1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kaslr.c
4 *
5 * This contains the routines needed to generate a reasonable level of
6 * entropy to choose a randomized kernel base address offset in support
7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
8 * handles walking the physical memory maps (and tracking memory regions
9 * to avoid) in order to select a physical memory location that can
10 * contain the entire properly aligned running kernel image.
11 *
12 */
13
14 /*
15 * isspace() in linux/ctype.h is expected by next_args() to filter
16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17 * since isdigit() is implemented in both of them. Hence disable it
18 * here.
19 */
20 #define BOOT_CTYPE_H
21
22 #include "misc.h"
23 #include "error.h"
24 #include "../string.h"
25
26 #include <generated/compile.h>
27 #include <linux/module.h>
28 #include <linux/uts.h>
29 #include <linux/utsname.h>
30 #include <linux/ctype.h>
31 #include <linux/efi.h>
32 #include <generated/utsrelease.h>
33 #include <asm/efi.h>
34
35 /* Macros used by the included decompressor code below. */
36 #define STATIC
37 #include <linux/decompress/mm.h>
38
39 #define _SETUP
40 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */
41 #undef _SETUP
42
43 extern unsigned long get_cmd_line_ptr(void);
44
45 /* Simplified build-specific string for starting entropy. */
46 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
47 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
48
rotate_xor(unsigned long hash,const void * area,size_t size)49 static unsigned long rotate_xor(unsigned long hash, const void *area,
50 size_t size)
51 {
52 size_t i;
53 unsigned long *ptr = (unsigned long *)area;
54
55 for (i = 0; i < size / sizeof(hash); i++) {
56 /* Rotate by odd number of bits and XOR. */
57 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
58 hash ^= ptr[i];
59 }
60
61 return hash;
62 }
63
64 /* Attempt to create a simple but unpredictable starting entropy. */
get_boot_seed(void)65 static unsigned long get_boot_seed(void)
66 {
67 unsigned long hash = 0;
68
69 hash = rotate_xor(hash, build_str, sizeof(build_str));
70 hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71
72 return hash;
73 }
74
75 #define KASLR_COMPRESSED_BOOT
76 #include "../../lib/kaslr.c"
77
78
79 /* Only supporting at most 4 unusable memmap regions with kaslr */
80 #define MAX_MEMMAP_REGIONS 4
81
82 static bool memmap_too_large;
83
84
85 /*
86 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
87 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
88 */
89 static u64 mem_limit;
90
91 /* Number of immovable memory regions */
92 static int num_immovable_mem;
93
94 enum mem_avoid_index {
95 MEM_AVOID_ZO_RANGE = 0,
96 MEM_AVOID_INITRD,
97 MEM_AVOID_CMDLINE,
98 MEM_AVOID_BOOTPARAMS,
99 MEM_AVOID_MEMMAP_BEGIN,
100 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
101 MEM_AVOID_MAX,
102 };
103
104 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
105
mem_overlaps(struct mem_vector * one,struct mem_vector * two)106 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
107 {
108 /* Item one is entirely before item two. */
109 if (one->start + one->size <= two->start)
110 return false;
111 /* Item one is entirely after item two. */
112 if (one->start >= two->start + two->size)
113 return false;
114 return true;
115 }
116
skip_spaces(const char * str)117 char *skip_spaces(const char *str)
118 {
119 while (isspace(*str))
120 ++str;
121 return (char *)str;
122 }
123 #include "../../../../lib/ctype.c"
124 #include "../../../../lib/cmdline.c"
125
126 enum parse_mode {
127 PARSE_MEMMAP,
128 PARSE_EFI,
129 };
130
131 static int
parse_memmap(char * p,u64 * start,u64 * size,enum parse_mode mode)132 parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
133 {
134 char *oldp;
135
136 if (!p)
137 return -EINVAL;
138
139 /* We don't care about this option here */
140 if (!strncmp(p, "exactmap", 8))
141 return -EINVAL;
142
143 oldp = p;
144 *size = memparse(p, &p);
145 if (p == oldp)
146 return -EINVAL;
147
148 switch (*p) {
149 case '#':
150 case '$':
151 case '!':
152 *start = memparse(p + 1, &p);
153 return 0;
154 case '@':
155 if (mode == PARSE_MEMMAP) {
156 /*
157 * memmap=nn@ss specifies usable region, should
158 * be skipped
159 */
160 *size = 0;
161 } else {
162 u64 flags;
163
164 /*
165 * efi_fake_mem=nn@ss:attr the attr specifies
166 * flags that might imply a soft-reservation.
