1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 static int die_counter;
29
30 static struct pt_regs exec_summary_regs;
31
in_task_stack(unsigned long * stack,struct task_struct * task,struct stack_info * info)32 bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
33 struct stack_info *info)
34 {
35 unsigned long *begin = task_stack_page(task);
36 unsigned long *end = task_stack_page(task) + THREAD_SIZE;
37
38 if (stack < begin || stack >= end)
39 return false;
40
41 info->type = STACK_TYPE_TASK;
42 info->begin = begin;
43 info->end = end;
44 info->next_sp = NULL;
45
46 return true;
47 }
48
49 /* Called from get_stack_info_noinstr - so must be noinstr too */
in_entry_stack(unsigned long * stack,struct stack_info * info)50 bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
51 {
52 struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
53
54 void *begin = ss;
55 void *end = ss + 1;
56
57 if ((void *)stack < begin || (void *)stack >= end)
58 return false;
59
60 info->type = STACK_TYPE_ENTRY;
61 info->begin = begin;
62 info->end = end;
63 info->next_sp = NULL;
64
65 return true;
66 }
67
printk_stack_address(unsigned long address,int reliable,const char * log_lvl)68 static void printk_stack_address(unsigned long address, int reliable,
69 const char *log_lvl)
70 {
71 touch_nmi_watchdog();
72 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
73 }
74
copy_code(struct pt_regs * regs,u8 * buf,unsigned long src,unsigned int nbytes)75 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
76 unsigned int nbytes)
77 {
78 if (!user_mode(regs))
79 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
80
81 /* The user space code from other tasks cannot be accessed. */
82 if (regs != task_pt_regs(current))
83 return -EPERM;
84 /*
85 * Make sure userspace isn't trying to trick us into dumping kernel
86 * memory by pointing the userspace instruction pointer at it.
87 */
88 if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX))
89 return -EINVAL;
90
91 /*
92 * Even if named copy_from_user_nmi() this can be invoked from
93 * other contexts and will not try to resolve a pagefault, which is
94 * the correct thing to do here as this code can be called from any
95 * context.
96 */
97 return copy_from_user_nmi(buf, (void __user *)src, nbytes);
98 }
99
100 /*
101 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
102 *
103 * In case where we don't have the exact kernel image (which, if we did, we can
104 * simply disassemble and navigate to the RIP), the purpose of the bigger
105 * prologue is to have more context and to be able to correlate the code from
106 * the different toolchains better.
107 *
108 * In addition, it helps in recreating the register allocation of the failing
109 * kernel and thus make sense of the register dump.
110 *
111 * What is more, the additional complication of a variable length insn arch like
112 * x86 warrants having longer byte sequence before rIP so that the disassembler
113 * can "sync" up properly and find instruction boundaries when decoding the
114 * opcode bytes.
115 *
116 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
117 * guesstimate in attempt to achieve all of the above.
118 */
show_opcodes(struct pt_regs * regs,const char * loglvl)119 void show_opcodes(struct pt_regs *regs, const char *loglvl)
120 {
121 #define PROLOGUE_SIZE 42
122 #define EPILOGUE_SIZE 21
123 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
124 u8 opcodes[OPCODE_BUFSIZE];
125 unsigned long prologue = regs->ip - PROLOGUE_SIZE;
126
127 switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
128 case 0:
129 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
130 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
131 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
132 break;
133 case -EPERM:
134 /* No access to the user space stack of other tasks. Ignore. */
135 break;
136 default:
137 printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n",
138 loglvl, prologue);
139 break;
140 }
141 }
142
show_ip(struct pt_regs * regs,const char * loglvl)143 void show_ip(struct pt_regs *regs, const char *loglvl)
144 {
145 #ifdef CONFIG_X86_32
146 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
147 #else
148 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
149 #endif
150 show_opcodes(regs, loglvl);
151 }
152
show_iret_regs(struct pt_regs * regs,const char * log_lvl)153 void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
154 {
155 show_ip(regs, log_lvl);
156 printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
157 regs->sp, regs->flags);
158 }
159
show_regs_if_on_stack(struct stack_info * info,struct pt_regs * regs,bool partial,const char * log_lvl)160 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
161 bool partial, const char *log_lvl)
162 {
163 /*
164 * These on_stack() checks aren't strictly necessary: the unwind code
165 * has already validated the 'regs' pointer. The checks are done for
166 * ordering reasons: if the registers are on the next stack, we don't
167 * want to print them out yet. Otherwise they'll be shown as part of
168 * the wrong stack. Later, when show_trace_log_lvl() switches to the
169 * next stack, this function will be called again with the same regs so
170 * they can be printed in the right context.
