• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV-ES: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev-es.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33 
34 #define DR7_RESET_VALUE        0x400
35 
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38 
39 /*
40  * Needs to be in the .data section because we need it NULL before bss is
41  * cleared
42  */
43 static struct ghcb __initdata *boot_ghcb;
44 
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 	struct ghcb ghcb_page;
48 
49 	/*
50 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 	 * It is needed when an NMI happens while the #VC handler uses the real
52 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 	 * that case the GHCB content of the first handler needs to be backed up
54 	 * and restored.
55 	 */
56 	struct ghcb backup_ghcb;
57 
58 	/*
59 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 	 * There is no need for it to be atomic, because nothing is written to
61 	 * the GHCB between the read and the write of ghcb_active. So it is safe
62 	 * to use it when a nested #VC exception happens before the write.
63 	 *
64 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 	 * happens while the first #VC handler uses the GHCB. When the NMI code
66 	 * raises a second #VC handler it might overwrite the contents of the
67 	 * GHCB written by the first handler. To avoid this the content of the
68 	 * GHCB is saved and restored when the GHCB is detected to be in use
69 	 * already.
70 	 */
71 	bool ghcb_active;
72 	bool backup_ghcb_active;
73 
74 	/*
75 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 	 * That value will never make it to the real hardware DR7 as debugging
77 	 * is currently unsupported in SEV-ES guests.
78 	 */
79 	unsigned long dr7;
80 };
81 
82 struct ghcb_state {
83 	struct ghcb *ghcb;
84 };
85 
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88 
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91 
on_vc_stack(struct pt_regs * regs)92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 	unsigned long sp = regs->sp;
95 
96 	/* User-mode RSP is not trusted */
97 	if (user_mode(regs))
98 		return false;
99 
100 	/* SYSCALL gap still has user-mode RSP */
101 	if (ip_within_syscall_gap(regs))
102 		return false;
103 
104 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106 
107 /*
108  * This function handles the case when an NMI is raised in the #VC exception
109  * handler entry code. In this case, the IST entry for #VC must be adjusted, so
110  * that any subsequent #VC exception will not overwrite the stack contents of the
111  * interrupted #VC handler.
112  *
113  * The IST entry is adjusted unconditionally so that it can be also be
114  * unconditionally adjusted back in sev_es_ist_exit(). Otherwise a nested
115  * sev_es_ist_exit() call may adjust back the IST entry too early.
116  */
__sev_es_ist_enter(struct pt_regs * regs)117 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
118 {
119 	unsigned long old_ist, new_ist;
120 
121 	/* Read old IST entry */
122 	old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
123 
124 	/* Make room on the IST stack */
125 	if (on_vc_stack(regs))
126 		new_ist = ALIGN_DOWN(regs->sp, 8) - sizeof(old_ist);
127 	else
128 		new_ist = old_ist - sizeof(old_ist);
129 
130 	/* Store old IST entry */
131 	*(unsigned long *)new_ist = old_ist;
132 
133 	/* Set new IST entry */
134 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
135 }
136 
__sev_es_ist_exit(void)137 void noinstr __sev_es_ist_exit(void)
138 {
139 	unsigned long ist;
140 
141 	/* Read IST entry */
142 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
143 
144 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
145 		return;
146 
147 	/* Read back old IST entry and write it to the TSS */
148 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
149 }
150 
151 /*
152  * Nothing shall interrupt this code path while holding the per-CPU
153  * GHCB. The backup GHCB is only for NMIs interrupting this path.
154  *
155  * Callers must disable local interrupts around it.
156  */
__sev_get_ghcb(struct ghcb_state * state)157 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
158 {
159 	struct sev_es_runtime_data *data;
160 	struct ghcb *ghcb;
161 
162 	WARN_ON(!irqs_disabled());
163 
164 	data = this_cpu_read(runtime_data);
165 	ghcb = &data->ghcb_page;
166 
167 	if (unlikely(data->ghcb_active)) {
168 		/* GHCB is already in use - save its contents */
169 
170 		if (unlikely(data->backup_ghcb_active)) {
171 			/*
172 			 * Backup-GHCB is also already in use. There is no way
173 			 * to continue here so just kill the machine. To make
174 			 * panic() work, mark GHCBs inactive so that messages
175 			 * can be printed out.
