1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2019 SUSE
6 *
7 * Author: Joerg Roedel <jroedel@suse.de>
8 */
9
10 #define pr_fmt(fmt) "SEV-ES: " fmt
11
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev-es.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33
34 #define DR7_RESET_VALUE 0x400
35
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38
39 /*
40 * Needs to be in the .data section because we need it NULL before bss is
41 * cleared
42 */
43 static struct ghcb __initdata *boot_ghcb;
44
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 struct ghcb ghcb_page;
48
49 /*
50 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 * It is needed when an NMI happens while the #VC handler uses the real
52 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 * that case the GHCB content of the first handler needs to be backed up
54 * and restored.
55 */
56 struct ghcb backup_ghcb;
57
58 /*
59 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 * There is no need for it to be atomic, because nothing is written to
61 * the GHCB between the read and the write of ghcb_active. So it is safe
62 * to use it when a nested #VC exception happens before the write.
63 *
64 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 * happens while the first #VC handler uses the GHCB. When the NMI code
66 * raises a second #VC handler it might overwrite the contents of the
67 * GHCB written by the first handler. To avoid this the content of the
68 * GHCB is saved and restored when the GHCB is detected to be in use
69 * already.
70 */
71 bool ghcb_active;
72 bool backup_ghcb_active;
73
74 /*
75 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 * That value will never make it to the real hardware DR7 as debugging
77 * is currently unsupported in SEV-ES guests.
78 */
79 unsigned long dr7;
80 };
81
82 struct ghcb_state {
83 struct ghcb *ghcb;
84 };
85
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91
on_vc_stack(struct pt_regs * regs)92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 unsigned long sp = regs->sp;
95
96 /* User-mode RSP is not trusted */
97 if (user_mode(regs))
98 return false;
99
100 /* SYSCALL gap still has user-mode RSP */
101 if (ip_within_syscall_gap(regs))
102 return false;
103
104 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106
107 /*
108 * This function handles the case when an NMI is raised in the #VC exception
109 * handler entry code. In this case, the IST entry for #VC must be adjusted, so
110 * that any subsequent #VC exception will not overwrite the stack contents of the
111 * interrupted #VC handler.
112 *
113 * The IST entry is adjusted unconditionally so that it can be also be
114 * unconditionally adjusted back in sev_es_ist_exit(). Otherwise a nested
115 * sev_es_ist_exit() call may adjust back the IST entry too early.
116 */
__sev_es_ist_enter(struct pt_regs * regs)117 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
118 {
119 unsigned long old_ist, new_ist;
120
121 /* Read old IST entry */
122 old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
123
124 /* Make room on the IST stack */
125 if (on_vc_stack(regs))
126 new_ist = ALIGN_DOWN(regs->sp, 8) - sizeof(old_ist);
127 else
128 new_ist = old_ist - sizeof(old_ist);
129
130 /* Store old IST entry */
131 *(unsigned long *)new_ist = old_ist;
132
133 /* Set new IST entry */
134 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
135 }
136
__sev_es_ist_exit(void)137 void noinstr __sev_es_ist_exit(void)
138 {
139 unsigned long ist;
140
141 /* Read IST entry */
142 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
143
144 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
145 return;
146
147 /* Read back old IST entry and write it to the TSS */
148 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
149 }
150
151 /*
152 * Nothing shall interrupt this code path while holding the per-CPU
153 * GHCB. The backup GHCB is only for NMIs interrupting this path.
154 *
155 * Callers must disable local interrupts around it.
156 */
__sev_get_ghcb(struct ghcb_state * state)157 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
158 {
159 struct sev_es_runtime_data *data;
160 struct ghcb *ghcb;
161
162 WARN_ON(!irqs_disabled());
163
164 data = this_cpu_read(runtime_data);
165 ghcb = &data->ghcb_page;
166
167 if (unlikely(data->ghcb_active)) {
168 /* GHCB is already in use - save its contents */
169
170 if (unlikely(data->backup_ghcb_active)) {
171 /*
172 * Backup-GHCB is also already in use. There is no way
173 * to continue here so just kill the machine. To make
174 * panic() work, mark GHCBs inactive so that messages
175 * can be printed out.