171 */
172 if (!partial && on_stack(info, regs, sizeof(*regs))) {
173 __show_regs(regs, SHOW_REGS_SHORT, log_lvl);
174
175 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
176 IRET_FRAME_SIZE)) {
177 /*
178 * When an interrupt or exception occurs in entry code, the
179 * full pt_regs might not have been saved yet. In that case
180 * just print the iret frame.
181 */
182 show_iret_regs(regs, log_lvl);
183 }
184 }
185
show_trace_log_lvl(struct task_struct * task,struct pt_regs * regs,unsigned long * stack,const char * log_lvl)186 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
187 unsigned long *stack, const char *log_lvl)
188 {
189 struct unwind_state state;
190 struct stack_info stack_info = {0};
191 unsigned long visit_mask = 0;
192 int graph_idx = 0;
193 bool partial = false;
194
195 printk("%sCall Trace:\n", log_lvl);
196
197 unwind_start(&state, task, regs, stack);
198 regs = unwind_get_entry_regs(&state, &partial);
199
200 /*
201 * Iterate through the stacks, starting with the current stack pointer.
202 * Each stack has a pointer to the next one.
203 *
204 * x86-64 can have several stacks:
205 * - task stack
206 * - interrupt stack
207 * - HW exception stacks (double fault, nmi, debug, mce)
208 * - entry stack
209 *
210 * x86-32 can have up to four stacks:
211 * - task stack
212 * - softirq stack
213 * - hardirq stack
214 * - entry stack
215 */
216 for (stack = stack ?: get_stack_pointer(task, regs);
217 stack;
218 stack = stack_info.next_sp) {
219 const char *stack_name;
220
221 stack = PTR_ALIGN(stack, sizeof(long));
222
223 if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
224 /*
225 * We weren't on a valid stack. It's possible that
226 * we overflowed a valid stack into a guard page.
227 * See if the next page up is valid so that we can
228 * generate some kind of backtrace if this happens.
229 */
230 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
231 if (get_stack_info(stack, task, &stack_info, &visit_mask))
232 break;
233 }
234
235 stack_name = stack_type_name(stack_info.type);
236 if (stack_name)
237 printk("%s <%s>\n", log_lvl, stack_name);
238
239 if (regs)
240 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
241
242 /*
243 * Scan the stack, printing any text addresses we find. At the
244 * same time, follow proper stack frames with the unwinder.
245 *
246 * Addresses found during the scan which are not reported by
247 * the unwinder are considered to be additional clues which are
248 * sometimes useful for debugging and are prefixed with '?'.
249 * This also serves as a failsafe option in case the unwinder
250 * goes off in the weeds.
251 */
252 for (; stack < stack_info.end; stack++) {
253 unsigned long real_addr;
254 int reliable = 0;
255 unsigned long addr = READ_ONCE_NOCHECK(*stack);
256 unsigned long *ret_addr_p =
257 unwind_get_return_address_ptr(&state);
258
259 if (!__kernel_text_address(addr))
260 continue;
261
262 /*
263 * Don't print regs->ip again if it was already printed
264 * by show_regs_if_on_stack().
265 */
266 if (regs && stack == ®s->ip)
267 goto next;
268
269 if (stack == ret_addr_p)
270 reliable = 1;
271
272 /*
273 * When function graph tracing is enabled for a
274 * function, its return address on the stack is
275 * replaced with the address of an ftrace handler
276 * (return_to_handler). In that case, before printing
277 * the "real" address, we want to print the handler
278 * address as an "unreliable" hint that function graph
279 * tracing was involved.
280 */
281 real_addr = ftrace_graph_ret_addr(task, &graph_idx,
282 addr, stack);
283 if (real_addr != addr)
284 printk_stack_address(addr, 0, log_lvl);
285 printk_stack_address(real_addr, reliable, log_lvl);
286
287 if (!reliable)
288 continue;
289
290 next:
291 /*
292 * Get the next frame from the unwinder. No need to
293 * check for an error: if anything goes wrong, the rest
294 * of the addresses will just be printed as unreliable.
295 */
296 unwind_next_frame(&state);
297
298 /* if the frame has entry regs, print them */
299 regs = unwind_get_entry_regs(&state, &partial);
300 if (regs)
301 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
302 }
303
304 if (stack_name)
305 printk("%s </%s>\n", log_lvl, stack_name);
306 }
307 }
308
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)309 void show_stack(struct task_struct *task, unsigned long *sp,
310 const char *loglvl)
311 {
312 task = task ? : current;
313
314 /*
315 * Stack frames below this one aren't interesting. Don't show them
316 * if we're printing for %current.
