• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel(R) Processor Trace PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7  * Programming Reference:
8  * http://software.intel.com/en-us/intel-isa-extensions
9  */
10 
11 #undef DEBUG
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/types.h>
16 #include <linux/bits.h>
17 #include <linux/limits.h>
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 
21 #include <asm/perf_event.h>
22 #include <asm/insn.h>
23 #include <asm/io.h>
24 #include <asm/intel_pt.h>
25 #include <asm/intel-family.h>
26 
27 #include "../perf_event.h"
28 #include "pt.h"
29 
30 static DEFINE_PER_CPU(struct pt, pt_ctx);
31 
32 static struct pt_pmu pt_pmu;
33 
34 /*
35  * Capabilities of Intel PT hardware, such as number of address bits or
36  * supported output schemes, are cached and exported to userspace as "caps"
37  * attribute group of pt pmu device
38  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
39  * relevant bits together with intel_pt traces.
40  *
41  * These are necessary for both trace decoding (payloads_lip, contains address
42  * width encoded in IP-related packets), and event configuration (bitmasks with
43  * permitted values for certain bit fields).
44  */
45 #define PT_CAP(_n, _l, _r, _m)						\
46 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
47 			    .reg = _r, .mask = _m }
48 
49 static struct pt_cap_desc {
50 	const char	*name;
51 	u32		leaf;
52 	u8		reg;
53 	u32		mask;
54 } pt_caps[] = {
55 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
56 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
57 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
58 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
59 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
60 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
61 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
62 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
63 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
64 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
65 	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
66 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
67 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
68 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
69 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
70 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
71 };
72 
intel_pt_validate_cap(u32 * caps,enum pt_capabilities capability)73 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
74 {
75 	struct pt_cap_desc *cd = &pt_caps[capability];
76 	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
77 	unsigned int shift = __ffs(cd->mask);
78 
79 	return (c & cd->mask) >> shift;
80 }
81 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
82 
intel_pt_validate_hw_cap(enum pt_capabilities cap)83 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
84 {
85 	return intel_pt_validate_cap(pt_pmu.caps, cap);
86 }
87 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
88 
pt_cap_show(struct device * cdev,struct device_attribute * attr,char * buf)89 static ssize_t pt_cap_show(struct device *cdev,
90 			   struct device_attribute *attr,
91 			   char *buf)
92 {
93 	struct dev_ext_attribute *ea =
94 		container_of(attr, struct dev_ext_attribute, attr);
95 	enum pt_capabilities cap = (long)ea->var;
96 
97 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
98 }
99 
100 static struct attribute_group pt_cap_group __ro_after_init = {
101 	.name	= "caps",
102 };
103 
104 PMU_FORMAT_ATTR(pt,		"config:0"	);
105 PMU_FORMAT_ATTR(cyc,		"config:1"	);
106 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
107 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
108 PMU_FORMAT_ATTR(mtc,		"config:9"	);
109 PMU_FORMAT_ATTR(tsc,		"config:10"	);
110 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
111 PMU_FORMAT_ATTR(ptw,		"config:12"	);
112 PMU_FORMAT_ATTR(branch,		"config:13"	);
113 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
114 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
115 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
116 
117 static struct attribute *pt_formats_attr[] = {
118 	&format_attr_pt.attr,
119 	&format_attr_cyc.attr,
120 	&format_attr_pwr_evt.attr,
121 	&format_attr_fup_on_ptw.attr,
122 	&format_attr_mtc.attr,
123 	&format_attr_tsc.attr,
124 	&format_attr_noretcomp.attr,
125 	&format_attr_ptw.attr,
126 	&format_attr_branch.attr,
127 	&format_attr_mtc_period.attr,
128 	&format_attr_cyc_thresh.attr,
129 	&format_attr_psb_period.attr,
130 	NULL,
131 };
132 
133 static struct attribute_group pt_format_group = {
134 	.name	= "format",
135 	.attrs	= pt_formats_attr,
136 };
137 
138 static ssize_t
pt_timing_attr_show(struct device * dev,struct device_attribute * attr,char * page)139 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
140 		    char *page)
141 {
142 	struct perf_pmu_events_attr *pmu_attr =
143 		container_of(attr, struct perf_pmu_events_attr, attr);
144 
145 	switch (pmu_attr->id) {
146 	case 0:
147 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
148 	case 1:
149 		return sprintf(page, "%u:%u\n",
150 			       pt_pmu.tsc_art_num,
151 			       pt_pmu.tsc_art_den);
152 	default:
153 		break;
154 	}
155 
156 	return -EINVAL;
157 }
158 
159 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
160 	       pt_timing_attr_show);
161 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
162 	       pt_timing_attr_show);
163 
164 static struct attribute *pt_timing_attr[] = {
165 	&timing_attr_max_nonturbo_ratio.attr.attr,
166 	&timing_attr_tsc_art_ratio.attr.attr,
167 	NULL,
168 };
169 
170 static struct attribute_group pt_timing_group = {
171 	.attrs	= pt_timing_attr,
172 };
173 
174 static const struct attribute_group *pt_attr_groups[] = {
175 	&pt_cap_group,
176 	&pt_format_group,
177 	&pt_timing_group,
178 	NULL,
179 };
180 
pt_pmu_hw_init(void)181 static int __init pt_pmu_hw_init(void)
182 {
183 	struct dev_ext_attribute *de_attrs;
184 	struct attribute **attrs;
185 	size_t size;
186 	u64 reg;
187 	int ret;
188 	long i;
189 
190 	rdmsrl(MSR_PLATFORM_INFO, reg);
191 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
192 
193 	/*
194 	 * if available, read in TSC to core crystal clock ratio,
195 	 * otherwise, zero for numerator stands for "not enumerated"
196 	 * as per SDM
197 	 */
198 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
199 		u32 eax, ebx, ecx, edx;
200 
201 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
202 
203 		pt_pmu.tsc_art_num = ebx;
204 		pt_pmu.tsc_art_den = eax;
205 	}
206 
207 	/* model-specific quirks */
208 	switch (boot_cpu_data.x86_model) {
209 	case INTEL_FAM6_BROADWELL:
210 	case INTEL_FAM6_BROADWELL_D:
211 	case INTEL_FAM6_BROADWELL_G:
212 	case INTEL_FAM6_BROADWELL_X:
213 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
214 		pt_pmu.branch_en_always_on = true;
215 		break;
216 	default:
217 		break;
218 	}
219 
220 	if (boot_cpu_has(X86_FEATURE_VMX)) {
221 		/*
222 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
223 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
224 		 * post-VMXON.
