• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6 
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/spec-ctrl.h>
17 #include <asm/smp.h>
18 #include <asm/numa.h>
19 #include <asm/pci-direct.h>
20 #include <asm/delay.h>
21 #include <asm/debugreg.h>
22 #include <asm/resctrl.h>
23 
24 #ifdef CONFIG_X86_64
25 # include <asm/mmconfig.h>
26 # include <asm/set_memory.h>
27 #endif
28 
29 #include "cpu.h"
30 
31 /*
32  * nodes_per_socket: Stores the number of nodes per socket.
33  * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
34  * Node Identifiers[10:8]
35  */
36 static u32 nodes_per_socket = 1;
37 
38 /*
39  * AMD errata checking
40  *
41  * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
42  * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
43  * have an OSVW id assigned, which it takes as first argument. Both take a
44  * variable number of family-specific model-stepping ranges created by
45  * AMD_MODEL_RANGE().
46  *
47  * Example:
48  *
49  * const int amd_erratum_319[] =
50  *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
51  *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
52  *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
53  */
54 
55 #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 }
56 #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 }
57 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
58 	((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
59 #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff)
60 #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff)
61 #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff)
62 
63 static const int amd_erratum_400[] =
64 	AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
65 			    AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
66 
67 static const int amd_erratum_383[] =
68 	AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
69 
70 /* #1054: Instructions Retired Performance Counter May Be Inaccurate */
71 static const int amd_erratum_1054[] =
72 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0, 0, 0x2f, 0xf));
73 
74 static const int amd_zenbleed[] =
75 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x30, 0x0, 0x4f, 0xf),
76 			   AMD_MODEL_RANGE(0x17, 0x60, 0x0, 0x7f, 0xf),
77 			   AMD_MODEL_RANGE(0x17, 0x90, 0x0, 0x91, 0xf),
78 			   AMD_MODEL_RANGE(0x17, 0xa0, 0x0, 0xaf, 0xf));
79 
80 static const int amd_div0[] =
81 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x00, 0x0, 0x2f, 0xf),
82 			   AMD_MODEL_RANGE(0x17, 0x50, 0x0, 0x5f, 0xf));
83 
84 static const int amd_erratum_1485[] =
85 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x19, 0x10, 0x0, 0x1f, 0xf),
86 			   AMD_MODEL_RANGE(0x19, 0x60, 0x0, 0xaf, 0xf));
87 
cpu_has_amd_erratum(struct cpuinfo_x86 * cpu,const int * erratum)88 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
89 {
90 	int osvw_id = *erratum++;
91 	u32 range;
92 	u32 ms;
93 
94 	if (osvw_id >= 0 && osvw_id < 65536 &&
95 	    cpu_has(cpu, X86_FEATURE_OSVW)) {
96 		u64 osvw_len;
97 
98 		rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
99 		if (osvw_id < osvw_len) {
100 			u64 osvw_bits;
101 
102 			rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
103 			    osvw_bits);
104 			return osvw_bits & (1ULL << (osvw_id & 0x3f));
105 		}
106 	}
107 
108 	/* OSVW unavailable or ID unknown, match family-model-stepping range */
109 	ms = (cpu->x86_model << 4) | cpu->x86_stepping;
110 	while ((range = *erratum++))
111 		if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
112 		    (ms >= AMD_MODEL_RANGE_START(range)) &&
113 		    (ms <= AMD_MODEL_RANGE_END(range)))
114 			return true;
115 
116 	return false;
117 }
118 
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)119 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
120 {
121 	u32 gprs[8] = { 0 };
122 	int err;
123 
124 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
125 		  "%s should only be used on K8!\n", __func__);
126 
127 	gprs[1] = msr;
128 	gprs[7] = 0x9c5a203a;
129 
130 	err = rdmsr_safe_regs(gprs);
131 
132 	*p = gprs[0] | ((u64)gprs[2] << 32);
133 
134 	return err;
135 }
136 
wrmsrl_amd_safe(unsigned msr,unsigned long long val)137 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
138 {
139 	u32 gprs[8] = { 0 };
140 
141 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
142 		  "%s should only be used on K8!\n", __func__);
143 
144 	gprs[0] = (u32)val;
145 	gprs[1] = msr;
146 	gprs[2] = val >> 32;
147 	gprs[7] = 0x9c5a203a;
148 
149 	return wrmsr_safe_regs(gprs);
150 }
151 
152 /*
153  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
154  *	misexecution of code under Linux. Owners of such processors should
155  *	contact AMD for precise details and a CPU swap.
156  *
157  *	See	http://www.multimania.com/poulot/k6bug.html
158  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
159  *		(Publication # 21266  Issue Date: August 1998)
160  *
161  *	The following test is erm.. interesting. AMD neglected to up
162  *	the chip setting when fixing the bug but they also tweaked some
163  *	performance at the same time..
164  */
165 
166 #ifdef CONFIG_X86_32
167 extern __visible void vide(void);
168 __asm__(".text\n"
169 	".globl vide\n"
170 	".type vide, @function\n"
171 	".align 4\n"
172 	"vide: ret\n");
173 #endif
174 
init_amd_k5(struct cpuinfo_x86 * c)175 static void init_amd_k5(struct cpuinfo_x86 *c)
176 {
177 #ifdef CONFIG_X86_32
178 /*
179  * General Systems BIOSen alias the cpu frequency registers
180  * of the Elan at 0x000df000. Unfortunately, one of the Linux
181  * drivers subsequently pokes it, and changes the CPU speed.
