• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84 
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88 
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92 
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96 
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98 
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102 
103 struct mwait_cpu_dead {
104 	unsigned int	control;
105 	unsigned int	status;
106 };
107 
108 /*
109  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
110  * that it's unlikely to be touched by other CPUs.
111  */
112 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
113 
114 /* Logical package management. We might want to allocate that dynamically */
115 unsigned int __max_logical_packages __read_mostly;
116 EXPORT_SYMBOL(__max_logical_packages);
117 static unsigned int logical_packages __read_mostly;
118 static unsigned int logical_die __read_mostly;
119 
120 /* Maximum number of SMT threads on any online core */
121 int __read_mostly __max_smt_threads = 1;
122 
123 /* Flag to indicate if a complete sched domain rebuild is required */
124 bool x86_topology_update;
125 
arch_update_cpu_topology(void)126 int arch_update_cpu_topology(void)
127 {
128 	int retval = x86_topology_update;
129 
130 	x86_topology_update = false;
131 	return retval;
132 }
133 
smpboot_setup_warm_reset_vector(unsigned long start_eip)134 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
135 {
136 	unsigned long flags;
137 
138 	spin_lock_irqsave(&rtc_lock, flags);
139 	CMOS_WRITE(0xa, 0xf);
140 	spin_unlock_irqrestore(&rtc_lock, flags);
141 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
142 							start_eip >> 4;
143 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
144 							start_eip & 0xf;
145 }
146 
smpboot_restore_warm_reset_vector(void)147 static inline void smpboot_restore_warm_reset_vector(void)
148 {
149 	unsigned long flags;
150 
151 	/*
152 	 * Paranoid:  Set warm reset code and vector here back
153 	 * to default values.
154 	 */
155 	spin_lock_irqsave(&rtc_lock, flags);
156 	CMOS_WRITE(0, 0xf);
157 	spin_unlock_irqrestore(&rtc_lock, flags);
158 
159 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
160 }
161 
162 static void init_freq_invariance(bool secondary);
163 
164 /*
165  * Report back to the Boot Processor during boot time or to the caller processor
166  * during CPU online.
167  */
smp_callin(void)168 static void smp_callin(void)
169 {
170 	int cpuid;
171 
172 	/*
173 	 * If waken up by an INIT in an 82489DX configuration
174 	 * cpu_callout_mask guarantees we don't get here before
175 	 * an INIT_deassert IPI reaches our local APIC, so it is
176 	 * now safe to touch our local APIC.
177 	 */
178 	cpuid = smp_processor_id();
179 
180 	/*
181 	 * the boot CPU has finished the init stage and is spinning
182 	 * on callin_map until we finish. We are free to set up this
183 	 * CPU, first the APIC. (this is probably redundant on most
184 	 * boards)
185 	 */
186 	apic_ap_setup();
187 
188 	/*
189 	 * Save our processor parameters. Note: this information
190 	 * is needed for clock calibration.
191 	 */
192 	smp_store_cpu_info(cpuid);
193 
194 	/*
195 	 * The topology information must be up to date before
196 	 * calibrate_delay() and notify_cpu_starting().
197 	 */
198 	set_cpu_sibling_map(raw_smp_processor_id());
199 
200 	init_freq_invariance(true);
201 
202 	/*
203 	 * Get our bogomips.
204 	 * Update loops_per_jiffy in cpu_data. Previous call to
205 	 * smp_store_cpu_info() stored a value that is close but not as
206 	 * accurate as the value just calculated.
207 	 */
208 	calibrate_delay();
209 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
210 	pr_debug("Stack at about %p\n", &cpuid);
211 
212 	wmb();
213 
214 	notify_cpu_starting(cpuid);
215 
216 	/*
217 	 * Allow the master to continue.
218 	 */
219 	cpumask_set_cpu(cpuid, cpu_callin_mask);
220 }
221 
222 static int cpu0_logical_apicid;
223 static int enable_start_cpu0;
224 /*
225  * Activate a secondary processor.
226  */
start_secondary(void * unused)227 static void notrace start_secondary(void *unused)
228 {
229 	/*
230 	 * Don't put *anything* except direct CPU state initialization
231 	 * before cpu_init(), SMP booting is too fragile that we want to
232 	 * limit the things done here to the most necessary things.
233 	 */
234 	cr4_init();
235 
236 #ifdef CONFIG_X86_32
237 	/* switch away from the initial page table */
238 	load_cr3(swapper_pg_dir);
239 	__flush_tlb_all();
240 #endif
241 	cpu_init_secondary();
242 	rcu_cpu_starting(raw_smp_processor_id());
243 	x86_cpuinit.early_percpu_clock_init();
244 	smp_callin();
245 
246 	enable_start_cpu0 = 0;
247 
248 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
249 	barrier();
250 	/*
251 	 * Check TSC synchronization with the boot CPU:
252 	 */
253 	check_tsc_sync_target();
254 
255 	speculative_store_bypass_ht_init();
256 
257 	/*
258 	 * Lock vector_lock, set CPU online and bring the vector
259 	 * allocator online. Online must be set with vector_lock held
260 	 * to prevent a concurrent irq setup/teardown from seeing a
261 	 * half valid vector space.