225 		 */
226 		rdmsrl(MSR_IA32_VMX_MISC, reg);
227 		if (reg & BIT(14))
228 			pt_pmu.vmx = true;
229 	}
230 
231 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
232 		cpuid_count(20, i,
233 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
234 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
235 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
236 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
237 	}
238 
239 	ret = -ENOMEM;
240 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
241 	attrs = kzalloc(size, GFP_KERNEL);
242 	if (!attrs)
243 		goto fail;
244 
245 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
246 	de_attrs = kzalloc(size, GFP_KERNEL);
247 	if (!de_attrs)
248 		goto fail;
249 
250 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
251 		struct dev_ext_attribute *de_attr = de_attrs + i;
252 
253 		de_attr->attr.attr.name = pt_caps[i].name;
254 
255 		sysfs_attr_init(&de_attr->attr.attr);
256 
257 		de_attr->attr.attr.mode		= S_IRUGO;
258 		de_attr->attr.show		= pt_cap_show;
259 		de_attr->var			= (void *)i;
260 
261 		attrs[i] = &de_attr->attr.attr;
262 	}
263 
264 	pt_cap_group.attrs = attrs;
265 
266 	return 0;
267 
268 fail:
269 	kfree(attrs);
270 
271 	return ret;
272 }
273 
274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
275 			  RTIT_CTL_CYC_THRESH	| \
276 			  RTIT_CTL_PSB_FREQ)
277 
278 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
279 			 RTIT_CTL_MTC_RANGE)
280 
281 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
282 			 RTIT_CTL_FUP_ON_PTW)
283 
284 /*
285  * Bit 0 (TraceEn) in the attr.config is meaningless as the
286  * corresponding bit in the RTIT_CTL can only be controlled
287  * by the driver; therefore, repurpose it to mean: pass
288  * through the bit that was previously assumed to be always
289  * on for PT, thereby allowing the user to *not* set it if
290  * they so wish. See also pt_event_valid() and pt_config().
291  */
292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
293 
294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
295 			RTIT_CTL_TSC_EN		| \
296 			RTIT_CTL_DISRETC	| \
297 			RTIT_CTL_BRANCH_EN	| \
298 			RTIT_CTL_CYC_PSB	| \
299 			RTIT_CTL_MTC		| \
300 			RTIT_CTL_PWR_EVT_EN	| \
301 			RTIT_CTL_FUP_ON_PTW	| \
302 			RTIT_CTL_PTW_EN)
303 
pt_event_valid(struct perf_event * event)304 static bool pt_event_valid(struct perf_event *event)
305 {
306 	u64 config = event->attr.config;
307 	u64 allowed, requested;
308 
309 	if ((config & PT_CONFIG_MASK) != config)
310 		return false;
311 
312 	if (config & RTIT_CTL_CYC_PSB) {
313 		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
314 			return false;
315 
316 		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
317 		requested = (config & RTIT_CTL_PSB_FREQ) >>
318 			RTIT_CTL_PSB_FREQ_OFFSET;
319 		if (requested && (!(allowed & BIT(requested))))
320 			return false;
321 
322 		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
323 		requested = (config & RTIT_CTL_CYC_THRESH) >>
324 			RTIT_CTL_CYC_THRESH_OFFSET;
325 		if (requested && (!(allowed & BIT(requested))))
326 			return false;
327 	}
328 
329 	if (config & RTIT_CTL_MTC) {
330 		/*
331 		 * In the unlikely case that CPUID lists valid mtc periods,
332 		 * but not the mtc capability, drop out here.
333 		 *
334 		 * Spec says that setting mtc period bits while mtc bit in
335 		 * CPUID is 0 will #GP, so better safe than sorry.
336 		 */
337 		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
338 			return false;
339 
340 		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
341 		if (!allowed)
342 			return false;
343 
344 		requested = (config & RTIT_CTL_MTC_RANGE) >>
345 			RTIT_CTL_MTC_RANGE_OFFSET;
346 
347 		if (!(allowed & BIT(requested)))
348 			return false;
349 	}
350 
351 	if (config & RTIT_CTL_PWR_EVT_EN &&
352 	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
353 		return false;
354 
355 	if (config & RTIT_CTL_PTW) {
356 		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
357 			return false;
358 
359 		/* FUPonPTW without PTW doesn't make sense */
360 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
361 		    !(config & RTIT_CTL_PTW_EN))
362 			return false;
363 	}
364 
365 	/*
366 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
367 	 * clears the assomption that BranchEn must always be enabled,
368 	 * as was the case with the first implementation of PT.
369 	 * If this bit is not set, the legacy behavior is preserved
370 	 * for compatibility with the older userspace.
371 	 *
372 	 * Re-using bit 0 for this purpose is fine because it is never
373 	 * directly set by the user; previous attempts at setting it in
374 	 * the attr.config resulted in -EINVAL.
375 	 */
376 	if (config & RTIT_CTL_PASSTHROUGH) {
377 		/*
378 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
379 		 * always required.
380 		 */
381 		if (pt_pmu.branch_en_always_on &&
382 		    !(config & RTIT_CTL_BRANCH_EN))
383 			return false;
384 	} else {
385 		/*
386 		 * Disallow BRANCH_EN without the PASSTHROUGH.
387 		 */
388 		if (config & RTIT_CTL_BRANCH_EN)
389 			return false;
390 	}
391 
392 	return true;
393 }
394 
395 /*
396  * PT configuration helpers
397  * These all are cpu affine and operate on a local PT
398  */
399 
pt_config_start(struct perf_event * event)400 static void pt_config_start(struct perf_event *event)
401 {
402 	struct pt *pt = this_cpu_ptr(&pt_ctx);
403 	u64 ctl = event->hw.config;
404 
405 	ctl |= RTIT_CTL_TRACEEN;
406 	if (READ_ONCE(pt->vmx_on))
407 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
408 	else
409 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
410 
411 	WRITE_ONCE(event->hw.config, ctl);
412 }
413 
414 /* Address ranges and their corresponding msr configuration registers */
415 static const struct pt_address_range {
416 	unsigned long	msr_a;
417 	unsigned long	msr_b;
418 	unsigned int	reg_off;
419 } pt_address_ranges[] = {
420 	{
421 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
422 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
423 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
424 	},
425 	{
426 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
427 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
428 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
429 	},
430 	{
431 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
432 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
433 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
434 	},
435 	{
436 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
437 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
438 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
439 	}
440 };
441 
pt_config_filters(struct perf_event * event)442 static u64 pt_config_filters(struct perf_event *event)
443 {
444 	struct pt_filters *filters = event->hw.addr_filters;
445 	struct pt *pt = this_cpu_ptr(&pt_ctx);
446 	unsigned int range = 0;
447 	u64 rtit_ctl = 0;
448 
449 	if (!filters)
450 		return 0;
451 
452 	perf_event_addr_filters_sync(event);
453 
454 	for (range = 0; range < filters->nr_filters; range++) {
455 		struct pt_filter *filter = &filters->filter[range];
456 
457 		/*
458 		 * Note, if the range has zero start/end addresses due
459 		 * to its dynamic object not being loaded yet, we just
460 		 * go ahead and program zeroed range, which will simply
461 		 * produce no data. Note^2: if executable code at 0x0
462 		 * is a concern, we can set up an "invalid" configuration
463 		 * such as msr_b < msr_a.