167 */
168 *start = memparse(p + 1, &p);
169 if (p && *p == ':') {
170 p++;
171 if (kstrtoull(p, 0, &flags) < 0)
172 *size = 0;
173 else if (flags & EFI_MEMORY_SP)
174 return 0;
175 }
176 *size = 0;
177 }
178 fallthrough;
179 default:
180 /*
181 * If w/o offset, only size specified, memmap=nn[KMG] has the
182 * same behaviour as mem=nn[KMG]. It limits the max address
183 * system can use. Region above the limit should be avoided.
184 */
185 *start = 0;
186 return 0;
187 }
188
189 return -EINVAL;
190 }
191
mem_avoid_memmap(enum parse_mode mode,char * str)192 static void mem_avoid_memmap(enum parse_mode mode, char *str)
193 {
194 static int i;
195
196 if (i >= MAX_MEMMAP_REGIONS)
197 return;
198
199 while (str && (i < MAX_MEMMAP_REGIONS)) {
200 int rc;
201 u64 start, size;
202 char *k = strchr(str, ',');
203
204 if (k)
205 *k++ = 0;
206
207 rc = parse_memmap(str, &start, &size, mode);
208 if (rc < 0)
209 break;
210 str = k;
211
212 if (start == 0) {
213 /* Store the specified memory limit if size > 0 */
214 if (size > 0 && size < mem_limit)
215 mem_limit = size;
216
217 continue;
218 }
219
220 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
221 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
222 i++;
223 }
224
225 /* More than 4 memmaps, fail kaslr */
226 if ((i >= MAX_MEMMAP_REGIONS) && str)
227 memmap_too_large = true;
228 }
229
230 /* Store the number of 1GB huge pages which users specified: */
231 static unsigned long max_gb_huge_pages;
232
parse_gb_huge_pages(char * param,char * val)233 static void parse_gb_huge_pages(char *param, char *val)
234 {
235 static bool gbpage_sz;
236 char *p;
237
238 if (!strcmp(param, "hugepagesz")) {
239 p = val;
240 if (memparse(p, &p) != PUD_SIZE) {
241 gbpage_sz = false;
242 return;
243 }
244
245 if (gbpage_sz)
246 warn("Repeatedly set hugeTLB page size of 1G!\n");
247 gbpage_sz = true;
248 return;
249 }
250
251 if (!strcmp(param, "hugepages") && gbpage_sz) {
252 p = val;
253 max_gb_huge_pages = simple_strtoull(p, &p, 0);
254 return;
255 }
256 }
257
handle_mem_options(void)258 static void handle_mem_options(void)
259 {
260 char *args = (char *)get_cmd_line_ptr();
261 size_t len;
262 char *tmp_cmdline;
263 char *param, *val;
264 u64 mem_size;
265
266 if (!args)
267 return;
268
269 len = strnlen(args, COMMAND_LINE_SIZE-1);
270 tmp_cmdline = malloc(len + 1);
271 if (!tmp_cmdline)
272 error("Failed to allocate space for tmp_cmdline");
273
274 memcpy(tmp_cmdline, args, len);
275 tmp_cmdline[len] = 0;
276 args = tmp_cmdline;
277
278 /* Chew leading spaces */
279 args = skip_spaces(args);
280
281 while (*args) {
282 args = next_arg(args, ¶m, &val);
283 /* Stop at -- */
284 if (!val && strcmp(param, "--") == 0)
285 break;
286
287 if (!strcmp(param, "memmap")) {
288 mem_avoid_memmap(PARSE_MEMMAP, val);
289 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
290 parse_gb_huge_pages(param, val);
291 } else if (!strcmp(param, "mem")) {
292 char *p = val;
293
294 if (!strcmp(p, "nopentium"))
295 continue;
296 mem_size = memparse(p, &p);
297 if (mem_size == 0)
298 break;
299
300 if (mem_size < mem_limit)
301 mem_limit = mem_size;
302 } else if (!strcmp(param, "efi_fake_mem")) {
303 mem_avoid_memmap(PARSE_EFI, val);
304 }
305 }
306
307 free(tmp_cmdline);
308 return;
309 }
310
311 /*
312 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
313 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
314 *
315 * The mem_avoid array is used to store the ranges that need to be avoided
316 * when KASLR searches for an appropriate random address. We must avoid any
317 * regions that are unsafe to overlap with during decompression, and other
318 * things like the initrd, cmdline and boot_params. This comment seeks to
319 * explain mem_avoid as clearly as possible since incorrect mem_avoid
320 * memory ranges lead to really hard to debug boot failures.