182  * Workaround : Remove the unneeded alias.
183  */
184 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
185 #define CBAR_ENB	(0x80000000)
186 #define CBAR_KEY	(0X000000CB)
187 	if (c->x86_model == 9 || c->x86_model == 10) {
188 		if (inl(CBAR) & CBAR_ENB)
189 			outl(0 | CBAR_KEY, CBAR);
190 	}
191 #endif
192 }
193 
init_amd_k6(struct cpuinfo_x86 * c)194 static void init_amd_k6(struct cpuinfo_x86 *c)
195 {
196 #ifdef CONFIG_X86_32
197 	u32 l, h;
198 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
199 
200 	if (c->x86_model < 6) {
201 		/* Based on AMD doc 20734R - June 2000 */
202 		if (c->x86_model == 0) {
203 			clear_cpu_cap(c, X86_FEATURE_APIC);
204 			set_cpu_cap(c, X86_FEATURE_PGE);
205 		}
206 		return;
207 	}
208 
209 	if (c->x86_model == 6 && c->x86_stepping == 1) {
210 		const int K6_BUG_LOOP = 1000000;
211 		int n;
212 		void (*f_vide)(void);
213 		u64 d, d2;
214 
215 		pr_info("AMD K6 stepping B detected - ");
216 
217 		/*
218 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
219 		 * calls at the same time.
220 		 */
221 
222 		n = K6_BUG_LOOP;
223 		f_vide = vide;
224 		OPTIMIZER_HIDE_VAR(f_vide);
225 		d = rdtsc();
226 		while (n--)
227 			f_vide();
228 		d2 = rdtsc();
229 		d = d2-d;
230 
231 		if (d > 20*K6_BUG_LOOP)
232 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
233 		else
234 			pr_cont("probably OK (after B9730xxxx).\n");
235 	}
236 
237 	/* K6 with old style WHCR */
238 	if (c->x86_model < 8 ||
239 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
240 		/* We can only write allocate on the low 508Mb */
241 		if (mbytes > 508)
242 			mbytes = 508;
243 
244 		rdmsr(MSR_K6_WHCR, l, h);
245 		if ((l&0x0000FFFF) == 0) {
246 			unsigned long flags;
247 			l = (1<<0)|((mbytes/4)<<1);
248 			local_irq_save(flags);
249 			wbinvd();
250 			wrmsr(MSR_K6_WHCR, l, h);
251 			local_irq_restore(flags);
252 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
253 				mbytes);
254 		}
255 		return;
256 	}
257 
258 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
259 	     c->x86_model == 9 || c->x86_model == 13) {
260 		/* The more serious chips .. */
261 
262 		if (mbytes > 4092)
263 			mbytes = 4092;
264 
265 		rdmsr(MSR_K6_WHCR, l, h);
266 		if ((l&0xFFFF0000) == 0) {
267 			unsigned long flags;
268 			l = ((mbytes>>2)<<22)|(1<<16);
269 			local_irq_save(flags);
270 			wbinvd();
271 			wrmsr(MSR_K6_WHCR, l, h);
272 			local_irq_restore(flags);
273 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
274 				mbytes);
275 		}
276 
277 		return;
278 	}
279 
280 	if (c->x86_model == 10) {
281 		/* AMD Geode LX is model 10 */
282 		/* placeholder for any needed mods */
283 		return;
284 	}
285 #endif
286 }
287 
init_amd_k7(struct cpuinfo_x86 * c)288 static void init_amd_k7(struct cpuinfo_x86 *c)
289 {
290 #ifdef CONFIG_X86_32
291 	u32 l, h;
292 
293 	/*
294 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
295 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
296 	 * If the BIOS didn't enable it already, enable it here.
297 	 */
298 	if (c->x86_model >= 6 && c->x86_model <= 10) {
299 		if (!cpu_has(c, X86_FEATURE_XMM)) {
300 			pr_info("Enabling disabled K7/SSE Support.\n");
301 			msr_clear_bit(MSR_K7_HWCR, 15);
302 			set_cpu_cap(c, X86_FEATURE_XMM);
303 		}
304 	}
305 
306 	/*
307 	 * It's been determined by AMD that Athlons since model 8 stepping 1
308 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
309 	 * As per AMD technical note 27212 0.2
310 	 */
311 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
312 		rdmsr(MSR_K7_CLK_CTL, l, h);
313 		if ((l & 0xfff00000) != 0x20000000) {
314 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
315 				l, ((l & 0x000fffff)|0x20000000));
316 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
317 		}
318 	}
319 
320 	/* calling is from identify_secondary_cpu() ? */
321 	if (!c->cpu_index)
322 		return;
323 
324 	/*
325 	 * Certain Athlons might work (for various values of 'work') in SMP
326 	 * but they are not certified as MP capable.
327 	 */
328 	/* Athlon 660/661 is valid. */
329 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
330 	    (c->x86_stepping == 1)))
331 		return;
332 
333 	/* Duron 670 is valid */
334 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
335 		return;
336 
337 	/*
338 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
339 	 * bit. It's worth noting that the A5 stepping (662) of some
340 	 * Athlon XP's have the MP bit set.
341 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
342 	 * more.