464 		 */
465 
466 		/* avoid redundant msr writes */
467 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
468 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
469 			pt->filters.filter[range].msr_a = filter->msr_a;
470 		}
471 
472 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
473 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
474 			pt->filters.filter[range].msr_b = filter->msr_b;
475 		}
476 
477 		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
478 	}
479 
480 	return rtit_ctl;
481 }
482 
pt_config(struct perf_event * event)483 static void pt_config(struct perf_event *event)
484 {
485 	struct pt *pt = this_cpu_ptr(&pt_ctx);
486 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
487 	u64 reg;
488 
489 	/* First round: clear STATUS, in particular the PSB byte counter. */
490 	if (!event->hw.config) {
491 		perf_event_itrace_started(event);
492 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
493 	}
494 
495 	reg = pt_config_filters(event);
496 	reg |= RTIT_CTL_TRACEEN;
497 	if (!buf->single)
498 		reg |= RTIT_CTL_TOPA;
499 
500 	/*
501 	 * Previously, we had BRANCH_EN on by default, but now that PT has
502 	 * grown features outside of branch tracing, it is useful to allow
503 	 * the user to disable it. Setting bit 0 in the event's attr.config
504 	 * allows BRANCH_EN to pass through instead of being always on. See
505 	 * also the comment in pt_event_valid().
506 	 */
507 	if (event->attr.config & BIT(0)) {
508 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
509 	} else {
510 		reg |= RTIT_CTL_BRANCH_EN;
511 	}
512 
513 	if (!event->attr.exclude_kernel)
514 		reg |= RTIT_CTL_OS;
515 	if (!event->attr.exclude_user)
516 		reg |= RTIT_CTL_USR;
517 
518 	reg |= (event->attr.config & PT_CONFIG_MASK);
519 
520 	event->hw.config = reg;
521 	pt_config_start(event);
522 }
523 
pt_config_stop(struct perf_event * event)524 static void pt_config_stop(struct perf_event *event)
525 {
526 	struct pt *pt = this_cpu_ptr(&pt_ctx);
527 	u64 ctl = READ_ONCE(event->hw.config);
528 
529 	/* may be already stopped by a PMI */
530 	if (!(ctl & RTIT_CTL_TRACEEN))
531 		return;
532 
533 	ctl &= ~RTIT_CTL_TRACEEN;
534 	if (!READ_ONCE(pt->vmx_on))
535 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
536 
537 	WRITE_ONCE(event->hw.config, ctl);
538 
539 	/*
540 	 * A wrmsr that disables trace generation serializes other PT
541 	 * registers and causes all data packets to be written to memory,
542 	 * but a fence is required for the data to become globally visible.
543 	 *
544 	 * The below WMB, separating data store and aux_head store matches
545 	 * the consumer's RMB that separates aux_head load and data load.
546 	 */
547 	wmb();
548 }
549 
550 /**
551  * struct topa - ToPA metadata
552  * @list:	linkage to struct pt_buffer's list of tables
553  * @offset:	offset of the first entry in this table in the buffer
554  * @size:	total size of all entries in this table
555  * @last:	index of the last initialized entry in this table
556  * @z_count:	how many times the first entry repeats
557  */
558 struct topa {
559 	struct list_head	list;
560 	u64			offset;
561 	size_t			size;
562 	int			last;
563 	unsigned int		z_count;
564 };
565 
566 /*
567  * Keep ToPA table-related metadata on the same page as the actual table,
568  * taking up a few words from the top
569  */
570 
571 #define TENTS_PER_PAGE	\
572 	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
573 
574 /**
575  * struct topa_page - page-sized ToPA table with metadata at the top
576  * @table:	actual ToPA table entries, as understood by PT hardware
577  * @topa:	metadata
578  */
579 struct topa_page {
580 	struct topa_entry	table[TENTS_PER_PAGE];
581 	struct topa		topa;
582 };
583 
topa_to_page(struct topa * topa)584 static inline struct topa_page *topa_to_page(struct topa *topa)
585 {
586 	return container_of(topa, struct topa_page, topa);
587 }
588 
topa_entry_to_page(struct topa_entry * te)589 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
590 {
591 	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
592 }
593 
topa_pfn(struct topa * topa)594 static inline phys_addr_t topa_pfn(struct topa *topa)
595 {
596 	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
597 }
598 
599 /* make -1 stand for the last table entry */
600 #define TOPA_ENTRY(t, i)				\
601 	((i) == -1					\
602 		? &topa_to_page(t)->table[(t)->last]	\
603 		: &topa_to_page(t)->table[(i)])
604 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
605 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
606 
pt_config_buffer(struct pt_buffer * buf)607 static void pt_config_buffer(struct pt_buffer *buf)
608 {
609 	struct pt *pt = this_cpu_ptr(&pt_ctx);
610 	u64 reg, mask;
611 	void *base;
612 
613 	if (buf->single) {
614 		base = buf->data_pages[0];
615 		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
616 	} else {
617 		base = topa_to_page(buf->cur)->table;
618 		mask = (u64)buf->cur_idx;
619 	}
620 
621 	reg = virt_to_phys(base);
622 	if (pt->output_base != reg) {
623 		pt->output_base = reg;
624 		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
625 	}
626 
627 	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
628 	if (pt->output_mask != reg) {
629 		pt->output_mask = reg;
630 		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
631 	}
632 }
633 
634 /**
635  * topa_alloc() - allocate page-sized ToPA table
636  * @cpu:	CPU on which to allocate.
637  * @gfp:	Allocation flags.
638  *
639  * Return:	On success, return the pointer to ToPA table page.
640  */
topa_alloc(int cpu,gfp_t gfp)641 static struct topa *topa_alloc(int cpu, gfp_t gfp)
642 {
643 	int node = cpu_to_node(cpu);
644 	struct topa_page *tp;
645 	struct page *p;
646 
647 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
648 	if (!p)
649 		return NULL;
650 
651 	tp = page_address(p);
652 	tp->topa.last = 0;
653 
654 	/*
655 	 * In case of singe-entry ToPA, always put the self-referencing END
656 	 * link as the 2nd entry in the table
657 	 */
658 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
659 		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
660 		TOPA_ENTRY(&tp->topa, 1)->end = 1;
661 	}
662 
663 	return &tp->topa;
664 }
665 
666 /**
667  * topa_free() - free a page-sized ToPA table
668  * @topa:	Table to deallocate.
669  */
topa_free(struct topa * topa)670 static void topa_free(struct topa *topa)
671 {
672 	free_page((unsigned long)topa);
673 }
674 
675 /**
676  * topa_insert_table() - insert a ToPA table into a buffer
677  * @buf:	 PT buffer that's being extended.
678  * @topa:	 New topa table to be inserted.
679  *
680  * If it's the first table in this buffer, set up buffer's pointers
681  * accordingly; otherwise, add a END=1 link entry to @topa to the current
682  * "last" table and adjust the last table pointer to @topa.