321 *
322 * The initrd, cmdline, and boot_params are trivial to identify for
323 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
324 * MEM_AVOID_BOOTPARAMS respectively below.
325 *
326 * What is not obvious how to avoid is the range of memory that is used
327 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
328 * the compressed kernel (ZO) and its run space, which is used to extract
329 * the uncompressed kernel (VO) and relocs.
330 *
331 * ZO's full run size sits against the end of the decompression buffer, so
332 * we can calculate where text, data, bss, etc of ZO are positioned more
333 * easily.
334 *
335 * For additional background, the decompression calculations can be found
336 * in header.S, and the memory diagram is based on the one found in misc.c.
337 *
338 * The following conditions are already enforced by the image layouts and
339 * associated code:
340 * - input + input_size >= output + output_size
341 * - kernel_total_size <= init_size
342 * - kernel_total_size <= output_size (see Note below)
343 * - output + init_size >= output + output_size
344 *
345 * (Note that kernel_total_size and output_size have no fundamental
346 * relationship, but output_size is passed to choose_random_location
347 * as a maximum of the two. The diagram is showing a case where
348 * kernel_total_size is larger than output_size, but this case is
349 * handled by bumping output_size.)
350 *
351 * The above conditions can be illustrated by a diagram:
352 *
353 * 0 output input input+input_size output+init_size
354 * | | | | |
355 * | | | | |
356 * |-----|--------|--------|--------------|-----------|--|-------------|
357 * | | |
358 * | | |
359 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
360 *
361 * [output, output+init_size) is the entire memory range used for
362 * extracting the compressed image.
363 *
364 * [output, output+kernel_total_size) is the range needed for the
365 * uncompressed kernel (VO) and its run size (bss, brk, etc).
366 *
367 * [output, output+output_size) is VO plus relocs (i.e. the entire
368 * uncompressed payload contained by ZO). This is the area of the buffer
369 * written to during decompression.
370 *
371 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
372 * range of the copied ZO and decompression code. (i.e. the range
373 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
374 *
375 * [input, input+input_size) is the original copied compressed image (ZO)
376 * (i.e. it does not include its run size). This range must be avoided
377 * because it contains the data used for decompression.
378 *
379 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
380 * range includes ZO's heap and stack, and must be avoided since it
381 * performs the decompression.
382 *
383 * Since the above two ranges need to be avoided and they are adjacent,
384 * they can be merged, resulting in: [input, output+init_size) which
385 * becomes the MEM_AVOID_ZO_RANGE below.
386 */
mem_avoid_init(unsigned long input,unsigned long input_size,unsigned long output)387 static void mem_avoid_init(unsigned long input, unsigned long input_size,
388 unsigned long output)
389 {
390 unsigned long init_size = boot_params->hdr.init_size;
391 u64 initrd_start, initrd_size;
392 unsigned long cmd_line, cmd_line_size;
393
394 /*
395 * Avoid the region that is unsafe to overlap during
396 * decompression.
397 */
398 mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
399 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
400
401 /* Avoid initrd. */
402 initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
403 initrd_start |= boot_params->hdr.ramdisk_image;
404 initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
405 initrd_size |= boot_params->hdr.ramdisk_size;
406 mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
407 mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
408 /* No need to set mapping for initrd, it will be handled in VO. */
409
410 /* Avoid kernel command line. */
411 cmd_line = get_cmd_line_ptr();
412 /* Calculate size of cmd_line. */
413 if (cmd_line) {
414 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
415 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
416 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
417 }
418
419 /* Avoid boot parameters. */
420 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
421 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
422
423 /* We don't need to set a mapping for setup_data. */
424
425 /* Mark the memmap regions we need to avoid */
426 handle_mem_options();
427
428 /* Enumerate the immovable memory regions */
429 num_immovable_mem = count_immovable_mem_regions();
430 }
431
432 /*
433 * Does this memory vector overlap a known avoided area? If so, record the
434 * overlap region with the lowest address.