176 */
177 data->ghcb_active = false;
178 data->backup_ghcb_active = false;
179
180 instrumentation_begin();
181 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
182 instrumentation_end();
183 }
184
185 /* Mark backup_ghcb active before writing to it */
186 data->backup_ghcb_active = true;
187
188 state->ghcb = &data->backup_ghcb;
189
190 /* Backup GHCB content */
191 *state->ghcb = *ghcb;
192 } else {
193 state->ghcb = NULL;
194 data->ghcb_active = true;
195 }
196
197 return ghcb;
198 }
199
200 /* Needed in vc_early_forward_exception */
201 void do_early_exception(struct pt_regs *regs, int trapnr);
202
sev_es_rd_ghcb_msr(void)203 static inline u64 sev_es_rd_ghcb_msr(void)
204 {
205 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
206 }
207
sev_es_wr_ghcb_msr(u64 val)208 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
209 {
210 u32 low, high;
211
212 low = (u32)(val);
213 high = (u32)(val >> 32);
214
215 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
216 }
217
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)218 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
219 unsigned char *buffer)
220 {
221 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
222 }
223
vc_decode_insn(struct es_em_ctxt * ctxt)224 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
225 {
226 char buffer[MAX_INSN_SIZE];
227 enum es_result ret;
228 int res;
229
230 if (user_mode(ctxt->regs)) {
231 res = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
232 if (!res) {
233 ctxt->fi.vector = X86_TRAP_PF;
234 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
235 ctxt->fi.cr2 = ctxt->regs->ip;
236 return ES_EXCEPTION;
237 }
238
239 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, res))
240 return ES_DECODE_FAILED;
241 } else {
242 res = vc_fetch_insn_kernel(ctxt, buffer);
243 if (res) {
244 ctxt->fi.vector = X86_TRAP_PF;
245 ctxt->fi.error_code = X86_PF_INSTR;
246 ctxt->fi.cr2 = ctxt->regs->ip;
247 return ES_EXCEPTION;
248 }
249
250 insn_init(&ctxt->insn, buffer, MAX_INSN_SIZE - res, 1);
251 insn_get_length(&ctxt->insn);
252 }
253
254 ret = ctxt->insn.immediate.got ? ES_OK : ES_DECODE_FAILED;
255
256 return ret;
257 }
258
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)259 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
260 char *dst, char *buf, size_t size)
261 {
262 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
263
264 /*
265 * This function uses __put_user() independent of whether kernel or user
266 * memory is accessed. This works fine because __put_user() does no
267 * sanity checks of the pointer being accessed. All that it does is
268 * to report when the access failed.
269 *
270 * Also, this function runs in atomic context, so __put_user() is not
271 * allowed to sleep. The page-fault handler detects that it is running
272 * in atomic context and will not try to take mmap_sem and handle the
273 * fault, so additional pagefault_enable()/disable() calls are not
274 * needed.
275 *
276 * The access can't be done via copy_to_user() here because
277 * vc_write_mem() must not use string instructions to access unsafe
278 * memory. The reason is that MOVS is emulated by the #VC handler by
279 * splitting the move up into a read and a write and taking a nested #VC
280 * exception on whatever of them is the MMIO access. Using string
281 * instructions here would cause infinite nesting.
282 */
283 switch (size) {
284 case 1: {
285 u8 d1;
286 u8 __user *target = (u8 __user *)dst;
287
288 memcpy(&d1, buf, 1);
289 if (__put_user(d1, target))
290 goto fault;
291 break;
292 }
293 case 2: {
294 u16 d2;
295 u16 __user *target = (u16 __user *)dst;
296
297 memcpy(&d2, buf, 2);
298 if (__put_user(d2, target))
299 goto fault;
300 break;
301 }
302 case 4: {
303 u32 d4;
304 u32 __user *target = (u32 __user *)dst;
305
306 memcpy(&d4, buf, 4);
307 if (__put_user(d4, target))
308 goto fault;
309 break;
310 }
311 case 8: {
312 u64 d8;
313 u64 __user *target = (u64 __user *)dst;
314
315 memcpy(&d8, buf, 8);
316 if (__put_user(d8, target))
317 goto fault;
318 break;
319 }
320 default:
321 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
322 return ES_UNSUPPORTED;
323 }
324
325 return ES_OK;
326
327 fault:
328 if (user_mode(ctxt->regs))
329 error_code |= X86_PF_USER;
330
331 ctxt->fi.vector = X86_TRAP_PF;
332 ctxt->fi.error_code = error_code;
333 ctxt->fi.cr2 = (unsigned long)dst;
334
335 return ES_EXCEPTION;
336 }
337
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)338 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
339 char *src, char *buf, size_t size)
340 {
341 unsigned long error_code = X86_PF_PROT;
342
343 /*
344 * This function uses __get_user() independent of whether kernel or user
345 * memory is accessed. This works fine because __get_user() does no
346 * sanity checks of the pointer being accessed. All that it does is
347 * to report when the access failed.
348 *
349 * Also, this function runs in atomic context, so __get_user() is not
350 * allowed to sleep. The page-fault handler detects that it is running
351 * in atomic context and will not try to take mmap_sem and handle the
352 * fault, so additional pagefault_enable()/disable() calls are not
353 * needed.
354 *
355 * The access can't be done via copy_from_user() here because
356 * vc_read_mem() must not use string instructions to access unsafe
357 * memory. The reason is that MOVS is emulated by the #VC handler by
358 * splitting the move up into a read and a write and taking a nested #VC
359 * exception on whatever of them is the MMIO access. Using string
360 * instructions here would cause infinite nesting.
