagram is showing a case where
348  * kernel_total_size is larger than output_size, but this case is
349  * handled by bumping output_size.)
350  *
351  * The above conditions can be illustrated by a diagram:
352  *
353  * 0   output            input            input+input_size    output+init_size
354  * |     |                 |                             |             |
355  * |     |                 |                             |             |
356  * |-----|--------|--------|--------------|-----------|--|-------------|
357  *                |                       |           |
358  *                |                       |           |
359  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
360  *
361  * [output, output+init_size) is the entire memory range used for
362  * extracting the compressed image.
363  *
364  * [output, output+kernel_total_size) is the range needed for the
365  * uncompressed kernel (VO) and its run size (bss, brk, etc).
366  *
367  * [output, output+output_size) is VO plus relocs (i.e. the entire
368  * uncompressed payload contained by ZO). This is the area of the buffer
369  * written to during decompression.
370  *
371  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
372  * range of the copied ZO and decompression code. (i.e. the range
373  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
374  *
375  * [input, input+input_size) is the original copied compressed image (ZO)
376  * (i.e. it does not include its run size). This range must be avoided
377  * because it contains the data used for decompression.
378  *
379  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
380  * range includes ZO's heap and stack, and must be avoided since it
381  * performs the decompression.
382  *
383  * Since the above two ranges need to be avoided and they are adjacent,
384  * they can be merged, resulting in: [input, output+init_size) which
385  * becomes the MEM_AVOID_ZO_RANGE below.
386  */
mem_avoid_init(unsigned long input,unsigned long input_size,unsigned long output)387 static void mem_avoid_init(unsigned long input, unsigned long input_size,
388 			   unsigned long output)
389 {
390 	unsigned long init_size = boot_params->hdr.init_size;
391 	u64 initrd_start, initrd_size;
392 	unsigned long cmd_line, cmd_line_size;
393 
394 	/*
395 	 * Avoid the region that is unsafe to overlap during
396 	 * decompression.
397 	 */
398 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
399 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
400 
401 	/* Avoid initrd. */
402 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
403 	initrd_start |= boot_params->hdr.ramdisk_image;
404 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
405 	initrd_size |= boot_params->hdr.ramdisk_size;
406 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
407 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
408 	/* No need to set mapping for initrd, it will be handled in VO. */
409 
410 	/* Avoid kernel command line. */
411 	cmd_line = get_cmd_line_ptr();
412 	/* Calculate size of cmd_line. */
413 	if (cmd_line) {
414 		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
415 		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
416 		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
417 	}
418 
419 	/* Avoid boot parameters. */
420 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
421 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
422 
423 	/* We don't need to set a mapping for setup_data. */
424 
425 	/* Mark the memmap regions we need to avoid */
426 	handle_mem_options();
427 
428 	/* Enumerate the immovable memory regions */
429 	num_immovable_mem = count_immovable_mem_regions();
430 }
431 
432 /*
433  * Does this memory vector overlap a known avoided area? If so, record the
434  * overlap region with the lowest address.
