1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * KVM paravirt_ops implementation 4 * 5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * Copyright IBM Corporation, 2007 7 * Authors: Anthony Liguori <aliguori@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kvm-guest: " fmt 11 12 #include <linux/context_tracking.h> 13 #include <linux/init.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/kvm_para.h> 17 #include <linux/cpu.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/hardirq.h> 21 #include <linux/notifier.h> 22 #include <linux/reboot.h> 23 #include <linux/hash.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/kprobes.h> 27 #include <linux/nmi.h> 28 #include <linux/swait.h> 29 #include <linux/syscore_ops.h> 30 #include <asm/timer.h> 31 #include <asm/cpu.h> 32 #include <asm/traps.h> 33 #include <asm/desc.h> 34 #include <asm/tlbflush.h> 35 #include <asm/apic.h> 36 #include <asm/apicdef.h> 37 #include <asm/hypervisor.h> 38 #include <asm/tlb.h> 39 #include <asm/cpuidle_haltpoll.h> 40 #include <asm/ptrace.h> 41 #include <asm/reboot.h> 42 #include <asm/svm.h> 43 44 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled); 45 46 static int kvmapf = 1; 47 parse_no_kvmapf(char * arg)48 static int __init parse_no_kvmapf(char *arg) 49 { 50 kvmapf = 0; 51 return 0; 52 } 53 54 early_param("no-kvmapf", parse_no_kvmapf); 55 56 static int steal_acc = 1; parse_no_stealacc(char * arg)57 static int __init parse_no_stealacc(char *arg) 58 { 59 steal_acc = 0; 60 return 0; 61 } 62 63 early_param("no-steal-acc", parse_no_stealacc); 64 65 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); 66 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; 67 static int has_steal_clock = 0; 68 69 static int has_guest_poll = 0; 70 /* 71 * No need for any "IO delay" on KVM 72 */ kvm_io_delay(void)73 static void kvm_io_delay(void) 74 { 75 } 76 77 #define KVM_TASK_SLEEP_HASHBITS 8 78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) 79 80 struct kvm_task_sleep_node { 81 struct hlist_node link; 82 struct swait_queue_head wq; 83 u32 token; 84 int cpu; 85 }; 86 87 static struct kvm_task_sleep_head { 88 raw_spinlock_t lock; 89 struct hlist_head list; 90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; 91 _find_apf_task(struct kvm_task_sleep_head * b,u32 token)92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, 93 u32 token) 94 { 95 struct hlist_node *p; 96 97 hlist_for_each(p, &b->list) { 98 struct kvm_task_sleep_node *n = 99 hlist_entry(p, typeof(*n), link); 100 if (n->token == token) 101 return n; 102 } 103 104 return NULL; 105 } 106 kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) 108 { 109 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 110 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 111 struct kvm_task_sleep_node *e; 112 113 raw_spin_lock(&b->lock); 114 e = _find_apf_task(b, token); 115 if (e) { 116 /* dummy entry exist -> wake up was delivered ahead of PF */ 117 hlist_del(&e->link); 118 raw_spin_unlock(&b->lock); 119 kfree(e); 120 return false; 121 } 122 123 n->token = token; 124 n->cpu = smp_processor_id(); 125 init_swait_queue_head(&n->wq); 126 hlist_add_head(&n->link, &b->list); 127 raw_spin_unlock(&b->lock); 128 return true; 129 } 130 131 /* 132 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled 133 * @token: Token to identify the sleep node entry 134 * 135 * Invoked from the async pagefault handling code or from the VM exit page 136 * fault handler. In both cases RCU is watching. 137 */ kvm_async_pf_task_wait_schedule(u32 token)138 void kvm_async_pf_task_wait_schedule(u32 token) 139 { 140 struct kvm_task_sleep_node n; 141 DECLARE_SWAITQUEUE(wait); 142 143 lockdep_assert_irqs_disabled(); 144 145 if (!kvm_async_pf_queue_task(token, &n)) 146 return; 147 148 for (;;) { 149 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); 150 if (hlist_unhashed(&n.link)) 151 break; 152 153 local_irq_enable(); 154 schedule(); 155 local_irq_disable(); 156 } 157 finish_swait(&n.wq, &wait); 158 } 159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); 160 apf_task_wake_one(struct kvm_task_sleep_node * n)161 static void apf_task_wake_one(struct kvm_task_sleep_node *n) 162 { 163 hlist_del_init(&n->link); 164 if (swq_has_sleeper(&n->wq)) 165 swake_up_one(&n->wq); 166 } 167 apf_task_wake_all(void)168 static void apf_task_wake_all(void) 169 { 170 int i; 171 172 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { 173 struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; 174 struct kvm_task_sleep_node *n; 175 struct hlist_node *p, *next; 176 177 raw_spin_lock(&b->lock); 178 hlist_for_each_safe(p, next, &b->list) { 179 n = hlist_entry(p, typeof(*n), link); 180 if (n->cpu == smp_processor_id()) 181 apf_task_wake_one(n); 182 } 183 raw_spin_unlock(&b->lock); 184 } 185 } 186 kvm_async_pf_task_wake(u32 token)187 void kvm_async_pf_task_wake(u32 token) 188 { 189 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 190 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 191 struct kvm_task_sleep_node *n, *dummy = NULL; 192 193 if (token == ~0) { 194 apf_task_wake_all(); 195 return; 196 } 197 198 again: 199 raw_spin_lock(&b->lock); 200 n = _find_apf_task(b, token); 201 if (!n) { 202 /* 203 * Async #PF not yet handled, add a dummy entry for the token. 204 * Allocating the token must be down outside of the raw lock 205 * as the allocator is preemptible on PREEMPT_RT kernels. 206 */ 207 if (!dummy) { 208 raw_spin_unlock(&b->lock); 209 dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC); 210 211 /* 212 * Continue looping on allocation failure, eventually 213 * the async #PF will be handled and allocating a new 214 * node will be unnecessary. 215 */ 216 if (!dummy) 217 cpu_relax(); 218 219 /* 220 * Recheck for async #PF completion before enqueueing 221 * the dummy token to avoid duplicate list entries. 222 */ 223 goto again; 224 } 225 dummy->token = token; 226 dummy->cpu = smp_processor_id(); 227 init_swait_queue_head(&dummy->wq); 228 hlist_add_head(&dummy->link, &b->list); 229 dummy = NULL; 230 } else { 231 apf_task_wake_one(n); 232 } 233 raw_spin_unlock(&b->lock); 234 235 /* A dummy token might be allocated and ultimately not used. */ 236 if (dummy) 237 kfree(dummy); 238 } 239 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); 240 kvm_read_and_reset_apf_flags(void)241 noinstr u32 kvm_read_and_reset_apf_flags(void) 242 { 243 u32 flags = 0; 244 245 if (__this_cpu_read(apf_reason.enabled)) { 246 flags = __this_cpu_read(apf_reason.flags); 247 __this_cpu_write(apf_reason.flags, 0); 248 } 249 250 return flags; 251 } 252 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); 253 __kvm_handle_async_pf(struct pt_regs * regs,u32 token)254 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) 255 { 256 u32 flags = kvm_read_and_reset_apf_flags(); 257 irqentry_state_t state; 258 259 if (!flags) 260 return false; 261 262 state = irqentry_enter(regs); 263 instrumentation_begin(); 264 265 /* 266 * If the host managed to inject an async #PF into an interrupt 267 * disabled region, then die hard as this is not going to end well 268 * and the host side is seriously broken. 269 */ 270 if (unlikely(!(regs->flags & X86_EFLAGS_IF))) 271 panic("Host injected async #PF in interrupt disabled region\n"); 272 273 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 274 if (unlikely(!(user_mode(regs)))) 275 panic("Host injected async #PF in kernel mode\n"); 276 /* Page is swapped out by the host. */ 277 kvm_async_pf_task_wait_schedule(token); 278 } else { 279 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); 280 } 281 282 instrumentation_end(); 283 irqentry_exit(regs, state); 284 return true; 285 } 286 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)287 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) 288 { 289 struct pt_regs *old_regs = set_irq_regs(regs); 290 u32 token; 291 292 ack_APIC_irq(); 293 294 inc_irq_stat(irq_hv_callback_count); 295 296 if (__this_cpu_read(apf_reason.enabled)) { 297 token = __this_cpu_read(apf_reason.token); 298 kvm_async_pf_task_wake(token); 299 __this_cpu_write(apf_reason.token, 0); 300 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); 301 } 302 303 set_irq_regs(old_regs); 304 } 305 paravirt_ops_setup(void)306 static void __init paravirt_ops_setup(void) 307 { 308 pv_info.name = "KVM"; 309 310 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) 311 pv_ops.cpu.io_delay = kvm_io_delay; 312 313 #ifdef CONFIG_X86_IO_APIC 314 no_timer_check = 1; 315 #endif 316 } 317 kvm_register_steal_time(void)318 static void