361 */
362 switch (size) {
363 case 1: {
364 u8 d1;
365 u8 __user *s = (u8 __user *)src;
366
367 if (__get_user(d1, s))
368 goto fault;
369 memcpy(buf, &d1, 1);
370 break;
371 }
372 case 2: {
373 u16 d2;
374 u16 __user *s = (u16 __user *)src;
375
376 if (__get_user(d2, s))
377 goto fault;
378 memcpy(buf, &d2, 2);
379 break;
380 }
381 case 4: {
382 u32 d4;
383 u32 __user *s = (u32 __user *)src;
384
385 if (__get_user(d4, s))
386 goto fault;
387 memcpy(buf, &d4, 4);
388 break;
389 }
390 case 8: {
391 u64 d8;
392 u64 __user *s = (u64 __user *)src;
393 if (__get_user(d8, s))
394 goto fault;
395 memcpy(buf, &d8, 8);
396 break;
397 }
398 default:
399 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
400 return ES_UNSUPPORTED;
401 }
402
403 return ES_OK;
404
405 fault:
406 if (user_mode(ctxt->regs))
407 error_code |= X86_PF_USER;
408
409 ctxt->fi.vector = X86_TRAP_PF;
410 ctxt->fi.error_code = error_code;
411 ctxt->fi.cr2 = (unsigned long)src;
412
413 return ES_EXCEPTION;
414 }
415
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)416 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
417 unsigned long vaddr, phys_addr_t *paddr)
418 {
419 unsigned long va = (unsigned long)vaddr;
420 unsigned int level;
421 phys_addr_t pa;
422 pgd_t *pgd;
423 pte_t *pte;
424
425 pgd = __va(read_cr3_pa());
426 pgd = &pgd[pgd_index(va)];
427 pte = lookup_address_in_pgd(pgd, va, &level);
428 if (!pte) {
429 ctxt->fi.vector = X86_TRAP_PF;
430 ctxt->fi.cr2 = vaddr;
431 ctxt->fi.error_code = 0;
432
433 if (user_mode(ctxt->regs))
434 ctxt->fi.error_code |= X86_PF_USER;
435
436 return ES_EXCEPTION;
437 }
438
439 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
440 /* Emulated MMIO to/from encrypted memory not supported */
441 return ES_UNSUPPORTED;
442
443 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
444 pa |= va & ~page_level_mask(level);
445
446 *paddr = pa;
447
448 return ES_OK;
449 }
450
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)451 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
452 {
453 BUG_ON(size > 4);
454
455 if (user_mode(ctxt->regs)) {
456 struct thread_struct *t = ¤t->thread;
457 struct io_bitmap *iobm = t->io_bitmap;
458 size_t idx;
459
460 if (!iobm)
461 goto fault;
462
463 for (idx = port; idx < port + size; ++idx) {
464 if (test_bit(idx, iobm->bitmap))
465 goto fault;
466 }
467 }
468
469 return ES_OK;
470
471 fault:
472 ctxt->fi.vector = X86_TRAP_GP;
473 ctxt->fi.error_code = 0;
474
475 return ES_EXCEPTION;
476 }
477
478 /* Include code shared with pre-decompression boot stage */
479 #include "sev-es-shared.c"
480
__sev_put_ghcb(struct ghcb_state * state)481 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
482 {
483 struct sev_es_runtime_data *data;
484 struct ghcb *ghcb;
485
486 WARN_ON(!irqs_disabled());
487
488 data = this_cpu_read(runtime_data);
489 ghcb = &data->ghcb_page;
490
491 if (state->ghcb) {
492 /* Restore GHCB from Backup */
493 *ghcb = *state->ghcb;
494 data->backup_ghcb_active = false;
495 state->ghcb = NULL;
496 } else {
497 /*
498 * Invalidate the GHCB so a VMGEXIT instruction issued
499 * from userspace won't appear to be valid.
500 */
501 vc_ghcb_invalidate(ghcb);
502 data->ghcb_active = false;
503 }
504 }
505
__sev_es_nmi_complete(void)506 void noinstr __sev_es_nmi_complete(void)
507 {
508 struct ghcb_state state;
509 struct ghcb *ghcb;
510
511 ghcb = __sev_get_ghcb(&state);
512
513 vc_ghcb_invalidate(ghcb);
514 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
515 ghcb_set_sw_exit_info_1(ghcb, 0);
516 ghcb_set_sw_exit_info_2(ghcb, 0);
517
518 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
519 VMGEXIT();
520
521 __sev_put_ghcb(&state);
522 }
523
get_jump_table_addr(void)524 static u64 get_jump_table_addr(void)
525 {
526 struct ghcb_state state;
527 unsigned long flags;
528 struct ghcb *ghcb;
529 u64 ret = 0;
530
531 local_irq_save(flags);
532
533 ghcb = __sev_get_ghcb(&state);
534
535 vc_ghcb_invalidate(ghcb);
536 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
537 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
538 ghcb_set_sw_exit_info_2(ghcb, 0);
539
540 sev_es_wr_ghcb_msr(__pa(ghcb));
541 VMGEXIT();
542
543 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