683  */
topa_insert_table(struct pt_buffer * buf,struct topa * topa)684 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
685 {
686 	struct topa *last = buf->last;
687 
688 	list_add_tail(&topa->list, &buf->tables);
689 
690 	if (!buf->first) {
691 		buf->first = buf->last = buf->cur = topa;
692 		return;
693 	}
694 
695 	topa->offset = last->offset + last->size;
696 	buf->last = topa;
697 
698 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
699 		return;
700 
701 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
702 
703 	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
704 	TOPA_ENTRY(last, -1)->end = 1;
705 }
706 
707 /**
708  * topa_table_full() - check if a ToPA table is filled up
709  * @topa:	ToPA table.
710  */
topa_table_full(struct topa * topa)711 static bool topa_table_full(struct topa *topa)
712 {
713 	/* single-entry ToPA is a special case */
714 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
715 		return !!topa->last;
716 
717 	return topa->last == TENTS_PER_PAGE - 1;
718 }
719 
720 /**
721  * topa_insert_pages() - create a list of ToPA tables
722  * @buf:	PT buffer being initialized.
723  * @gfp:	Allocation flags.
724  *
725  * This initializes a list of ToPA tables with entries from
726  * the data_pages provided by rb_alloc_aux().
727  *
728  * Return:	0 on success or error code.
729  */
topa_insert_pages(struct pt_buffer * buf,int cpu,gfp_t gfp)730 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
731 {
732 	struct topa *topa = buf->last;
733 	int order = 0;
734 	struct page *p;
735 
736 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
737 	if (PagePrivate(p))
738 		order = page_private(p);
739 
740 	if (topa_table_full(topa)) {
741 		topa = topa_alloc(cpu, gfp);
742 		if (!topa)
743 			return -ENOMEM;
744 
745 		topa_insert_table(buf, topa);
746 	}
747 
748 	if (topa->z_count == topa->last - 1) {
749 		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
750 			topa->z_count++;
751 	}
752 
753 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
754 	TOPA_ENTRY(topa, -1)->size = order;
755 	if (!buf->snapshot &&
756 	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
757 		TOPA_ENTRY(topa, -1)->intr = 1;
758 		TOPA_ENTRY(topa, -1)->stop = 1;
759 	}
760 
761 	topa->last++;
762 	topa->size += sizes(order);
763 
764 	buf->nr_pages += 1ul << order;
765 
766 	return 0;
767 }
768 
769 /**
770  * pt_topa_dump() - print ToPA tables and their entries
771  * @buf:	PT buffer.
772  */
pt_topa_dump(struct pt_buffer * buf)773 static void pt_topa_dump(struct pt_buffer *buf)
774 {
775 	struct topa *topa;
776 
777 	list_for_each_entry(topa, &buf->tables, list) {
778 		struct topa_page *tp = topa_to_page(topa);
779 		int i;
780 
781 		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
782 			 topa->offset, topa->size);
783 		for (i = 0; i < TENTS_PER_PAGE; i++) {
784 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
785 				 &tp->table[i],
786 				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
787 				 sizes(tp->table[i].size),
788 				 tp->table[i].end ?  'E' : ' ',
789 				 tp->table[i].intr ? 'I' : ' ',
790 				 tp->table[i].stop ? 'S' : ' ',
791 				 *(u64 *)&tp->table[i]);
792 			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
793 			     tp->table[i].stop) ||
794 			    tp->table[i].end)
795 				break;
796 			if (!i && topa->z_count)
797 				i += topa->z_count;
798 		}
799 	}
800 }
801 
802 /**
803  * pt_buffer_advance() - advance to the next output region
804  * @buf:	PT buffer.
805  *
806  * Advance the current pointers in the buffer to the next ToPA entry.
807  */
pt_buffer_advance(struct pt_buffer * buf)808 static void pt_buffer_advance(struct pt_buffer *buf)
809 {
810 	buf->output_off = 0;
811 	buf->cur_idx++;
812 
813 	if (buf->cur_idx == buf->cur->last) {
814 		if (buf->cur == buf->last)
815 			buf->cur = buf->first;
816 		else
817 			buf->cur = list_entry(buf->cur->list.next, struct topa,
818 					      list);
819 		buf->cur_idx = 0;
820 	}
821 }
822 
823 /**
824  * pt_update_head() - calculate current offsets and sizes
825  * @pt:		Per-cpu pt context.
826  *
827  * Update buffer's current write pointer position and data size.
828  */
pt_update_head(struct pt * pt)829 static void pt_update_head(struct pt *pt)
830 {
831 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
832 	u64 topa_idx, base, old;
833 
834 	if (buf->single) {
835 		local_set(&buf->data_size, buf->output_off);
836 		return;
837 	}
838 
839 	/* offset of the first region in this table from the beginning of buf */
840 	base = buf->cur->offset + buf->output_off;
841 
842 	/* offset of the current output region within this table */
843 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
844 		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
845 
846 	if (buf->snapshot) {
847 		local_set(&buf->data_size, base);
848 	} else {
849 		old = (local64_xchg(&buf->head, base) &
850 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
851 		if (base < old)
852 			base += buf->nr_pages << PAGE_SHIFT;
853 
854 		local_add(base - old, &buf->data_size);
855 	}
856 }
857 
858 /**
859  * pt_buffer_region() - obtain current output region's address
860  * @buf:	PT buffer.
861  */
pt_buffer_region(struct pt_buffer * buf)862 static void *pt_buffer_region(struct pt_buffer *buf)
863 {
864 	return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
865 }
866 
867 /**
868  * pt_buffer_region_size() - obtain current output region's size
869  * @buf:	PT buffer.
870  */
pt_buffer_region_size(struct pt_buffer * buf)871 static size_t pt_buffer_region_size(struct pt_buffer *buf)
872 {
873 	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
874 }
875 
876 /**
877  * pt_handle_status() - take care of possible status conditions
878  * @pt:		Per-cpu pt context.
879  */
pt_handle_status(struct pt * pt)880 static void pt_handle_status(struct pt *pt)
881 {
882 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
883 	int advance = 0;
884 	u64 status;
885 
886 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
887 
888 	if (status & RTIT_STATUS_ERROR) {
889 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
890 		pt_topa_dump(buf);
891 		status &= ~RTIT_STATUS_ERROR;
892 	}
893 
894 	if (status & RTIT_STATUS_STOPPED) {
895 		status &= ~RTIT_STATUS_STOPPED;
896 
897 		/*
898 		 * On systems that only do single-entry ToPA, hitting STOP
899 		 * means we are already losing data; need to let the decoder
900 		 * know.
901 		 */
902 		if (!buf->single &&
903 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
904 		     buf->output_off == pt_buffer_region_size(buf))) {
905 			perf_aux_output_flag(&pt->handle,
906 			                     PERF_AUX_FLAG_TRUNCATED);
907 			advance++;
908 		}
909 	}
910 
911 	/*
912 	 * Also on single-entry ToPA implementations, interrupt will come
913 	 * before the output reaches its output region's boundary.