262 	 */
263 	lock_vector_lock();
264 	set_cpu_online(smp_processor_id(), true);
265 	lapic_online();
266 	unlock_vector_lock();
267 	cpu_set_state_online(smp_processor_id());
268 	x86_platform.nmi_init();
269 
270 	/* enable local interrupts */
271 	local_irq_enable();
272 
273 	x86_cpuinit.setup_percpu_clockev();
274 
275 	wmb();
276 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278 
279 /**
280  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
281  * @cpu:	CPU to check
282  */
topology_is_primary_thread(unsigned int cpu)283 bool topology_is_primary_thread(unsigned int cpu)
284 {
285 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
286 }
287 
288 /**
289  * topology_smt_supported - Check whether SMT is supported by the CPUs
290  */
topology_smt_supported(void)291 bool topology_smt_supported(void)
292 {
293 	return smp_num_siblings > 1;
294 }
295 
296 /**
297  * topology_phys_to_logical_pkg - Map a physical package id to a logical
298  *
299  * Returns logical package id or -1 if not found
300  */
topology_phys_to_logical_pkg(unsigned int phys_pkg)301 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
302 {
303 	int cpu;
304 
305 	for_each_possible_cpu(cpu) {
306 		struct cpuinfo_x86 *c = &cpu_data(cpu);
307 
308 		if (c->initialized && c->phys_proc_id == phys_pkg)
309 			return c->logical_proc_id;
310 	}
311 	return -1;
312 }
313 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
314 /**
315  * topology_phys_to_logical_die - Map a physical die id to logical
316  *
317  * Returns logical die id or -1 if not found
318  */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)319 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
320 {
321 	int cpu;
322 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
323 
324 	for_each_possible_cpu(cpu) {
325 		struct cpuinfo_x86 *c = &cpu_data(cpu);
326 
327 		if (c->initialized && c->cpu_die_id == die_id &&
328 		    c->phys_proc_id == proc_id)
329 			return c->logical_die_id;
330 	}
331 	return -1;
332 }
333 EXPORT_SYMBOL(topology_phys_to_logical_die);
334 
335 /**
336  * topology_update_package_map - Update the physical to logical package map
337  * @pkg:	The physical package id as retrieved via CPUID
338  * @cpu:	The cpu for which this is updated
339  */
topology_update_package_map(unsigned int pkg,unsigned int cpu)340 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
341 {
342 	int new;
343 
344 	/* Already available somewhere? */
345 	new = topology_phys_to_logical_pkg(pkg);
346 	if (new >= 0)
347 		goto found;
348 
349 	new = logical_packages++;
350 	if (new != pkg) {
351 		pr_info("CPU %u Converting physical %u to logical package %u\n",
352 			cpu, pkg, new);
353 	}
354 found:
355 	cpu_data(cpu).logical_proc_id = new;
356 	return 0;
357 }
358 /**
359  * topology_update_die_map - Update the physical to logical die map
360  * @die:	The die id as retrieved via CPUID
361  * @cpu:	The cpu for which this is updated
362  */
topology_update_die_map(unsigned int die,unsigned int cpu)363 int topology_update_die_map(unsigned int die, unsigned int cpu)
364 {
365 	int new;
366 
367 	/* Already available somewhere? */
368 	new = topology_phys_to_logical_die(die, cpu);
369 	if (new >= 0)
370 		goto found;
371 
372 	new = logical_die++;
373 	if (new != die) {
374 		pr_info("CPU %u Converting physical %u to logical die %u\n",
375 			cpu, die, new);
376 	}
377 found:
378 	cpu_data(cpu).logical_die_id = new;
379 	return 0;
380 }
381 
smp_store_boot_cpu_info(void)382 void __init smp_store_boot_cpu_info(void)
383 {
384 	int id = 0; /* CPU 0 */
385 	struct cpuinfo_x86 *c = &cpu_data(id);
386 
387 	*c = boot_cpu_data;
388 	c->cpu_index = id;
389 	topology_update_package_map(c->phys_proc_id, id);
390 	topology_update_die_map(c->cpu_die_id, id);
391 	c->initialized = true;
392 }
393 
394 /*
395  * The bootstrap kernel entry code has set these up. Save them for
396  * a given CPU
397  */
smp_store_cpu_info(int id)398 void smp_store_cpu_info(int id)
399 {
400 	struct cpuinfo_x86 *c = &cpu_data(id);
401 
402 	/* Copy boot_cpu_data only on the first bringup */
403 	if (!c->initialized)
404 		*c = boot_cpu_data;
405 	c->cpu_index = id;
406 	/*
407 	 * During boot time, CPU0 has this setup already. Save the info when
408 	 * bringing up AP or offlined CPU0.
409 	 */
410 	identify_secondary_cpu(c);
411 	c->initialized = true;
412 }
413 
414 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)415 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418 
419 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
420 }
421 
422 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)423 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
424 {
425 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426 
427 	return !WARN_ONCE(!topology_same_node(c, o),
428 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
429 		"[node: %d != %d]. Ignoring dependency.\n",
430 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
431 }
432 
433 #define link_mask(mfunc, c1, c2)					\
434 do {									\
435 	cpumask_set_cpu((c1), mfunc(c2));				\
436 	cpumask_set_cpu((c2), mfunc(c1));				\
437 } while (0)
438 
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)439 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
442 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
443 
444 		if (c->phys_proc_id == o->phys_proc_id &&
445 		    c->cpu_die_id == o->cpu_die_id &&
446 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
447 			if (c->cpu_core_id == o->cpu_core_id)
448 				return topology_sane(c, o, "smt");
449 
450 			if ((c->cu_id != 0xff) &&
451 			    (o->cu_id != 0xff) &&
452 			    (c->cu_id == o->cu_id))
453 				return topology_sane(c, o, "smt");
454 		}
455 
456 	} else if (c->phys_proc_id == o->phys_proc_id &&
457 		   c->cpu_die_id == o->cpu_die_id &&
458 		   c->cpu_core_id == o->cpu_core_id) {
459 		return topology_sane(c, o, "smt");
460 	}
461 
462 	return false;
463 }
464 
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)465 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
466 {
467 	if (c->phys_proc_id == o->phys_proc_id &&
468 	    c->cpu_die_id == o->cpu_die_id)
469 		return true;
470 	return false;
471 }
472 
473 /*
474  * Unlike the other levels, we do not enforce keeping a
475  * multicore group inside a NUMA node.  If this happens, we will
476  * discard the MC level of the topology later.
477  */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)478 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
479 {
480 	if (c->phys_proc_id == o->phys_proc_id)
481 		return true;
482 	return false;
483 }
484 
485 /*
486  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
487  *
488  * Any Intel CPU that has multiple nodes per package and does not
489  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
490  *
491  * When in SNC mode, these CPUs enumerate an LLC that is shared
492  * by multiple NUMA nodes. The LLC is shared for off-package data
493  * access but private to the NUMA node (half of the package) for
494  * on-package access. CPUID (the source of the information about
495  * the LLC) can only enumerate the cache as shared or unshared,
496  * but not this particular configuration.
497  */
498 
499 static const struct x86_cpu_id intel_cod_cpu[] = {
500 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
501 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
502 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
503 	{}
504 };
505 
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)506 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
507 {
508 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
509 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
510 	bool intel_snc = id && id->driver_data;
511 
512 	/* Do not match if we do not have a valid APICID for cpu: */
513 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
514 		return false;
515 
516 	/* Do not match if LLC id does not match: */
517 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
518 		return false;
519 
520 	/*
521 	 * Allow the SNC topology without warning. Return of false
522 	 * means 'c' does not share the LLC of 'o'. This will be
523 	 * reflected to userspace.
524 	 */
525 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
526 		return false;
527 
528 	return topology_sane(c, o, "llc");
529 }
530 
531 
532 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)533 static inline int x86_sched_itmt_flags(void)
534 {
535 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
536 }
537 
538 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)539 static int x86_core_flags(void)
540 {
541 	return cpu_core_flags() | x86_sched_itmt_flags();
542 }
543 #endif
544 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)545 static int x86_smt_flags(void)
546 {
547 	return cpu_smt_flags() | x86_sched_itmt_flags();
548 }
549 #endif
550 #endif
551 
552 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
553 #ifdef CONFIG_SCHED_SMT
554 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
555 #endif
556 #ifdef CONFIG_SCHED_MC
557 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
558 #endif
559 	{ NULL, },
560 };
561 
562 static struct sched_domain_topology_level x86_topology[] = {
563 #ifdef CONFIG_SCHED_SMT
564 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
565 #endif
566 #ifdef CONFIG_SCHED_MC
567 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
568 #endif
569 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
570 	{ NULL, },
571 };
572 
573 /*
574  * Set if a package/die has multiple NUMA nodes inside.
575  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
576  * Sub-NUMA Clustering have this.