176 			 */
177 			data->ghcb_active        = false;
178 			data->backup_ghcb_active = false;
179 
180 			instrumentation_begin();
181 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
182 			instrumentation_end();
183 		}
184 
185 		/* Mark backup_ghcb active before writing to it */
186 		data->backup_ghcb_active = true;
187 
188 		state->ghcb = &data->backup_ghcb;
189 
190 		/* Backup GHCB content */
191 		*state->ghcb = *ghcb;
192 	} else {
193 		state->ghcb = NULL;
194 		data->ghcb_active = true;
195 	}
196 
197 	return ghcb;
198 }
199 
200 /* Needed in vc_early_forward_exception */
201 void do_early_exception(struct pt_regs *regs, int trapnr);
202 
sev_es_rd_ghcb_msr(void)203 static inline u64 sev_es_rd_ghcb_msr(void)
204 {
205 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
206 }
207 
sev_es_wr_ghcb_msr(u64 val)208 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
209 {
210 	u32 low, high;
211 
212 	low  = (u32)(val);
213 	high = (u32)(val >> 32);
214 
215 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
216 }
217 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)218 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
219 				unsigned char *buffer)
220 {
221 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
222 }
223 
vc_decode_insn(struct es_em_ctxt * ctxt)224 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
225 {
226 	char buffer[MAX_INSN_SIZE];
227 	enum es_result ret;
228 	int res;
229 
230 	if (user_mode(ctxt->regs)) {
231 		res = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
232 		if (!res) {
233 			ctxt->fi.vector     = X86_TRAP_PF;
234 			ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
235 			ctxt->fi.cr2        = ctxt->regs->ip;
236 			return ES_EXCEPTION;
237 		}
238 
239 		if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, res))
240 			return ES_DECODE_FAILED;
241 	} else {
242 		res = vc_fetch_insn_kernel(ctxt, buffer);
243 		if (res) {
244 			ctxt->fi.vector     = X86_TRAP_PF;
245 			ctxt->fi.error_code = X86_PF_INSTR;
246 			ctxt->fi.cr2        = ctxt->regs->ip;
247 			return ES_EXCEPTION;
248 		}
249 
250 		insn_init(&ctxt->insn, buffer, MAX_INSN_SIZE - res, 1);
251 		insn_get_length(&ctxt->insn);
252 	}
253 
254 	ret = ctxt->insn.immediate.got ? ES_OK : ES_DECODE_FAILED;
255 
256 	return ret;
257 }
258 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)259 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
260 				   char *dst, char *buf, size_t size)
261 {
262 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
263 
264 	/*
265 	 * This function uses __put_user() independent of whether kernel or user
266 	 * memory is accessed. This works fine because __put_user() does no
267 	 * sanity checks of the pointer being accessed. All that it does is
268 	 * to report when the access failed.
269 	 *
270 	 * Also, this function runs in atomic context, so __put_user() is not
271 	 * allowed to sleep. The page-fault handler detects that it is running
272 	 * in atomic context and will not try to take mmap_sem and handle the
273 	 * fault, so additional pagefault_enable()/disable() calls are not
274 	 * needed.
275 	 *
276 	 * The access can't be done via copy_to_user() here because
277 	 * vc_write_mem() must not use string instructions to access unsafe
278 	 * memory. The reason is that MOVS is emulated by the #VC handler by
279 	 * splitting the move up into a read and a write and taking a nested #VC
280 	 * exception on whatever of them is the MMIO access. Using string
281 	 * instructions here would cause infinite nesting.
282 	 */
283 	switch (size) {
284 	case 1: {
285 		u8 d1;
286 		u8 __user *target = (u8 __user *)dst;
287 
288 		memcpy(&d1, buf, 1);
289 		if (__put_user(d1, target))
290 			goto fault;
291 		break;
292 	}
293 	case 2: {
294 		u16 d2;
295 		u16 __user *target = (u16 __user *)dst;
296 
297 		memcpy(&d2, buf, 2);
298 		if (__put_user(d2, target))
299 			goto fault;
300 		break;
301 	}
302 	case 4: {
303 		u32 d4;
304 		u32 __user *target = (u32 __user *)dst;
305 
306 		memcpy(&d4, buf, 4);
307 		if (__put_user(d4, target))
308 			goto fault;
309 		break;
310 	}
311 	case 8: {
312 		u64 d8;
313 		u64 __user *target = (u64 __user *)dst;
314 
315 		memcpy(&d8, buf, 8);
316 		if (__put_user(d8, target))
317 			goto fault;
318 		break;
319 	}
320 	default:
321 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
322 		return ES_UNSUPPORTED;
323 	}
324 
325 	return ES_OK;
326 
327 fault:
328 	if (user_mode(ctxt->regs))
329 		error_code |= X86_PF_USER;
330 
331 	ctxt->fi.vector = X86_TRAP_PF;
332 	ctxt->fi.error_code = error_code;
333 	ctxt->fi.cr2 = (unsigned long)dst;
334 
335 	return ES_EXCEPTION;
336 }
337 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)338 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
339 				  char *src, char *buf, size_t size)
340 {
341 	unsigned long error_code = X86_PF_PROT;
342 
343 	/*
344 	 * This function uses __get_user() independent of whether kernel or user
345 	 * memory is accessed. This works fine because __get_user() does no
346 	 * sanity checks of the pointer being accessed. All that it does is
347 	 * to report when the access failed.
348 	 *
349 	 * Also, this function runs in atomic context, so __get_user() is not
350 	 * allowed to sleep. The page-fault handler detects that it is running
351 	 * in atomic context and will not try to take mmap_sem and handle the
352 	 * fault, so additional pagefault_enable()/disable() calls are not
353 	 * needed.
354 	 *
355 	 * The access can't be done via copy_from_user() here because
356 	 * vc_read_mem() must not use string instructions to access unsafe
357 	 * memory. The reason is that MOVS is emulated by the #VC handler by
358 	 * splitting the move up into a read and a write and taking a nested #VC
359 	 * exception on whatever of them is the MMIO access. Using string
360 	 * instructions here would cause infinite nesting.