435 */
mem_avoid_overlap(struct mem_vector * img,struct mem_vector * overlap)436 static bool mem_avoid_overlap(struct mem_vector *img,
437 struct mem_vector *overlap)
438 {
439 int i;
440 struct setup_data *ptr;
441 u64 earliest = img->start + img->size;
442 bool is_overlapping = false;
443
444 for (i = 0; i < MEM_AVOID_MAX; i++) {
445 if (mem_overlaps(img, &mem_avoid[i]) &&
446 mem_avoid[i].start < earliest) {
447 *overlap = mem_avoid[i];
448 earliest = overlap->start;
449 is_overlapping = true;
450 }
451 }
452
453 /* Avoid all entries in the setup_data linked list. */
454 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
455 while (ptr) {
456 struct mem_vector avoid;
457
458 avoid.start = (unsigned long)ptr;
459 avoid.size = sizeof(*ptr) + ptr->len;
460
461 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
462 *overlap = avoid;
463 earliest = overlap->start;
464 is_overlapping = true;
465 }
466
467 if (ptr->type == SETUP_INDIRECT &&
468 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
469 avoid.start = ((struct setup_indirect *)ptr->data)->addr;
470 avoid.size = ((struct setup_indirect *)ptr->data)->len;
471
472 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
473 *overlap = avoid;
474 earliest = overlap->start;
475 is_overlapping = true;
476 }
477 }
478
479 ptr = (struct setup_data *)(unsigned long)ptr->next;
480 }
481
482 return is_overlapping;
483 }
484
485 struct slot_area {
486 u64 addr;
487 unsigned long num;
488 };
489
490 #define MAX_SLOT_AREA 100
491
492 static struct slot_area slot_areas[MAX_SLOT_AREA];
493 static unsigned int slot_area_index;
494 static unsigned long slot_max;
495
store_slot_info(struct mem_vector * region,unsigned long image_size)496 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
497 {
498 struct slot_area slot_area;
499
500 if (slot_area_index == MAX_SLOT_AREA)
501 return;
502
503 slot_area.addr = region->start;
504 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
505
506 slot_areas[slot_area_index++] = slot_area;
507 slot_max += slot_area.num;
508 }
509
510 /*
511 * Skip as many 1GB huge pages as possible in the passed region
512 * according to the number which users specified:
513 */
514 static void
process_gb_huge_pages(struct mem_vector * region,unsigned long image_size)515 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
516 {
517 u64 pud_start, pud_end;
518 unsigned long gb_huge_pages;
519 struct mem_vector tmp;
520
521 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
522 store_slot_info(region, image_size);
523 return;
524 }
525
526 /* Are there any 1GB pages in the region? */
527 pud_start = ALIGN(region->start, PUD_SIZE);
528 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
529
530 /* No good 1GB huge pages found: */
531 if (pud_start >= pud_end) {
532 store_slot_info(region, image_size);
533 return;
534 }
535
536 /* Check if the head part of the region is usable. */
537 if (pud_start >= region->start + image_size) {
538 tmp.start = region->start;
539 tmp.size = pud_start - region->start;
540 store_slot_info(&tmp, image_size);
541 }
542
543 /* Skip the good 1GB pages. */
544 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
545 if (gb_huge_pages > max_gb_huge_pages) {
546 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
547 max_gb_huge_pages = 0;
548 } else {
549 max_gb_huge_pages -= gb_huge_pages;
550 }
551
552 /* Check if the tail part of the region is usable. */
553 if (region->start + region->size >= pud_end + image_size) {
554 tmp.start = pud_end;
555 tmp.size = region->start + region->size - pud_end;
556 store_slot_info(&tmp, image_size);
557 }
558 }
559
slots_fetch_random(void)560 static u64 slots_fetch_random(void)
561 {
562 unsigned long slot;
563 unsigned int i;
564
565 /* Handle case of no slots stored. */
566 if (slot_max == 0)
567 return 0;
568
569 slot = kaslr_get_random_long("Physical") % slot_max;
570
571 for (i = 0; i < slot_area_index; i++) {
572 if (slot >= slot_areas[i].num) {
573 slot -= slot_areas[i].num;
574 continue;
575 }
576 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
577 }
578
579 if (i == slot_area_index)
580 debug_putstr("slots_fetch_random() failed!?\n");
581 return 0;
582 }
583
__process_mem_region(struct mem_vector * entry,unsigned long minimum,unsigned long image_size)584 static void __process_mem_region(struct mem_vector *entry,
585 unsigned long minimum,
586 unsigned long image_size)
587 {