317 */
318 if (!sp && task == current)
319 sp = get_stack_pointer(current, NULL);
320
321 show_trace_log_lvl(task, NULL, sp, loglvl);
322 }
323
show_stack_regs(struct pt_regs * regs)324 void show_stack_regs(struct pt_regs *regs)
325 {
326 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
327 }
328
329 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
330 static int die_owner = -1;
331 static unsigned int die_nest_count;
332
oops_begin(void)333 unsigned long oops_begin(void)
334 {
335 int cpu;
336 unsigned long flags;
337
338 oops_enter();
339
340 /* racy, but better than risking deadlock. */
341 raw_local_irq_save(flags);
342 cpu = smp_processor_id();
343 if (!arch_spin_trylock(&die_lock)) {
344 if (cpu == die_owner)
345 /* nested oops. should stop eventually */;
346 else
347 arch_spin_lock(&die_lock);
348 }
349 die_nest_count++;
350 die_owner = cpu;
351 console_verbose();
352 bust_spinlocks(1);
353 return flags;
354 }
355 NOKPROBE_SYMBOL(oops_begin);
356
357 void __noreturn rewind_stack_and_make_dead(int signr);
358
oops_end(unsigned long flags,struct pt_regs * regs,int signr)359 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
360 {
361 if (regs && kexec_should_crash(current))
362 crash_kexec(regs);
363
364 bust_spinlocks(0);
365 die_owner = -1;
366 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
367 die_nest_count--;
368 if (!die_nest_count)
369 /* Nest count reaches zero, release the lock. */
370 arch_spin_unlock(&die_lock);
371 raw_local_irq_restore(flags);
372 oops_exit();
373
374 /* Executive summary in case the oops scrolled away */
375 __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
376
377 if (!signr)
378 return;
379 if (in_interrupt())
380 panic("Fatal exception in interrupt");
381 if (panic_on_oops)
382 panic("Fatal exception");
383
384 /*
385 * We're not going to return, but we might be on an IST stack or
386 * have very little stack space left. Rewind the stack and kill
387 * the task.
388 * Before we rewind the stack, we have to tell KASAN that we're going to
389 * reuse the task stack and that existing poisons are invalid.
390 */
391 kasan_unpoison_task_stack(current);
392 rewind_stack_and_make_dead(signr);
393 }
394 NOKPROBE_SYMBOL(oops_end);
395
__die_header(const char * str,struct pt_regs * regs,long err)396 static void __die_header(const char *str, struct pt_regs *regs, long err)
397 {
398 const char *pr = "";
399
400 /* Save the regs of the first oops for the executive summary later. */
401 if (!die_counter)
402 exec_summary_regs = *regs;
403
404 if (IS_ENABLED(CONFIG_PREEMPTION))
405 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
406
407 printk(KERN_DEFAULT
408 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
409 pr,
410 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
411 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
412 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
413 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
414 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
415 }
416 NOKPROBE_SYMBOL(__die_header);
417
__die_body(const char * str,struct pt_regs * regs,long err)418 static int __die_body(const char *str, struct pt_regs *regs, long err)
419 {
420 show_regs(regs);
421 print_modules();
422
423 if (notify_die(DIE_OOPS, str, regs, err,
424 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
425 return 1;
426
427 return 0;
428 }
429 NOKPROBE_SYMBOL(__die_body);
430
__die(const char * str,struct pt_regs * regs,long err)431 int __die(const char *str, struct pt_regs *regs, long err)
432 {
433 __die_header(str, regs, err);
434 return __die_body(str, regs, err);
435 }
436 NOKPROBE_SYMBOL(__die);
437
438 /*
439 * This is gone through when something in the kernel has done something bad
440 * and is about to be terminated:
441 */
die(const char * str,struct pt_regs * regs,long err)442 void die(const char *str, struct pt_regs *regs, long err)
443 {
444 unsigned long flags = oops_begin();
445 int sig = SIGSEGV;
446
447 if (__die(str, regs, err))
448 sig = 0;
449 oops_end(flags, regs, sig);
450 }
451
die_addr(const char * str,struct pt_regs * regs,long err,long gp_addr)452 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
453 {
454 unsigned long flags = oops_begin();
455 int sig = SIGSEGV;
456
457 __die_header(str, regs, err);
458 if (gp_addr)
459 kasan_non_canonical_hook(gp_addr);
460 if (__die_body(str, regs, err))
461 sig = 0;
462 oops_end(flags, regs, sig);
463 }
464
show_regs(struct pt_regs * regs)465 void show_regs(struct pt_regs *regs)
466 {
467 enum show_regs_mode print_kernel_regs;
468
469 show_regs_print_info(KERN_DEFAULT);
470
471 print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
472 __show_regs(regs, print_kernel_regs, KERN_DEFAULT);
473
474 /*
475 * When in-kernel, we also print out the stack at the time of the fault..
476 */
477 if (!user_mode(regs))
478 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
479 }
480