361 	 */
362 	switch (size) {
363 	case 1: {
364 		u8 d1;
365 		u8 __user *s = (u8 __user *)src;
366 
367 		if (__get_user(d1, s))
368 			goto fault;
369 		memcpy(buf, &d1, 1);
370 		break;
371 	}
372 	case 2: {
373 		u16 d2;
374 		u16 __user *s = (u16 __user *)src;
375 
376 		if (__get_user(d2, s))
377 			goto fault;
378 		memcpy(buf, &d2, 2);
379 		break;
380 	}
381 	case 4: {
382 		u32 d4;
383 		u32 __user *s = (u32 __user *)src;
384 
385 		if (__get_user(d4, s))
386 			goto fault;
387 		memcpy(buf, &d4, 4);
388 		break;
389 	}
390 	case 8: {
391 		u64 d8;
392 		u64 __user *s = (u64 __user *)src;
393 		if (__get_user(d8, s))
394 			goto fault;
395 		memcpy(buf, &d8, 8);
396 		break;
397 	}
398 	default:
399 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
400 		return ES_UNSUPPORTED;
401 	}
402 
403 	return ES_OK;
404 
405 fault:
406 	if (user_mode(ctxt->regs))
407 		error_code |= X86_PF_USER;
408 
409 	ctxt->fi.vector = X86_TRAP_PF;
410 	ctxt->fi.error_code = error_code;
411 	ctxt->fi.cr2 = (unsigned long)src;
412 
413 	return ES_EXCEPTION;
414 }
415 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)416 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
417 					   unsigned long vaddr, phys_addr_t *paddr)
418 {
419 	unsigned long va = (unsigned long)vaddr;
420 	unsigned int level;
421 	phys_addr_t pa;
422 	pgd_t *pgd;
423 	pte_t *pte;
424 
425 	pgd = __va(read_cr3_pa());
426 	pgd = &pgd[pgd_index(va)];
427 	pte = lookup_address_in_pgd(pgd, va, &level);
428 	if (!pte) {
429 		ctxt->fi.vector     = X86_TRAP_PF;
430 		ctxt->fi.cr2        = vaddr;
431 		ctxt->fi.error_code = 0;
432 
433 		if (user_mode(ctxt->regs))
434 			ctxt->fi.error_code |= X86_PF_USER;
435 
436 		return ES_EXCEPTION;
437 	}
438 
439 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
440 		/* Emulated MMIO to/from encrypted memory not supported */
441 		return ES_UNSUPPORTED;
442 
443 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
444 	pa |= va & ~page_level_mask(level);
445 
446 	*paddr = pa;
447 
448 	return ES_OK;
449 }
450 
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)451 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
452 {
453 	BUG_ON(size > 4);
454 
455 	if (user_mode(ctxt->regs)) {
456 		struct thread_struct *t = &current->thread;
457 		struct io_bitmap *iobm = t->io_bitmap;
458 		size_t idx;
459 
460 		if (!iobm)
461 			goto fault;
462 
463 		for (idx = port; idx < port + size; ++idx) {
464 			if (test_bit(idx, iobm->bitmap))
465 				goto fault;
466 		}
467 	}
468 
469 	return ES_OK;
470 
471 fault:
472 	ctxt->fi.vector = X86_TRAP_GP;
473 	ctxt->fi.error_code = 0;
474 
475 	return ES_EXCEPTION;
476 }
477 
478 /* Include code shared with pre-decompression boot stage */
479 #include "sev-es-shared.c"
480 
__sev_put_ghcb(struct ghcb_state * state)481 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
482 {
483 	struct sev_es_runtime_data *data;
484 	struct ghcb *ghcb;
485 
486 	WARN_ON(!irqs_disabled());
487 
488 	data = this_cpu_read(runtime_data);
489 	ghcb = &data->ghcb_page;
490 
491 	if (state->ghcb) {
492 		/* Restore GHCB from Backup */
493 		*ghcb = *state->ghcb;
494 		data->backup_ghcb_active = false;
495 		state->ghcb = NULL;
496 	} else {
497 		/*
498 		 * Invalidate the GHCB so a VMGEXIT instruction issued
499 		 * from userspace won't appear to be valid.
500 		 */
501 		vc_ghcb_invalidate(ghcb);
502 		data->ghcb_active = false;
503 	}
504 }
505 
__sev_es_nmi_complete(void)506 void noinstr __sev_es_nmi_complete(void)
507 {
508 	struct ghcb_state state;
509 	struct ghcb *ghcb;
510 
511 	ghcb = __sev_get_ghcb(&state);
512 
513 	vc_ghcb_invalidate(ghcb);
514 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
515 	ghcb_set_sw_exit_info_1(ghcb, 0);
516 	ghcb_set_sw_exit_info_2(ghcb, 0);
517 
518 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
519 	VMGEXIT();
520 
521 	__sev_put_ghcb(&state);
522 }
523 
get_jump_table_addr(void)524 static u64 get_jump_table_addr(void)
525 {
526 	struct ghcb_state state;
527 	unsigned long flags;
528 	struct ghcb *ghcb;
529 	u64 ret = 0;
530 
531 	local_irq_save(flags);
532 
533 	ghcb = __sev_get_ghcb(&state);
534 
535 	vc_ghcb_invalidate(ghcb);
536 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
537 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
538 	ghcb_set_sw_exit_info_2(ghcb, 0);
539 
540 	sev_es_wr_ghcb_msr(__pa(ghcb));
541 	VMGEXIT();
542 