588 struct mem_vector region, overlap;
589 u64 region_end;
590
591 /* Enforce minimum and memory limit. */
592 region.start = max_t(u64, entry->start, minimum);
593 region_end = min(entry->start + entry->size, mem_limit);
594
595 /* Give up if slot area array is full. */
596 while (slot_area_index < MAX_SLOT_AREA) {
597 /* Potentially raise address to meet alignment needs. */
598 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
599
600 /* Did we raise the address above the passed in memory entry? */
601 if (region.start > region_end)
602 return;
603
604 /* Reduce size by any delta from the original address. */
605 region.size = region_end - region.start;
606
607 /* Return if region can't contain decompressed kernel */
608 if (region.size < image_size)
609 return;
610
611 /* If nothing overlaps, store the region and return. */
612 if (!mem_avoid_overlap(®ion, &overlap)) {
613 process_gb_huge_pages(®ion, image_size);
614 return;
615 }
616
617 /* Store beginning of region if holds at least image_size. */
618 if (overlap.start >= region.start + image_size) {
619 region.size = overlap.start - region.start;
620 process_gb_huge_pages(®ion, image_size);
621 }
622
623 /* Clip off the overlapping region and start over. */
624 region.start = overlap.start + overlap.size;
625 }
626 }
627
process_mem_region(struct mem_vector * region,unsigned long minimum,unsigned long image_size)628 static bool process_mem_region(struct mem_vector *region,
629 unsigned long minimum,
630 unsigned long image_size)
631 {
632 int i;
633 /*
634 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
635 * use @region directly.
636 */
637 if (!num_immovable_mem) {
638 __process_mem_region(region, minimum, image_size);
639
640 if (slot_area_index == MAX_SLOT_AREA) {
641 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
642 return 1;
643 }
644 return 0;
645 }
646
647 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
648 /*
649 * If immovable memory found, filter the intersection between
650 * immovable memory and @region.
651 */
652 for (i = 0; i < num_immovable_mem; i++) {
653 u64 start, end, entry_end, region_end;
654 struct mem_vector entry;
655
656 if (!mem_overlaps(region, &immovable_mem[i]))
657 continue;
658
659 start = immovable_mem[i].start;
660 end = start + immovable_mem[i].size;
661 region_end = region->start + region->size;
662
663 entry.start = clamp(region->start, start, end);
664 entry_end = clamp(region_end, start, end);
665 entry.size = entry_end - entry.start;
666
667 __process_mem_region(&entry, minimum, image_size);
668
669 if (slot_area_index == MAX_SLOT_AREA) {
670 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
671 return 1;
672 }
673 }
674 #endif
675 return 0;
676 }
677
678 #ifdef CONFIG_EFI
679 /*
680 * Returns true if we processed the EFI memmap, which we prefer over the E820
681 * table if it is available.
682 */
683 static bool
process_efi_entries(unsigned long minimum,unsigned long image_size)684 process_efi_entries(unsigned long minimum, unsigned long image_size)
685 {
686 struct efi_info *e = &boot_params->efi_info;
687 bool efi_mirror_found = false;
688 struct mem_vector region;
689 efi_memory_desc_t *md;
690 unsigned long pmap;
691 char *signature;
692 u32 nr_desc;
693 int i;
694
695 signature = (char *)&e->efi_loader_signature;
696 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
697 strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
698 return false;
699
700 #ifdef CONFIG_X86_32
701 /* Can't handle data above 4GB at this time */
702 if (e->efi_memmap_hi) {
703 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
704 return false;
705 }
706 pmap = e->efi_memmap;
707 #else
708 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
709 #endif
710
711 nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
712 for (i = 0; i < nr_desc; i++) {
713 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
714 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
715 efi_mirror_found = true;
716 break;
717 }
718 }
719
720 for (i = 0; i < nr_desc; i++) {
721 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
722
723 /*
724 * Here we are more conservative in picking free memory than
725 * the EFI spec allows:
726 *
727 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
728 * free memory and thus available to place the kernel image into,
729 * but in practice there's firmware where using that memory leads
730 * to crashes.