kvm_register_steal_time(void) 319 { 320 int cpu = smp_processor_id(); 321 struct kvm_steal_time *st = &per_cpu(steal_time, cpu); 322 323 if (!has_steal_clock) 324 return; 325 326 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); 327 pr_info("stealtime: cpu %d, msr %llx\n", cpu, 328 (unsigned long long) slow_virt_to_phys(st)); 329 } 330 331 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; 332 kvm_guest_apic_eoi_write(u32 reg,u32 val)333 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val) 334 { 335 /** 336 * This relies on __test_and_clear_bit to modify the memory 337 * in a way that is atomic with respect to the local CPU. 338 * The hypervisor only accesses this memory from the local CPU so 339 * there's no need for lock or memory barriers. 340 * An optimization barrier is implied in apic write. 341 */ 342 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) 343 return; 344 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK); 345 } 346 kvm_guest_cpu_init(void)347 static void kvm_guest_cpu_init(void) 348 { 349 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 350 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 351 352 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); 353 354 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 355 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 356 357 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) 358 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 359 360 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); 361 362 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); 363 __this_cpu_write(apf_reason.enabled, 1); 364 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id()); 365 } 366 367 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { 368 unsigned long pa; 369 370 /* Size alignment is implied but just to make it explicit. */ 371 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); 372 __this_cpu_write(kvm_apic_eoi, 0); 373 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) 374 | KVM_MSR_ENABLED; 375 wrmsrl(MSR_KVM_PV_EOI_EN, pa); 376 } 377 378 if (has_steal_clock) 379 kvm_register_steal_time(); 380 } 381 kvm_pv_disable_apf(void)382 static void kvm_pv_disable_apf(void) 383 { 384 if (!__this_cpu_read(apf_reason.enabled)) 385 return; 386 387 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); 388 __this_cpu_write(apf_reason.enabled, 0); 389 390 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id()); 391 } 392 kvm_disable_steal_time(void)393 static void kvm_disable_steal_time(void) 394 { 395 if (!has_steal_clock) 396 return; 397 398 wrmsr(MSR_KVM_STEAL_TIME, 0, 0); 399 } 400 kvm_pv_guest_cpu_reboot(void * unused)401 static void kvm_pv_guest_cpu_reboot(void *unused) 402 { 403 /* 404 * We disable PV EOI before we load a new kernel by kexec, 405 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory. 406 * New kernel can re-enable when it boots. 407 */ 408 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 409 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 410 kvm_pv_disable_apf(); 411 kvm_disable_steal_time(); 412 } 413 kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)414 static int kvm_pv_reboot_notify(struct notifier_block *nb, 415 unsigned long code, void *unused) 416 { 417 if (code == SYS_RESTART) 418 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); 419 return NOTIFY_DONE; 420 } 421 422 static struct notifier_block kvm_pv_reboot_nb = { 423 .notifier_call = kvm_pv_reboot_notify, 424 }; 425 kvm_steal_clock(int cpu)426 static u64 kvm_steal_clock(int cpu) 427 { 428 u64 steal; 429 struct kvm_steal_time *src; 430 int version; 431 432 src = &per_cpu(steal_time, cpu); 433 do { 434 version = src->version; 435 virt_rmb(); 436 steal = src->steal; 437 virt_rmb(); 438 } while ((version & 1) || (version != src->version)); 439 440 return steal; 441 } 442 __set_percpu_decrypted(void * ptr,unsigned long size)443 static inline void __set_percpu_decrypted(void *ptr, unsigned long size) 444 { 445 early_set_memory_decrypted((unsigned long) ptr, size); 446 } 447 448 /* 449 * Iterate through all possible CPUs and map the memory region pointed 450 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. 451 * 452 * Note: we iterate through all possible CPUs to ensure that CPUs 453 * hotplugged will have their per-cpu variable already mapped as 454 * decrypted. 