577  */
578 static bool x86_has_numa_in_package;
579 
set_cpu_sibling_map(int cpu)580 void set_cpu_sibling_map(int cpu)
581 {
582 	bool has_smt = smp_num_siblings > 1;
583 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
584 	struct cpuinfo_x86 *c = &cpu_data(cpu);
585 	struct cpuinfo_x86 *o;
586 	int i, threads;
587 
588 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
589 
590 	if (!has_mp) {
591 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
592 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
593 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
594 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
595 		c->booted_cores = 1;
596 		return;
597 	}
598 
599 	for_each_cpu(i, cpu_sibling_setup_mask) {
600 		o = &cpu_data(i);
601 
602 		if (match_pkg(c, o) && !topology_same_node(c, o))
603 			x86_has_numa_in_package = true;
604 
605 		if ((i == cpu) || (has_smt && match_smt(c, o)))
606 			link_mask(topology_sibling_cpumask, cpu, i);
607 
608 		if ((i == cpu) || (has_mp && match_llc(c, o)))
609 			link_mask(cpu_llc_shared_mask, cpu, i);
610 
611 		if ((i == cpu) || (has_mp && match_die(c, o)))
612 			link_mask(topology_die_cpumask, cpu, i);
613 	}
614 
615 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
616 	if (threads > __max_smt_threads)
617 		__max_smt_threads = threads;
618 
619 	/*
620 	 * This needs a separate iteration over the cpus because we rely on all
621 	 * topology_sibling_cpumask links to be set-up.
622 	 */
623 	for_each_cpu(i, cpu_sibling_setup_mask) {
624 		o = &cpu_data(i);
625 
626 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
627 			link_mask(topology_core_cpumask, cpu, i);
628 
629 			/*
630 			 *  Does this new cpu bringup a new core?
631 			 */
632 			if (threads == 1) {
633 				/*
634 				 * for each core in package, increment
635 				 * the booted_cores for this new cpu
636 				 */
637 				if (cpumask_first(
638 				    topology_sibling_cpumask(i)) == i)
639 					c->booted_cores++;
640 				/*
641 				 * increment the core count for all
642 				 * the other cpus in this package
643 				 */
644 				if (i != cpu)
645 					cpu_data(i).booted_cores++;
646 			} else if (i != cpu && !c->booted_cores)
647 				c->booted_cores = cpu_data(i).booted_cores;
648 		}
649 	}
650 }
651 
652 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)653 const struct cpumask *cpu_coregroup_mask(int cpu)
654 {
655 	return cpu_llc_shared_mask(cpu);
656 }
657 
impress_friends(void)658 static void impress_friends(void)
659 {
660 	int cpu;
661 	unsigned long bogosum = 0;
662 	/*
663 	 * Allow the user to impress friends.
664 	 */
665 	pr_debug("Before bogomips\n");
666 	for_each_possible_cpu(cpu)
667 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
668 			bogosum += cpu_data(cpu).loops_per_jiffy;
669 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
670 		num_online_cpus(),
671 		bogosum/(500000/HZ),
672 		(bogosum/(5000/HZ))%100);
673 
674 	pr_debug("Before bogocount - setting activated=1\n");
675 }
676 
__inquire_remote_apic(int apicid)677 void __inquire_remote_apic(int apicid)
678 {
679 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
680 	const char * const names[] = { "ID", "VERSION", "SPIV" };
681 	int timeout;
682 	u32 status;
683 
684 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
685 
686 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
687 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
688 
689 		/*
690 		 * Wait for idle.
691 		 */
692 		status = safe_apic_wait_icr_idle();
693 		if (status)
694 			pr_cont("a previous APIC delivery may have failed\n");
695 
696 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
697 
698 		timeout = 0;
699 		do {
700 			udelay(100);
701 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
702 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
703 
704 		switch (status) {
705 		case APIC_ICR_RR_VALID:
706 			status = apic_read(APIC_RRR);
707 			pr_cont("%08x\n", status);
708 			break;
709 		default:
710 			pr_cont("failed\n");
711 		}
712 	}
713 }
714 
715 /*
716  * The Multiprocessor Specification 1.4 (1997) example code suggests
717  * that there should be a 10ms delay between the BSP asserting INIT
718  * and de-asserting INIT, when starting a remote processor.
719  * But that slows boot and resume on modern processors, which include
720  * many cores and don't require that delay.
721  *
722  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
723  * Modern processor families are quirked to remove the delay entirely.
724  */
725 #define UDELAY_10MS_DEFAULT 10000
726 
727 static unsigned int init_udelay = UINT_MAX;
728 
cpu_init_udelay(char * str)729 static int __init cpu_init_udelay(char *str)
730 {
731 	get_option(&str, &init_udelay);
732 
733 	return 0;
734 }
735 early_param("cpu_init_udelay", cpu_init_udelay);
736 
smp_quirk_init_udelay(void)737 static void __init smp_quirk_init_udelay(void)
738 {
739 	/* if cmdline changed it from default, leave it alone */
740 	if (init_udelay != UINT_MAX)
741 		return;
742 
743 	/* if modern processor, use no delay */
744 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
745 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
746 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
747 		init_udelay = 0;
748 		return;
749 	}
750 	/* else, use legacy delay */
751 	init_udelay = UDELAY_10MS_DEFAULT;
752 }
753 
754 /*
755  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
756  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
757  * won't ... remember to clear down the APIC, etc later.
758  */
759 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)760 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
761 {
762 	unsigned long send_status, accept_status = 0;
763 	int maxlvt;
764 
765 	/* Target chip */
766 	/* Boot on the stack */
767 	/* Kick the second */
768 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
769 
770 	pr_debug("Waiting for send to finish...\n");
771 	send_status = safe_apic_wait_icr_idle();
772 
773 	/*
774 	 * Give the other CPU some time to accept the IPI.
775 	 */
776 	udelay(200);
777 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
778 		maxlvt = lapic_get_maxlvt();
779 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
780 			apic_write(APIC_ESR, 0);
781 		accept_status = (apic_read(APIC_ESR) & 0xEF);
782 	}
783 	pr_debug("NMI sent\n");
784 
785 	if (send_status)
786 		pr_err("APIC never delivered???\n");
787 	if (accept_status)
788 		pr_err("APIC delivery error (%lx)\n", accept_status);
789 
790 	return (send_status | accept_status);
791 }
792 
793 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)794 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
795 {
796 	unsigned long send_status = 0, accept_status = 0;
797 	int maxlvt, num_starts, j;
798 
799 	maxlvt = lapic_get_maxlvt();
800 
801 	/*
802 	 * Be paranoid about clearing APIC errors.
803 	 */
804 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
805 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
806 			apic_write(APIC_ESR, 0);
807 		apic_read(APIC_ESR);
808 	}
809 
810 	pr_debug("Asserting INIT\n");
811 
812 	/*
813 	 * Turn INIT on target chip
814 	 */
815 	/*
816 	 * Send IPI
817 	 */
818 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
819 		       phys_apicid);
820 
821 	pr_debug("Waiting for send to finish...\n");
822 	send_status = safe_apic_wait_icr_idle();
823 
824 	udelay(init_udelay);
825 
826 	pr_debug("Deasserting INIT\n");
827 
828 	/* Target chip */
829 	/* Send IPI */
830 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
831 
832 	pr_debug("Waiting for send to finish...\n");
833 	send_status = safe_apic_wait_icr_idle();
834 
835 	mb();
836 
837 	/*
838 	 * Should we send STARTUP IPIs ?
839 	 *
840 	 * Determine this based on the APIC version.
841 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
842 	 */
843 	if (APIC_INTEGRATED(boot_cpu_apic_version))
844 		num_starts = 2;
845 	else
846 		num_starts = 0;
847 
848 	/*
849 	 * Run STARTUP IPI loop.