543 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
544 	    ghcb_sw_exit_info_2_is_valid(ghcb))
545 		ret = ghcb->save.sw_exit_info_2;
546 
547 	__sev_put_ghcb(&state);
548 
549 	local_irq_restore(flags);
550 
551 	return ret;
552 }
553 
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)554 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
555 {
556 	u16 startup_cs, startup_ip;
557 	phys_addr_t jump_table_pa;
558 	u64 jump_table_addr;
559 	u16 __iomem *jump_table;
560 
561 	jump_table_addr = get_jump_table_addr();
562 
563 	/* On UP guests there is no jump table so this is not a failure */
564 	if (!jump_table_addr)
565 		return 0;
566 
567 	/* Check if AP Jump Table is page-aligned */
568 	if (jump_table_addr & ~PAGE_MASK)
569 		return -EINVAL;
570 
571 	jump_table_pa = jump_table_addr & PAGE_MASK;
572 
573 	startup_cs = (u16)(rmh->trampoline_start >> 4);
574 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
575 			   rmh->trampoline_start);
576 
577 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
578 	if (!jump_table)
579 		return -EIO;
580 
581 	writew(startup_ip, &jump_table[0]);
582 	writew(startup_cs, &jump_table[1]);
583 
584 	iounmap(jump_table);
585 
586 	return 0;
587 }
588 
589 /*
590  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
591  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
592  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
593  */
sev_es_efi_map_ghcbs(pgd_t * pgd)594 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
595 {
596 	struct sev_es_runtime_data *data;
597 	unsigned long address, pflags;
598 	int cpu;
599 	u64 pfn;
600 
601 	if (!sev_es_active())
602 		return 0;
603 
604 	pflags = _PAGE_NX | _PAGE_RW;
605 
606 	for_each_possible_cpu(cpu) {
607 		data = per_cpu(runtime_data, cpu);
608 
609 		address = __pa(&data->ghcb_page);
610 		pfn = address >> PAGE_SHIFT;
611 
612 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
613 			return 1;
614 	}
615 
616 	return 0;
617 }
618 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)619 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
620 {
621 	struct pt_regs *regs = ctxt->regs;
622 	enum es_result ret;
623 	u64 exit_info_1;
624 
625 	/* Is it a WRMSR? */
626 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
627 
628 	ghcb_set_rcx(ghcb, regs->cx);
629 	if (exit_info_1) {
630 		ghcb_set_rax(ghcb, regs->ax);
631 		ghcb_set_rdx(ghcb, regs->dx);
632 	}
633 
634 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
635 
636 	if ((ret == ES_OK) && (!exit_info_1)) {
637 		regs->ax = ghcb->save.rax;
638 		regs->dx = ghcb->save.rdx;
639 	}
640 
641 	return ret;
642 }
643 
644 /*
645  * This function runs on the first #VC exception after the kernel
646  * switched to virtual addresses.
647  */
sev_es_setup_ghcb(void)648 static bool __init sev_es_setup_ghcb(void)
649 {
650 	/* First make sure the hypervisor talks a supported protocol. */
651 	if (!sev_es_negotiate_protocol())
652 		return false;
653 
654 	/*
655 	 * Clear the boot_ghcb. The first exception comes in before the bss
656 	 * section is cleared.
657 	 */
658 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
659 
660 	/* Alright - Make the boot-ghcb public */
661 	boot_ghcb = &boot_ghcb_page;
662 
663 	return true;
664 }
665 
666 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)667 static void sev_es_ap_hlt_loop(void)
668 {
669 	struct ghcb_state state;
670 	struct ghcb *ghcb;
671 
672 	ghcb = __sev_get_ghcb(&state);
673 
674 	while (true) {
675 		vc_ghcb_invalidate(ghcb);
676 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
677 		ghcb_set_sw_exit_info_1(ghcb, 0);
678 		ghcb_set_sw_exit_info_2(ghcb, 0);
679 
680 		sev_es_wr_ghcb_msr(__pa(ghcb));
681 		VMGEXIT();
682 
683 		/* Wakeup signal? */
684 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
685 		    ghcb->save.sw_exit_info_2)
686 			break;
687 	}
688 
689 	__sev_put_ghcb(&state);
690 }
691 
692 /*
693  * Play_dead handler when running under SEV-ES. This is needed because
694  * the hypervisor can't deliver an SIPI request to restart the AP.
695  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
696  * hypervisor wakes it up again.
697  */
sev_es_play_dead(void)698 static void sev_es_play_dead(void)
699 {
700 	play_dead_common();
701 
702 	/* IRQs now disabled */
703 
704 	sev_es_ap_hlt_loop();
705 
706 	/*
707 	 * If we get here, the VCPU was woken up again. Jump to CPU
708 	 * startup code to get it back online.