455 */ sev_map_percpu_data(void)456 static void __init sev_map_percpu_data(void) 457 { 458 int cpu; 459 460 if (!sev_active()) 461 return; 462 463 for_each_possible_cpu(cpu) { 464 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); 465 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); 466 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); 467 } 468 } 469 pv_tlb_flush_supported(void)470 static bool pv_tlb_flush_supported(void) 471 { 472 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && 473 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 474 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 475 } 476 477 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); 478 kvm_guest_cpu_offline(bool shutdown)479 static void kvm_guest_cpu_offline(bool shutdown) 480 { 481 kvm_disable_steal_time(); 482 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 483 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 484 kvm_pv_disable_apf(); 485 if (!shutdown) 486 apf_task_wake_all(); 487 kvmclock_disable(); 488 } 489 kvm_cpu_online(unsigned int cpu)490 static int kvm_cpu_online(unsigned int cpu) 491 { 492 unsigned long flags; 493 494 local_irq_save(flags); 495 kvm_guest_cpu_init(); 496 local_irq_restore(flags); 497 return 0; 498 } 499 500 #ifdef CONFIG_SMP 501 pv_ipi_supported(void)502 static bool pv_ipi_supported(void) 503 { 504 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI); 505 } 506 pv_sched_yield_supported(void)507 static bool pv_sched_yield_supported(void) 508 { 509 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && 510 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 511 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 512 } 513 514 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) 515 __send_ipi_mask(const struct cpumask * mask,int vector)516 static void __send_ipi_mask(const struct cpumask *mask, int vector) 517 { 518 unsigned long flags; 519 int cpu, apic_id, icr; 520 int min = 0, max = 0; 521 #ifdef CONFIG_X86_64 522 __uint128_t ipi_bitmap = 0; 523 #else 524 u64 ipi_bitmap = 0; 525 #endif 526 long ret; 527 528 if (cpumask_empty(mask)) 529 return; 530 531 local_irq_save(flags); 532 533 switch (vector) { 534 default: 535 icr = APIC_DM_FIXED | vector; 536 break; 537 case NMI_VECTOR: 538 icr = APIC_DM_NMI; 539 break; 540 } 541 542 for_each_cpu(cpu, mask) { 543 apic_id = per_cpu(x86_cpu_to_apicid, cpu); 544 if (!ipi_bitmap) { 545 min = max = apic_id; 546 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { 547 ipi_bitmap <<= min - apic_id; 548 min = apic_id; 549 } else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) { 550 max = apic_id < max ? max : apic_id; 551 } else { 552 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 553 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 554 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 555 ret); 556 min = max = apic_id; 557 ipi_bitmap = 0; 558 } 559 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); 560 } 561 562 if (ipi_bitmap) { 563 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 564 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 565 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 566 ret); 567 } 568 569 local_irq_restore(flags); 570 } 571 kvm_send_ipi_mask(const struct cpumask * mask,int vector)572 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) 573 { 574 __send_ipi_mask(mask, vector); 575 } 576 kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)577 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) 578 { 579 unsigned int this_cpu = smp_processor_id(); 580 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 581 const struct cpumask *local_mask; 582 583 cpumask_copy(new_mask, mask); 584 cpumask_clear_cpu(this_cpu, new_mask); 585 local_mask = new_mask; 586 __send_ipi_mask(local_mask, vector); 587 } 588 589 /* 590 * Set the IPI entry points 591 */ kvm_setup_pv_ipi(void)592 static void kvm_setup_pv_ipi(void) 593 { 594 apic->send_IPI_mask = kvm_send_ipi_mask; 595 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself; 596 pr_info("setup PV IPIs\n"); 597 } 598 kvm_smp_send_call_func_ipi(const struct cpumask * mask)599 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) 600 { 601 int cpu; 602 603 native_send_call_func_ipi(mask); 604 605 /* Make sure other vCPUs get a chance to run if they need to. */ 606 for_each_cpu(cpu, mask) { 607 if (vcpu_is_preempted(cpu)) { 608 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); 609 break; 610 } 611 } 612 } 613 kvm_smp_prepare_boot_cpu(void)614 static void __init kvm_smp_prepare_boot_cpu(void) 615 { 616 /* 617 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() 618 * shares the guest physical address with the hypervisor. 