544 ghcb_sw_exit_info_2_is_valid(ghcb))
545 ret = ghcb->save.sw_exit_info_2;
546
547 __sev_put_ghcb(&state);
548
549 local_irq_restore(flags);
550
551 return ret;
552 }
553
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)554 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
555 {
556 u16 startup_cs, startup_ip;
557 phys_addr_t jump_table_pa;
558 u64 jump_table_addr;
559 u16 __iomem *jump_table;
560
561 jump_table_addr = get_jump_table_addr();
562
563 /* On UP guests there is no jump table so this is not a failure */
564 if (!jump_table_addr)
565 return 0;
566
567 /* Check if AP Jump Table is page-aligned */
568 if (jump_table_addr & ~PAGE_MASK)
569 return -EINVAL;
570
571 jump_table_pa = jump_table_addr & PAGE_MASK;
572
573 startup_cs = (u16)(rmh->trampoline_start >> 4);
574 startup_ip = (u16)(rmh->sev_es_trampoline_start -
575 rmh->trampoline_start);
576
577 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
578 if (!jump_table)
579 return -EIO;
580
581 writew(startup_ip, &jump_table[0]);
582 writew(startup_cs, &jump_table[1]);
583
584 iounmap(jump_table);
585
586 return 0;
587 }
588
589 /*
590 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
591 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
592 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
593 */
sev_es_efi_map_ghcbs(pgd_t * pgd)594 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
595 {
596 struct sev_es_runtime_data *data;
597 unsigned long address, pflags;
598 int cpu;
599 u64 pfn;
600
601 if (!sev_es_active())
602 return 0;
603
604 pflags = _PAGE_NX | _PAGE_RW;
605
606 for_each_possible_cpu(cpu) {
607 data = per_cpu(runtime_data, cpu);
608
609 address = __pa(&data->ghcb_page);
610 pfn = address >> PAGE_SHIFT;
611
612 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
613 return 1;
614 }
615
616 return 0;
617 }
618
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)619 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
620 {
621 struct pt_regs *regs = ctxt->regs;
622 enum es_result ret;
623 u64 exit_info_1;
624
625 /* Is it a WRMSR? */
626 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
627
628 ghcb_set_rcx(ghcb, regs->cx);
629 if (exit_info_1) {
630 ghcb_set_rax(ghcb, regs->ax);
631 ghcb_set_rdx(ghcb, regs->dx);
632 }
633
634 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
635
636 if ((ret == ES_OK) && (!exit_info_1)) {
637 regs->ax = ghcb->save.rax;
638 regs->dx = ghcb->save.rdx;
639 }
640
641 return ret;
642 }
643
644 /*
645 * This function runs on the first #VC exception after the kernel
646 * switched to virtual addresses.
647 */
sev_es_setup_ghcb(void)648 static bool __init sev_es_setup_ghcb(void)
649 {
650 /* First make sure the hypervisor talks a supported protocol. */
651 if (!sev_es_negotiate_protocol())
652 return false;
653
654 /*
655 * Clear the boot_ghcb. The first exception comes in before the bss
656 * section is cleared.
657 */
658 memset(&boot_ghcb_page, 0, PAGE_SIZE);
659
660 /* Alright - Make the boot-ghcb public */
661 boot_ghcb = &boot_ghcb_page;
662
663 return true;
664 }
665
666 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)667 static void sev_es_ap_hlt_loop(void)
668 {
669 struct ghcb_state state;
670 struct ghcb *ghcb;
671
672 ghcb = __sev_get_ghcb(&state);
673
674 while (true) {
675 vc_ghcb_invalidate(ghcb);
676 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
677 ghcb_set_sw_exit_info_1(ghcb, 0);
678 ghcb_set_sw_exit_info_2(ghcb, 0);
679
680 sev_es_wr_ghcb_msr(__pa(ghcb));
681 VMGEXIT();
682
683 /* Wakeup signal? */
684 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
685 ghcb->save.sw_exit_info_2)
686 break;
687 }
688
689 __sev_put_ghcb(&state);
690 }
691
692 /*
693 * Play_dead handler when running under SEV-ES. This is needed because
694 * the hypervisor can't deliver an SIPI request to restart the AP.
695 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
696 * hypervisor wakes it up again.
697 */
sev_es_play_dead(void)698 static void sev_es_play_dead(void)
699 {
700 play_dead_common();
701
702 /* IRQs now disabled */
703
704 sev_es_ap_hlt_loop();
705
706 /*
707 * If we get here, the VCPU was woken up again. Jump to CPU
708 * startup code to get it back online.