435  */
mem_avoid_overlap(struct mem_vector * img,struct mem_vector * overlap)436 static bool mem_avoid_overlap(struct mem_vector *img,
437 			      struct mem_vector *overlap)
438 {
439 	int i;
440 	struct setup_data *ptr;
441 	u64 earliest = img->start + img->size;
442 	bool is_overlapping = false;
443 
444 	for (i = 0; i < MEM_AVOID_MAX; i++) {
445 		if (mem_overlaps(img, &mem_avoid[i]) &&
446 		    mem_avoid[i].start < earliest) {
447 			*overlap = mem_avoid[i];
448 			earliest = overlap->start;
449 			is_overlapping = true;
450 		}
451 	}
452 
453 	/* Avoid all entries in the setup_data linked list. */
454 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
455 	while (ptr) {
456 		struct mem_vector avoid;
457 
458 		avoid.start = (unsigned long)ptr;
459 		avoid.size = sizeof(*ptr) + ptr->len;
460 
461 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
462 			*overlap = avoid;
463 			earliest = overlap->start;
464 			is_overlapping = true;
465 		}
466 
467 		if (ptr->type == SETUP_INDIRECT &&
468 		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
469 			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
470 			avoid.size = ((struct setup_indirect *)ptr->data)->len;
471 
472 			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
473 				*overlap = avoid;
474 				earliest = overlap->start;
475 				is_overlapping = true;
476 			}
477 		}
478 
479 		ptr = (struct setup_data *)(unsigned long)ptr->next;
480 	}
481 
482 	return is_overlapping;
483 }
484 
485 struct slot_area {
486 	u64 addr;
487 	unsigned long num;
488 };
489 
490 #define MAX_SLOT_AREA 100
491 
492 static struct slot_area slot_areas[MAX_SLOT_AREA];
493 static unsigned int slot_area_index;
494 static unsigned long slot_max;
495 
store_slot_info(struct mem_vector * region,unsigned long image_size)496 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
497 {
498 	struct slot_area slot_area;
499 
500 	if (slot_area_index == MAX_SLOT_AREA)
501 		return;
502 
503 	slot_area.addr = region->start;
504 	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
505 
506 	slot_areas[slot_area_index++] = slot_area;
507 	slot_max += slot_area.num;
508 }
509 
510 /*
511  * Skip as many 1GB huge pages as possible in the passed region
512  * according to the number which users specified:
513  */
514 static void
process_gb_huge_pages(struct mem_vector * region,unsigned long image_size)515 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
516 {
517 	u64 pud_start, pud_end;
518 	unsigned long gb_huge_pages;
519 	struct mem_vector tmp;
520 
521 	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
522 		store_slot_info(region, image_size);
523 		return;
524 	}
525 
526 	/* Are there any 1GB pages in the region? */
527 	pud_start = ALIGN(region->start, PUD_SIZE);
528 	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
529 
530 	/* No good 1GB huge pages found: */
531 	if (pud_start >= pud_end) {
532 		store_slot_info(region, image_size);
533 		return;
534 	}
535 
536 	/* Check if the head part of the region is usable. */
537 	if (pud_start >= region->start + image_size) {
538 		tmp.start = region->start;
539 		tmp.size = pud_start - region->start;
540 		store_slot_info(&tmp, image_size);
541 	}
542 
543 	/* Skip the good 1GB pages. */
544 	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
545 	if (gb_huge_pages > max_gb_huge_pages) {
546 		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
547 		max_gb_huge_pages = 0;
548 	} else {
549 		max_gb_huge_pages -= gb_huge_pages;
550 	}
551 
552 	/* Check if the tail part of the region is usable. */
553 	if (region->start + region->size >= pud_end + image_size) {
554 		tmp.start = pud_end;
555 		tmp.size = region->start + region->size - pud_end;
556 		store_slot_info(&tmp, image_size);
557 	}
558 }
559 
slots_fetch_random(void)560 static u64 slots_fetch_random(void)
561 {
562 	unsigned long slot;
563 	unsigned int i;
564 
565 	/* Handle case of no slots stored. */
566 	if (slot_max == 0)
567 		return 0;
568 
569 	slot = kaslr_get_random_long("Physical") % slot_max;
570 
571 	for (i = 0; i < slot_area_index; i++) {
572 		if (slot >= slot_areas[i].num) {
573 			slot -= slot_areas[i].num;
574 			continue;
575 		}
576 		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
577 	}
578 
579 	if (i == slot_area_index)
580 		debug_putstr("slots_fetch_random() failed!?\n");
581 	return 0;
582 }
583 
__process_mem_region(struct mem_vector * entry,unsigned long minimum,unsigned long image_size)584 static void __process_mem_region(struct mem_vector *entry,
585 				 unsigned long minimum,
586 				 unsigned long image_size)
587 {
588 	struct mem_vector region, overlap;
589 	u64 region_end;
590 
591 	/* Enforce minimum and memory limit. */
592 	region.start = max_t(u64, entry->start, minimum);
593 	region_end = min(entry->start + entry->size, mem_limit);
594 
595 	/* Give up if slot area array is full. */
596 	while (slot_area_index < MAX_SLOT_AREA) {
597 		/* Potentially raise address to meet alignment needs. */
598 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
599 
600 		/* Did we raise the address above the passed in memory entry? */
601 		if (region.start > region_end)
602 			return;
603 
604 		/* Reduce size by any delta from the original address. */
605 		region.size = region_end - region.start;
606 
607 		/* Return if region can't contain decompressed kernel */
608 		if (region.size < image_size)
609 			return;
610 
611 		/* If nothing overlaps, store the region and return. */
612 		if (!mem_avoid_overlap(&region, &overlap)) {
613 			process_gb_huge_pages(&region, image_size);
614 			return;
615 		}
616 
617 		/* Store beginning of region if holds at least image_size. */
618 		if (overlap.start >= region.start + image_size) {
619 			region.size = overlap.start - region.start;
620 			process_gb_huge_pages(&region, image_size);
621 		}
622 
623 		/* Clip off the overlapping region and start over. */
624 		region.start = overlap.start + overlap.size;
625 	}
626 }
627 
process_mem_region(struct mem_vector * region,unsigned long minimum,unsigned long image_size)628 static bool process_mem_region(struct mem_vector *region,
629 			       unsigned long minimum,
630 			       unsigned long image_size)
631 {
632 	int i;
633 	/*
634 	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
635 	 * use @region directly.