914 	 */
915 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
916 	    !buf->snapshot &&
917 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
918 		void *head = pt_buffer_region(buf);
919 
920 		/* everything within this margin needs to be zeroed out */
921 		memset(head + buf->output_off, 0,
922 		       pt_buffer_region_size(buf) -
923 		       buf->output_off);
924 		advance++;
925 	}
926 
927 	if (advance)
928 		pt_buffer_advance(buf);
929 
930 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
931 }
932 
933 /**
934  * pt_read_offset() - translate registers into buffer pointers
935  * @buf:	PT buffer.
936  *
937  * Set buffer's output pointers from MSR values.
938  */
pt_read_offset(struct pt_buffer * buf)939 static void pt_read_offset(struct pt_buffer *buf)
940 {
941 	struct pt *pt = this_cpu_ptr(&pt_ctx);
942 	struct topa_page *tp;
943 
944 	if (!buf->single) {
945 		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
946 		tp = phys_to_virt(pt->output_base);
947 		buf->cur = &tp->topa;
948 	}
949 
950 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
951 	/* offset within current output region */
952 	buf->output_off = pt->output_mask >> 32;
953 	/* index of current output region within this table */
954 	if (!buf->single)
955 		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
956 }
957 
958 static struct topa_entry *
pt_topa_entry_for_page(struct pt_buffer * buf,unsigned int pg)959 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
960 {
961 	struct topa_page *tp;
962 	struct topa *topa;
963 	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
964 
965 	/*
966 	 * Indicates a bug in the caller.
967 	 */
968 	if (WARN_ON_ONCE(pg >= buf->nr_pages))
969 		return NULL;
970 
971 	/*
972 	 * First, find the ToPA table where @pg fits. With high
973 	 * order allocations, there shouldn't be many of these.
974 	 */
975 	list_for_each_entry(topa, &buf->tables, list) {
976 		if (topa->offset + topa->size > pg << PAGE_SHIFT)
977 			goto found;
978 	}
979 
980 	/*
981 	 * Hitting this means we have a problem in the ToPA
982 	 * allocation code.
983 	 */
984 	WARN_ON_ONCE(1);
985 
986 	return NULL;
987 
988 found:
989 	/*
990 	 * Indicates a problem in the ToPA allocation code.
991 	 */
992 	if (WARN_ON_ONCE(topa->last == -1))
993 		return NULL;
994 
995 	tp = topa_to_page(topa);
996 	cur_pg = PFN_DOWN(topa->offset);
997 	if (topa->z_count) {
998 		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
999 		start_idx = topa->z_count + 1;
1000 	}
1001 
1002 	/*
1003 	 * Multiple entries at the beginning of the table have the same size,
1004 	 * ideally all of them; if @pg falls there, the search is done.
1005 	 */
1006 	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1007 		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1008 		return &tp->table[idx];
1009 	}
1010 
1011 	/*
1012 	 * Otherwise, slow path: iterate through the remaining entries.
1013 	 */
1014 	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1015 		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1016 			return &tp->table[idx];
1017 
1018 		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1019 	}
1020 
1021 	/*
1022 	 * Means we couldn't find a ToPA entry in the table that does match.
1023 	 */
1024 	WARN_ON_ONCE(1);
1025 
1026 	return NULL;
1027 }
1028 
1029 static struct topa_entry *
pt_topa_prev_entry(struct pt_buffer * buf,struct topa_entry * te)1030 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1031 {
1032 	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1033 	struct topa_page *tp;
1034 	struct topa *topa;
1035 
1036 	tp = (struct topa_page *)table;
1037 	if (tp->table != te)
1038 		return --te;
1039 
1040 	topa = &tp->topa;
1041 	if (topa == buf->first)
1042 		topa = buf->last;
1043 	else
1044 		topa = list_prev_entry(topa, list);
1045 
1046 	tp = topa_to_page(topa);
1047 
1048 	return &tp->table[topa->last - 1];
1049 }
1050 
1051 /**
1052  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1053  * @buf:	PT buffer.
1054  * @handle:	Current output handle.
1055  *
1056  * Place INT and STOP marks to prevent overwriting old data that the consumer
1057  * hasn't yet collected and waking up the consumer after a certain fraction of
1058  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1059  *
1060  * This obviously relies on buf::head to figure out buffer markers, so it has
1061  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1062  * is enabled.
1063  */
pt_buffer_reset_markers(struct pt_buffer * buf,struct perf_output_handle * handle)1064 static int pt_buffer_reset_markers(struct pt_buffer *buf,
1065 				   struct perf_output_handle *handle)
1066 
1067 {
1068 	unsigned long head = local64_read(&buf->head);
1069 	unsigned long idx, npages, wakeup;
1070 
1071 	if (buf->single)
1072 		return 0;
1073 
1074 	/* can't stop in the middle of an output region */
1075 	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1076 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1077 		return -EINVAL;
1078 	}
1079 
1080 
1081 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1082 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1083 		return 0;
1084 
1085 	/* clear STOP and INT from current entry */
1086 	if (buf->stop_te) {
1087 		buf->stop_te->stop = 0;
1088 		buf->stop_te->intr = 0;
1089 	}
1090 
1091 	if (buf->intr_te)
1092 		buf->intr_te->intr = 0;
1093 
1094 	/* how many pages till the STOP marker */
1095 	npages = handle->size >> PAGE_SHIFT;
1096 
1097 	/* if it's on a page boundary, fill up one more page */
1098 	if (!offset_in_page(head + handle->size + 1))
1099 		npages++;
1100 
1101 	idx = (head >> PAGE_SHIFT) + npages;
1102 	idx &= buf->nr_pages - 1;
1103 
1104 	if (idx != buf->stop_pos) {
1105 		buf->stop_pos = idx;
1106 		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1107 		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1108 	}
1109 
1110 	wakeup = handle->wakeup >> PAGE_SHIFT;
1111 
1112 	/* in the worst case, wake up the consumer one page before hard stop */
1113 	idx = (head >> PAGE_SHIFT) + npages - 1;
1114 	if (idx > wakeup)
1115 		idx = wakeup;
1116 
1117 	idx &= buf->nr_pages - 1;
1118 	if (idx != buf->intr_pos) {
1119 		buf->intr_pos = idx;
1120 		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1121 		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1122 	}
1123 
1124 	buf->stop_te->stop = 1;
1125 	buf->stop_te->intr = 1;
1126 	buf->intr_te->intr = 1;
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1133  * @buf:	PT buffer.
1134  * @head:	Write pointer (aux_head) from AUX buffer.
1135  *
1136  * Find the ToPA table and entry corresponding to given @head and set buffer's
1137  * "current" pointers accordingly. This is done after we have obtained the
1138  * current aux_head position from a successful call to perf_aux_output_begin()
1139  * to make sure the hardware is writing to the right place.