343 	 */
344 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
345 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
346 	     (c->x86_model > 7))
347 		if (cpu_has(c, X86_FEATURE_MP))
348 			return;
349 
350 	/* If we get here, not a certified SMP capable AMD system. */
351 
352 	/*
353 	 * Don't taint if we are running SMP kernel on a single non-MP
354 	 * approved Athlon
355 	 */
356 	WARN_ONCE(1, "WARNING: This combination of AMD"
357 		" processors is not suitable for SMP.\n");
358 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
359 #endif
360 }
361 
362 #ifdef CONFIG_NUMA
363 /*
364  * To workaround broken NUMA config.  Read the comment in
365  * srat_detect_node().
366  */
nearby_node(int apicid)367 static int nearby_node(int apicid)
368 {
369 	int i, node;
370 
371 	for (i = apicid - 1; i >= 0; i--) {
372 		node = __apicid_to_node[i];
373 		if (node != NUMA_NO_NODE && node_online(node))
374 			return node;
375 	}
376 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
377 		node = __apicid_to_node[i];
378 		if (node != NUMA_NO_NODE && node_online(node))
379 			return node;
380 	}
381 	return first_node(node_online_map); /* Shouldn't happen */
382 }
383 #endif
384 
385 /*
386  * Fix up cpu_core_id for pre-F17h systems to be in the
387  * [0 .. cores_per_node - 1] range. Not really needed but
388  * kept so as not to break existing setups.
389  */
legacy_fixup_core_id(struct cpuinfo_x86 * c)390 static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
391 {
392 	u32 cus_per_node;
393 
394 	if (c->x86 >= 0x17)
395 		return;
396 
397 	cus_per_node = c->x86_max_cores / nodes_per_socket;
398 	c->cpu_core_id %= cus_per_node;
399 }
400 
401 /*
402  * Fixup core topology information for
403  * (1) AMD multi-node processors
404  *     Assumption: Number of cores in each internal node is the same.
405  * (2) AMD processors supporting compute units
406  */
amd_get_topology(struct cpuinfo_x86 * c)407 static void amd_get_topology(struct cpuinfo_x86 *c)
408 {
409 	int cpu = smp_processor_id();
410 
411 	/* get information required for multi-node processors */
412 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
413 		int err;
414 		u32 eax, ebx, ecx, edx;
415 
416 		cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
417 
418 		c->cpu_die_id  = ecx & 0xff;
419 
420 		if (c->x86 == 0x15)
421 			c->cu_id = ebx & 0xff;
422 
423 		if (c->x86 >= 0x17) {
424 			c->cpu_core_id = ebx & 0xff;
425 
426 			if (smp_num_siblings > 1)
427 				c->x86_max_cores /= smp_num_siblings;
428 		}
429 
430 		/*
431 		 * In case leaf B is available, use it to derive
432 		 * topology information.
433 		 */
434 		err = detect_extended_topology(c);
435 		if (!err)
436 			c->x86_coreid_bits = get_count_order(c->x86_max_cores);
437 
438 		cacheinfo_amd_init_llc_id(c, cpu);
439 
440 	} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
441 		u64 value;
442 
443 		rdmsrl(MSR_FAM10H_NODE_ID, value);
444 		c->cpu_die_id = value & 7;
445 
446 		per_cpu(cpu_llc_id, cpu) = c->cpu_die_id;
447 	} else
448 		return;
449 
450 	if (nodes_per_socket > 1) {
451 		set_cpu_cap(c, X86_FEATURE_AMD_DCM);
452 		legacy_fixup_core_id(c);
453 	}
454 }
455 
456 /*
457  * On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
458  * Assumes number of cores is a power of two.
459  */
amd_detect_cmp(struct cpuinfo_x86 * c)460 static void amd_detect_cmp(struct cpuinfo_x86 *c)
461 {
462 	unsigned bits;
463 	int cpu = smp_processor_id();
464 
465 	bits = c->x86_coreid_bits;
466 	/* Low order bits define the core id (index of core in socket) */
467 	c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
468 	/* Convert the initial APIC ID into the socket ID */
469 	c->phys_proc_id = c->initial_apicid >> bits;
470 	/* use socket ID also for last level cache */
471 	per_cpu(cpu_llc_id, cpu) = c->cpu_die_id = c->phys_proc_id;
472 }
473 
amd_detect_ppin(struct cpuinfo_x86 * c)474 static void amd_detect_ppin(struct cpuinfo_x86 *c)
475 {
476 	unsigned long long val;
477 
478 	if (!cpu_has(c, X86_FEATURE_AMD_PPIN))
479 		return;
480 
481 	/* When PPIN is defined in CPUID, still need to check PPIN_CTL MSR */
482 	if (rdmsrl_safe(MSR_AMD_PPIN_CTL, &val))
483 		goto clear_ppin;
484 
485 	/* PPIN is locked in disabled mode, clear feature bit */
486 	if ((val & 3UL) == 1UL)
487 		goto clear_ppin;
488 
489 	/* If PPIN is disabled, try to enable it */
490 	if (!(val & 2UL)) {
491 		wrmsrl_safe(MSR_AMD_PPIN_CTL,  val | 2UL);
492 		rdmsrl_safe(MSR_AMD_PPIN_CTL, &val);
493 	}
494 
495 	/* If PPIN_EN bit is 1, return from here; otherwise fall through */
496 	if (val & 2UL)
497 		return;
498 
499 clear_ppin:
500 	clear_cpu_cap(c, X86_FEATURE_AMD_PPIN);
501 }
502 
amd_get_nb_id(int cpu)503 u16 amd_get_nb_id(int cpu)
504 {
505 	return per_cpu(cpu_llc_id, cpu);
506 }
507 EXPORT_SYMBOL_GPL(amd_get_nb_id);
508 
amd_get_nodes_per_socket(void)509 u32 amd_get_nodes_per_socket(void)
510 {
511 	return nodes_per_socket;
512 }
513 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
514 
srat_detect_node(struct cpuinfo_x86 * c)515 static void srat_detect_node(struct cpuinfo_x86 *c)
516 {
517 #ifdef CONFIG_NUMA
518 	int cpu = smp_processor_id();
519 	int node;
520 	unsigned apicid = c->apicid;
521 
522 	node = numa_cpu_node(cpu);
523 	if (node == NUMA_NO_NODE)
524 		node = per_cpu(cpu_llc_id, cpu);
525 
526 	/*
527 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
528 	 * platform-specific handler needs to be called to fixup some
529 	 * IDs of the CPU.