709 */
710 start_cpu0();
711 }
712 #else /* CONFIG_HOTPLUG_CPU */
713 #define sev_es_play_dead native_play_dead
714 #endif /* CONFIG_HOTPLUG_CPU */
715
716 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)717 static void __init sev_es_setup_play_dead(void)
718 {
719 smp_ops.play_dead = sev_es_play_dead;
720 }
721 #else
sev_es_setup_play_dead(void)722 static inline void sev_es_setup_play_dead(void) { }
723 #endif
724
alloc_runtime_data(int cpu)725 static void __init alloc_runtime_data(int cpu)
726 {
727 struct sev_es_runtime_data *data;
728
729 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
730 if (!data)
731 panic("Can't allocate SEV-ES runtime data");
732
733 per_cpu(runtime_data, cpu) = data;
734 }
735
init_ghcb(int cpu)736 static void __init init_ghcb(int cpu)
737 {
738 struct sev_es_runtime_data *data;
739 int err;
740
741 data = per_cpu(runtime_data, cpu);
742
743 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
744 sizeof(data->ghcb_page));
745 if (err)
746 panic("Can't map GHCBs unencrypted");
747
748 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
749
750 data->ghcb_active = false;
751 data->backup_ghcb_active = false;
752 }
753
sev_es_init_vc_handling(void)754 void __init sev_es_init_vc_handling(void)
755 {
756 int cpu;
757
758 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
759
760 if (!sev_es_active())
761 return;
762
763 if (!sev_es_check_cpu_features())
764 panic("SEV-ES CPU Features missing");
765
766 /* Enable SEV-ES special handling */
767 static_branch_enable(&sev_es_enable_key);
768
769 /* Initialize per-cpu GHCB pages */
770 for_each_possible_cpu(cpu) {
771 alloc_runtime_data(cpu);
772 init_ghcb(cpu);
773 }
774
775 sev_es_setup_play_dead();
776
777 /* Secondary CPUs use the runtime #VC handler */
778 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
779 }
780
vc_early_forward_exception(struct es_em_ctxt * ctxt)781 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
782 {
783 int trapnr = ctxt->fi.vector;
784
785 if (trapnr == X86_TRAP_PF)
786 native_write_cr2(ctxt->fi.cr2);
787
788 ctxt->regs->orig_ax = ctxt->fi.error_code;
789 do_early_exception(ctxt->regs, trapnr);
790 }
791
vc_insn_get_reg(struct es_em_ctxt * ctxt)792 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
793 {
794 long *reg_array;
795 int offset;
796
797 reg_array = (long *)ctxt->regs;
798 offset = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
799
800 if (offset < 0)
801 return NULL;
802
803 offset /= sizeof(long);
804
805 return reg_array + offset;
806 }
807
vc_insn_get_rm(struct es_em_ctxt * ctxt)808 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
809 {
810 long *reg_array;
811 int offset;
812
813 reg_array = (long *)ctxt->regs;
814 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
815
816 if (offset < 0)
817 return NULL;
818
819 offset /= sizeof(long);
820
821 return reg_array + offset;
822 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)823 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
824 unsigned int bytes, bool read)
825 {
826 u64 exit_code, exit_info_1, exit_info_2;
827 unsigned long ghcb_pa = __pa(ghcb);
828 enum es_result res;
829 phys_addr_t paddr;
830 void __user *ref;
831
832 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
833 if (ref == (void __user *)-1L)
834 return ES_UNSUPPORTED;
835
836 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
837
838 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
839 if (res != ES_OK) {
840 if (res == ES_EXCEPTION && !read)
841 ctxt->fi.error_code |= X86_PF_WRITE;
842
843 return res;
844 }
845
846 exit_info_1 = paddr;
847 /* Can never be greater than 8 */
848 exit_info_2 = bytes;
849
850 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
851
852 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
853 }
854
vc_handle_mmio_twobyte_ops(struct ghcb * ghcb,struct es_em_ctxt * ctxt)855 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
856 struct es_em_ctxt *ctxt)
857 {
858 struct insn *insn = &ctxt->insn;
859 unsigned int bytes = 0;
860 enum es_result ret;
861 int sign_byte;
862 long *reg_data;
863
864 switch (insn->opcode.bytes[1]) {
865 /* MMIO Read w/ zero-extension */
866 case 0xb6:
867 bytes = 1;
868 fallthrough;
869 case 0xb7:
870 if (!bytes)
871 bytes = 2;
872
873 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
874 if (ret)
875 break;
876
877 /* Zero extend based on operand size */
878 reg_data = vc_insn_get_reg(ctxt);
879 if (!reg_data)
880 return ES_DECODE_FAILED;
881
882 memset(reg_data, 0, insn->opnd_bytes);
883
884 memcpy(reg_data, ghcb->shared_buffer, bytes);
885 break;
886
887 /* MMIO Read w/ sign-extension */
888 case 0xbe:
889 bytes = 1;
890 fallthrough;
891 case 0xbf:
892 if (!bytes)
893 bytes = 2;
894
895 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
896 if (ret)
897 break;
898
899 /* Sign extend based on operand size */
900 reg_data = vc_insn_get_reg(ctxt);
901 if (!reg_data)
902 return ES_DECODE_FAILED;
903
904 if (bytes == 1) {
905 u8 *val = (u8 *)ghcb->shared_buffer;
906
907 sign_byte = (*val & 0x80) ? 0xff : 0x00;
908 } else {
909 u16 *val = (u16 *)ghcb->shared_buffer;
910
911 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
912 }
913 memset(reg_data, sign_byte, insn->opnd_bytes);
914
915 memcpy(reg_data, ghcb->shared_buffer, bytes);
916 break;
917
918 default:
919 ret = ES_UNSUPPORTED;
920 }
921
922 return ret;
923 }
924
925 /*
926 * The MOVS instruction has two memory operands, which raises the
927 * problem that it is not known whether the access to the source or the
928 * destination caused the #VC exception (and hence whether an MMIO read
929 * or write operation needs to be emulated).
930 *
931 * Instead of playing games with walking page-tables and trying to guess
932 * whether the source or destination is an MMIO range, split the move
933 * into two operations, a read and a write with only one memory operand.
934 * This will cause a nested #VC exception on the MMIO address which can
935 * then be handled.
936 *
937 * This implementation has the benefit that it also supports MOVS where
938 * source _and_ destination are MMIO regions.
939 *
940 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
941 * rare operation. If it turns out to be a performance problem the split
942 * operations can be moved to memcpy_fromio() and memcpy_toio().