636 	 */
637 	if (!num_immovable_mem) {
638 		__process_mem_region(region, minimum, image_size);
639 
640 		if (slot_area_index == MAX_SLOT_AREA) {
641 			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
642 			return 1;
643 		}
644 		return 0;
645 	}
646 
647 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
648 	/*
649 	 * If immovable memory found, filter the intersection between
650 	 * immovable memory and @region.
651 	 */
652 	for (i = 0; i < num_immovable_mem; i++) {
653 		u64 start, end, entry_end, region_end;
654 		struct mem_vector entry;
655 
656 		if (!mem_overlaps(region, &immovable_mem[i]))
657 			continue;
658 
659 		start = immovable_mem[i].start;
660 		end = start + immovable_mem[i].size;
661 		region_end = region->start + region->size;
662 
663 		entry.start = clamp(region->start, start, end);
664 		entry_end = clamp(region_end, start, end);
665 		entry.size = entry_end - entry.start;
666 
667 		__process_mem_region(&entry, minimum, image_size);
668 
669 		if (slot_area_index == MAX_SLOT_AREA) {
670 			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
671 			return 1;
672 		}
673 	}
674 #endif
675 	return 0;
676 }
677 
678 #ifdef CONFIG_EFI
679 /*
680  * Returns true if we processed the EFI memmap, which we prefer over the E820
681  * table if it is available.
682  */
683 static bool
process_efi_entries(unsigned long minimum,unsigned long image_size)684 process_efi_entries(unsigned long minimum, unsigned long image_size)
685 {
686 	struct efi_info *e = &boot_params->efi_info;
687 	bool efi_mirror_found = false;
688 	struct mem_vector region;
689 	efi_memory_desc_t *md;
690 	unsigned long pmap;
691 	char *signature;
692 	u32 nr_desc;
693 	int i;
694 
695 	signature = (char *)&e->efi_loader_signature;
696 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
697 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
698 		return false;
699 
700 #ifdef CONFIG_X86_32
701 	/* Can't handle data above 4GB at this time */
702 	if (e->efi_memmap_hi) {
703 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
704 		return false;
705 	}
706 	pmap =  e->efi_memmap;
707 #else
708 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
709 #endif
710 
711 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
712 	for (i = 0; i < nr_desc; i++) {
713 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
714 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
715 			efi_mirror_found = true;
716 			break;
717 		}
718 	}
719 
720 	for (i = 0; i < nr_desc; i++) {
721 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
722 
723 		/*
724 		 * Here we are more conservative in picking free memory than
725 		 * the EFI spec allows:
726 		 *
727 		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
728 		 * free memory and thus available to place the kernel image into,
729 		 * but in practice there's firmware where using that memory leads
730 		 * to crashes.