709 	 */
710 	start_cpu0();
711 }
712 #else  /* CONFIG_HOTPLUG_CPU */
713 #define sev_es_play_dead	native_play_dead
714 #endif /* CONFIG_HOTPLUG_CPU */
715 
716 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)717 static void __init sev_es_setup_play_dead(void)
718 {
719 	smp_ops.play_dead = sev_es_play_dead;
720 }
721 #else
sev_es_setup_play_dead(void)722 static inline void sev_es_setup_play_dead(void) { }
723 #endif
724 
alloc_runtime_data(int cpu)725 static void __init alloc_runtime_data(int cpu)
726 {
727 	struct sev_es_runtime_data *data;
728 
729 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
730 	if (!data)
731 		panic("Can't allocate SEV-ES runtime data");
732 
733 	per_cpu(runtime_data, cpu) = data;
734 }
735 
init_ghcb(int cpu)736 static void __init init_ghcb(int cpu)
737 {
738 	struct sev_es_runtime_data *data;
739 	int err;
740 
741 	data = per_cpu(runtime_data, cpu);
742 
743 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
744 					 sizeof(data->ghcb_page));
745 	if (err)
746 		panic("Can't map GHCBs unencrypted");
747 
748 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
749 
750 	data->ghcb_active = false;
751 	data->backup_ghcb_active = false;
752 }
753 
sev_es_init_vc_handling(void)754 void __init sev_es_init_vc_handling(void)
755 {
756 	int cpu;
757 
758 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
759 
760 	if (!sev_es_active())
761 		return;
762 
763 	if (!sev_es_check_cpu_features())
764 		panic("SEV-ES CPU Features missing");
765 
766 	/* Enable SEV-ES special handling */
767 	static_branch_enable(&sev_es_enable_key);
768 
769 	/* Initialize per-cpu GHCB pages */
770 	for_each_possible_cpu(cpu) {
771 		alloc_runtime_data(cpu);
772 		init_ghcb(cpu);
773 	}
774 
775 	sev_es_setup_play_dead();
776 
777 	/* Secondary CPUs use the runtime #VC handler */
778 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
779 }
780 
vc_early_forward_exception(struct es_em_ctxt * ctxt)781 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
782 {
783 	int trapnr = ctxt->fi.vector;
784 
785 	if (trapnr == X86_TRAP_PF)
786 		native_write_cr2(ctxt->fi.cr2);
787 
788 	ctxt->regs->orig_ax = ctxt->fi.error_code;
789 	do_early_exception(ctxt->regs, trapnr);
790 }
791 
vc_insn_get_reg(struct es_em_ctxt * ctxt)792 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
793 {
794 	long *reg_array;
795 	int offset;
796 
797 	reg_array = (long *)ctxt->regs;
798 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
799 
800 	if (offset < 0)
801 		return NULL;
802 
803 	offset /= sizeof(long);
804 
805 	return reg_array + offset;
806 }
807 
vc_insn_get_rm(struct es_em_ctxt * ctxt)808 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
809 {
810 	long *reg_array;
811 	int offset;
812 
813 	reg_array = (long *)ctxt->regs;
814 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
815 
816 	if (offset < 0)
817 		return NULL;
818 
819 	offset /= sizeof(long);
820 
821 	return reg_array + offset;
822 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)823 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
824 				 unsigned int bytes, bool read)
825 {
826 	u64 exit_code, exit_info_1, exit_info_2;
827 	unsigned long ghcb_pa = __pa(ghcb);
828 	enum es_result res;
829 	phys_addr_t paddr;
830 	void __user *ref;
831 
832 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
833 	if (ref == (void __user *)-1L)
834 		return ES_UNSUPPORTED;
835 
836 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
837 
838 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
839 	if (res != ES_OK) {
840 		if (res == ES_EXCEPTION && !read)
841 			ctxt->fi.error_code |= X86_PF_WRITE;
842 
843 		return res;
844 	}
845 
846 	exit_info_1 = paddr;
847 	/* Can never be greater than 8 */
848 	exit_info_2 = bytes;
849 
850 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
851 
852 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
853 }
854 
vc_handle_mmio_twobyte_ops(struct ghcb * ghcb,struct es_em_ctxt * ctxt)855 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
856 						 struct es_em_ctxt *ctxt)
857 {
858 	struct insn *insn = &ctxt->insn;
859 	unsigned int bytes = 0;
860 	enum es_result ret;
861 	int sign_byte;
862 	long *reg_data;
863 
864 	switch (insn->opcode.bytes[1]) {
865 		/* MMIO Read w/ zero-extension */
866 	case 0xb6:
867 		bytes = 1;
868 		fallthrough;
869 	case 0xb7:
870 		if (!bytes)
871 			bytes = 2;
872 
873 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
874 		if (ret)
875 			break;
876 
877 		/* Zero extend based on operand size */
878 		reg_data = vc_insn_get_reg(ctxt);
879 		if (!reg_data)
880 			return ES_DECODE_FAILED;
881 
882 		memset(reg_data, 0, insn->opnd_bytes);
883 
884 		memcpy(reg_data, ghcb->shared_buffer, bytes);
885 		break;
886 
887 		/* MMIO Read w/ sign-extension */
888 	case 0xbe:
889 		bytes = 1;
890 		fallthrough;
891 	case 0xbf:
892 		if (!bytes)
893 			bytes = 2;
894 
895 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
896 		if (ret)
897 			break;
898 
899 		/* Sign extend based on operand size */
900 		reg_data = vc_insn_get_reg(ctxt);
901 		if (!reg_data)
902 			return ES_DECODE_FAILED;
903 
904 		if (bytes == 1) {
905 			u8 *val = (u8 *)ghcb->shared_buffer;
906 
907 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
908 		} else {
909 			u16 *val = (u16 *)ghcb->shared_buffer;
910 
911 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
912 		}
913 		memset(reg_data, sign_byte, insn->opnd_bytes);
914 
915 		memcpy(reg_data, ghcb->shared_buffer, bytes);
916 		break;
917 
918 	default:
919 		ret = ES_UNSUPPORTED;
920 	}
921 
922 	return ret;
923 }
924 
925 /*
926  * The MOVS instruction has two memory operands, which raises the
927  * problem that it is not known whether the access to the source or the
928  * destination caused the #VC exception (and hence whether an MMIO read
929  * or write operation needs to be emulated).
930  *
931  * Instead of playing games with walking page-tables and trying to guess
932  * whether the source or destination is an MMIO range, split the move
933  * into two operations, a read and a write with only one memory operand.
934  * This will cause a nested #VC exception on the MMIO address which can
935  * then be handled.
936  *
937  * This implementation has the benefit that it also supports MOVS where
938  * source _and_ destination are MMIO regions.
939  *
940  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
941  * rare operation. If it turns out to be a performance problem the split
942  * operations can be moved to memcpy_fromio() and memcpy_toio().