530 	 */
531 	if (x86_cpuinit.fixup_cpu_id)
532 		x86_cpuinit.fixup_cpu_id(c, node);
533 
534 	if (!node_online(node)) {
535 		/*
536 		 * Two possibilities here:
537 		 *
538 		 * - The CPU is missing memory and no node was created.  In
539 		 *   that case try picking one from a nearby CPU.
540 		 *
541 		 * - The APIC IDs differ from the HyperTransport node IDs
542 		 *   which the K8 northbridge parsing fills in.  Assume
543 		 *   they are all increased by a constant offset, but in
544 		 *   the same order as the HT nodeids.  If that doesn't
545 		 *   result in a usable node fall back to the path for the
546 		 *   previous case.
547 		 *
548 		 * This workaround operates directly on the mapping between
549 		 * APIC ID and NUMA node, assuming certain relationship
550 		 * between APIC ID, HT node ID and NUMA topology.  As going
551 		 * through CPU mapping may alter the outcome, directly
552 		 * access __apicid_to_node[].
553 		 */
554 		int ht_nodeid = c->initial_apicid;
555 
556 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
557 			node = __apicid_to_node[ht_nodeid];
558 		/* Pick a nearby node */
559 		if (!node_online(node))
560 			node = nearby_node(apicid);
561 	}
562 	numa_set_node(cpu, node);
563 #endif
564 }
565 
early_init_amd_mc(struct cpuinfo_x86 * c)566 static void early_init_amd_mc(struct cpuinfo_x86 *c)
567 {
568 #ifdef CONFIG_SMP
569 	unsigned bits, ecx;
570 
571 	/* Multi core CPU? */
572 	if (c->extended_cpuid_level < 0x80000008)
573 		return;
574 
575 	ecx = cpuid_ecx(0x80000008);
576 
577 	c->x86_max_cores = (ecx & 0xff) + 1;
578 
579 	/* CPU telling us the core id bits shift? */
580 	bits = (ecx >> 12) & 0xF;
581 
582 	/* Otherwise recompute */
583 	if (bits == 0) {
584 		while ((1 << bits) < c->x86_max_cores)
585 			bits++;
586 	}
587 
588 	c->x86_coreid_bits = bits;
589 #endif
590 }
591 
bsp_init_amd(struct cpuinfo_x86 * c)592 static void bsp_init_amd(struct cpuinfo_x86 *c)
593 {
594 
595 #ifdef CONFIG_X86_64
596 	if (c->x86 >= 0xf) {
597 		unsigned long long tseg;
598 
599 		/*
600 		 * Split up direct mapping around the TSEG SMM area.
601 		 * Don't do it for gbpages because there seems very little
602 		 * benefit in doing so.
603 		 */
604 		if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
605 			unsigned long pfn = tseg >> PAGE_SHIFT;
606 
607 			pr_debug("tseg: %010llx\n", tseg);
608 			if (pfn_range_is_mapped(pfn, pfn + 1))
609 				set_memory_4k((unsigned long)__va(tseg), 1);
610 		}
611 	}
612 #endif
613 
614 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
615 
616 		if (c->x86 > 0x10 ||
617 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
618 			u64 val;
619 
620 			rdmsrl(MSR_K7_HWCR, val);
621 			if (!(val & BIT(24)))
622 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
623 		}
624 	}
625 
626 	if (c->x86 == 0x15) {
627 		unsigned long upperbit;
628 		u32 cpuid, assoc;
629 
630 		cpuid	 = cpuid_edx(0x80000005);
631 		assoc	 = cpuid >> 16 & 0xff;
632 		upperbit = ((cpuid >> 24) << 10) / assoc;
633 
634 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
635 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
636 
637 		/* A random value per boot for bit slice [12:upper_bit) */
638 		va_align.bits = get_random_int() & va_align.mask;
639 	}
640 
641 	if (cpu_has(c, X86_FEATURE_MWAITX))
642 		use_mwaitx_delay();
643 
644 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
645 		u32 ecx;
646 
647 		ecx = cpuid_ecx(0x8000001e);
648 		__max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1;
649 	} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
650 		u64 value;
651 
652 		rdmsrl(MSR_FAM10H_NODE_ID, value);
653 		__max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1;
654 	}
655 
656 	if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
657 	    !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
658 	    c->x86 >= 0x15 && c->x86 <= 0x17) {
659 		unsigned int bit;
660 
661 		switch (c->x86) {
662 		case 0x15: bit = 54; break;
663 		case 0x16: bit = 33; break;
664 		case 0x17: bit = 10; break;
665 		default: return;
666 		}
667 		/*
668 		 * Try to cache the base value so further operations can
669 		 * avoid RMW. If that faults, do not enable SSBD.