1140  *
1141  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1142  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1143  * which are used to determine INT and STOP markers' locations by a subsequent
1144  * call to pt_buffer_reset_markers().
1145  */
pt_buffer_reset_offsets(struct pt_buffer * buf,unsigned long head)1146 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1147 {
1148 	struct topa_page *cur_tp;
1149 	struct topa_entry *te;
1150 	int pg;
1151 
1152 	if (buf->snapshot)
1153 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1154 
1155 	if (!buf->single) {
1156 		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1157 		te = pt_topa_entry_for_page(buf, pg);
1158 
1159 		cur_tp = topa_entry_to_page(te);
1160 		buf->cur = &cur_tp->topa;
1161 		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1162 		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1163 	} else {
1164 		buf->output_off = head;
1165 	}
1166 
1167 	local64_set(&buf->head, head);
1168 	local_set(&buf->data_size, 0);
1169 }
1170 
1171 /**
1172  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1173  * @buf:	PT buffer.
1174  */
pt_buffer_fini_topa(struct pt_buffer * buf)1175 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1176 {
1177 	struct topa *topa, *iter;
1178 
1179 	if (buf->single)
1180 		return;
1181 
1182 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1183 		/*
1184 		 * right now, this is in free_aux() path only, so
1185 		 * no need to unlink this table from the list
1186 		 */
1187 		topa_free(topa);
1188 	}
1189 }
1190 
1191 /**
1192  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1193  * @buf:	PT buffer.
1194  * @size:	Total size of all regions within this ToPA.
1195  * @gfp:	Allocation flags.
1196  */
pt_buffer_init_topa(struct pt_buffer * buf,int cpu,unsigned long nr_pages,gfp_t gfp)1197 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1198 			       unsigned long nr_pages, gfp_t gfp)
1199 {
1200 	struct topa *topa;
1201 	int err;
1202 
1203 	topa = topa_alloc(cpu, gfp);
1204 	if (!topa)
1205 		return -ENOMEM;
1206 
1207 	topa_insert_table(buf, topa);
1208 
1209 	while (buf->nr_pages < nr_pages) {
1210 		err = topa_insert_pages(buf, cpu, gfp);
1211 		if (err) {
1212 			pt_buffer_fini_topa(buf);
1213 			return -ENOMEM;
1214 		}
1215 	}
1216 
1217 	/* link last table to the first one, unless we're double buffering */
1218 	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1219 		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1220 		TOPA_ENTRY(buf->last, -1)->end = 1;
1221 	}
1222 
1223 	pt_topa_dump(buf);
1224 	return 0;
1225 }
1226 
pt_buffer_try_single(struct pt_buffer * buf,int nr_pages)1227 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1228 {
1229 	struct page *p = virt_to_page(buf->data_pages[0]);
1230 	int ret = -ENOTSUPP, order = 0;
1231 
1232 	/*
1233 	 * We can use single range output mode
1234 	 * + in snapshot mode, where we don't need interrupts;
1235 	 * + if the hardware supports it;
1236 	 * + if the entire buffer is one contiguous allocation.
1237 	 */
1238 	if (!buf->snapshot)
1239 		goto out;
1240 
1241 	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1242 		goto out;
1243 
1244 	if (PagePrivate(p))
1245 		order = page_private(p);
1246 
1247 	if (1 << order != nr_pages)
1248 		goto out;
1249 
1250 	/*
1251 	 * Some processors cannot always support single range for more than
1252 	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1253 	 * also be affected, so for now rather than trying to keep track of
1254 	 * which ones, just disable it for all.
1255 	 */
1256 	if (nr_pages > 1)
1257 		goto out;
1258 
1259 	buf->single = true;
1260 	buf->nr_pages = nr_pages;
1261 	ret = 0;
1262 out:
1263 	return ret;
1264 }
1265 
1266 /**
1267  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1268  * @cpu:	Cpu on which to allocate, -1 means current.
1269  * @pages:	Array of pointers to buffer pages passed from perf core.
1270  * @nr_pages:	Number of pages in the buffer.
1271  * @snapshot:	If this is a snapshot/overwrite counter.
1272  *
1273  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1274  * bookkeeping for an AUX buffer.
1275  *
1276  * Return:	Our private PT buffer structure.
1277  */
1278 static void *
pt_buffer_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1279 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1280 		    int nr_pages, bool snapshot)
1281 {
1282 	struct pt_buffer *buf;
1283 	int node, ret, cpu = event->cpu;
1284 
1285 	if (!nr_pages)
1286 		return NULL;
1287 
1288 	/*
1289 	 * Only support AUX sampling in snapshot mode, where we don't
1290 	 * generate NMIs.
1291 	 */
1292 	if (event->attr.aux_sample_size && !snapshot)
1293 		return NULL;
1294 
1295 	if (cpu == -1)
1296 		cpu = raw_smp_processor_id();
1297 	node = cpu_to_node(cpu);
1298 
1299 	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1300 	if (!buf)
1301 		return NULL;
1302 
1303 	buf->snapshot = snapshot;
1304 	buf->data_pages = pages;
1305 	buf->stop_pos = -1;
1306 	buf->intr_pos = -1;
1307 
1308 	INIT_LIST_HEAD(&buf->tables);
1309 
1310 	ret = pt_buffer_try_single(buf, nr_pages);
1311 	if (!ret)
1312 		return buf;
1313 
1314 	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1315 	if (ret) {
1316 		kfree(buf);
1317 		return NULL;
1318 	}
1319 
1320 	return buf;
1321 }
1322 
1323 /**
1324  * pt_buffer_free_aux() - perf AUX deallocation path callback
1325  * @data:	PT buffer.
1326  */
pt_buffer_free_aux(void * data)1327 static void pt_buffer_free_aux(void *data)
1328 {
1329 	struct pt_buffer *buf = data;
1330 
1331 	pt_buffer_fini_topa(buf);
1332 	kfree(buf);
1333 }
1334 
pt_addr_filters_init(struct perf_event * event)1335 static int pt_addr_filters_init(struct perf_event *event)
1336 {
1337 	struct pt_filters *filters;
1338 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1339 
1340 	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1341 		return 0;
1342 
1343 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1344 	if (!filters)
1345 		return -ENOMEM;
1346 
1347 	if (event->parent)
1348 		memcpy(filters, event->parent->hw.addr_filters,
1349 		       sizeof(*filters));
1350 
1351 	event->hw.addr_filters = filters;
1352 
1353 	return 0;
1354 }
1355 
pt_addr_filters_fini(struct perf_event * event)1356 static void pt_addr_filters_fini(struct perf_event *event)
1357 {
1358 	kfree(event->hw.addr_filters);
1359 	event->hw.addr_filters = NULL;
1360 }
1361 
1362 #ifdef CONFIG_X86_64
1363 /* Clamp to a canonical address greater-than-or-equal-to the address given */
clamp_to_ge_canonical_addr(u64 vaddr,u8 vaddr_bits)1364 static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1365 {
1366 	return __is_canonical_address(vaddr, vaddr_bits) ?