943  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)944 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
945 					  unsigned int bytes)
946 {
947 	unsigned long ds_base, es_base;
948 	unsigned char *src, *dst;
949 	unsigned char buffer[8];
950 	enum es_result ret;
951 	bool rep;
952 	int off;
953 
954 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
955 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
956 
957 	if (ds_base == -1L || es_base == -1L) {
958 		ctxt->fi.vector = X86_TRAP_GP;
959 		ctxt->fi.error_code = 0;
960 		return ES_EXCEPTION;
961 	}
962 
963 	src = ds_base + (unsigned char *)ctxt->regs->si;
964 	dst = es_base + (unsigned char *)ctxt->regs->di;
965 
966 	ret = vc_read_mem(ctxt, src, buffer, bytes);
967 	if (ret != ES_OK)
968 		return ret;
969 
970 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
971 	if (ret != ES_OK)
972 		return ret;
973 
974 	if (ctxt->regs->flags & X86_EFLAGS_DF)
975 		off = -bytes;
976 	else
977 		off =  bytes;
978 
979 	ctxt->regs->si += off;
980 	ctxt->regs->di += off;
981 
982 	rep = insn_has_rep_prefix(&ctxt->insn);
983 	if (rep)
984 		ctxt->regs->cx -= 1;
985 
986 	if (!rep || ctxt->regs->cx == 0)
987 		return ES_OK;
988 	else
989 		return ES_RETRY;
990 }
991 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)992 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
993 				     struct es_em_ctxt *ctxt)
994 {
995 	struct insn *insn = &ctxt->insn;
996 	unsigned int bytes = 0;
997 	enum es_result ret;
998 	long *reg_data;
999 
1000 	if (user_mode(ctxt->regs))
1001 		return ES_UNSUPPORTED;
1002 
1003 	switch (insn->opcode.bytes[0]) {
1004 	/* MMIO Write */
1005 	case 0x88:
1006 		bytes = 1;
1007 		fallthrough;
1008 	case 0x89:
1009 		if (!bytes)
1010 			bytes = insn->opnd_bytes;
1011 
1012 		reg_data = vc_insn_get_reg(ctxt);
1013 		if (!reg_data)
1014 			return ES_DECODE_FAILED;
1015 
1016 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1017 
1018 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1019 		break;
1020 
1021 	case 0xc6:
1022 		bytes = 1;
1023 		fallthrough;
1024 	case 0xc7:
1025 		if (!bytes)
1026 			bytes = insn->opnd_bytes;
1027 
1028 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1029 
1030 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1031 		break;
1032 
1033 		/* MMIO Read */
1034 	case 0x8a:
1035 		bytes = 1;
1036 		fallthrough;
1037 	case 0x8b:
1038 		if (!bytes)
1039 			bytes = insn->opnd_bytes;
1040 
1041 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1042 		if (ret)
1043 			break;
1044 
1045 		reg_data = vc_insn_get_reg(ctxt);
1046 		if (!reg_data)
1047 			return ES_DECODE_FAILED;
1048 
1049 		/* Zero-extend for 32-bit operation */
1050 		if (bytes == 4)
1051 			*reg_data = 0;
1052 
1053 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1054 		break;
1055 
1056 		/* MOVS instruction */
1057 	case 0xa4:
1058 		bytes = 1;
1059 		fallthrough;
1060 	case 0xa5:
1061 		if (!bytes)
1062 			bytes = insn->opnd_bytes;
1063 
1064 		ret = vc_handle_mmio_movs(ctxt, bytes);
1065 		break;
1066 		/* Two-Byte Opcodes */
1067 	case 0x0f:
1068 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1069 		break;
1070 	default:
1071 		ret = ES_UNSUPPORTED;
1072 	}
1073 
1074 	return ret;
1075 }
1076 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1077 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1078 					  struct es_em_ctxt *ctxt)
1079 {
1080 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1081 	long val, *reg = vc_insn_get_rm(ctxt);
1082 	enum es_result ret;
1083 
1084 	if (!reg)
1085 		return ES_DECODE_FAILED;
1086 
1087 	val = *reg;
1088 
1089 	/* Upper 32 bits must be written as zeroes */
1090 	if (val >> 32) {
1091 		ctxt->fi.vector = X86_TRAP_GP;
1092 		ctxt->fi.error_code = 0;
1093 		return ES_EXCEPTION;
1094 	}
1095 
1096 	/* Clear out other reserved bits and set bit 10 */
1097 	val = (val & 0xffff23ffL) | BIT(10);
1098 
1099 	/* Early non-zero writes to DR7 are not supported */
1100 	if (!data && (val & ~DR7_RESET_VALUE))
1101 		return ES_UNSUPPORTED;
1102 
1103 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1104 	ghcb_set_rax(ghcb, val);
1105 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1106 	if (ret != ES_OK)
1107 		return ret;
1108 
1109 	if (data)
1110 		data->dr7 = val;
1111 
1112 	return ES_OK;
1113 }
1114 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1115 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1116 					 struct es_em_ctxt *ctxt)
1117 {
1118 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1119 	long *reg = vc_insn_get_rm(ctxt);
1120 
1121 	if (!reg)
1122 		return ES_DECODE_FAILED;
1123 
1124 	if (data)
1125 		*reg = data->dr7;
1126 	else
1127 		*reg = DR7_RESET_VALUE;
1128 
1129 	return ES_OK;
1130 }
1131 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1132 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1133 				       struct es_em_ctxt *ctxt)
1134 {
1135 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1136 }
1137 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1138 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1139 {
1140 	enum es_result ret;
1141 
1142 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1143 
1144 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1145 	if (ret != ES_OK)
1146 		return ret;
1147 
1148 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1149 		return ES_VMM_ERROR;
1150 
1151 	ctxt->regs->ax = ghcb->save.rax;
1152 	ctxt->regs->dx = ghcb->save.rdx;
1153 
1154 	return ES_OK;
1155 }
1156 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1157 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1158 					struct es_em_ctxt *ctxt)
1159 {
1160 	/*
1161 	 * Treat it as a NOP and do not leak a physical address to the
1162 	 * hypervisor.