670 		 */
671 		if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
672 			setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
673 			setup_force_cpu_cap(X86_FEATURE_SSBD);
674 			x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
675 		}
676 	}
677 
678 	resctrl_cpu_detect(c);
679 }
680 
early_detect_mem_encrypt(struct cpuinfo_x86 * c)681 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
682 {
683 	u64 msr;
684 
685 	/*
686 	 * BIOS support is required for SME and SEV.
687 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
688 	 *	      the SME physical address space reduction value.
689 	 *	      If BIOS has not enabled SME then don't advertise the
690 	 *	      SME feature (set in scattered.c).
691 	 *   For SEV: If BIOS has not enabled SEV then don't advertise the
692 	 *            SEV and SEV_ES feature (set in scattered.c).
693 	 *
694 	 *   In all cases, since support for SME and SEV requires long mode,
695 	 *   don't advertise the feature under CONFIG_X86_32.
696 	 */
697 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
698 		/* Check if memory encryption is enabled */
699 		rdmsrl(MSR_K8_SYSCFG, msr);
700 		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
701 			goto clear_all;
702 
703 		/*
704 		 * Always adjust physical address bits. Even though this
705 		 * will be a value above 32-bits this is still done for
706 		 * CONFIG_X86_32 so that accurate values are reported.
707 		 */
708 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
709 
710 		if (IS_ENABLED(CONFIG_X86_32))
711 			goto clear_all;
712 
713 		rdmsrl(MSR_K7_HWCR, msr);
714 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
715 			goto clear_sev;
716 
717 		return;
718 
719 clear_all:
720 		setup_clear_cpu_cap(X86_FEATURE_SME);
721 clear_sev:
722 		setup_clear_cpu_cap(X86_FEATURE_SEV);
723 		setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
724 	}
725 }
726 
early_init_amd(struct cpuinfo_x86 * c)727 static void early_init_amd(struct cpuinfo_x86 *c)
728 {
729 	u64 value;
730 	u32 dummy;
731 
732 	early_init_amd_mc(c);
733 
734 #ifdef CONFIG_X86_32
735 	if (c->x86 == 6)
736 		set_cpu_cap(c, X86_FEATURE_K7);
737 #endif
738 
739 	if (c->x86 >= 0xf)
740 		set_cpu_cap(c, X86_FEATURE_K8);
741 
742 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
743 
744 	/*
745 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
746 	 * with P/T states and does not stop in deep C-states
747 	 */
748 	if (c->x86_power & (1 << 8)) {
749 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
750 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
751 	}
752 
753 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
754 	if (c->x86_power & BIT(12))
755 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
756 
757 #ifdef CONFIG_X86_64
758 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
759 #else
760 	/*  Set MTRR capability flag if appropriate */
761 	if (c->x86 == 5)
762 		if (c->x86_model == 13 || c->x86_model == 9 ||
763 		    (c->x86_model == 8 && c->x86_stepping >= 8))
764 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
765 #endif
766 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
767 	/*
768 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
769 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
770 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
771 	 * after 16h.
772 	 */
773 	if (boot_cpu_has(X86_FEATURE_APIC)) {
774 		if (c->x86 > 0x16)
775 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
776 		else if (c->x86 >= 0xf) {
777 			/* check CPU config space for extended APIC ID */
778 			unsigned int val;
779 
780 			val = read_pci_config(0, 24, 0, 0x68);
781 			if ((val >> 17 & 0x3) == 0x3)
782 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
783 		}
784 	}
785 #endif
786 
787 	/*
788 	 * This is only needed to tell the kernel whether to use VMCALL
789 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
790 	 * we can set it unconditionally.
791 	 */
792 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
793 
794 	/* F16h erratum 793, CVE-2013-6885 */
795 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
796 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
797 
798 	/*
799 	 * Check whether the machine is affected by erratum 400. This is
800 	 * used to select the proper idle routine and to enable the check
801 	 * whether the machine is affected in arch_post_acpi_init(), which
802 	 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
803 	 */
804 	if (cpu_has_amd_erratum(c, amd_erratum_400))
805 		set_cpu_bug(c, X86_BUG_AMD_E400);
806 
807 	early_detect_mem_encrypt(c);
808 
809 	/* Re-enable TopologyExtensions if switched off by BIOS */
810 	if (c->x86 == 0x15 &&
811 	    (c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
812 	    !cpu_has(c, X86_FEATURE_TOPOEXT)) {
813 
814 		if (msr_set_bit(0xc0011005, 54) > 0) {
815 			rdmsrl(0xc0011005, value);
816 			if (value & BIT_64(54)) {
817 				set_cpu_cap(c, X86_FEATURE_TOPOEXT);
818 				pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
819 			}
820 		}
821 	}
822 
823 	if (cpu_has(c, X86_FEATURE_TOPOEXT))
824 		smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
825 }
826 
init_amd_k8(struct cpuinfo_x86 * c)827 static void init_amd_k8(struct cpuinfo_x86 *c)
828 {
829 	u32 level;
830 	u64 value;
831 
832 	/* On C+ stepping K8 rep microcode works well for copy/memset */
833 	level = cpuid_eax(1);
834 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
835 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
836 
837 	/*
838 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
839 	 * (model = 0x14) and later actually support it.
840 	 * (AMD Erratum #110, docId: 25759).