619 */ 620 sev_map_percpu_data(); 621 622 kvm_guest_cpu_init(); 623 native_smp_prepare_boot_cpu(); 624 kvm_spinlock_init(); 625 } 626 kvm_cpu_down_prepare(unsigned int cpu)627 static int kvm_cpu_down_prepare(unsigned int cpu) 628 { 629 unsigned long flags; 630 631 local_irq_save(flags); 632 kvm_guest_cpu_offline(false); 633 local_irq_restore(flags); 634 return 0; 635 } 636 637 #endif 638 kvm_suspend(void)639 static int kvm_suspend(void) 640 { 641 u64 val = 0; 642 643 kvm_guest_cpu_offline(false); 644 645 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 646 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) 647 rdmsrl(MSR_KVM_POLL_CONTROL, val); 648 has_guest_poll = !(val & 1); 649 #endif 650 return 0; 651 } 652 kvm_resume(void)653 static void kvm_resume(void) 654 { 655 kvm_cpu_online(raw_smp_processor_id()); 656 657 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 658 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll) 659 wrmsrl(MSR_KVM_POLL_CONTROL, 0); 660 #endif 661 } 662 663 static struct syscore_ops kvm_syscore_ops = { 664 .suspend = kvm_suspend, 665 .resume = kvm_resume, 666 }; 667 668 /* 669 * After a PV feature is registered, the host will keep writing to the 670 * registered memory location. If the guest happens to shutdown, this memory 671 * won't be valid. In cases like kexec, in which you install a new kernel, this 672 * means a random memory location will be kept being written. 673 */ 674 #ifdef CONFIG_KEXEC_CORE kvm_crash_shutdown(struct pt_regs * regs)675 static void kvm_crash_shutdown(struct pt_regs *regs) 676 { 677 kvm_guest_cpu_offline(true); 678 native_machine_crash_shutdown(regs); 679 } 680 #endif 681 kvm_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)682 static void kvm_flush_tlb_others(const struct cpumask *cpumask, 683 const struct flush_tlb_info *info) 684 { 685 u8 state; 686 int cpu; 687 struct kvm_steal_time *src; 688 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 689 690 cpumask_copy(flushmask, cpumask); 691 /* 692 * We have to call flush only on online vCPUs. And 693 * queue flush_on_enter for pre-empted vCPUs 694 */ 695 for_each_cpu(cpu, flushmask) { 696 src = &per_cpu(steal_time, cpu); 697 state = READ_ONCE(src->preempted); 698 if ((state & KVM_VCPU_PREEMPTED)) { 699 if (try_cmpxchg(&src->preempted, &state, 700 state | KVM_VCPU_FLUSH_TLB)) 701 __cpumask_clear_cpu(cpu, flushmask); 702 } 703 } 704 705 native_flush_tlb_others(flushmask, info); 706 } 707 kvm_guest_init(void)708 static void __init kvm_guest_init(void) 709 { 710 int i; 711 712 paravirt_ops_setup(); 713 register_reboot_notifier(&kvm_pv_reboot_nb); 714 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) 715 raw_spin_lock_init(&async_pf_sleepers[i].lock); 716 717 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 718 has_steal_clock = 1; 719 pv_ops.time.steal_clock = kvm_steal_clock; 720 } 721 722 if (pv_tlb_flush_supported()) { 723 pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others; 724 pv_ops.mmu.tlb_remove_table = tlb_remove_table; 725 pr_info("KVM setup pv remote TLB flush\n"); 726 } 727 728 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 729 apic_set_eoi_write(kvm_guest_apic_eoi_write); 730 731 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 732 static_branch_enable(&kvm_async_pf_enabled); 733 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt); 734 } 735 736 #ifdef CONFIG_SMP 737 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; 738 if (pv_sched_yield_supported()) { 739 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; 740 pr_info("setup PV sched yield\n"); 741 } 742 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", 743 kvm_cpu_online, kvm_cpu_down_prepare) < 0) 744 pr_err("failed to install cpu hotplug callbacks\n"); 745 #else 746 sev_map_percpu_data(); 747 kvm_guest_cpu_init(); 748 #endif 749 750 #ifdef CONFIG_KEXEC_CORE 751 machine_ops.crash_shutdown = kvm_crash_shutdown; 752 #endif 753 754 register_syscore_ops(&kvm_syscore_ops); 755 756 /* 757 * Hard lockup detection is enabled by default. Disable it, as guests 758 * can get false positives too easily, for example if the host is 759 * overcommitted. 