850 	 */
851 	pr_debug("#startup loops: %d\n", num_starts);
852 
853 	for (j = 1; j <= num_starts; j++) {
854 		pr_debug("Sending STARTUP #%d\n", j);
855 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
856 			apic_write(APIC_ESR, 0);
857 		apic_read(APIC_ESR);
858 		pr_debug("After apic_write\n");
859 
860 		/*
861 		 * STARTUP IPI
862 		 */
863 
864 		/* Target chip */
865 		/* Boot on the stack */
866 		/* Kick the second */
867 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
868 			       phys_apicid);
869 
870 		/*
871 		 * Give the other CPU some time to accept the IPI.
872 		 */
873 		if (init_udelay == 0)
874 			udelay(10);
875 		else
876 			udelay(300);
877 
878 		pr_debug("Startup point 1\n");
879 
880 		pr_debug("Waiting for send to finish...\n");
881 		send_status = safe_apic_wait_icr_idle();
882 
883 		/*
884 		 * Give the other CPU some time to accept the IPI.
885 		 */
886 		if (init_udelay == 0)
887 			udelay(10);
888 		else
889 			udelay(200);
890 
891 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
892 			apic_write(APIC_ESR, 0);
893 		accept_status = (apic_read(APIC_ESR) & 0xEF);
894 		if (send_status || accept_status)
895 			break;
896 	}
897 	pr_debug("After Startup\n");
898 
899 	if (send_status)
900 		pr_err("APIC never delivered???\n");
901 	if (accept_status)
902 		pr_err("APIC delivery error (%lx)\n", accept_status);
903 
904 	return (send_status | accept_status);
905 }
906 
907 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)908 static void announce_cpu(int cpu, int apicid)
909 {
910 	static int current_node = NUMA_NO_NODE;
911 	int node = early_cpu_to_node(cpu);
912 	static int width, node_width;
913 
914 	if (!width)
915 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
916 
917 	if (!node_width)
918 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
919 
920 	if (cpu == 1)
921 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
922 
923 	if (system_state < SYSTEM_RUNNING) {
924 		if (node != current_node) {
925 			if (current_node > (-1))
926 				pr_cont("\n");
927 			current_node = node;
928 
929 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
930 			       node_width - num_digits(node), " ", node);
931 		}
932 
933 		/* Add padding for the BSP */
934 		if (cpu == 1)
935 			pr_cont("%*s", width + 1, " ");
936 
937 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
938 
939 	} else
940 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
941 			node, cpu, apicid);
942 }
943 
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)944 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
945 {
946 	int cpu;
947 
948 	cpu = smp_processor_id();
949 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
950 		return NMI_HANDLED;
951 
952 	return NMI_DONE;
953 }
954 
955 /*
956  * Wake up AP by INIT, INIT, STARTUP sequence.
957  *
958  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
959  * boot-strap code which is not a desired behavior for waking up BSP. To
960  * void the boot-strap code, wake up CPU0 by NMI instead.
961  *
962  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
963  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
964  * We'll change this code in the future to wake up hard offlined CPU0 if
965  * real platform and request are available.
966  */
967 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)968 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
969 	       int *cpu0_nmi_registered)
970 {
971 	int id;
972 	int boot_error;
973 
974 	preempt_disable();
975 
976 	/*
977 	 * Wake up AP by INIT, INIT, STARTUP sequence.
978 	 */
979 	if (cpu) {
980 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
981 		goto out;
982 	}
983 
984 	/*
985 	 * Wake up BSP by nmi.
986 	 *
987 	 * Register a NMI handler to help wake up CPU0.
988 	 */
989 	boot_error = register_nmi_handler(NMI_LOCAL,
990 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
991 
992 	if (!boot_error) {
993 		enable_start_cpu0 = 1;
994 		*cpu0_nmi_registered = 1;
995 		if (apic->dest_logical == APIC_DEST_LOGICAL)
996 			id = cpu0_logical_apicid;
997 		else
998 			id = apicid;
999 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1000 	}
1001 
1002 out:
1003 	preempt_enable();
1004 
1005 	return boot_error;
1006 }
1007 
common_cpu_up(unsigned int cpu,struct task_struct * idle)1008 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1009 {
1010 	int ret;
1011 
1012 	/* Just in case we booted with a single CPU. */
1013 	alternatives_enable_smp();
1014 
1015 	per_cpu(current_task, cpu) = idle;
1016 	cpu_init_stack_canary(cpu, idle);
1017 
1018 	/* Initialize the interrupt stack(s) */
1019 	ret = irq_init_percpu_irqstack(cpu);
1020 	if (ret)
1021 		return ret;
1022 
1023 #ifdef CONFIG_X86_32
1024 	/* Stack for startup_32 can be just as for start_secondary onwards */
1025 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1026 #else
1027 	initial_gs = per_cpu_offset(cpu);
1028 #endif
1029 	return 0;
1030 }
1031 
1032 /*
1033  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1034  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1035  * Returns zero if CPU booted OK, else error code from
1036  * ->wakeup_secondary_cpu.
1037  */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1038 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1039 		       int *cpu0_nmi_registered)
1040 {
1041 	/* start_ip had better be page-aligned! */
1042 	unsigned long start_ip = real_mode_header->trampoline_start;
1043 
1044 	unsigned long boot_error = 0;
1045 	unsigned long timeout;
1046 
1047 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1048 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1049 	initial_code = (unsigned long)start_secondary;
1050 	initial_stack  = idle->thread.sp;
1051 
1052 	/* Enable the espfix hack for this CPU */
1053 	init_espfix_ap(cpu);
1054 
1055 	/* So we see what's up */
1056 	announce_cpu(cpu, apicid);
1057 
1058 	/*
1059 	 * This grunge runs the startup process for
1060 	 * the targeted processor.
1061 	 */
1062 
1063 	if (x86_platform.legacy.warm_reset) {
1064 
1065 		pr_debug("Setting warm reset code and vector.\n");
1066 
1067 		smpboot_setup_warm_reset_vector(start_ip);
1068 		/*
1069 		 * Be paranoid about clearing APIC errors.
1070 		*/
1071 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1072 			apic_write(APIC_ESR, 0);
1073 			apic_read(APIC_ESR);
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * AP might wait on cpu_callout_mask in cpu_init() with
1079 	 * cpu_initialized_mask set if previous attempt to online
1080 	 * it timed-out. Clear cpu_initialized_mask so that after
1081 	 * INIT/SIPI it could start with a clean state.