1163 	 */
1164 	return ES_OK;
1165 }
1166 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1167 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1168 				      struct es_em_ctxt *ctxt)
1169 {
1170 	/* Treat the same as MONITOR/MONITORX */
1171 	return ES_OK;
1172 }
1173 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1174 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1175 					struct es_em_ctxt *ctxt)
1176 {
1177 	enum es_result ret;
1178 
1179 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1180 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1181 
1182 	if (x86_platform.hyper.sev_es_hcall_prepare)
1183 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1184 
1185 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1186 	if (ret != ES_OK)
1187 		return ret;
1188 
1189 	if (!ghcb_rax_is_valid(ghcb))
1190 		return ES_VMM_ERROR;
1191 
1192 	ctxt->regs->ax = ghcb->save.rax;
1193 
1194 	/*
1195 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1196 	 * This allows the hypervisor handler to overwrite it again if
1197 	 * necessary.
1198 	 */
1199 	if (x86_platform.hyper.sev_es_hcall_finish &&
1200 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1201 		return ES_VMM_ERROR;
1202 
1203 	return ES_OK;
1204 }
1205 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1206 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1207 					struct es_em_ctxt *ctxt)
1208 {
1209 	/*
1210 	 * Calling ecx_alignment_check() directly does not work, because it
1211 	 * enables IRQs and the GHCB is active. Forward the exception and call
1212 	 * it later from vc_forward_exception().
1213 	 */
1214 	ctxt->fi.vector = X86_TRAP_AC;
1215 	ctxt->fi.error_code = 0;
1216 	return ES_EXCEPTION;
1217 }
1218 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1219 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1220 					 struct ghcb *ghcb,
1221 					 unsigned long exit_code)
1222 {
1223 	enum es_result result;
1224 
1225 	switch (exit_code) {
1226 	case SVM_EXIT_READ_DR7:
1227 		result = vc_handle_dr7_read(ghcb, ctxt);
1228 		break;
1229 	case SVM_EXIT_WRITE_DR7:
1230 		result = vc_handle_dr7_write(ghcb, ctxt);
1231 		break;
1232 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1233 		result = vc_handle_trap_ac(ghcb, ctxt);
1234 		break;
1235 	case SVM_EXIT_RDTSC:
1236 	case SVM_EXIT_RDTSCP:
1237 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1238 		break;
1239 	case SVM_EXIT_RDPMC:
1240 		result = vc_handle_rdpmc(ghcb, ctxt);
1241 		break;
1242 	case SVM_EXIT_INVD:
1243 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1244 		result = ES_UNSUPPORTED;
1245 		break;
1246 	case SVM_EXIT_CPUID:
1247 		result = vc_handle_cpuid(ghcb, ctxt);
1248 		break;
1249 	case SVM_EXIT_IOIO:
1250 		result = vc_handle_ioio(ghcb, ctxt);
1251 		break;
1252 	case SVM_EXIT_MSR:
1253 		result = vc_handle_msr(ghcb, ctxt);
1254 		break;
1255 	case SVM_EXIT_VMMCALL:
1256 		result = vc_handle_vmmcall(ghcb, ctxt);
1257 		break;
1258 	case SVM_EXIT_WBINVD:
1259 		result = vc_handle_wbinvd(ghcb, ctxt);
1260 		break;
1261 	case SVM_EXIT_MONITOR:
1262 		result = vc_handle_monitor(ghcb, ctxt);
1263 		break;
1264 	case SVM_EXIT_MWAIT:
1265 		result = vc_handle_mwait(ghcb, ctxt);
1266 		break;
1267 	case SVM_EXIT_NPF:
1268 		result = vc_handle_mmio(ghcb, ctxt);
1269 		break;
1270 	default:
1271 		/*
1272 		 * Unexpected #VC exception
1273 		 */
1274 		result = ES_UNSUPPORTED;
1275 	}
1276 
1277 	return result;
1278 }
1279 
vc_forward_exception(struct es_em_ctxt * ctxt)1280 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1281 {
1282 	long error_code = ctxt->fi.error_code;
1283 	int trapnr = ctxt->fi.vector;
1284 
1285 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1286 
1287 	switch (trapnr) {
1288 	case X86_TRAP_GP:
1289 		exc_general_protection(ctxt->regs, error_code);
1290 		break;
1291 	case X86_TRAP_UD:
1292 		exc_invalid_op(ctxt->regs);
1293 		break;
1294 	case X86_TRAP_PF:
1295 		write_cr2(ctxt->fi.cr2);
1296 		exc_page_fault(ctxt->regs, error_code);
1297 		break;
1298 	case X86_TRAP_AC:
1299 		exc_alignment_check(ctxt->regs, error_code);
1300 		break;
1301 	default:
1302 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1303 		BUG();
1304 	}
1305 }
1306 
on_vc_fallback_stack(struct pt_regs * regs)1307 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1308 {
1309 	unsigned long sp = (unsigned long)regs;
1310 
1311 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1312 }
1313 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1314 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1315 {
1316 	struct ghcb_state state;
1317 	struct es_em_ctxt ctxt;
1318 	enum es_result result;
1319 	struct ghcb *ghcb;
1320 	bool ret = true;
1321 
1322 	ghcb = __sev_get_ghcb(&state);
1323 
1324 	vc_ghcb_invalidate(ghcb);
1325 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1326 
1327 	if (result == ES_OK)
1328 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1329 
1330 	__sev_put_ghcb(&state);
1331 
1332 	/* Done - now check the result */
1333 	switch (result) {
1334 	case ES_OK:
1335 		vc_finish_insn(&ctxt);