1367 	       vaddr :
1368 	       -BIT_ULL(vaddr_bits - 1);
1369 }
1370 
1371 /* Clamp to a canonical address less-than-or-equal-to the address given */
clamp_to_le_canonical_addr(u64 vaddr,u8 vaddr_bits)1372 static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1373 {
1374 	return __is_canonical_address(vaddr, vaddr_bits) ?
1375 	       vaddr :
1376 	       BIT_ULL(vaddr_bits - 1) - 1;
1377 }
1378 #else
1379 #define clamp_to_ge_canonical_addr(x, y) (x)
1380 #define clamp_to_le_canonical_addr(x, y) (x)
1381 #endif
1382 
pt_event_addr_filters_validate(struct list_head * filters)1383 static int pt_event_addr_filters_validate(struct list_head *filters)
1384 {
1385 	struct perf_addr_filter *filter;
1386 	int range = 0;
1387 
1388 	list_for_each_entry(filter, filters, entry) {
1389 		/*
1390 		 * PT doesn't support single address triggers and
1391 		 * 'start' filters.
1392 		 */
1393 		if (!filter->size ||
1394 		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1395 			return -EOPNOTSUPP;
1396 
1397 		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1398 			return -EOPNOTSUPP;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
pt_event_addr_filters_sync(struct perf_event * event)1404 static void pt_event_addr_filters_sync(struct perf_event *event)
1405 {
1406 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1407 	unsigned long msr_a, msr_b;
1408 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1409 	struct pt_filters *filters = event->hw.addr_filters;
1410 	struct perf_addr_filter *filter;
1411 	int range = 0;
1412 
1413 	if (!filters)
1414 		return;
1415 
1416 	list_for_each_entry(filter, &head->list, entry) {
1417 		if (filter->path.dentry && !fr[range].start) {
1418 			msr_a = msr_b = 0;
1419 		} else {
1420 			unsigned long n = fr[range].size - 1;
1421 			unsigned long a = fr[range].start;
1422 			unsigned long b;
1423 
1424 			if (a > ULONG_MAX - n)
1425 				b = ULONG_MAX;
1426 			else
1427 				b = a + n;
1428 			/*
1429 			 * Apply the offset. 64-bit addresses written to the
1430 			 * MSRs must be canonical, but the range can encompass
1431 			 * non-canonical addresses. Since software cannot
1432 			 * execute at non-canonical addresses, adjusting to
1433 			 * canonical addresses does not affect the result of the
1434 			 * address filter.
1435 			 */
1436 			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1437 			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1438 			if (msr_b < msr_a)
1439 				msr_a = msr_b = 0;
1440 		}
1441 
1442 		filters->filter[range].msr_a  = msr_a;
1443 		filters->filter[range].msr_b  = msr_b;
1444 		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1445 			filters->filter[range].config = 1;
1446 		else
1447 			filters->filter[range].config = 2;
1448 		range++;
1449 	}
1450 
1451 	filters->nr_filters = range;
1452 }
1453 
1454 /**
1455  * intel_pt_interrupt() - PT PMI handler
1456  */
intel_pt_interrupt(void)1457 void intel_pt_interrupt(void)
1458 {
1459 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1460 	struct pt_buffer *buf;
1461 	struct perf_event *event = pt->handle.event;
1462 
1463 	/*
1464 	 * There may be a dangling PT bit in the interrupt status register
1465 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1466 	 * do anything (particularly, re-enable) for this event here.
1467 	 */
1468 	if (!READ_ONCE(pt->handle_nmi))
1469 		return;
1470 
1471 	if (!event)
1472 		return;
1473 
1474 	pt_config_stop(event);
1475 
1476 	buf = perf_get_aux(&pt->handle);
1477 	if (!buf)
1478 		return;
1479 
1480 	pt_read_offset(buf);
1481 
1482 	pt_handle_status(pt);
1483 
1484 	pt_update_head(pt);
1485 
1486 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1487 
1488 	if (!event->hw.state) {
1489 		int ret;
1490 
1491 		buf = perf_aux_output_begin(&pt->handle, event);
1492 		if (!buf) {
1493 			event->hw.state = PERF_HES_STOPPED;
1494 			return;
1495 		}
1496 
1497 		pt_buffer_reset_offsets(buf, pt->handle.head);
1498 		/* snapshot counters don't use PMI, so it's safe */
1499 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1500 		if (ret) {
1501 			perf_aux_output_end(&pt->handle, 0);
1502 			return;
1503 		}
1504 
1505 		pt_config_buffer(buf);
1506 		pt_config_start(event);
1507 	}
1508 }
1509 
intel_pt_handle_vmx(int on)1510 void intel_pt_handle_vmx(int on)
1511 {
1512 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1513 	struct perf_event *event;
1514 	unsigned long flags;
1515 
1516 	/* PT plays nice with VMX, do nothing */
1517 	if (pt_pmu.vmx)
1518 		return;
1519 
1520 	/*
1521 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1522 	 * sure to not try to set it while VMX is on. Disable
1523 	 * interrupts to avoid racing with pmu callbacks;
1524 	 * concurrent PMI should be handled fine.
1525 	 */
1526 	local_irq_save(flags);
1527 	WRITE_ONCE(pt->vmx_on, on);
1528 
1529 	/*
1530 	 * If an AUX transaction is in progress, it will contain
1531 	 * gap(s), so flag it PARTIAL to inform the user.
1532 	 */
1533 	event = pt->handle.event;
1534 	if (event)
1535 		perf_aux_output_flag(&pt->handle,
1536 		                     PERF_AUX_FLAG_PARTIAL);
1537 
1538 	/* Turn PTs back on */
1539 	if (!on && event)
1540 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1541 
1542 	local_irq_restore(flags);
1543 }
1544 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1545 
1546 /*
1547  * PMU callbacks
1548  */
1549 
pt_event_start(struct perf_event * event,int mode)1550 static void pt_event_start(struct perf_event *event, int mode)
1551 {
1552 	struct hw_perf_event *hwc = &event->hw;
1553 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1554 	struct pt_buffer *buf;
1555 
1556 	buf = perf_aux_output_begin(&pt->handle, event);
1557 	if (!buf)
1558 		goto fail_stop;
1559 
1560 	pt_buffer_reset_offsets(buf, pt->handle.head);
1561 	if (!buf->snapshot) {
1562 		if (pt_buffer_reset_markers(buf, &pt->handle))
1563 			goto fail_end_stop;
1564 	}
1565 
1566 	WRITE_ONCE(pt->handle_nmi, 1);
1567 	hwc->state = 0;
1568 
1569 	pt_config_buffer(buf);
1570 	pt_config(event);
1571 
1572 	return;
1573 
1574 fail_end_stop:
1575 	perf_aux_output_end(&pt->handle, 0);
1576 fail_stop:
1577 	hwc->state = PERF_HES_STOPPED;
1578 }
1579 
pt_event_stop(struct perf_event * event,int mode)1580 static void pt_event_stop(struct perf_event *event, int mode)
1581 {
1582 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1583 
1584 	/*
1585 	 * Protect against the PMI racing with disabling wrmsr,
1586 	 * see comment in intel_pt_interrupt().