841 	 */
842 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
843 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
844 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
845 			value &= ~BIT_64(32);
846 			wrmsrl_amd_safe(0xc001100d, value);
847 		}
848 	}
849 
850 	if (!c->x86_model_id[0])
851 		strcpy(c->x86_model_id, "Hammer");
852 
853 #ifdef CONFIG_SMP
854 	/*
855 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
856 	 * bit 6 of msr C001_0015
857 	 *
858 	 * Errata 63 for SH-B3 steppings
859 	 * Errata 122 for all steppings (F+ have it disabled by default)
860 	 */
861 	msr_set_bit(MSR_K7_HWCR, 6);
862 #endif
863 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
864 }
865 
init_amd_gh(struct cpuinfo_x86 * c)866 static void init_amd_gh(struct cpuinfo_x86 *c)
867 {
868 #ifdef CONFIG_MMCONF_FAM10H
869 	/* do this for boot cpu */
870 	if (c == &boot_cpu_data)
871 		check_enable_amd_mmconf_dmi();
872 
873 	fam10h_check_enable_mmcfg();
874 #endif
875 
876 	/*
877 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
878 	 * is always needed when GART is enabled, even in a kernel which has no
879 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
880 	 * If it doesn't, we do it here as suggested by the BKDG.
881 	 *
882 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
883 	 */
884 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
885 
886 	/*
887 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
888 	 * it to be converted to CD memtype. This may result in performance
889 	 * degradation for certain nested-paging guests. Prevent this conversion
890 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
891 	 *
892 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
893 	 * guests on older kvm hosts.
894 	 */
895 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
896 
897 	if (cpu_has_amd_erratum(c, amd_erratum_383))
898 		set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
899 }
900 
init_amd_ln(struct cpuinfo_x86 * c)901 static void init_amd_ln(struct cpuinfo_x86 *c)
902 {
903 	/*
904 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
905 	 * fix work.
906 	 */
907 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
908 }
909 
910 static bool rdrand_force;
911 
rdrand_cmdline(char * str)912 static int __init rdrand_cmdline(char *str)
913 {
914 	if (!str)
915 		return -EINVAL;
916 
917 	if (!strcmp(str, "force"))
918 		rdrand_force = true;
919 	else
920 		return -EINVAL;
921 
922 	return 0;
923 }
924 early_param("rdrand", rdrand_cmdline);
925 
clear_rdrand_cpuid_bit(struct cpuinfo_x86 * c)926 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
927 {
928 	/*
929 	 * Saving of the MSR used to hide the RDRAND support during
930 	 * suspend/resume is done by arch/x86/power/cpu.c, which is
931 	 * dependent on CONFIG_PM_SLEEP.
932 	 */
933 	if (!IS_ENABLED(CONFIG_PM_SLEEP))
934 		return;
935 
936 	/*
937 	 * The nordrand option can clear X86_FEATURE_RDRAND, so check for
938 	 * RDRAND support using the CPUID function directly.
939 	 */
940 	if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
941 		return;
942 
943 	msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
944 
945 	/*
946 	 * Verify that the CPUID change has occurred in case the kernel is
947 	 * running virtualized and the hypervisor doesn't support the MSR.
948 	 */
949 	if (cpuid_ecx(1) & BIT(30)) {
950 		pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
951 		return;
952 	}
953 
954 	clear_cpu_cap(c, X86_FEATURE_RDRAND);
955 	pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
956 }
957 
init_amd_jg(struct cpuinfo_x86 * c)958 static void init_amd_jg(struct cpuinfo_x86 *c)
959 {
960 	/*
961 	 * Some BIOS implementations do not restore proper RDRAND support
962 	 * across suspend and resume. Check on whether to hide the RDRAND
963 	 * instruction support via CPUID.
964 	 */
965 	clear_rdrand_cpuid_bit(c);
966 }
967 
init_amd_bd(struct cpuinfo_x86 * c)968 static void init_amd_bd(struct cpuinfo_x86 *c)
969 {
970 	u64 value;
971 
972 	/*
973 	 * The way access filter has a performance penalty on some workloads.
974 	 * Disable it on the affected CPUs.
975 	 */
976 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
977 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
978 			value |= 0x1E;
979 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
980 		}
981 	}
982 
983 	/*
984 	 * Some BIOS implementations do not restore proper RDRAND support
985 	 * across suspend and resume. Check on whether to hide the RDRAND
986 	 * instruction support via CPUID.
987 	 */
988 	clear_rdrand_cpuid_bit(c);
989 }
990 
init_spectral_chicken(struct cpuinfo_x86 * c)991 void init_spectral_chicken(struct cpuinfo_x86 *c)
992 {
993 #ifdef CONFIG_CPU_UNRET_ENTRY
994 	u64 value;
995 
996 	/*
997 	 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
998 	 *
999 	 * This suppresses speculation from the middle of a basic block, i.e. it
1000 	 * suppresses non-branch predictions.
1001 	 *
1002 	 * We use STIBP as a heuristic to filter out Zen2 from the rest of F17H
1003 	 */
1004 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1005 		if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
1006 			value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
1007 			wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
1008 		}
1009 	}
1010 #endif
1011 	/*
1012 	 * Work around Erratum 1386.  The XSAVES instruction malfunctions in
1013 	 * certain circumstances on Zen1/2 uarch, and not all parts have had
1014 	 * updated microcode at the time of writing (March 2023).
1015 	 *
1016 	 * Affected parts all have no supervisor XSAVE states, meaning that
1017 	 * the XSAVEC instruction (which works fine) is equivalent.