731 		 *
732 		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
733 		 */
734 		if (md->type != EFI_CONVENTIONAL_MEMORY)
735 			continue;
736 
737 		if (efi_soft_reserve_enabled() &&
738 		    (md->attribute & EFI_MEMORY_SP))
739 			continue;
740 
741 		if (efi_mirror_found &&
742 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
743 			continue;
744 
745 		region.start = md->phys_addr;
746 		region.size = md->num_pages << EFI_PAGE_SHIFT;
747 		if (process_mem_region(&region, minimum, image_size))
748 			break;
749 	}
750 	return true;
751 }
752 #else
753 static inline bool
process_efi_entries(unsigned long minimum,unsigned long image_size)754 process_efi_entries(unsigned long minimum, unsigned long image_size)
755 {
756 	return false;
757 }
758 #endif
759 
process_e820_entries(unsigned long minimum,unsigned long image_size)760 static void process_e820_entries(unsigned long minimum,
761 				 unsigned long image_size)
762 {
763 	int i;
764 	struct mem_vector region;
765 	struct boot_e820_entry *entry;
766 
767 	/* Verify potential e820 positions, appending to slots list. */
768 	for (i = 0; i < boot_params->e820_entries; i++) {
769 		entry = &boot_params->e820_table[i];
770 		/* Skip non-RAM entries. */
771 		if (entry->type != E820_TYPE_RAM)
772 			continue;
773 		region.start = entry->addr;
774 		region.size = entry->size;
775 		if (process_mem_region(&region, minimum, image_size))
776 			break;
777 	}
778 }
779 
find_random_phys_addr(unsigned long minimum,unsigned long image_size)780 static unsigned long find_random_phys_addr(unsigned long minimum,
781 					   unsigned long image_size)
782 {
783 	u64 phys_addr;
784 
785 	/* Bail out early if it's impossible to succeed. */
786 	if (minimum + image_size > mem_limit)
787 		return 0;
788 
789 	/* Check if we had too many memmaps. */
790 	if (memmap_too_large) {
791 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
792 		return 0;
793 	}
794 
795 	if (!process_efi_entries(minimum, image_size))
796 		process_e820_entries(minimum, image_size);
797 
798 	phys_addr = slots_fetch_random();
799 
800 	/* Perform a final check to make sure the address is in range. */
801 	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
802 		warn("Invalid physical address chosen!\n");
803 		return 0;
804 	}
805 
806 	return (unsigned long)phys_addr;
807 }
808 
find_random_virt_addr(unsigned long minimum,unsigned long image_size)809 static unsigned long find_random_virt_addr(unsigned long minimum,
810 					   unsigned long image_size)
811 {
812 	unsigned long slots, random_addr;
813 
814 	/*
815 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
816 	 * that can hold image_size within the range of minimum to
817 	 * KERNEL_IMAGE_SIZE?
818 	 */
819 	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
820 
821 	random_addr = kaslr_get_random_long("Virtual") % slots;
822 
823 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
824 }
825 
826 /*
827  * Since this function examines addresses much more numerically,
828  * it takes the input and output pointers as 'unsigned long'.
829  */
choose_random_location(unsigned long input,unsigned long input_size,unsigned long * output,unsigned long output_size,unsigned long * virt_addr)830 void choose_random_location(unsigned long input,
831 			    unsigned long input_size,
832 			    unsigned long *output,
833 			    unsigned long output_size,
834 			    unsigned long *virt_addr)
835 {
836 	unsigned long random_addr, min_addr;
837 
838 	if (cmdline_find_option_bool("nokaslr")) {
839 		warn("KASLR disabled: 'nokaslr' on cmdline.");
840 		return;
841 	}
842 
843 	boot_params->hdr.loadflags |= KASLR_FLAG;
844 
845 	if (IS_ENABLED(CONFIG_X86_32))
846 		mem_limit = KERNEL_IMAGE_SIZE;
847 	else
848 		mem_limit = MAXMEM;
849 
850 	/* Record the various known unsafe memory ranges. */
851 	mem_avoid_init(input, input_size, *output);
852 
853 	/*
854 	 * Low end of the randomization range should be the
855 	 * smaller of 512M or the initial kernel image
856 	 * location:
857 	 */
858 	min_addr = min(*output, 512UL << 20);
859 	/* Make sure minimum is aligned. */
860 	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
861 
862 	/* Walk available memory entries to find a random address. */
863 	random_addr = find_random_phys_addr(min_addr, output_size);
864 	if (!random_addr) {
865 		warn("Physical KASLR disabled: no suitable memory region!");
866 	} else {
867 		/* Update the new physical address location. */
868 		if (*output != random_addr)
869 			*output = random_addr;
870 	}
871 
872 
873 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
874 	if (IS_ENABLED(CONFIG_X86_64))
875 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
876 	*virt_addr = random_addr;
877 }
878