731 *
732 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
733 */
734 if (md->type != EFI_CONVENTIONAL_MEMORY)
735 continue;
736
737 if (efi_soft_reserve_enabled() &&
738 (md->attribute & EFI_MEMORY_SP))
739 continue;
740
741 if (efi_mirror_found &&
742 !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
743 continue;
744
745 region.start = md->phys_addr;
746 region.size = md->num_pages << EFI_PAGE_SHIFT;
747 if (process_mem_region(®ion, minimum, image_size))
748 break;
749 }
750 return true;
751 }
752 #else
753 static inline bool
process_efi_entries(unsigned long minimum,unsigned long image_size)754 process_efi_entries(unsigned long minimum, unsigned long image_size)
755 {
756 return false;
757 }
758 #endif
759
process_e820_entries(unsigned long minimum,unsigned long image_size)760 static void process_e820_entries(unsigned long minimum,
761 unsigned long image_size)
762 {
763 int i;
764 struct mem_vector region;
765 struct boot_e820_entry *entry;
766
767 /* Verify potential e820 positions, appending to slots list. */
768 for (i = 0; i < boot_params->e820_entries; i++) {
769 entry = &boot_params->e820_table[i];
770 /* Skip non-RAM entries. */
771 if (entry->type != E820_TYPE_RAM)
772 continue;
773 region.start = entry->addr;
774 region.size = entry->size;
775 if (process_mem_region(®ion, minimum, image_size))
776 break;
777 }
778 }
779
find_random_phys_addr(unsigned long minimum,unsigned long image_size)780 static unsigned long find_random_phys_addr(unsigned long minimum,
781 unsigned long image_size)
782 {
783 u64 phys_addr;
784
785 /* Bail out early if it's impossible to succeed. */
786 if (minimum + image_size > mem_limit)
787 return 0;
788
789 /* Check if we had too many memmaps. */
790 if (memmap_too_large) {
791 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
792 return 0;
793 }
794
795 if (!process_efi_entries(minimum, image_size))
796 process_e820_entries(minimum, image_size);
797
798 phys_addr = slots_fetch_random();
799
800 /* Perform a final check to make sure the address is in range. */
801 if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
802 warn("Invalid physical address chosen!\n");
803 return 0;
804 }
805
806 return (unsigned long)phys_addr;
807 }
808
find_random_virt_addr(unsigned long minimum,unsigned long image_size)809 static unsigned long find_random_virt_addr(unsigned long minimum,
810 unsigned long image_size)
811 {
812 unsigned long slots, random_addr;
813
814 /*
815 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
816 * that can hold image_size within the range of minimum to
817 * KERNEL_IMAGE_SIZE?
818 */
819 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
820
821 random_addr = kaslr_get_random_long("Virtual") % slots;
822
823 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
824 }
825
826 /*
827 * Since this function examines addresses much more numerically,
828 * it takes the input and output pointers as 'unsigned long'.
829 */
choose_random_location(unsigned long input,unsigned long input_size,unsigned long * output,unsigned long output_size,unsigned long * virt_addr)830 void choose_random_location(unsigned long input,
831 unsigned long input_size,
832 unsigned long *output,
833 unsigned long output_size,
834 unsigned long *virt_addr)
835 {
836 unsigned long random_addr, min_addr;
837
838 if (cmdline_find_option_bool("nokaslr")) {
839 warn("KASLR disabled: 'nokaslr' on cmdline.");
840 return;
841 }
842
843 boot_params->hdr.loadflags |= KASLR_FLAG;
844
845 if (IS_ENABLED(CONFIG_X86_32))
846 mem_limit = KERNEL_IMAGE_SIZE;
847 else
848 mem_limit = MAXMEM;
849
850 /* Record the various known unsafe memory ranges. */
851 mem_avoid_init(input, input_size, *output);
852
853 /*
854 * Low end of the randomization range should be the
855 * smaller of 512M or the initial kernel image
856 * location:
857 */
858 min_addr = min(*output, 512UL << 20);
859 /* Make sure minimum is aligned. */
860 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
861
862 /* Walk available memory entries to find a random address. */
863 random_addr = find_random_phys_addr(min_addr, output_size);
864 if (!random_addr) {
865 warn("Physical KASLR disabled: no suitable memory region!");
866 } else {
867 /* Update the new physical address location. */
868 if (*output != random_addr)
869 *output = random_addr;
870 }
871
872
873 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
874 if (IS_ENABLED(CONFIG_X86_64))
875 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
876 *virt_addr = random_addr;
877 }
878