943 */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)944 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
945 unsigned int bytes)
946 {
947 unsigned long ds_base, es_base;
948 unsigned char *src, *dst;
949 unsigned char buffer[8];
950 enum es_result ret;
951 bool rep;
952 int off;
953
954 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
955 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
956
957 if (ds_base == -1L || es_base == -1L) {
958 ctxt->fi.vector = X86_TRAP_GP;
959 ctxt->fi.error_code = 0;
960 return ES_EXCEPTION;
961 }
962
963 src = ds_base + (unsigned char *)ctxt->regs->si;
964 dst = es_base + (unsigned char *)ctxt->regs->di;
965
966 ret = vc_read_mem(ctxt, src, buffer, bytes);
967 if (ret != ES_OK)
968 return ret;
969
970 ret = vc_write_mem(ctxt, dst, buffer, bytes);
971 if (ret != ES_OK)
972 return ret;
973
974 if (ctxt->regs->flags & X86_EFLAGS_DF)
975 off = -bytes;
976 else
977 off = bytes;
978
979 ctxt->regs->si += off;
980 ctxt->regs->di += off;
981
982 rep = insn_has_rep_prefix(&ctxt->insn);
983 if (rep)
984 ctxt->regs->cx -= 1;
985
986 if (!rep || ctxt->regs->cx == 0)
987 return ES_OK;
988 else
989 return ES_RETRY;
990 }
991
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)992 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
993 struct es_em_ctxt *ctxt)
994 {
995 struct insn *insn = &ctxt->insn;
996 unsigned int bytes = 0;
997 enum es_result ret;
998 long *reg_data;
999
1000 if (user_mode(ctxt->regs))
1001 return ES_UNSUPPORTED;
1002
1003 switch (insn->opcode.bytes[0]) {
1004 /* MMIO Write */
1005 case 0x88:
1006 bytes = 1;
1007 fallthrough;
1008 case 0x89:
1009 if (!bytes)
1010 bytes = insn->opnd_bytes;
1011
1012 reg_data = vc_insn_get_reg(ctxt);
1013 if (!reg_data)
1014 return ES_DECODE_FAILED;
1015
1016 memcpy(ghcb->shared_buffer, reg_data, bytes);
1017
1018 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1019 break;
1020
1021 case 0xc6:
1022 bytes = 1;
1023 fallthrough;
1024 case 0xc7:
1025 if (!bytes)
1026 bytes = insn->opnd_bytes;
1027
1028 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1029
1030 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1031 break;
1032
1033 /* MMIO Read */
1034 case 0x8a:
1035 bytes = 1;
1036 fallthrough;
1037 case 0x8b:
1038 if (!bytes)
1039 bytes = insn->opnd_bytes;
1040
1041 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1042 if (ret)
1043 break;
1044
1045 reg_data = vc_insn_get_reg(ctxt);
1046 if (!reg_data)
1047 return ES_DECODE_FAILED;
1048
1049 /* Zero-extend for 32-bit operation */
1050 if (bytes == 4)
1051 *reg_data = 0;
1052
1053 memcpy(reg_data, ghcb->shared_buffer, bytes);
1054 break;
1055
1056 /* MOVS instruction */
1057 case 0xa4:
1058 bytes = 1;
1059 fallthrough;
1060 case 0xa5:
1061 if (!bytes)
1062 bytes = insn->opnd_bytes;
1063
1064 ret = vc_handle_mmio_movs(ctxt, bytes);
1065 break;
1066 /* Two-Byte Opcodes */
1067 case 0x0f:
1068 ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1069 break;
1070 default:
1071 ret = ES_UNSUPPORTED;
1072 }
1073
1074 return ret;
1075 }
1076
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1077 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1078 struct es_em_ctxt *ctxt)
1079 {
1080 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1081 long val, *reg = vc_insn_get_rm(ctxt);
1082 enum es_result ret;
1083
1084 if (!reg)
1085 return ES_DECODE_FAILED;
1086
1087 val = *reg;
1088
1089 /* Upper 32 bits must be written as zeroes */
1090 if (val >> 32) {
1091 ctxt->fi.vector = X86_TRAP_GP;
1092 ctxt->fi.error_code = 0;
1093 return ES_EXCEPTION;
1094 }
1095
1096 /* Clear out other reserved bits and set bit 10 */
1097 val = (val & 0xffff23ffL) | BIT(10);
1098
1099 /* Early non-zero writes to DR7 are not supported */
1100 if (!data && (val & ~DR7_RESET_VALUE))
1101 return ES_UNSUPPORTED;
1102
1103 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1104 ghcb_set_rax(ghcb, val);
1105 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1106 if (ret != ES_OK)
1107 return ret;
1108
1109 if (data)
1110 data->dr7 = val;
1111
1112 return ES_OK;
1113 }
1114
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1115 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1116 struct es_em_ctxt *ctxt)
1117 {
1118 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1119 long *reg = vc_insn_get_rm(ctxt);
1120
1121 if (!reg)
1122 return ES_DECODE_FAILED;
1123
1124 if (data)
1125 *reg = data->dr7;
1126 else
1127 *reg = DR7_RESET_VALUE;
1128
1129 return ES_OK;
1130 }
1131
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1132 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1133 struct es_em_ctxt *ctxt)
1134 {
1135 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1136 }
1137
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1138 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1139 {
1140 enum es_result ret;
1141
1142 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1143
1144 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1145 if (ret != ES_OK)
1146 return ret;
1147
1148 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1149 return ES_VMM_ERROR;
1150
1151 ctxt->regs->ax = ghcb->save.rax;
1152 ctxt->regs->dx = ghcb->save.rdx;
1153
1154 return ES_OK;
1155 }
1156
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1157 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1158 struct es_em_ctxt *ctxt)
1159 {
1160 /*
1161 * Treat it as a NOP and do not leak a physical address to the
1162 * hypervisor.