1018 	 */
1019 	clear_cpu_cap(c, X86_FEATURE_XSAVES);
1020 }
1021 
init_amd_zn(struct cpuinfo_x86 * c)1022 static void init_amd_zn(struct cpuinfo_x86 *c)
1023 {
1024 	set_cpu_cap(c, X86_FEATURE_ZEN);
1025 
1026 #ifdef CONFIG_NUMA
1027 	node_reclaim_distance = 32;
1028 #endif
1029 
1030 	/* Fix up CPUID bits, but only if not virtualised. */
1031 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1032 
1033 		/* Erratum 1076: CPB feature bit not being set in CPUID. */
1034 		if (!cpu_has(c, X86_FEATURE_CPB))
1035 			set_cpu_cap(c, X86_FEATURE_CPB);
1036 
1037 		/*
1038 		 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
1039 		 * Branch Type Confusion, but predate the allocation of the
1040 		 * BTC_NO bit.
1041 		 */
1042 		if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO))
1043 			set_cpu_cap(c, X86_FEATURE_BTC_NO);
1044 	}
1045 }
1046 
cpu_has_zenbleed_microcode(void)1047 static bool cpu_has_zenbleed_microcode(void)
1048 {
1049 	u32 good_rev = 0;
1050 
1051 	switch (boot_cpu_data.x86_model) {
1052 	case 0x30 ... 0x3f: good_rev = 0x0830107a; break;
1053 	case 0x60 ... 0x67: good_rev = 0x0860010b; break;
1054 	case 0x68 ... 0x6f: good_rev = 0x08608105; break;
1055 	case 0x70 ... 0x7f: good_rev = 0x08701032; break;
1056 	case 0xa0 ... 0xaf: good_rev = 0x08a00008; break;
1057 
1058 	default:
1059 		return false;
1060 		break;
1061 	}
1062 
1063 	if (boot_cpu_data.microcode < good_rev)
1064 		return false;
1065 
1066 	return true;
1067 }
1068 
zenbleed_check(struct cpuinfo_x86 * c)1069 static void zenbleed_check(struct cpuinfo_x86 *c)
1070 {
1071 	if (!cpu_has_amd_erratum(c, amd_zenbleed))
1072 		return;
1073 
1074 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
1075 		return;
1076 
1077 	if (!cpu_has(c, X86_FEATURE_AVX))
1078 		return;
1079 
1080 	if (!cpu_has_zenbleed_microcode()) {
1081 		pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
1082 		msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1083 	} else {
1084 		msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1085 	}
1086 }
1087 
init_amd(struct cpuinfo_x86 * c)1088 static void init_amd(struct cpuinfo_x86 *c)
1089 {
1090 	early_init_amd(c);
1091 
1092 	/*
1093 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
1094 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
1095 	 */
1096 	clear_cpu_cap(c, 0*32+31);
1097 
1098 	if (c->x86 >= 0x10)
1099 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
1100 
1101 	/* get apicid instead of initial apic id from cpuid */
1102 	c->apicid = hard_smp_processor_id();
1103 
1104 	/* K6s reports MCEs but don't actually have all the MSRs */
1105 	if (c->x86 < 6)
1106 		clear_cpu_cap(c, X86_FEATURE_MCE);
1107 
1108 	switch (c->x86) {
1109 	case 4:    init_amd_k5(c); break;
1110 	case 5:    init_amd_k6(c); break;
1111 	case 6:	   init_amd_k7(c); break;
1112 	case 0xf:  init_amd_k8(c); break;
1113 	case 0x10: init_amd_gh(c); break;
1114 	case 0x12: init_amd_ln(c); break;
1115 	case 0x15: init_amd_bd(c); break;
1116 	case 0x16: init_amd_jg(c); break;
1117 	case 0x17: init_spectral_chicken(c);
1118 		   fallthrough;
1119 	case 0x19: init_amd_zn(c); break;
1120 	}
1121 
1122 	/*
1123 	 * Enable workaround for FXSAVE leak on CPUs
1124 	 * without a XSaveErPtr feature
1125 	 */
1126 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1127 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1128 
1129 	cpu_detect_cache_sizes(c);
1130 
1131 	amd_detect_cmp(c);
1132 	amd_get_topology(c);
1133 	srat_detect_node(c);
1134 	amd_detect_ppin(c);
1135 
1136 	init_amd_cacheinfo(c);
1137 
1138 	if (cpu_has(c, X86_FEATURE_XMM2)) {
1139 		/*
1140 		 * Use LFENCE for execution serialization.  On families which
1141 		 * don't have that MSR, LFENCE is already serializing.
1142 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
1143 		 * is not present.
1144 		 */
1145 		msr_set_bit(MSR_AMD64_DE_CFG,
1146 			    MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1147 
1148 		/* A serializing LFENCE stops RDTSC speculation */
1149 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1150 	}
1151 
1152 	/*
1153 	 * Family 0x12 and above processors have APIC timer
1154 	 * running in deep C states.
1155 	 */
1156 	if (c->x86 > 0x11)
1157 		set_cpu_cap(c, X86_FEATURE_ARAT);
1158 
1159 	/* 3DNow or LM implies PREFETCHW */
1160 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1161 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1162 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1163 
1164 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1165 	if (!cpu_has(c, X86_FEATURE_XENPV))
1166 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1167 
1168 	/*
1169 	 * Turn on the Instructions Retired free counter on machines not
1170 	 * susceptible to erratum #1054 "Instructions Retired Performance
1171 	 * Counter May Be Inaccurate".