1082 	 */
1083 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1084 	smp_mb();
1085 
1086 	/*
1087 	 * Wake up a CPU in difference cases:
1088 	 * - Use the method in the APIC driver if it's defined
1089 	 * Otherwise,
1090 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1091 	 */
1092 	if (apic->wakeup_secondary_cpu)
1093 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1094 	else
1095 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1096 						     cpu0_nmi_registered);
1097 
1098 	if (!boot_error) {
1099 		/*
1100 		 * Wait 10s total for first sign of life from AP
1101 		 */
1102 		boot_error = -1;
1103 		timeout = jiffies + 10*HZ;
1104 		while (time_before(jiffies, timeout)) {
1105 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1106 				/*
1107 				 * Tell AP to proceed with initialization
1108 				 */
1109 				cpumask_set_cpu(cpu, cpu_callout_mask);
1110 				boot_error = 0;
1111 				break;
1112 			}
1113 			schedule();
1114 		}
1115 	}
1116 
1117 	if (!boot_error) {
1118 		/*
1119 		 * Wait till AP completes initial initialization
1120 		 */
1121 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1122 			/*
1123 			 * Allow other tasks to run while we wait for the
1124 			 * AP to come online. This also gives a chance
1125 			 * for the MTRR work(triggered by the AP coming online)
1126 			 * to be completed in the stop machine context.
1127 			 */
1128 			schedule();
1129 		}
1130 	}
1131 
1132 	if (x86_platform.legacy.warm_reset) {
1133 		/*
1134 		 * Cleanup possible dangling ends...
1135 		 */
1136 		smpboot_restore_warm_reset_vector();
1137 	}
1138 
1139 	return boot_error;
1140 }
1141 
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1142 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1143 {
1144 	int apicid = apic->cpu_present_to_apicid(cpu);
1145 	int cpu0_nmi_registered = 0;
1146 	unsigned long flags;
1147 	int err, ret = 0;
1148 
1149 	lockdep_assert_irqs_enabled();
1150 
1151 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1152 
1153 	if (apicid == BAD_APICID ||
1154 	    !physid_isset(apicid, phys_cpu_present_map) ||
1155 	    !apic->apic_id_valid(apicid)) {
1156 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1157 		return -EINVAL;
1158 	}
1159 
1160 	/*
1161 	 * Already booted CPU?
1162 	 */
1163 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1164 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1165 		return -ENOSYS;
1166 	}
1167 
1168 	/*
1169 	 * Save current MTRR state in case it was changed since early boot
1170 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1171 	 */
1172 	mtrr_save_state();
1173 
1174 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1175 	err = cpu_check_up_prepare(cpu);
1176 	if (err && err != -EBUSY)
1177 		return err;
1178 
1179 	/* the FPU context is blank, nobody can own it */
1180 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1181 
1182 	err = common_cpu_up(cpu, tidle);
1183 	if (err)
1184 		return err;
1185 
1186 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1187 	if (err) {
1188 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1189 		ret = -EIO;
1190 		goto unreg_nmi;
1191 	}
1192 
1193 	/*
1194 	 * Check TSC synchronization with the AP (keep irqs disabled
1195 	 * while doing so):
1196 	 */
1197 	local_irq_save(flags);
1198 	check_tsc_sync_source(cpu);
1199 	local_irq_restore(flags);
1200 
1201 	while (!cpu_online(cpu)) {
1202 		cpu_relax();
1203 		touch_nmi_watchdog();
1204 	}
1205 
1206 unreg_nmi:
1207 	/*
1208 	 * Clean up the nmi handler. Do this after the callin and callout sync
1209 	 * to avoid impact of possible long unregister time.
1210 	 */
1211 	if (cpu0_nmi_registered)
1212 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1213 
1214 	return ret;
1215 }
1216 
1217 /**
1218  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1219  */
arch_disable_smp_support(void)1220 void arch_disable_smp_support(void)
1221 {
1222 	disable_ioapic_support();
1223 }
1224 
1225 /*
1226  * Fall back to non SMP mode after errors.
1227  *
1228  * RED-PEN audit/test this more. I bet there is more state messed up here.
1229  */
disable_smp(void)1230 static __init void disable_smp(void)
1231 {
1232 	pr_info("SMP disabled\n");
1233 
1234 	disable_ioapic_support();
1235 
1236 	init_cpu_present(cpumask_of(0));
1237 	init_cpu_possible(cpumask_of(0));
1238 
1239 	if (smp_found_config)
1240 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1241 	else
1242 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1243 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1244 	cpumask_set_cpu(0, topology_core_cpumask(0));
1245 	cpumask_set_cpu(0, topology_die_cpumask(0));
1246 }
1247 
1248 /*
1249  * Various sanity checks.
1250  */
smp_sanity_check(void)1251 static void __init smp_sanity_check(void)
1252 {
1253 	preempt_disable();
1254 
1255 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1256 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1257 		unsigned int cpu;
1258 		unsigned nr;
1259 
1260 		pr_warn("More than 8 CPUs detected - skipping them\n"
1261 			"Use CONFIG_X86_BIGSMP\n");
1262 
1263 		nr = 0;
1264 		for_each_present_cpu(cpu) {
1265 			if (nr >= 8)
1266 				set_cpu_present(cpu, false);
1267 			nr++;
1268 		}
1269 
1270 		nr = 0;
1271 		for_each_possible_cpu(cpu) {
1272 			if (nr >= 8)
1273 				set_cpu_possible(cpu, false);
1274 			nr++;
1275 		}
1276 
1277 		nr_cpu_ids = 8;
1278 	}
1279 #endif
1280 
1281 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1282 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1283 			hard_smp_processor_id());
1284 
1285 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1286 	}
1287 
1288 	/*
1289 	 * Should not be necessary because the MP table should list the boot
1290 	 * CPU too, but we do it for the sake of robustness anyway.
1291 	 */
1292 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1293 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1294 			  boot_cpu_physical_apicid);
1295 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1296 	}
1297 	preempt_enable();
1298 }
1299 
smp_cpu_index_default(void)1300 static void __init smp_cpu_index_default(void)
1301 {
1302 	int i;
1303 	struct cpuinfo_x86 *c;
1304 
1305 	for_each_possible_cpu(i) {
1306 		c = &cpu_data(i);
1307 		/* mark all to hotplug */
1308 		c->cpu_index = nr_cpu_ids;
1309 	}
1310 }
1311 
smp_get_logical_apicid(void)1312 static void __init smp_get_logical_apicid(void)
1313 {
1314 	if (x2apic_mode)
1315 		cpu0_logical_apicid = apic_read(APIC_LDR);
1316 	else
1317 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1318 }
1319 
1320 /*
1321  * Prepare for SMP bootup.
1322  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1323  *            for common interface support.
1324  */
native_smp_prepare_cpus(unsigned int max_cpus)1325 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1326 {
1327 	unsigned int i;
1328 
1329 	smp_cpu_index_default();
1330 
1331 	/*
1332 	 * Setup boot CPU information
1333 	 */
1334 	smp_store_boot_cpu_info(); /* Final full version of the data */
1335 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1336 	mb();
1337 
1338 	for_each_possible_cpu(i) {
1339 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1340 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1341 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1342 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1343 	}
1344 
1345 	/*
1346 	 * Set 'default' x86 topology, this matches default_topology() in that
1347 	 * it has NUMA nodes as a topology level. See also
1348 	 * native_smp_cpus_done().
1349 	 *
1350 	 * Must be done before set_cpus_sibling_map() is ran.