1163 */
1164 return ES_OK;
1165 }
1166
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1167 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1168 struct es_em_ctxt *ctxt)
1169 {
1170 /* Treat the same as MONITOR/MONITORX */
1171 return ES_OK;
1172 }
1173
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1174 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1175 struct es_em_ctxt *ctxt)
1176 {
1177 enum es_result ret;
1178
1179 ghcb_set_rax(ghcb, ctxt->regs->ax);
1180 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1181
1182 if (x86_platform.hyper.sev_es_hcall_prepare)
1183 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1184
1185 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1186 if (ret != ES_OK)
1187 return ret;
1188
1189 if (!ghcb_rax_is_valid(ghcb))
1190 return ES_VMM_ERROR;
1191
1192 ctxt->regs->ax = ghcb->save.rax;
1193
1194 /*
1195 * Call sev_es_hcall_finish() after regs->ax is already set.
1196 * This allows the hypervisor handler to overwrite it again if
1197 * necessary.
1198 */
1199 if (x86_platform.hyper.sev_es_hcall_finish &&
1200 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1201 return ES_VMM_ERROR;
1202
1203 return ES_OK;
1204 }
1205
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1206 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1207 struct es_em_ctxt *ctxt)
1208 {
1209 /*
1210 * Calling ecx_alignment_check() directly does not work, because it
1211 * enables IRQs and the GHCB is active. Forward the exception and call
1212 * it later from vc_forward_exception().
1213 */
1214 ctxt->fi.vector = X86_TRAP_AC;
1215 ctxt->fi.error_code = 0;
1216 return ES_EXCEPTION;
1217 }
1218
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1219 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1220 struct ghcb *ghcb,
1221 unsigned long exit_code)
1222 {
1223 enum es_result result;
1224
1225 switch (exit_code) {
1226 case SVM_EXIT_READ_DR7:
1227 result = vc_handle_dr7_read(ghcb, ctxt);
1228 break;
1229 case SVM_EXIT_WRITE_DR7:
1230 result = vc_handle_dr7_write(ghcb, ctxt);
1231 break;
1232 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1233 result = vc_handle_trap_ac(ghcb, ctxt);
1234 break;
1235 case SVM_EXIT_RDTSC:
1236 case SVM_EXIT_RDTSCP:
1237 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1238 break;
1239 case SVM_EXIT_RDPMC:
1240 result = vc_handle_rdpmc(ghcb, ctxt);
1241 break;
1242 case SVM_EXIT_INVD:
1243 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1244 result = ES_UNSUPPORTED;
1245 break;
1246 case SVM_EXIT_CPUID:
1247 result = vc_handle_cpuid(ghcb, ctxt);
1248 break;
1249 case SVM_EXIT_IOIO:
1250 result = vc_handle_ioio(ghcb, ctxt);
1251 break;
1252 case SVM_EXIT_MSR:
1253 result = vc_handle_msr(ghcb, ctxt);
1254 break;
1255 case SVM_EXIT_VMMCALL:
1256 result = vc_handle_vmmcall(ghcb, ctxt);
1257 break;
1258 case SVM_EXIT_WBINVD:
1259 result = vc_handle_wbinvd(ghcb, ctxt);
1260 break;
1261 case SVM_EXIT_MONITOR:
1262 result = vc_handle_monitor(ghcb, ctxt);
1263 break;
1264 case SVM_EXIT_MWAIT:
1265 result = vc_handle_mwait(ghcb, ctxt);
1266 break;
1267 case SVM_EXIT_NPF:
1268 result = vc_handle_mmio(ghcb, ctxt);
1269 break;
1270 default:
1271 /*
1272 * Unexpected #VC exception
1273 */
1274 result = ES_UNSUPPORTED;
1275 }
1276
1277 return result;
1278 }
1279
vc_forward_exception(struct es_em_ctxt * ctxt)1280 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1281 {
1282 long error_code = ctxt->fi.error_code;
1283 int trapnr = ctxt->fi.vector;
1284
1285 ctxt->regs->orig_ax = ctxt->fi.error_code;
1286
1287 switch (trapnr) {
1288 case X86_TRAP_GP:
1289 exc_general_protection(ctxt->regs, error_code);
1290 break;
1291 case X86_TRAP_UD:
1292 exc_invalid_op(ctxt->regs);
1293 break;
1294 case X86_TRAP_PF:
1295 write_cr2(ctxt->fi.cr2);
1296 exc_page_fault(ctxt->regs, error_code);
1297 break;
1298 case X86_TRAP_AC:
1299 exc_alignment_check(ctxt->regs, error_code);
1300 break;
1301 default:
1302 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1303 BUG();
1304 }
1305 }
1306
on_vc_fallback_stack(struct pt_regs * regs)1307 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1308 {
1309 unsigned long sp = (unsigned long)regs;
1310
1311 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1312 }
1313
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1314 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1315 {
1316 struct ghcb_state state;
1317 struct es_em_ctxt ctxt;
1318 enum es_result result;
1319 struct ghcb *ghcb;
1320 bool ret = true;
1321
1322 ghcb = __sev_get_ghcb(&state);
1323
1324 vc_ghcb_invalidate(ghcb);
1325 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1326
1327 if (result == ES_OK)
1328 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1329
1330 __sev_put_ghcb(&state);
1331
1332 /* Done - now check the result */
1333 switch (result) {
1334 case ES_OK:
1335 vc_finish_insn(&ctxt);