1587 	 */
1588 	WRITE_ONCE(pt->handle_nmi, 0);
1589 
1590 	pt_config_stop(event);
1591 
1592 	if (event->hw.state == PERF_HES_STOPPED)
1593 		return;
1594 
1595 	event->hw.state = PERF_HES_STOPPED;
1596 
1597 	if (mode & PERF_EF_UPDATE) {
1598 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1599 
1600 		if (!buf)
1601 			return;
1602 
1603 		if (WARN_ON_ONCE(pt->handle.event != event))
1604 			return;
1605 
1606 		pt_read_offset(buf);
1607 
1608 		pt_handle_status(pt);
1609 
1610 		pt_update_head(pt);
1611 
1612 		if (buf->snapshot)
1613 			pt->handle.head =
1614 				local_xchg(&buf->data_size,
1615 					   buf->nr_pages << PAGE_SHIFT);
1616 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1617 	}
1618 }
1619 
pt_event_snapshot_aux(struct perf_event * event,struct perf_output_handle * handle,unsigned long size)1620 static long pt_event_snapshot_aux(struct perf_event *event,
1621 				  struct perf_output_handle *handle,
1622 				  unsigned long size)
1623 {
1624 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1625 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1626 	unsigned long from = 0, to;
1627 	long ret;
1628 
1629 	if (WARN_ON_ONCE(!buf))
1630 		return 0;
1631 
1632 	/*
1633 	 * Sampling is only allowed on snapshot events;
1634 	 * see pt_buffer_setup_aux().
1635 	 */
1636 	if (WARN_ON_ONCE(!buf->snapshot))
1637 		return 0;
1638 
1639 	/*
1640 	 * Here, handle_nmi tells us if the tracing is on
1641 	 */
1642 	if (READ_ONCE(pt->handle_nmi))
1643 		pt_config_stop(event);
1644 
1645 	pt_read_offset(buf);
1646 	pt_update_head(pt);
1647 
1648 	to = local_read(&buf->data_size);
1649 	if (to < size)
1650 		from = buf->nr_pages << PAGE_SHIFT;
1651 	from += to - size;
1652 
1653 	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1654 
1655 	/*
1656 	 * If the tracing was on when we turned up, restart it.
1657 	 * Compiler barrier not needed as we couldn't have been
1658 	 * preempted by anything that touches pt->handle_nmi.
1659 	 */
1660 	if (pt->handle_nmi)
1661 		pt_config_start(event);
1662 
1663 	return ret;
1664 }
1665 
pt_event_del(struct perf_event * event,int mode)1666 static void pt_event_del(struct perf_event *event, int mode)
1667 {
1668 	pt_event_stop(event, PERF_EF_UPDATE);
1669 }
1670 
pt_event_add(struct perf_event * event,int mode)1671 static int pt_event_add(struct perf_event *event, int mode)
1672 {
1673 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1674 	struct hw_perf_event *hwc = &event->hw;
1675 	int ret = -EBUSY;
1676 
1677 	if (pt->handle.event)
1678 		goto fail;
1679 
1680 	if (mode & PERF_EF_START) {
1681 		pt_event_start(event, 0);
1682 		ret = -EINVAL;
1683 		if (hwc->state == PERF_HES_STOPPED)
1684 			goto fail;
1685 	} else {
1686 		hwc->state = PERF_HES_STOPPED;
1687 	}
1688 
1689 	ret = 0;
1690 fail:
1691 
1692 	return ret;
1693 }
1694 
pt_event_read(struct perf_event * event)1695 static void pt_event_read(struct perf_event *event)
1696 {
1697 }
1698 
pt_event_destroy(struct perf_event * event)1699 static void pt_event_destroy(struct perf_event *event)
1700 {
1701 	pt_addr_filters_fini(event);
1702 	x86_del_exclusive(x86_lbr_exclusive_pt);
1703 }
1704 
pt_event_init(struct perf_event * event)1705 static int pt_event_init(struct perf_event *event)
1706 {
1707 	if (event->attr.type != pt_pmu.pmu.type)
1708 		return -ENOENT;
1709 
1710 	if (!pt_event_valid(event))
1711 		return -EINVAL;
1712 
1713 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1714 		return -EBUSY;
1715 
1716 	if (pt_addr_filters_init(event)) {
1717 		x86_del_exclusive(x86_lbr_exclusive_pt);
1718 		return -ENOMEM;
1719 	}
1720 
1721 	event->destroy = pt_event_destroy;
1722 
1723 	return 0;
1724 }
1725 
cpu_emergency_stop_pt(void)1726 void cpu_emergency_stop_pt(void)
1727 {
1728 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1729 
1730 	if (pt->handle.event)
1731 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1732 }
1733 
is_intel_pt_event(struct perf_event * event)1734 int is_intel_pt_event(struct perf_event *event)
1735 {
1736 	return event->pmu == &pt_pmu.pmu;
1737 }
1738 
pt_init(void)1739 static __init int pt_init(void)
1740 {
1741 	int ret, cpu, prior_warn = 0;
1742 
1743 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1744 
1745 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1746 		return -ENODEV;
1747 
1748 	get_online_cpus();
1749 	for_each_online_cpu(cpu) {
1750 		u64 ctl;
1751 
1752 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1753 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1754 			prior_warn++;
1755 	}
1756 	put_online_cpus();
1757 
1758 	if (prior_warn) {
1759 		x86_add_exclusive(x86_lbr_exclusive_pt);
1760 		pr_warn("PT is enabled at boot time, doing nothing\n");
1761 
1762 		return -EBUSY;
1763 	}
1764 
1765 	ret = pt_pmu_hw_init();
1766 	if (ret)
1767 		return ret;
1768 
1769 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1770 		pr_warn("ToPA output is not supported on this CPU\n");
1771 		return -ENODEV;
1772 	}
1773 
1774 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1775 		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1776 
1777 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1778 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1779 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1780 	pt_pmu.pmu.event_init		 = pt_event_init;
1781 	pt_pmu.pmu.add			 = pt_event_add;
1782 	pt_pmu.pmu.del			 = pt_event_del;
1783 	pt_pmu.pmu.start		 = pt_event_start;
1784 	pt_pmu.pmu.stop			 = pt_event_stop;
1785 	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1786 	pt_pmu.pmu.read			 = pt_event_read;
1787 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1788 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1789 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1790 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1791 	pt_pmu.pmu.nr_addr_filters       =
1792 		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1793 
1794 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1795 
1796 	return ret;
1797 }
1798 arch_initcall(pt_init);
1799