1351 	 */
1352 	set_sched_topology(x86_topology);
1353 
1354 	set_cpu_sibling_map(0);
1355 	init_freq_invariance(false);
1356 	smp_sanity_check();
1357 
1358 	switch (apic_intr_mode) {
1359 	case APIC_PIC:
1360 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1361 		disable_smp();
1362 		return;
1363 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1364 		disable_smp();
1365 		/* Setup local timer */
1366 		x86_init.timers.setup_percpu_clockev();
1367 		return;
1368 	case APIC_VIRTUAL_WIRE:
1369 	case APIC_SYMMETRIC_IO:
1370 		break;
1371 	}
1372 
1373 	/* Setup local timer */
1374 	x86_init.timers.setup_percpu_clockev();
1375 
1376 	smp_get_logical_apicid();
1377 
1378 	pr_info("CPU0: ");
1379 	print_cpu_info(&cpu_data(0));
1380 
1381 	uv_system_init();
1382 
1383 	set_mtrr_aps_delayed_init();
1384 
1385 	smp_quirk_init_udelay();
1386 
1387 	speculative_store_bypass_ht_init();
1388 }
1389 
arch_thaw_secondary_cpus_begin(void)1390 void arch_thaw_secondary_cpus_begin(void)
1391 {
1392 	set_mtrr_aps_delayed_init();
1393 }
1394 
arch_thaw_secondary_cpus_end(void)1395 void arch_thaw_secondary_cpus_end(void)
1396 {
1397 	mtrr_aps_init();
1398 }
1399 
1400 /*
1401  * Early setup to make printk work.
1402  */
native_smp_prepare_boot_cpu(void)1403 void __init native_smp_prepare_boot_cpu(void)
1404 {
1405 	int me = smp_processor_id();
1406 	switch_to_new_gdt(me);
1407 	/* already set me in cpu_online_mask in boot_cpu_init() */
1408 	cpumask_set_cpu(me, cpu_callout_mask);
1409 	cpu_set_state_online(me);
1410 	native_pv_lock_init();
1411 }
1412 
calculate_max_logical_packages(void)1413 void __init calculate_max_logical_packages(void)
1414 {
1415 	int ncpus;
1416 
1417 	/*
1418 	 * Today neither Intel nor AMD support heterogenous systems so
1419 	 * extrapolate the boot cpu's data to all packages.
1420 	 */
1421 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1422 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1423 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1424 }
1425 
native_smp_cpus_done(unsigned int max_cpus)1426 void __init native_smp_cpus_done(unsigned int max_cpus)
1427 {
1428 	pr_debug("Boot done\n");
1429 
1430 	calculate_max_logical_packages();
1431 
1432 	if (x86_has_numa_in_package)
1433 		set_sched_topology(x86_numa_in_package_topology);
1434 
1435 	nmi_selftest();
1436 	impress_friends();
1437 	mtrr_aps_init();
1438 }
1439 
1440 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1441 static int __init _setup_possible_cpus(char *str)
1442 {
1443 	get_option(&str, &setup_possible_cpus);
1444 	return 0;
1445 }
1446 early_param("possible_cpus", _setup_possible_cpus);
1447 
1448 
1449 /*
1450  * cpu_possible_mask should be static, it cannot change as cpu's
1451  * are onlined, or offlined. The reason is per-cpu data-structures
1452  * are allocated by some modules at init time, and don't expect to
1453  * do this dynamically on cpu arrival/departure.
1454  * cpu_present_mask on the other hand can change dynamically.
1455  * In case when cpu_hotplug is not compiled, then we resort to current
1456  * behaviour, which is cpu_possible == cpu_present.
1457  * - Ashok Raj
1458  *
1459  * Three ways to find out the number of additional hotplug CPUs:
1460  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1461  * - The user can overwrite it with possible_cpus=NUM
1462  * - Otherwise don't reserve additional CPUs.
1463  * We do this because additional CPUs waste a lot of memory.
1464  * -AK
1465  */
prefill_possible_map(void)1466 __init void prefill_possible_map(void)
1467 {
1468 	int i, possible;
1469 
1470 	/* No boot processor was found in mptable or ACPI MADT */
1471 	if (!num_processors) {
1472 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1473 			int apicid = boot_cpu_physical_apicid;
1474 			int cpu = hard_smp_processor_id();
1475 
1476 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1477 
1478 			/* Make sure boot cpu is enumerated */
1479 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1480 			    apic->apic_id_valid(apicid))
1481 				generic_processor_info(apicid, boot_cpu_apic_version);
1482 		}
1483 
1484 		if (!num_processors)
1485 			num_processors = 1;
1486 	}
1487 
1488 	i = setup_max_cpus ?: 1;
1489 	if (setup_possible_cpus == -1) {
1490 		possible = num_processors;
1491 #ifdef CONFIG_HOTPLUG_CPU
1492 		if (setup_max_cpus)
1493 			possible += disabled_cpus;
1494 #else
1495 		if (possible > i)
1496 			possible = i;
1497 #endif
1498 	} else
1499 		possible = setup_possible_cpus;
1500 
1501 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1502 
1503 	/* nr_cpu_ids could be reduced via nr_cpus= */
1504 	if (possible > nr_cpu_ids) {
1505 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1506 			possible, nr_cpu_ids);
1507 		possible = nr_cpu_ids;
1508 	}
1509 
1510 #ifdef CONFIG_HOTPLUG_CPU
1511 	if (!setup_max_cpus)
1512 #endif
1513 	if (possible > i) {
1514 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1515 			possible, setup_max_cpus);
1516 		possible = i;
1517 	}
1518 
1519 	nr_cpu_ids = possible;
1520 
1521 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1522 		possible, max_t(int, possible - num_processors, 0));
1523 
1524 	reset_cpu_possible_mask();
1525 
1526 	for (i = 0; i < possible; i++)
1527 		set_cpu_possible(i, true);
1528 }
1529 
1530 #ifdef CONFIG_HOTPLUG_CPU
1531 
1532 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1533 static void recompute_smt_state(void)
1534 {
1535 	int max_threads, cpu;
1536 
1537 	max_threads = 0;
1538 	for_each_online_cpu (cpu) {
1539 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1540 
1541 		if (threads > max_threads)
1542 			max_threads = threads;
1543 	}
1544 	__max_smt_threads = max_threads;
1545 }
1546 
remove_siblinginfo(int cpu)1547 static void remove_siblinginfo(int cpu)
1548 {
1549 	int sibling;
1550 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1551 
1552 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1553 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1554 		/*/
1555 		 * last thread sibling in this cpu core going down
1556 		 */
1557 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1558 			cpu_data(sibling).booted_cores--;
1559 	}
1560 
1561 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1562 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1563 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1564 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1565 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1566 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1567 	cpumask_clear(cpu_llc_shared_mask(cpu));
1568 	cpumask_clear(topology_sibling_cpumask(cpu));
1569 	cpumask_clear(topology_core_cpumask(cpu));
1570 	cpumask_clear(topology_die_cpumask(cpu));
1571 	c->cpu_core_id = 0;
1572 	c->booted_cores = 0;
1573 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1574 	recompute_smt_state();
1575 }
1576 
remove_cpu_from_maps(int cpu)1577 static void remove_cpu_from_maps(int cpu)
1578 {
1579 	set_cpu_online(cpu, false);
1580 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1581 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1582 	/* was set by cpu_init() */
1583 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1584 	numa_remove_cpu(cpu);
1585 }
1586 
cpu_disable_common(void)1587 void cpu_disable_common(void)
1588 {
1589 	int cpu = smp_processor_id();
1590 
1591 	remove_siblinginfo(cpu);
1592 
1593 	/* It's now safe to remove this processor from the online map */
1594 	lock_vector_lock();
1595 	remove_cpu_from_maps(cpu);
1596 	unlock_vector_lock();
1597 	fixup_irqs();
1598 	lapic_offline();
1599 }
1600 
native_cpu_disable(void)1601 int native_cpu_disable(void)
1602 {
1603 	int ret;
1604 
1605 	ret = lapic_can_unplug_cpu();
1606 	if (ret)
1607 		return ret;
1608 
1609 	cpu_disable_common();
1610 
1611         /*
1612          * Disable the local APIC. Otherwise IPI broadcasts will reach
1613          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1614          * messages.