760 */ 761 hardlockup_detector_disable(); 762 } 763 __kvm_cpuid_base(void)764 static noinline uint32_t __kvm_cpuid_base(void) 765 { 766 if (boot_cpu_data.cpuid_level < 0) 767 return 0; /* So we don't blow up on old processors */ 768 769 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 770 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0); 771 772 return 0; 773 } 774 kvm_cpuid_base(void)775 static inline uint32_t kvm_cpuid_base(void) 776 { 777 static int kvm_cpuid_base = -1; 778 779 if (kvm_cpuid_base == -1) 780 kvm_cpuid_base = __kvm_cpuid_base(); 781 782 return kvm_cpuid_base; 783 } 784 kvm_para_available(void)785 bool kvm_para_available(void) 786 { 787 return kvm_cpuid_base() != 0; 788 } 789 EXPORT_SYMBOL_GPL(kvm_para_available); 790 kvm_arch_para_features(void)791 unsigned int kvm_arch_para_features(void) 792 { 793 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); 794 } 795 kvm_arch_para_hints(void)796 unsigned int kvm_arch_para_hints(void) 797 { 798 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); 799 } 800 EXPORT_SYMBOL_GPL(kvm_arch_para_hints); 801 kvm_detect(void)802 static uint32_t __init kvm_detect(void) 803 { 804 return kvm_cpuid_base(); 805 } 806 kvm_apic_init(void)807 static void __init kvm_apic_init(void) 808 { 809 #if defined(CONFIG_SMP) 810 if (pv_ipi_supported()) 811 kvm_setup_pv_ipi(); 812 #endif 813 } 814 kvm_init_platform(void)815 static void __init kvm_init_platform(void) 816 { 817 kvmclock_init(); 818 x86_platform.apic_post_init = kvm_apic_init; 819 } 820 821 #if defined(CONFIG_AMD_MEM_ENCRYPT) kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)822 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs) 823 { 824 /* RAX and CPL are already in the GHCB */ 825 ghcb_set_rbx(ghcb, regs->bx); 826 ghcb_set_rcx(ghcb, regs->cx); 827 ghcb_set_rdx(ghcb, regs->dx); 828 ghcb_set_rsi(ghcb, regs->si); 829 } 830 kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)831 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs) 832 { 833 /* No checking of the return state needed */ 834 return true; 835 } 836 #endif 837 838 const __initconst struct hypervisor_x86 x86_hyper_kvm = { 839 .name = "KVM", 840 .detect = kvm_detect, 841 .type = X86_HYPER_KVM, 842 .init.guest_late_init = kvm_guest_init, 843 .init.x2apic_available = kvm_para_available, 844 .init.init_platform = kvm_init_platform, 845 #if defined(CONFIG_AMD_MEM_ENCRYPT) 846 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare, 847 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish, 848 #endif 849 }; 850 activate_jump_labels(void)851 static __init int activate_jump_labels(void) 852 { 853 if (has_steal_clock) { 854 static_key_slow_inc(¶virt_steal_enabled); 855 if (steal_acc) 856 static_key_slow_inc(¶virt_steal_rq_enabled); 857 } 858 859 return 0; 860 } 861 arch_initcall(activate_jump_labels); 862 kvm_alloc_cpumask(void)863 static __init int kvm_alloc_cpumask(void) 864 { 865 int cpu; 866 bool alloc = false; 867 868 if (!kvm_para_available() || nopv) 869 return 0; 870 871 if (pv_tlb_flush_supported()) 872 alloc = true; 873 874 #if defined(CONFIG_SMP) 875 if (pv_ipi_supported()) 876 alloc = true; 877 #endif 878 879 if (alloc) 880 for_each_possible_cpu(cpu) { 881 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), 882 GFP_KERNEL, cpu_to_node(cpu)); 883 } 884 885 return 0; 886 } 887 arch_initcall(kvm_alloc_cpumask); 888 889 #ifdef CONFIG_PARAVIRT_SPINLOCKS 890 891 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ kvm_kick_cpu(int cpu)892 static void kvm_kick_cpu(int cpu) 893 { 894 int apicid; 895 unsigned long flags = 0; 896 897 apicid = per_cpu(x86_cpu_to_apicid, cpu); 898 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); 899 } 900 901 #include <asm/qspinlock.h> 902 kvm_wait(u8 * ptr,u8 val)903 static void kvm_wait(u8 *ptr, u8 val) 904 { 905 unsigned long flags; 906 907 if (in_nmi()) 908 return; 909 910 local_irq_save(flags); 911 912 if (READ_ONCE(*ptr) != val) 913 goto out; 914 915 /* 916 * halt until it's our turn and kicked. Note that we do safe halt 917 * for irq enabled case to avoid hang when lock info is overwritten 918 * in irq spinlock slowpath and no spurious interrupt occur to save us. 919 */ 920 if (arch_irqs_disabled_flags(flags)) 921 halt(); 922 else 923 safe_halt(); 924 925 out: 926 local_irq_restore(flags); 927 } 928 929 #ifdef CONFIG_X86_32 __kvm_vcpu_is_preempted(long cpu)930 __visible bool __kvm_vcpu_is_preempted(long cpu) 931 { 932 struct kvm_steal_time *src = &per_cpu(steal_time, cpu); 933 934 return !!