1336 break;
1337 case ES_UNSUPPORTED:
1338 pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1339 error_code, regs->ip);
1340 ret = false;
1341 break;
1342 case ES_VMM_ERROR:
1343 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1344 error_code, regs->ip);
1345 ret = false;
1346 break;
1347 case ES_DECODE_FAILED:
1348 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1349 error_code, regs->ip);
1350 ret = false;
1351 break;
1352 case ES_EXCEPTION:
1353 vc_forward_exception(&ctxt);
1354 break;
1355 case ES_RETRY:
1356 /* Nothing to do */
1357 break;
1358 default:
1359 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1360 /*
1361 * Emulating the instruction which caused the #VC exception
1362 * failed - can't continue so print debug information
1363 */
1364 BUG();
1365 }
1366
1367 return ret;
1368 }
1369
vc_is_db(unsigned long error_code)1370 static __always_inline bool vc_is_db(unsigned long error_code)
1371 {
1372 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1373 }
1374
1375 /*
1376 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1377 * and will panic when an error happens.
1378 */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1379 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1380 {
1381 irqentry_state_t irq_state;
1382
1383 /*
1384 * With the current implementation it is always possible to switch to a
1385 * safe stack because #VC exceptions only happen at known places, like
1386 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1387 * also happen with code instrumentation when the hypervisor intercepts
1388 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1389 * exceptions currently also only happen in safe places.
1390 *
1391 * But keep this here in case the noinstr annotations are violated due
1392 * to bug elsewhere.
1393 */
1394 if (unlikely(on_vc_fallback_stack(regs))) {
1395 instrumentation_begin();
1396 panic("Can't handle #VC exception from unsupported context\n");
1397 instrumentation_end();
1398 }
1399
1400 /*
1401 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1402 */
1403 if (vc_is_db(error_code)) {
1404 exc_debug(regs);
1405 return;
1406 }
1407
1408 irq_state = irqentry_nmi_enter(regs);
1409
1410 instrumentation_begin();
1411
1412 if (!vc_raw_handle_exception(regs, error_code)) {
1413 /* Show some debug info */
1414 show_regs(regs);
1415
1416 /* Ask hypervisor to sev_es_terminate */
1417 sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1418
1419 /* If that fails and we get here - just panic */
1420 panic("Returned from Terminate-Request to Hypervisor\n");
1421 }
1422
1423 instrumentation_end();
1424 irqentry_nmi_exit(regs, irq_state);
1425 }
1426
1427 /*
1428 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1429 * and will kill the current task with SIGBUS when an error happens.
1430 */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1431 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1432 {
1433 /*
1434 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1435 */
1436 if (vc_is_db(error_code)) {
1437 noist_exc_debug(regs);
1438 return;
1439 }
1440
1441 irqentry_enter_from_user_mode(regs);
1442 instrumentation_begin();
1443
1444 if (!vc_raw_handle_exception(regs, error_code)) {
1445 /*
1446 * Do not kill the machine if user-space triggered the
1447 * exception. Send SIGBUS instead and let user-space deal with
1448 * it.
1449 */
1450 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1451 }
1452
1453 instrumentation_end();
1454 irqentry_exit_to_user_mode(regs);
1455 }
1456
handle_vc_boot_ghcb(struct pt_regs * regs)1457 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1458 {
1459 unsigned long exit_code = regs->orig_ax;
1460 struct es_em_ctxt ctxt;
1461 enum es_result result;
1462
1463 /* Do initial setup or terminate the guest */
1464 if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1465 sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1466
1467 vc_ghcb_invalidate(boot_ghcb);
1468
1469 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1470 if (result == ES_OK)
1471 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1472
1473 /* Done - now check the result */
1474 switch (result) {
1475 case ES_OK:
1476 vc_finish_insn(&ctxt);
1477 break;
1478 case ES_UNSUPPORTED:
1479 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1480 exit_code, regs->ip);
1481 goto fail;
1482 case ES_VMM_ERROR:
1483 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1484 exit_code, regs->ip);
1485 goto fail;
1486 case ES_DECODE_FAILED:
1487 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1488 exit_code, regs->ip);
1489 goto fail;
1490 case ES_EXCEPTION:
1491 vc_early_forward_exception(&ctxt);
1492 break;
1493 case ES_RETRY:
1494 /* Nothing to do */
1495 break;
1496 default:
1497 BUG();
1498 }
1499
1500 return true;
1501
1502 fail:
1503 show_regs(regs);
1504
1505 while (true)
1506 halt();
1507 }
1508