1336 		break;
1337 	case ES_UNSUPPORTED:
1338 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1339 				   error_code, regs->ip);
1340 		ret = false;
1341 		break;
1342 	case ES_VMM_ERROR:
1343 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1344 				   error_code, regs->ip);
1345 		ret = false;
1346 		break;
1347 	case ES_DECODE_FAILED:
1348 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1349 				   error_code, regs->ip);
1350 		ret = false;
1351 		break;
1352 	case ES_EXCEPTION:
1353 		vc_forward_exception(&ctxt);
1354 		break;
1355 	case ES_RETRY:
1356 		/* Nothing to do */
1357 		break;
1358 	default:
1359 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1360 		/*
1361 		 * Emulating the instruction which caused the #VC exception
1362 		 * failed - can't continue so print debug information
1363 		 */
1364 		BUG();
1365 	}
1366 
1367 	return ret;
1368 }
1369 
vc_is_db(unsigned long error_code)1370 static __always_inline bool vc_is_db(unsigned long error_code)
1371 {
1372 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1373 }
1374 
1375 /*
1376  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1377  * and will panic when an error happens.
1378  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1379 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1380 {
1381 	irqentry_state_t irq_state;
1382 
1383 	/*
1384 	 * With the current implementation it is always possible to switch to a
1385 	 * safe stack because #VC exceptions only happen at known places, like
1386 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1387 	 * also happen with code instrumentation when the hypervisor intercepts
1388 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1389 	 * exceptions currently also only happen in safe places.
1390 	 *
1391 	 * But keep this here in case the noinstr annotations are violated due
1392 	 * to bug elsewhere.
1393 	 */
1394 	if (unlikely(on_vc_fallback_stack(regs))) {
1395 		instrumentation_begin();
1396 		panic("Can't handle #VC exception from unsupported context\n");
1397 		instrumentation_end();
1398 	}
1399 
1400 	/*
1401 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1402 	 */
1403 	if (vc_is_db(error_code)) {
1404 		exc_debug(regs);
1405 		return;
1406 	}
1407 
1408 	irq_state = irqentry_nmi_enter(regs);
1409 
1410 	instrumentation_begin();
1411 
1412 	if (!vc_raw_handle_exception(regs, error_code)) {
1413 		/* Show some debug info */
1414 		show_regs(regs);
1415 
1416 		/* Ask hypervisor to sev_es_terminate */
1417 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1418 
1419 		/* If that fails and we get here - just panic */
1420 		panic("Returned from Terminate-Request to Hypervisor\n");
1421 	}
1422 
1423 	instrumentation_end();
1424 	irqentry_nmi_exit(regs, irq_state);
1425 }
1426 
1427 /*
1428  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1429  * and will kill the current task with SIGBUS when an error happens.
1430  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1431 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1432 {
1433 	/*
1434 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1435 	 */
1436 	if (vc_is_db(error_code)) {
1437 		noist_exc_debug(regs);
1438 		return;
1439 	}
1440 
1441 	irqentry_enter_from_user_mode(regs);
1442 	instrumentation_begin();
1443 
1444 	if (!vc_raw_handle_exception(regs, error_code)) {
1445 		/*
1446 		 * Do not kill the machine if user-space triggered the
1447 		 * exception. Send SIGBUS instead and let user-space deal with
1448 		 * it.
1449 		 */
1450 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1451 	}
1452 
1453 	instrumentation_end();
1454 	irqentry_exit_to_user_mode(regs);
1455 }
1456 
handle_vc_boot_ghcb(struct pt_regs * regs)1457 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1458 {
1459 	unsigned long exit_code = regs->orig_ax;
1460 	struct es_em_ctxt ctxt;
1461 	enum es_result result;
1462 
1463 	/* Do initial setup or terminate the guest */
1464 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1465 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1466 
1467 	vc_ghcb_invalidate(boot_ghcb);
1468 
1469 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1470 	if (result == ES_OK)
1471 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1472 
1473 	/* Done - now check the result */
1474 	switch (result) {
1475 	case ES_OK:
1476 		vc_finish_insn(&ctxt);
1477 		break;
1478 	case ES_UNSUPPORTED:
1479 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1480 				exit_code, regs->ip);
1481 		goto fail;
1482 	case ES_VMM_ERROR:
1483 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1484 				exit_code, regs->ip);
1485 		goto fail;
1486 	case ES_DECODE_FAILED:
1487 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1488 				exit_code, regs->ip);
1489 		goto fail;
1490 	case ES_EXCEPTION:
1491 		vc_early_forward_exception(&ctxt);
1492 		break;
1493 	case ES_RETRY:
1494 		/* Nothing to do */
1495 		break;
1496 	default:
1497 		BUG();
1498 	}
1499 
1500 	return true;
1501 
1502 fail:
1503 	show_regs(regs);
1504 
1505 	while (true)
1506 		halt();
1507 }
1508