(src->preempted & KVM_VCPU_PREEMPTED); 935 } 936 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); 937 938 #else 939 940 #include <asm/asm-offsets.h> 941 942 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); 943 944 /* 945 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and 946 * restoring to/from the stack. 947 */ 948 asm( 949 ".pushsection .text;" 950 ".global __raw_callee_save___kvm_vcpu_is_preempted;" 951 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;" 952 "__raw_callee_save___kvm_vcpu_is_preempted:" 953 "movq __per_cpu_offset(,%rdi,8), %rax;" 954 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);" 955 "setne %al;" 956 ASM_RET 957 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;" 958 ".popsection"); 959 960 #endif 961 962 /* 963 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. 964 */ kvm_spinlock_init(void)965 void __init kvm_spinlock_init(void) 966 { 967 /* 968 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an 969 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is 970 * preferred over native qspinlock when vCPU is preempted. 971 */ 972 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { 973 pr_info("PV spinlocks disabled, no host support\n"); 974 return; 975 } 976 977 /* 978 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs 979 * are available. 980 */ 981 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { 982 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); 983 goto out; 984 } 985 986 if (num_possible_cpus() == 1) { 987 pr_info("PV spinlocks disabled, single CPU\n"); 988 goto out; 989 } 990 991 if (nopvspin) { 992 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); 993 goto out; 994 } 995 996 pr_info("PV spinlocks enabled\n"); 997 998 __pv_init_lock_hash(); 999 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; 1000 pv_ops.lock.queued_spin_unlock = 1001 PV_CALLEE_SAVE(__pv_queued_spin_unlock); 1002 pv_ops.lock.wait = kvm_wait; 1003 pv_ops.lock.kick = kvm_kick_cpu; 1004 1005 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 1006 pv_ops.lock.vcpu_is_preempted = 1007 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); 1008 } 1009 /* 1010 * When PV spinlock is enabled which is preferred over 1011 * virt_spin_lock(), virt_spin_lock_key's value is meaningless. 1012 * Just disable it anyway. 1013 */ 1014 out: 1015 static_branch_disable(&virt_spin_lock_key); 1016 } 1017 1018 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 1019 1020 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 1021 kvm_disable_host_haltpoll(void * i)1022 static void kvm_disable_host_haltpoll(void *i) 1023 { 1024 wrmsrl(MSR_KVM_POLL_CONTROL, 0); 1025 } 1026 kvm_enable_host_haltpoll(void * i)1027 static void kvm_enable_host_haltpoll(void *i) 1028 { 1029 wrmsrl(MSR_KVM_POLL_CONTROL, 1); 1030 } 1031 arch_haltpoll_enable(unsigned int cpu)1032 void arch_haltpoll_enable(unsigned int cpu) 1033 { 1034 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { 1035 pr_err_once("host does not support poll control\n"); 1036 pr_err_once("host upgrade recommended\n"); 1037 return; 1038 } 1039 1040 /* Enable guest halt poll disables host halt poll */ 1041 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); 1042 } 1043 EXPORT_SYMBOL_GPL(arch_haltpoll_enable); 1044 arch_haltpoll_disable(unsigned int cpu)1045 void arch_haltpoll_disable(unsigned int cpu) 1046 { 1047 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) 1048 return; 1049 1050 /* Disable guest halt poll enables host halt poll */ 1051 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); 1052 } 1053 EXPORT_SYMBOL_GPL(arch_haltpoll_disable); 1054 #endif 1055