1172 	 */
1173 	if (cpu_has(c, X86_FEATURE_IRPERF) &&
1174 	    !cpu_has_amd_erratum(c, amd_erratum_1054))
1175 		msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1176 
1177 	check_null_seg_clears_base(c);
1178 
1179 	zenbleed_check(c);
1180 
1181 	if (cpu_has_amd_erratum(c, amd_div0)) {
1182 		pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
1183 		setup_force_cpu_bug(X86_BUG_DIV0);
1184 	}
1185 
1186 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
1187 	     cpu_has_amd_erratum(c, amd_erratum_1485))
1188 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
1189 }
1190 
1191 #ifdef CONFIG_X86_32
amd_size_cache(struct cpuinfo_x86 * c,unsigned int size)1192 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1193 {
1194 	/* AMD errata T13 (order #21922) */
1195 	if (c->x86 == 6) {
1196 		/* Duron Rev A0 */
1197 		if (c->x86_model == 3 && c->x86_stepping == 0)
1198 			size = 64;
1199 		/* Tbird rev A1/A2 */
1200 		if (c->x86_model == 4 &&
1201 			(c->x86_stepping == 0 || c->x86_stepping == 1))
1202 			size = 256;
1203 	}
1204 	return size;
1205 }
1206 #endif
1207 
cpu_detect_tlb_amd(struct cpuinfo_x86 * c)1208 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1209 {
1210 	u32 ebx, eax, ecx, edx;
1211 	u16 mask = 0xfff;
1212 
1213 	if (c->x86 < 0xf)
1214 		return;
1215 
1216 	if (c->extended_cpuid_level < 0x80000006)
1217 		return;
1218 
1219 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1220 
1221 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1222 	tlb_lli_4k[ENTRIES] = ebx & mask;
1223 
1224 	/*
1225 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1226 	 * characteristics from the CPUID function 0x80000005 instead.
1227 	 */
1228 	if (c->x86 == 0xf) {
1229 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1230 		mask = 0xff;
1231 	}
1232 
1233 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1234 	if (!((eax >> 16) & mask))
1235 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1236 	else
1237 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1238 
1239 	/* a 4M entry uses two 2M entries */
1240 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1241 
1242 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1243 	if (!(eax & mask)) {
1244 		/* Erratum 658 */
1245 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1246 			tlb_lli_2m[ENTRIES] = 1024;
1247 		} else {
1248 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1249 			tlb_lli_2m[ENTRIES] = eax & 0xff;
1250 		}
1251 	} else
1252 		tlb_lli_2m[ENTRIES] = eax & mask;
1253 
1254 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1255 }
1256 
1257 static const struct cpu_dev amd_cpu_dev = {
1258 	.c_vendor	= "AMD",
1259 	.c_ident	= { "AuthenticAMD" },
1260 #ifdef CONFIG_X86_32
1261 	.legacy_models = {
1262 		{ .family = 4, .model_names =
1263 		  {
1264 			  [3] = "486 DX/2",
1265 			  [7] = "486 DX/2-WB",
1266 			  [8] = "486 DX/4",
1267 			  [9] = "486 DX/4-WB",
1268 			  [14] = "Am5x86-WT",
1269 			  [15] = "Am5x86-WB"
1270 		  }
1271 		},
1272 	},
1273 	.legacy_cache_size = amd_size_cache,
1274 #endif
1275 	.c_early_init   = early_init_amd,
1276 	.c_detect_tlb	= cpu_detect_tlb_amd,
1277 	.c_bsp_init	= bsp_init_amd,
1278 	.c_init		= init_amd,
1279 	.c_x86_vendor	= X86_VENDOR_AMD,
1280 };
1281 
1282 cpu_dev_register(amd_cpu_dev);
1283 
set_dr_addr_mask(unsigned long mask,int dr)1284 void set_dr_addr_mask(unsigned long mask, int dr)
1285 {
1286 	if (!boot_cpu_has(X86_FEATURE_BPEXT))
1287 		return;
1288 
1289 	switch (dr) {
1290 	case 0:
1291 		wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
1292 		break;
1293 	case 1:
1294 	case 2:
1295 	case 3:
1296 		wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 }
1302 
cpu_has_ibpb_brtype_microcode(void)1303 bool cpu_has_ibpb_brtype_microcode(void)
1304 {
1305 	switch (boot_cpu_data.x86) {
1306 	/* Zen1/2 IBPB flushes branch type predictions too. */
1307 	case 0x17:
1308 		return boot_cpu_has(X86_FEATURE_AMD_IBPB);
1309 	case 0x19:
1310 		/* Poke the MSR bit on Zen3/4 to check its presence. */
1311 		if (!wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
1312 			setup_force_cpu_cap(X86_FEATURE_SBPB);
1313 			return true;
1314 		} else {
1315 			return false;
1316 		}
1317 	default:
1318 		return false;
1319 	}
1320 }
1321 
zenbleed_check_cpu(void * unused)1322 static void zenbleed_check_cpu(void *unused)
1323 {
1324 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1325 
1326 	zenbleed_check(c);
1327 }
1328 
amd_check_microcode(void)1329 void amd_check_microcode(void)
1330 {
1331 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1332 		return;
1333 
1334 	on_each_cpu(zenbleed_check_cpu, NULL, 1);
1335 }
1336 
1337 /*
1338  * Issue a DIV 0/1 insn to clear any division data from previous DIV
1339  * operations.
1340  */
amd_clear_divider(void)1341 void noinstr amd_clear_divider(void)
1342 {
1343 	asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
1344 		     :: "a" (0), "d" (0), "r" (1));
1345 }
1346 EXPORT_SYMBOL_GPL(amd_clear_divider);
1347