1615          *
1616          * Disabling the APIC must happen after cpu_disable_common()
1617          * which invokes fixup_irqs().
1618          *
1619          * Disabling the APIC preserves already set bits in IRR, but
1620          * an interrupt arriving after disabling the local APIC does not
1621          * set the corresponding IRR bit.
1622          *
1623          * fixup_irqs() scans IRR for set bits so it can raise a not
1624          * yet handled interrupt on the new destination CPU via an IPI
1625          * but obviously it can't do so for IRR bits which are not set.
1626          * IOW, interrupts arriving after disabling the local APIC will
1627          * be lost.
1628          */
1629 	apic_soft_disable();
1630 
1631 	return 0;
1632 }
1633 
common_cpu_die(unsigned int cpu)1634 int common_cpu_die(unsigned int cpu)
1635 {
1636 	int ret = 0;
1637 
1638 	/* We don't do anything here: idle task is faking death itself. */
1639 
1640 	/* They ack this in play_dead() by setting CPU_DEAD */
1641 	if (cpu_wait_death(cpu, 5)) {
1642 		if (system_state == SYSTEM_RUNNING)
1643 			pr_info("CPU %u is now offline\n", cpu);
1644 	} else {
1645 		pr_err("CPU %u didn't die...\n", cpu);
1646 		ret = -1;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
native_cpu_die(unsigned int cpu)1652 void native_cpu_die(unsigned int cpu)
1653 {
1654 	common_cpu_die(cpu);
1655 }
1656 
play_dead_common(void)1657 void play_dead_common(void)
1658 {
1659 	idle_task_exit();
1660 
1661 	/* Ack it */
1662 	(void)cpu_report_death();
1663 
1664 	/*
1665 	 * With physical CPU hotplug, we should halt the cpu
1666 	 */
1667 	local_irq_disable();
1668 }
1669 
1670 /**
1671  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1672  *
1673  * If NMI wants to wake up CPU0, start CPU0.
1674  */
cond_wakeup_cpu0(void)1675 void cond_wakeup_cpu0(void)
1676 {
1677 	if (smp_processor_id() == 0 && enable_start_cpu0)
1678 		start_cpu0();
1679 }
1680 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1681 
1682 /*
1683  * We need to flush the caches before going to sleep, lest we have
1684  * dirty data in our caches when we come back up.
1685  */
mwait_play_dead(void)1686 static inline void mwait_play_dead(void)
1687 {
1688 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1689 	unsigned int eax, ebx, ecx, edx;
1690 	unsigned int highest_cstate = 0;
1691 	unsigned int highest_subcstate = 0;
1692 	int i;
1693 
1694 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1695 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1696 		return;
1697 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1698 		return;
1699 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1700 		return;
1701 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1702 		return;
1703 
1704 	eax = CPUID_MWAIT_LEAF;
1705 	ecx = 0;
1706 	native_cpuid(&eax, &ebx, &ecx, &edx);
1707 
1708 	/*
1709 	 * eax will be 0 if EDX enumeration is not valid.
1710 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1711 	 */
1712 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1713 		eax = 0;
1714 	} else {
1715 		edx >>= MWAIT_SUBSTATE_SIZE;
1716 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1717 			if (edx & MWAIT_SUBSTATE_MASK) {
1718 				highest_cstate = i;
1719 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1720 			}
1721 		}
1722 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1723 			(highest_subcstate - 1);
1724 	}
1725 
1726 	wbinvd();
1727 
1728 	while (1) {
1729 		/*
1730 		 * The CLFLUSH is a workaround for erratum AAI65 for
1731 		 * the Xeon 7400 series.  It's not clear it is actually
1732 		 * needed, but it should be harmless in either case.
1733 		 * The WBINVD is insufficient due to the spurious-wakeup
1734 		 * case where we return around the loop.
1735 		 */
1736 		mb();
1737 		clflush(md);
1738 		mb();
1739 		__monitor(md, 0, 0);
1740 		mb();
1741 		__mwait(eax, 0);
1742 
1743 		cond_wakeup_cpu0();
1744 	}
1745 }
1746 
hlt_play_dead(void)1747 void hlt_play_dead(void)
1748 {
1749 	if (__this_cpu_read(cpu_info.x86) >= 4)
1750 		wbinvd();
1751 
1752 	while (1) {
1753 		native_halt();
1754 
1755 		cond_wakeup_cpu0();
1756 	}
1757 }
1758 
native_play_dead(void)1759 void native_play_dead(void)
1760 {
1761 	play_dead_common();
1762 	tboot_shutdown(TB_SHUTDOWN_WFS);
1763 
1764 	mwait_play_dead();	/* Only returns on failure */
1765 	if (cpuidle_play_dead())
1766 		hlt_play_dead();
1767 }
1768 
1769 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1770 int native_cpu_disable(void)
1771 {
1772 	return -ENOSYS;
1773 }
1774 
native_cpu_die(unsigned int cpu)1775 void native_cpu_die(unsigned int cpu)
1776 {
1777 	/* We said "no" in __cpu_disable */
1778 	BUG();
1779 }
1780 
native_play_dead(void)1781 void native_play_dead(void)
1782 {
1783 	BUG();
1784 }
1785 
1786 #endif
1787 
1788 #ifdef CONFIG_X86_64
1789 /*
1790  * APERF/MPERF frequency ratio computation.
1791  *
1792  * The scheduler wants to do frequency invariant accounting and needs a <1
1793  * ratio to account for the 'current' frequency, corresponding to
1794  * freq_curr / freq_max.
1795  *
1796  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1797  * our P-state setting is little more than a request/hint, we need to observe
1798  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1799  * interval after discarding idle time. This is given by:
1800  *
1801  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1802  *
1803  * where freq_base is the max non-turbo P-state.
1804  *
1805  * The freq_max term has to be set to a somewhat arbitrary value, because we
1806  * can't know which turbo states will be available at a given point in time:
1807  * it all depends on the thermal headroom of the entire package. We set it to
1808  * the turbo level with 4 cores active.
1809  *
1810  * Benchmarks show that's a good compromise between the 1C turbo ratio
1811  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1812  * which would ignore the entire turbo range (a conspicuous part, making
1813  * freq_curr/freq_max always maxed out).
1814  *
1815  * An exception to the heuristic above is the Atom uarch, where we choose the
1816  * highest turbo level for freq_max since Atom's are generally oriented towards
1817  * power efficiency.
1818  *
1819  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1820  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1821  */
1822 
1823 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1824 
1825 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1826 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1827 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1828 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1829 
arch_set_max_freq_ratio(bool turbo_disabled)1830 void arch_set_max_freq_ratio(bool turbo_disabled)
1831 {
1832 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1833 					arch_turbo_freq_ratio;
1834 }
1835 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1836 
turbo_disabled(void)1837 static bool turbo_disabled(void)
1838 {
1839 	u64 misc_en;
1840 	int err;
1841 
1842 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1843 	if (err)
1844 		return false;
1845 
1846 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1847 }
1848 
slv_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1849 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1850 {
1851 	int err;
1852 
1853 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1854 	if (err)
1855 		return false;
1856 
1857 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1858 	if (err)
1859 		return false;
1860 
1861 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1862 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1863 
1864 	return true;
1865 }
1866 
1867 #include <asm/cpu_device_id.h>
1868 #include <asm/intel-family.h>
1869 
1870 #define X86_MATCH(model)					\
1871 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1872 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1873 
1874 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1875 	X86_MATCH(XEON_PHI_KNL),
1876 	X86_MATCH(XEON_PHI_KNM),
1877 	{}
1878 };
1879 
1880 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1881 	X86_MATCH(SKYLAKE_X),
1882 	{}
1883 };
1884 
1885 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1886 	X86_MATCH(ATOM_GOLDMONT),
1887 	X86_MATCH(ATOM_GOLDMONT_D),
1888 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1889 	{}
1890 };
1891 
knl_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int num_delta_fratio)1892 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1893 				int num_delta_fratio)
1894 {
1895 	int fratio, delta_fratio, found;
1896 	int err, i;
1897 	u64 msr;
1898 
1899 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1900 	if (err)
1901 		return false;
1902 
1903 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1904 
1905 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1906 	if (err)
1907 		return false;
1908 
1909 	fratio = (msr >> 8) & 0xFF;
1910 	i = 16;
1911 	found = 0;
1912 	do {
1913 		if (found >= num_delta_fratio) {
1914 			*turbo_freq = fratio;
1915 			return true;
1916 		}
1917 
1918 		delta_fratio = (msr >> (i + 5)) & 0x7;
1919 
1920 		if (delta_fratio) {
1921 			found += 1;
1922 			fratio -= delta_fratio;
1923 		}
1924 
1925 		i += 8;
1926 	} while (i < 64);
1927 
1928 	return true;
1929 }
1930 
skx_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int size)1931 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1932 {
1933 	u64 ratios, counts;
1934 	u32 group_size;
1935 	int err, i;
1936 
1937 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1938 	if (err)
1939 		return false;
1940 
1941 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1942 
1943 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1944 	if (err)
1945 		return false;
1946 
1947 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1948 	if (err)
1949 		return false;
1950 
1951 	for (i = 0; i < 64; i += 8) {
1952 		group_size = (counts >> i) & 0xFF;
1953 		if (group_size >= size) {
1954 			*turbo_freq = (ratios >> i) & 0xFF;
1955 			return true;
1956 		}
1957 	}
1958 
1959 	return false;
1960 }
1961 
core_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1962 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1963 {
1964 	u64 msr;
1965 	int err;
1966 
1967 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1968 	if (err)
1969 		return false;
1970 
1971 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1972 	if (err)
1973 		return false;
1974 
1975 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1976 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1977 
1978 	/* The CPU may have less than 4 cores */
1979 	if (!*turbo_freq)
1980 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1981 
1982 	return true;
1983 }
1984 
intel_set_max_freq_ratio(void)1985 static bool intel_set_max_freq_ratio(void)
1986 {
1987 	u64 base_freq, turbo_freq;
1988 	u64 turbo_ratio;
1989 
1990 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1991 		goto out;
1992 
1993 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1994 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 		goto out;
1996 
1997 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1998 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1999 		goto out;
2000 
2001 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2002 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2003 		goto out;
2004 
2005 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2006 		goto out;
2007 
2008 	return false;
2009 
2010 out:
2011 	/*
2012 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2013 	 * but then fill all MSR's with zeroes.
2014 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2015 	 * in MSR_TURBO_RATIO_LIMIT.
2016 	 */
2017 	if (!base_freq || !turbo_freq) {
2018 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2019 		return false;
2020 	}
2021 
2022 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2023 	if (!turbo_ratio) {
2024 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2025 		return false;
2026 	}
2027 
2028 	arch_turbo_freq_ratio = turbo_ratio;
2029 	arch_set_max_freq_ratio(turbo_disabled());
2030 
2031 	return true;
2032 }
2033 
init_counter_refs(void)2034 static void init_counter_refs(void)
2035 {
2036 	u64 aperf, mperf;
2037 
2038 	rdmsrl(MSR_IA32_APERF, aperf);
2039 	rdmsrl(MSR_IA32_MPERF, mperf);
2040 
2041 	this_cpu_write(arch_prev_aperf, aperf);
2042 	this_cpu_write(arch_prev_mperf, mperf);
2043 }
2044 
init_freq_invariance(bool secondary)2045 static void init_freq_invariance(bool secondary)
2046 {
2047 	bool ret = false;
2048 
2049 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2050 		return;
2051 
2052 	if (secondary) {
2053 		if (static_branch_likely(&arch_scale_freq_key)) {
2054 			init_counter_refs();
2055 		}
2056 		return;
2057 	}
2058 
2059 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2060 		ret = intel_set_max_freq_ratio();
2061 
2062 	if (ret) {
2063 		init_counter_refs();
2064 		static_branch_enable(&arch_scale_freq_key);
2065 	} else {
2066 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2067 	}
2068 }
2069 
disable_freq_invariance_workfn(struct work_struct * work)2070 static void disable_freq_invariance_workfn(struct work_struct *work)
2071 {
2072 	static_branch_disable(&arch_scale_freq_key);
2073 }
2074 
2075 static DECLARE_WORK(disable_freq_invariance_work,
2076 		    disable_freq_invariance_workfn);
2077 
2078 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2079 
arch_scale_freq_tick(void)2080 void arch_scale_freq_tick(void)
2081 {
2082 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2083 	u64 aperf, mperf;
2084 	u64 acnt, mcnt;
2085 
2086 	if (!arch_scale_freq_invariant())
2087 		return;
2088 
2089 	rdmsrl(MSR_IA32_APERF, aperf);
2090 	rdmsrl(MSR_IA32_MPERF, mperf);
2091 
2092 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2093 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2094 
2095 	this_cpu_write(arch_prev_aperf, aperf);
2096 	this_cpu_write(arch_prev_mperf, mperf);
2097 
2098 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2099 		goto error;
2100 
2101 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2102 		goto error;
2103 
2104 	freq_scale = div64_u64(acnt, mcnt);
2105 	if (!freq_scale)
2106 		goto error;
2107 
2108 	if (freq_scale > SCHED_CAPACITY_SCALE)
2109 		freq_scale = SCHED_CAPACITY_SCALE;
2110 
2111 	this_cpu_write(arch_freq_scale, freq_scale);
2112 	return;
2113 
2114 error:
2115 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2116 	schedule_work(&disable_freq_invariance_work);
2117 }
2118 #else
init_freq_invariance(bool secondary)2119 static inline void init_freq_invariance(bool secondary)
2120 {
2121 }
2122 #endif /* CONFIG_X86_64 */
2123